Supporting Information

Oxidation states from wavefunction analysis

Eloy Ramos-Cordoba, Verònica Postils, and Pedro Salvador*

Institut de Química Computacional i Catàlisi i Department de Química, Universitat de Girona, Girona, Spain

E-mail: pedro.salvador@udg.edu

^{*}To whom correspondence should be addressed

Atomic definition	Atom	EOS	$\lambda_{LO}^{lpha}/\lambda_{FU}^{lpha}$	$\lambda_{LO}^{eta}/\lambda_{FU}^{eta}$	$R_{\alpha}(\%)/R_{\beta}(\%)$
Mulliken	Fe	2	0.995 / 0.040	0.992 / 0.057	100 / 100
	Cl	-1	0.953 / -	0.931 / -	
Löwdin	Fe	2	0.992 / 0.221	0.994 / 0.209	100 / 100
	Cl	-1	0.901 / -	0.884 / -	
Becke	Fe	2	0.957 / 0.156	0.968 / 0.143	100 / 100
	Cl	-1	0.810 / -	0.786 / -	
Hirshfeld	Fe	2	0.939 / 0.119	0.946 / 0.107	100 / 100
	Cl	-1	0.845 / -	0.823 / -	
Hirshfeld-Iterative	Fe	2	0.912 / 0.079	0.912 / 0.077	100 / 100
	Cl	-1	0.873 / 0.013	0.852 / 0.010	
QTAIM	Fe	2	0.970 / 0.141	0.983 / 0.128	100 / 100
	Cl	-1	0.935 / 0.019	0.915 / 0.014	
TFVC	Fe	2	0.938 / 0.101	0.953 / 0.090	100 / 100
	Cl	-1	0.898 / 0.014	0.876 / 0.011	

Table S1: EOS, last occupied and first unoccupied eff-AOs and C(%) values for the FeCl_6^{4-} complex.

Table S2: EOS, last occupied and first unoccupied eff-AOs and C(%) values for the FeCl_6^{3-} complex.

Atomic definition	Atom	EOS	$\lambda_{LO}^{lpha}/\lambda_{FU}^{lpha}$	$\lambda_{LO}^{\ eta}/\lambda_{FU}^{\ eta}$	$R_{\alpha}(\%)/R_{\beta}(\%)$
Mulliken	Fe	3	0.998 / 0.085	1.000 / 0.245	100 / 100
	Cl	-1	0.916/ -	0.805 / -	
Löwdin	Fe	3	0.995 / 0.264	0.996 / 0.292	100 / 100
	Cl	-1	0.887 / -	0.809 / -	
Becke	Fe	3	0.964 / 0.191	0.995 / 0.300	100 / 91
	Cl	-1	0.796 / -	0.711/ -	
Hirshfeld	Fe	3	0.948 / 0.149	0.989 / 0.279	100 / 97
	Cl	-1	0.832 / -	0.746 / -	
Hirshfeld-Iterative	Fe	3	0.918 / 0.086	0.978 / 0.250	100 / 100
	Cl	-1	0.883 / 0.015	0.797 / 0.011	
QTAIM	Fe	3	0.975 / 0.177	0.999 / 0.292	100 / 100
	Cl	-1	0.923 / 0.018	0.837 / 0.013	
TFVC	Fe	3	0.951/0.137	0.994 / 0.274	100 / 100
	Cl	-1	0.881 / 0.013	0.793 / 0.010	

Atomic definition	Atom	EOS	$\lambda_{LO}^{lpha}/\lambda_{FU}^{lpha}$	$\lambda_{LO}^{eta}/\lambda_{FU}^{eta}$	$R_{\alpha}(\%)/R_{\beta}(\%)$
	Fe	2	0.986 / 0.035	0.979 / 0.036	i
Mulliken	0	-2	0.534 / -	0.535 / -	89 / 89
	Η	1	- / 0.148	- / 0.143	
	Fe	2	0.981 / 0.194	0.986 / 0.186	
Löwdin	0	-2	0.693 / -	0.693 / -	90 / 90
	Η	1	- / 0.294	- / 0.291	
	Fe	2	0.973 / 0.183	0.977 / 0.174	
Becke	0	-2	0.565 / -	0.565 / -	80 / 80
	Η	1	- / 0.265	- / 0.262	
	Fe	2	0.930 / 0.094	0.931 / 0.088	
Hirshfeld	0	-2	0.536/ -	0.536/ -	86 / 86
	Η	1	- / 0.178	- / 0.176	
	Fe	2	0.880 / 0.046	0.867 / 0.053	
Hirshfeld-Iterative	0	-2	0.675 / 0.013	0.675 / -	100 / 100
	Η	1	- / 0.081	- / 0.081	
	Fe	2	0.958 / 0.103	0.971 / 0.095	
QTAIM	0	-2	0.785 / 0.015	0.785 / -	100 / 100
	Η	1	- / 0.182	- / 0.180 /	
	Fe	2	0.923 / 0.071	0.933 / 0.065	
TFVC	0	-2	0.754 / 0.013	0.754 / -	100 / 100
	Н	1	- / 0.156	- / 0.154	

Table S3: EOS, last occupied and first unoccupied eff-AOs and C(%) values for the high-spin $Fe(H_2O)_6^{2+}$ complex.

Atomic definition	Atom	EOS	$\lambda_{LO}^{lpha}/\lambda_{FU}^{lpha}$	$\lambda_{LO}^{eta}/\lambda_{FU}^{eta}$	$R_{\alpha}(\%)/R_{\beta}(\%)$
	Fe	3	0.993 / 0.035	1.000 / 0.116	
Mulliken	Ο	-2	0.575 / -	0.573 / -	96 / 96
	Η	1	- /0.117	- / 0.113	
	Fe	3	0.987 / 0.223	0.991 / 0.217	
Löwdin	Ο	-2	0.712/ -	0.710/ -	94 / 94
	Η	1	- / 0.274	- / 0.271	
	Fe	3	0.977 / 0.218	0.997 / 0.227	
Becke	0	-2	0.581 / -	0.570 / -	84 / 83
	Η	1	- / 0.246	- / 0.243	
	Fe	3	0.935 / 0.111	0.981 / 0.160	
Hirshfeld	0	-2	0.549 / -	0.547 / -	88 / 88
	Η	1	- / 0.167	- / 0.165	
	Fe	3	0.887 / 0.059	0.959 / 0.131	
Hirshfeld-Iterative	Ο	-2	0.701 / 0.012	0.698 / -	100 / 100
	Н	1	- / 0.068	- / 0.067	
	Fe	3	0.961 / 0.119	0.996 / 0.160	
QTAIM	Ο	-2	0.809 / 0.018	0.807 / -	100 / 100
	Н	1	- / 0.159	- / 0.157	
	Fe	3	0.931 / 0.088	0.987 / 0.145	
TFVC	Ο	-2	0.778 / 0.013	0.776/ -	100 / 100
	Н	1	- /0.137	- / 0.135	

Table S4: EOS, last occupied and first unoccupied eff-AOs and C(%) values for high-spin $Fe(H_2O)_6^{3+}$ complex.

Atomic definition	Atom	EOS	$\lambda_{LO}/\lambda_{FU}$	R(%)
	Fe	2	0.974 / 0.052	
Mulliken	0	-2	0.538 / -	90
	Η	1	- / 0.142	
	Fe	2	0.982 / 0.192	
Löwdin	Ο	-2	0.692 / -	90
	Η	1	- / 0.290	
	Fe	2	0.969 / 0.185	
Becke	0	-2	0.560 / -	80
	Η	1	- / 0.260	
	Fe	2	0.908 / 0.093	
Hirshfeld	0	-2	0.532 / -	86
	Η	1	- / 0.174	
	Fe	2	0.849 / 0.072	
Hirshfeld-Iterative	0	-2	0.671/0.011	100
	Η	1	- / 0.078	
	Fe	2	0.958 / 0.105	
QTAIM	0	-2	0.785 / 0.012	100
	Η	1	- / 0.177	
	Fe	2	0.897 / 0.074	
TFVC	0	-2	0.752 / 0.014	100
	Н	1	- / 0.154	

Table S5: EOS, last occupied and first unoccupied eff-AOs and C(%) values for the low-spin $Fe(H_2O)_6^{2+}$ complex.

Atomic definition	Atom	EOS	$\lambda_{LO}^{lpha}/\lambda_{FU}^{lpha}$	$\lambda_{LO}^{\ eta}/\lambda_{FU}^{\ eta}$	$R_{\alpha}(\%)/R_{\beta}(\%)$
	Fe	3	0.984 / 0.151	0.982 / 0.136	
Mulliken	0	-2	0.571/ -	0.571/ -	92 / 93
	Η	1	- /0.114	- / 0.114	
	Fe	3	0.984 / 0.228	0.984 / 0.215	
Löwdin	0	-2	0.707 / -	0.707 / -	94 / 94
	Η	1	- / 0.271	- / 0.271	
	Fe	3	0.972 / 0.266	0.971 / 0.250	
Becke	0	-2	0.561 / -	0.568 / -	80 / 82
	Η	1	- / 0.242	- / 0.243	
	Fe	3	0.912 / 0.193	0.909 / 0.178	
Hirshfeld	0	-2	0.543 / -	0.543 / -	85 / 87
	Η	1	- / 0.164	- / 0.164	
	Fe	3	0.858 / 0.164	0.854 / 0.150	
Hirshfeld-Iterative	0	-2	0.698 / 0.011	0.699 / 0.011	100 / 100
	Η	1	- / 0.065	- / 0.065	
	Fe	3	0.960 / 0.200	0.959 / 0.185	
QTAIM	0	-2	0.804 / 0.012	0.806 / 0.012	100 / 100
	Η	1	- / 0.157	- / 0.157	
	Fe	3	0.913 / 0.173	0.910 / 0.160	
TFVC	Ο	-2	0.774 / 0.013	0.775 / 0.013	100 / 100
	Η	1	- / 0.135	- / 0.136	

Table S6: EOS, last occupied and first unoccupied eff-AOs and C(%) values for low-spin $Fe(H_2O)_6^{3+}$ complex.

Atomic definition	Atom	EOS	$\lambda_{LO}/\lambda_{FU}$	R(%)
	Fe	2	0.826 / 0.199	
Mulliken	С	2	0.789 / 0.253	74
	Ν	-3	0.491 / -	
	Fe	2	0.862 / 0.319	
Löwdin	С	2	0.705 / 0.448	60
	Ν	-3	0.543 / 0.031	
	Fe	2	0.853/0.312	
Becke	С	2	0.626 / 0.349	56
	Ν	-3	0.412/ -	
	Fe	2	0.780 / 0.243	
Hirshfeld	С	2	0.617 / 0.283	64
	Ν	-3	0.423 / -	
	Fe	2	0.773 / 0.238	
Hirshfeld-Iterative	С	2	0.597 / 0.259	67
	Ν	-3	0.433 / -	
	Fe	2	0.846 / 0.259	
QTAIM	С	2	0.794 / 0.271	98
	Ν	-3	0.747 / 0.026	
	Fe	2	0.786 / 0.223	
TFVC	С	2	0.732 / 0.230	99
	Ν	-3	0.719 / 0.024	

Table S7: EOS, last occupied and first unoccupied eff-AOs and C(%) values for the $Fe(CN)_6^{4-}$ complex.

Atomic definition	Atom	EOS	$\lambda_{LO}^{lpha}/\lambda_{FU}^{lpha}$	$\lambda_{LO}^{eta}/\lambda_{FU}^{eta}$	$R_{\alpha}(\%)/R_{\beta}(\%)$
	Fe	3	0.896 / 0.327	0.871/0.283	
Mulliken	С	2	0.701 / 0.263	0.737 / 0.280	63 / 66
	Ν	-3	0.453 / -	0.442 / -	
	Fe	3	0.920 / 0.420	0.900 / 0.378	
Löwdin	С	2	0.672 / 0.448	0.687 / 0.450	59 / 59
	Ν	-3	0.538 / 0.029	0.539 / 0.030	
	Fe	3	0.905 / 0.432	0.886 / 0.393	
Becke	С	2	0.596 / 0.350	0.607 / 0.364	47 / 51
	Ν	-3	0.406 / -	0.407 / -	
	Fe	3	0.832 / 0.358	0.812/0.319	
Hirshfeld	С	2	0.584 / 0.288	0.596 / 0.299	56 / 60
	Ν	-3	0.418 / -	0.419/ -	
	Fe	3	0.823 / 0.349	0.802 / 0.310	
Hirshfeld-Iterative	С	2	0.577 / 0.272	0.590 / 0.283	58 / 62
	Ν	-3	0.425 / -	0.426 / -	
QTAIM	Fe	3	0.900 / 0.384	0.881 / 0.343	
	С	2	0.762 / 0.278	0.777 / 0.293	84 / 85
	Ν	-3	0.728 / 0.021	0.692 / 0.022	
	Fe	3	0.848 / 0.344	0.827 / 0.305	
TFVC	С	2	0.694 / 0.235	0.709 / 0.245	85 / 86
	Ν	-3	0.701 / 0.020	0.665 / 0.021	

Table S8: EOS, last occupied and first unoccupied eff-AOs and C(%) values for the $\text{Fe}(\text{CN})_6^{3-}$ complex

Atomic definition	Atom	EOS	$\lambda_{LO}/\lambda_{FU}$	R(%)
	Fe	2	0.813/0.215	
Mulliken	С	2	0.752 / 0.230	69
	0	-2	0.424 / -	
	Fe	2	0.849 / 0.315	
Löwdin	С	2	0.705 / 0.413	67
	0	-2	0.579 / 0.025	
	Fe	2	0.836 / 0.330	
Becke	С	2	0.608 / 0.331	61
	0	-2	0.445 / -	
	Fe	2	0.753 / 0.256	
Hirshfeld	С	2	0.600 / 0.240	74
	0	-2	0.497 / -	
	Fe	2	0.760 / 0.260	
Hirshfeld-Iterative	С	2	0.600 / 0.237	74
	0	-2	0.504 / -	
	Fe	2	0.832 / 0.281	
QTAIM	С	2	0.775 / 0.219	99
	0	-2	0.807 / 0.029	
	Fe	2	0.768 / 0.241	
TFVC	С	2	0.714 / 0.191	97
	0	-2	0.777 / 0.025	

Table S9: EOS, last occupied and first unoccupied eff-AOs and R(%) values for the $Fe(CO)_6^{2+}$ complex

Fe3 $0.913/0.308$ $0.894/0.263$ MullikenC2 $0.690/0.243$ $0.723/0.242$ O-2 $0.410/$ - $0.412/$ Fe3 $0.933/0.398$ $0.918/0.353$ LöwdinC2 $0.693/0.414$ $0.709/0.415$ O-2 $0.576/0.024$ $0.412/0.025$ Fe3 $0.919/0.414$ $0.905/0.372$ BeckeC2 $0.601/0.330$ $0.614/0.333$ O-2 $0.441/$ - $0.442/$ Fe3 $0.850/0.342$ $0.835/0.302$ HirshfeldC2 $0.599/0.245$ $0.613/0.252$ O-2 $0.493/$ - $0.494/$ Fe3 $0.854/0.343$ $0.838/0.302$ Hirshfeld-IterativeC2 $0.609/0.246$ $0.623/0.254$ O-2 $0.499/$ - $0.499/$	60 / 65 66 / 66
MullikenC2 $0.690 / 0.243$ $0.723 / 0.242$ O-2 $0.410 / 0.412 / -$ Fe3 $0.933 / 0.398$ $0.918 / 0.353$ LöwdinC2 $0.693 / 0.414$ $0.709 / 0.415$ O-2 $0.576 / 0.024$ $0.412 / 0.025$ Fe3 $0.919 / 0.414$ $0.905 / 0.372$ BeckeC2 $0.601 / 0.330$ $0.614 / 0.333$ O-2 $0.441 / 0.442 / -$ Fe3 $0.850 / 0.342$ $0.835 / 0.302$ HirshfeldC2 $0.599 / 0.245$ $0.613 / 0.252$ O-2 $0.493 / 0.494 / -$ Fe3 $0.854 / 0.343$ $0.838 / 0.302$ Hirshfeld-IterativeC2 $0.609 / 0.246$ $0.623 / 0.254$	60 / 65 66 / 66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	66 / 66
Fe3 $0.933 / 0.398$ $0.918 / 0.353$ LöwdinC2 $0.693 / 0.414$ $0.709 / 0.415$ O-2 $0.576 / 0.024$ $0.412 / 0.025$ Fe3 $0.919 / 0.414$ $0.905 / 0.372$ BeckeC2 $0.601 / 0.330$ $0.614 / 0.333$ O-2 $0.441 / 0.442 / -$ Fe3 $0.850 / 0.342$ $0.835 / 0.302$ HirshfeldC2 $0.599 / 0.245$ $0.613 / 0.252$ O-2 $0.493 / 0.494 / -$ Fe3 $0.854 / 0.343$ $0.838 / 0.302$ Hirshfeld-IterativeC2 $0.609 / 0.246$ $0.623 / 0.254$ O-2 $0.499 / 0.499 / -$	66 / 66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66 / 66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Fe3 $0.919 / 0.414$ $0.905 / 0.372$ BeckeC2 $0.601 / 0.330$ $0.614 / 0.333$ O-2 $0.441 / 0.442 / -$ Fe3 $0.850 / 0.342$ $0.835 / 0.302$ HirshfeldC2 $0.599 / 0.245$ $0.613 / 0.252$ O-2 $0.493 / 0.494 / -$ Fe3 $0.854 / 0.343$ $0.838 / 0.302$ Hirshfeld-IterativeC2 $0.609 / 0.246$ $0.623 / 0.254$ O-2 $0.499 / 0.499 / -$	
BeckeC2 $0.601/0.330$ $0.614/0.333$ O-2 $0.441/$ - $0.442/$ Fe3 $0.850/0.342$ $0.835/0.302$ HirshfeldC2 $0.599/0.245$ $0.613/0.252$ O-2 $0.493/$ - $0.494/$ Fe3 $0.854/0.343$ $0.838/0.302$ Hirshfeld-IterativeC2 $0.609/0.246$ $0.623/0.254$ O-2 $0.499/$ - $0.499/$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53 / 57
Fe3 $0.850 / 0.342$ $0.835 / 0.302$ HirshfeldC2 $0.599 / 0.245$ $0.613 / 0.252$ O-2 $0.493 / 0.494 / -$ Fe3 $0.854 / 0.343$ $0.838 / 0.302$ Hirshfeld-IterativeC2 $0.609 / 0.246$ $0.623 / 0.254$ O-2 $0.499 / 0.499 / -$	
HirshfeldC2 $0.599 / 0.245$ $0.613 / 0.252$ O-2 $0.493 / 0.494 / -$ Fe3 $0.854 / 0.343$ $0.838 / 0.302$ Hirshfeld-IterativeC2 $0.609 / 0.246$ $0.623 / 0.254$ O-2 $0.499 / 0.499 / -$	
O-2 $0.493 / 0.494 / -$ Fe3 $0.854 / 0.343$ $0.838 / 0.302$ Hirshfeld-IterativeC2 $0.609 / 0.246$ $0.623 / 0.254$ O-2 $0.499 / 0.499 / -$	65 / 69
Fe3 $0.854/0.343$ $0.838/0.302$ Hirshfeld-IterativeC2 $0.609/0.246$ $0.623/0.254$ Q-2 $0.499/$ - $0.499/$	
Hirshfeld-Iterative C 2 0.609 / 0.246 0.623 / 0.254 O -2 0.499 / - 0.499 / -	
O -2 0.499 / - 0.499 / -	66 / 70
Fe 3 0.912 / 0.362 0.898 / 0.319	
QTAIM C 2 0.768 / 0.215 0.784 / 0.221	91 / 95
O -2 0.794 / 0.026 0.773 / 0.027	
Fe 3 0.862 / 0.326 0.846 / 0.285	
TFVC C 2 0.705 / 0.189 0.720 / 0.194	88 / 94
O -2 0.762 / 0.022 0.740 / 0.023	

Table S10: EOS, last occupied and first unoccupied eff-AOs and R(%) values for the $Fe(CO)_6^{3+}$ complex

Molecule	EOS	R(%)
LiF	${\rm Li}^{1+} {\rm F}^{1-}$	100
CO	$C^{2+} O^{2-}$	100
CN^{-}	$C^{2+} N^{3-}$	97
NO^+	$N^{3+} O^{2-}$	94
CO_2	$C^{4+} (O^{2-})_2$	100
SO_2	$S^{4+} (O^{2-})_2$	100
SO_3	$S^{6+}(O^{2-})_3$	94
LiH	$Li^{1+}H^{1-}$	100
BeH ₂	$Be^{2+} (H^{1-})_2$	100
MgH_2	$Mg^{2+} (H^{1-})_2$	100
AlH ₃	$Al^{3+}(H^{1-})_3$	100
BH_3	$B^{3+}(H^{1-})_3$	100
B_2H_6	$(B^{3+})_2(H^{1-})_6$	100
SiH ₄	${ m Si}^{4+}$ (H ¹⁺) ₄	100
NH ₃	$N^{3-}(H^{1+})_3$	81
PH_3	$P^{3-}(H^{1+})_3$	100
H_2O	$({\rm H}^{1+})_2 {\rm O}^{2-}$	100
H_2S	$({\rm H}^{1-})_2 {\rm S}^{2+}$	55
HF	${ m H}^{1+}{ m F}^{1-}$	100
HCl	$\mathrm{H}^{1+} \mathrm{Cl}^{1-}$	78
HCNO	$H^{1+} C^{2+} N^{1-} O^{2-}$	60
HCONH ₂	$H^{1-} C^{4+} O^{2-} N^{3-} (H^{1+})_2$	52
CH_4	$C^{4+}(H^{1-})_4$	45
CH_4	$C^{4-}(H^{1+})_4$	42
C_2H_6	$(C^{3-})_2(H^{1+})_6$	41
C_2H_4	$(C^{2+})_2(H^{1-})_4$	52
C_6H_6	$(C^{1+})_6(H^{1-})_6$	54
C_2H_2	$(C^{1-})_2(H^{1+})_2$	57

Table S11: EOS and R(%) values for a set of organic and inorganic molecules.

Figure S1: Structure of the [Fe(Pytacn)] active species

Atom	X	Y	Z
Н	0.53357	1.17869	3.21343
Н	2.85766	2.076	1.63326
Н	1.81471	0.12912	2.64613
С	0.83397	0.52483	2.39231
Н	3.20917	-0.33438	1.28211
Н	-0.08075	-1 33079	3 04233
C	2.35538	1.59339	0.78769
н	1 83122	-1 92376	1 8447
н	4 05927	0 51968	0.01379
C	0.16217	2 5698	1 23782
C	3.06534	0 29844	0.40804
N	0.00000	1 30854	1 11200
C	0.92773	0.60536	2 2282
с u	-0.10372	-0.00330	2.2262
п u	2.30733	2.29383	-0.04933
п	-1.17041	-0.20095	2.23703
	1.27452	-2.13140	0.95048
Н	0.99180	-3.20303	0.98929
H	3.13404	-2.34484	-0.15506
N	0.05518	-1.2/938	0.90846
N	2.25023	-0.44517	-0.60893
C	2.140/1	-1.90641	-0.29957
H	-1.56572	-2.63179	1.28875
С	2.87361	-0.28672	-1.94537
С	-1.18981	-1.9757	0.49731
Н	1.67864	-2.36878	-1.17034
Fe	0.28897	0.16274	-0.46187
Н	-0.95693	-2.59467	-0.37173
С	-2.21636	-0.91632	0.14415
Ν	-1.70314	0.27621	-0.24994
Н	-3.9561	-2.09048	0.56697
С	-3.58408	-1.1292	0.23633
С	-2.54498	1.27875	-0.54619
Н	-2.09113	2.21966	-0.83061
С	-4.45293	-0.09058	-0.09149
С	-3.92468	1.1366	-0.48363
Н	-5.52446	-0.23457	-0.02946
Н	-4.56309	1.97358	-0.7329
Н	2.2722	-0.80142	-2.69265
Н	3.88194	-0.71446	-1.94402
Н	2.93757	0.77148	-2.19706
Н	-0.86947	2.32956	1.49344
Н	0.18155	3.09505	0.28361
Н	0.59329	3.207	2.01746
0	-0.13004	-1.02387	-2.14471
0	0.45207	1.65797	-1.87749
Н	0.11714	-0.52665	-2.93705
Н	-1.05607	-1.2643	-2.28149
Н	1.15342	2.31924	-1.88703
Н	-0.33565	2.08827	-2.23159

Table S12: Cartesian coordinates of Fe^{II} bis aquo complex. UB3LYP/SDD+6-311G(d,p) Energy = -1043.882312 a.u.

H 0.52678 1.19714 3.2067 H 2.86044 2.12963 1.5550 H 1.82677 0.16258 2.6532	4
H 2.86044 2.12963 1.5550	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
	9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8
H 3 19872 -0 32183 1 2780	о Э
H _0.0444 _1.32433 3.0587	3
C = 2.34606 = 1.60198 = 0.7425	6
H 1.86651 -1.91239 1.8249	8
H 4.05983 0.518 0.0068	8
C = 0.16222 = 2.57241 = 1.1985	9
C = 3.0616 = 0.30143 = 0.3960	1
N 0.93003 1.31388 1.1067	1
C = 0.14404 = 0.60899 = 2.235'	7
H = 2.30691 = 2.2333 = 0.1423	, 21
H _1 15999 _0 21686 _2 2489	6
C = 1.20213 = 2.14738 = 0.0280	2
H $1.01000 = 3.2043 = 0.0007$	3
H $3 12015 -2 36243 -0.2153$	34
N 0.07263 -1.28378 0.9201	7
N 2 25195 -0.44128 -0.6170	, 22
C = 2.13227 = 1.80832 = 0.3261	/2 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7
C = 2.85234 = 0.24054 = 1.0567	, 7/1
C = 1.1617 = 1.97563 = 0.4828	2
H = 1.63385 = 2.33542 = 1.1015	56
$F_{e} = 0.2012 = 0.18022 = 0.4601$	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10
C = 2 10870 = 0.02247 = 0.1462))
N $1.60667 = 0.7540 = 0.2435$	<u>~</u> 55
H = 3.0240 = 2.11726 = 0.2450	
C = 3.56448 = 1.15061 = 0.2403	2
C = -2.55083 = 1.15001 = 0.2403	2
H = 2.10534 = 2.0013 = 0.8334	10
C = -4.44618 = 0.12175 = 0.0853	38
C = 3.92973 = 1.1101 = 0.4791	18
H = 55163 = 0.27688 = 0.0222	10
$H = \frac{457732}{103006} = 1000000000000000000000000000000000000$	17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20
H 2 86006 0 81608 2 1703	32
H = -0.86817 = 2.32764 = 1.4662	9
H = 0.18161 = 2.55704 = 1.4005	2
H = 0.50354 = 2.2085 = 1.0542	≏ :1
11 0.37334 3.23703 1.9340	26
0 0 10155 0 00072 0 0050	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
O -0.10155 -0.82273 -2.2858 O 0.48879 1.55885 -1.887 H 0.05796 0.14953 -2.548	1 1
O -0.10155 -0.82273 -2.2858 O 0.48879 1.55885 -1.887 H 0.05796 0.14953 -2.548 H -1.03781 -0.99164 -2.4449	1 4 84

Table S13: Cartesian coordinates of Fe^{II}aquo hydroxo complex. UB3LYP/SDD+6-311G(d,p) Energy= -1043.418827 a.u.

Atom	Х	Y	Z
Н	0.69783	1.45369	3.12524
Н	3.14441	2.06403	1.40578
Н	1.88884	0.28109	2.63294
С	0.94799	0.74183	2.33271
Ĥ	3.27418	-0.39469	1.31004
Н	-0.15654	-0.92893	3.15623
C	2.55202	1.54261	0.64062
Н	1.72624	-1.82759	2.01999
Н	4.17157	0.29264	-0.01565
C	0.50372	2.78835	1.07026
Č	3.16064	0.16407	0.38045
N	1.12699	1.44594	1.03713
С	-0.15398	-0.31317	2.24713
н	2.58207	2.1398	-0.27202
H	-1.12255	0.18316	2.19122
C	1.16093	-2.08008	1.12212
н	0.82483	-3.11199	1.26044
Н	3.00385	-2.55505	0.10316
N	-0.01058	-1.15798	1.03491
N	2.33882	-0.63609	-0.57513
C	2.06719	-2.02557	-0.1163
н	-1.63983	-2.44078	1.57338
C	2.98004	-0.66072	-1.91459
Č	-1.28036	-1.8503	0.72109
Ĥ	1.57768	-2.52612	-0.95038
Fe	0.26502	0.20079	-0.80293
Н	-1.09081	-2.52492	-0.11733
С	-2.33455	-0.85081	0.28995
N	-1.87903	0.26746	-0.30362
Н	-4.0411	-1.9757	0.95342
С	-3.69613	-1.07283	0.46432
С	-2.74697	1.18993	-0.74644
Н	-2.30882	2.06118	-1.21916
С	-4.60022	-0.12055	0.00098
С	-4.12	1.03297	-0.6129
Н	-5.66563	-0.2755	0.12315
Н	-4.79126	1.79785	-0.98098
Н	2.32051	-1.17229	-2.61204
Н	3.94847	-1.1728	-1.87148
Н	3.13205	0.36268	-2.25799
Н	-0.54494	2.69287	1.35617
Н	0.55163	3.22575	0.07537
Н	1.00676	3.44083	1.79509
0	-0.05176	-1.21149	-2.00219
0	0.44047	1.79047	-1.75156
Н	0.41506	1.78248	-2.71345
Н	-0.57995	-1.07377	-2.79428

Table S14: Cartesian coordinates of Fe^{III}bis hydroxo complex. UB3LYP/SDD+6-311G(d,p) Energy= -1042.653487 a.u.

Atom	Х	Y	Z
Н	0.56436	1.45906	3.07565
Н	2.89382	2.20802	1.37758
Н	1.84678	0.38163	2.58667
С	0.85884	0.74195	2.30711
Н	3.23162	-0.22595	1.2244
Н	-0.044	-1.05441	3.12073
С	2.37083	1.66476	0.58368
Н	1.82175	-1.81512	1.95567
Н	4.04031	0.5122	-0.13749
С	0.20578	2.72584	1.00493
С	3.05973	0.33626	0.30749
N	0.94169	1.42906	0.97031
С	-0.14132	-0.39632	2.25205
Н	2.36169	2.28999	-0.30777
Н	-1.15712	-0.00436	2.24965
С	1.26443	-2.08377	1.05898
Н	0.95625	-3.12383	1.18289
Н	3.12912	-2.34933	-0.01229
Ν	0.04518	-1.19286	0.98882
Ν	2.23108	-0.50861	-0.63015
С	2.12788	-1.94633	-0.19394
Н	-1.56582	-2.48411	1.55287
С	2.81045	-0.45165	-2.00963
С	-1.22388	-1.92466	0.67741
Н	1.6859	-2.48737	-1.02726
Fe	0.28585	0.12677	-0.57738
Н	-1.01978	-2.63019	-0.12974
С	-2.24443	-0.90519	0.23006
Ν	-1.71867	0.21255	-0.32935
Н	-4.01994	-1.95952	0.81046
С	-3.61633	-1.06503	0.3518
С	-2.52547	1.18651	-0.78933
Н	-2.03934	2.0437	-1.23653
С	-4.45952	-0.06133	-0.12567
С	-3.90656	1.08004	-0.69991
Н	-5.5346	-0.17029	-0.04553
Н	-4.52952	1.87962	-1.07963
Н	2.14984	-0.97068	-2.69851
Н	3.79241	-0.93215	-2.00293
Н	2.921	0.58922	-2.30869
Н	-0.82227	2.55433	1.32205
Н	0.21426	3.17066	0.01284
Н	0.68591	3.40629	1.71373
0	-0.01228	-1.11434	-1.85586
0	0.45	1.51544	-1.65062
Н	0.40913	1.28313	-2.59018
H	-0.88324	-1.06289	-2.27243

Table S15: Cartesian coordinates of Fe^{IV} bis hydroxo complex. UB3LYP/SDD+6-311G(d,p) Energy= -1042.272032 a.u.

Atom	X	Y	Z
H	0.5465	1.98291	2.74052
н	2 81043	2 4777	0.96405
н	1 82865	0.82337	2 4557
C	0.83954	1 13008	2.4557
ч	3 21074	0.05627	1 2570
и П	0.04210	0.05027	3 25880
C II	-0.04219	-0.48737	0.27123
с u	1.96226	1.76002	0.27123
п	1.80320	-1.30437	2.23342
п	4.03429	0.34746	-0.2080
C	0.11394	2.80230	0.48738
	5.05239	0.44164	0.2332
N	0.90741	1.55048	0.07993
C II	-0.14934	-0.00282	2.28561
H	2.30929	2.21739	-0.72559
H	-1.1657	0.3/746	2.20427
C	1.30159	-1.82334	1.42141
H	1.03114	-2.8304	1.74294
H	3.15218	-2.25404	0.37848
N	0.06919	-0.99839	1.18873
N	2.22879	-0.5526	-0.52388
С	2.14529	-1.89435	0.15039
Н	-1.54504	-2.18744	1.93743
С	2.81997	-0.7178	-1.88157
С	-1.18011	-1.77884	0.99141
Н	1.68778	-2.57076	-0.56852
Fe	0.30726	0.09309	-0.5799
Н	-0.96301	-2.61787	0.32718
С	-2.19999	-0.84405	0.37354
Ν	-1.68009	0.18873	-0.33375
Н	-3.96084	-1.82179	1.09527
С	-3.57011	-0.99765	0.51314
С	-2.49023	1.07818	-0.92747
Н	-1.9995	1.86049	-1.49001
С	-4.41673	-0.07355	-0.09691
С	-3.87035	0.97994	-0.82536
Н	-5.49039	-0.17373	0.00122
Н	-4.49624	1.71643	-1.31058
Н	2.23555	-1.43774	-2.44998
Н	3.84396	-1.08807	-1.78224
Н	2.81069	0.24769	-2.38329
Н	-0.9058	2.62735	0.82084
Н	0.12433	3.06045	-0.56903
Н	0.56278	3.60415	1.0813
0	-0.11954	-1.54677	-1.78828
Н	0.06287	-1.27926	-2.70163
Н	-1.0385	-1.85061	-1.79667
0	0.42497	1.05969	-1.88385

Table S16: Cartesian coordinates of Fe^{IV}oxo aquo complex. UB3LYP/SDD+6-311G(d,p) Energy= -1042.605037 a.u.

Atom	X	Y	Z
H	0.66574	1.81564	2.8598
Н	3.10539	2.24094	1.13404
Н	1.88181	0.6087	2.5347
С	0.93354	1.00571	2.17618
Ĥ	3.29088	-0.21453	1.33303
Н	-0.11943	-0.60276	3.17327
C	2.55753	1.61588	0.41754
Ĥ	1.72696	-1.59379	2.15725
Н	4.20848	0.32118	-0.0499
С	0.48184	2.87361	0.6491
C	3.19089	0.22562	0.33997
N	1.11607	1.53924	0.79041
С	-0.14628	-0.07017	2.21485
Н	2.60189	2.10062	-0.5586
Н	-1.12664	0.39494	2.12931
С	1.17922	-1.93841	1.27923
Н	0.8313	-2.94744	1.51622
Н	3.03656	-2.51861	0.35084
Ν	0.00567	-1.02478	1.079
Ν	2.3849	-0.67324	-0.52425
С	2.10798	-2.00817	0.06074
Н	-1.59671	-2.27124	1.75516
С	2.9965	-0.80859	-1.86694
С	-1.26846	-1.75237	0.84663
Н	1.63124	-2.58882	-0.72705
Fe	0.27851	0.1595	-0.73549
Н	-1.08611	-2.49112	0.063
С	-2.33927	-0.80009	0.35262
Ν	-1.89994	0.30459	-0.276
Н	-4.02799	-1.95456	1.01569
С	-3.69688	-1.06431	0.49474
С	-2.78238	1.16146	-0.80787
Η	-2.36309	2.0157	-1.32622
С	-4.61589	-0.17137	-0.05034
С	-4.15348	0.96021	-0.71591
Η	-5.67901	-0.35839	0.04314
Η	-4.83692	1.67368	-1.15754
Н	2.32834	-1.38415	-2.50335
Н	3.97082	-1.30858	-1.80475
Н	3.12346	0.17937	-2.30822
Н	-0.56821	2.80664	0.9349
Н	0.54207	3.1846	-0.392
Η	0.97941	3.60964	1.29031
Ο	-0.11187	-1.30289	-1.78194
0	0.43641	1.27743	-1.90161
H	-0.27383	-1.05559	-2.69927

Table S17: Cartesian coordinates of Fe^{IV}oxohydroxo complex. UB3LYP/SDD+6-311G(d,p) Energy=-1041.988990 a.u.

Atom	X	Y	Z
Н	0.57246	1.61875	2.97591
Н	2.85225	2.3547	1.21744
Н	1.86819	0.53649	2.53159
С	0.87093	0.86408	2.24575
Ĥ	3.25202	-0.08394	1.20757
Н	0.01541	-0.8951	3.17284
C	2.34706	1.74465	0.46147
Н	1.8461	-1.72035	2.03608
Н	4.04197	0.59389	-0.19865
С	0.15563	2.76067	0.84376
С	3.06788	0.42452	0.26259
N	0.92918	1.4836	0.87357
C	-0.11008	-0.29447	2.26687
Ĥ	2.31523	2.31493	-0.467
Н	-1.13212	0.08144	2.26696
C	1.29571	-2.0168	1.14322
Ĥ	1.01152	-3.06112	1.28825
Н	3.18505	-2.26327	0.10389
N	0.06573	-1.15057	1.04769
Ν	2.24977	-0.48666	-0.62208
С	2.17356	-1.90266	-0.10739
Ĥ	-1.55975	-2.40313	1.67236
C	2.8192	-0.48339	-2.00721
C	-1.20911	-1.882	0.77679
Н	1.76122	-2.49846	-0.91752
Fe	0.27018	0.10283	-0.61634
Н	-1.02627	-2.6169	-0.00907
С	-2.22487	-0.8751	0.28695
N	-1.71285	0.22295	-0.32554
Н	-3.99418	-1.9117	0.90725
С	-3.59621	-1.03808	0.40545
С	-2.5241	1.15407	-0.86082
Н	-2.0456	1.98153	-1.36842
С	-4.44649	-0.07321	-0.13524
С	-3.90325	1.0374	-0.77588
Н	-5.5209	-0.19119	-0.05816
Н	-4.53157	1.80216	-1.21389
Н	2.20549	-1.10332	-2.654
Н	3.83479	-0.8865	-1.97252
Н	2.84059	0.53584	-2.38879
Н	-0.86432	2.58161	1.18026
Н	0.14487	3.154	-0.17072
Н	0.62518	3.48903	1.51064
0	-0.04723	-1.28103	-1.71045
0	0.36311	1.26861	-1.74878
Н	-0.26709	-0.98695	-2.60711

Table S18: Cartesian coordinates of Fe^Voxo hydroxo complex. UB3LYP/SDD+6-311G(d,p) Energy= -1041.604274 a.u.

Table S19: Cartesian coordinates of the TS corresponding to the H-abstraction step of the catalytic hydroxylation of cyclohexane with the [Fe(Pytacn)] complex. UB3LYP/SDD+6-311G(d,p) Energy=-1277.547735 a.u.

Atom	Х	Y	Z
Н	-3.47233	-0.59126	2.58233
Н	-1.5948	-2.91752	2.58272
Н	-3.45034	-1.88145	1.40986
С	-3.05636	-0.88856	1.61768
Ĥ	-2.45268	-3.23573	0.29219
н	-4 54981	-0.02373	0 30874
C	-1.0983	-2 38767	1 76267
ч	-3.76876	-1.85188	-0.88274
и Ц	0.01222	4.05166	0.4083
C	1 07243	0.23647	2 01002
C	-1.07243	-0.23047	0.43464
U N	-1.38019	-3.00912	0.43404
IN C	-1.55407	-0.96108	1./1105
C	-3.4886	0.0998	0.54637
н	-0.02774	-2.3/338	1.96496
Н	-3.35451	1.11884	0.90582
С	-3.05941	-1.2806	-1.48143
Н	-3.58865	-0.9842	-2.38971
Н	-2.15459	-3.13062	-2.1615
Ν	-2.65781	-0.06418	-0.69117
Ν	-0.86984	-2.23047	-0.70662
С	-1.84237	-2.12824	-1.85175
Н	-3.68547	1.55568	-1.65161
С	0.41879	-2.80237	-1.20351
С	-2.66372	1.20975	-1.46807
Н	-1.29458	-1.66949	-2.67167
Fe	-0.66674	-0.28029	-0.10501
Н	-2.17402	1.02652	-2.42635
C	-1 86362	2 22708	-0.68901
N	-0.90749	1 70965	0.12095
н	-2 82904	3 00/15	-1 42436
C	-2.02204	3 50705	-0.78095
C	0.11135	2.52725	0.83705
с u	-0.11133	2.32328	1 44222
С	1 22247	2.04093	0.02072
C	-1.25547	4.44739	-0.03972
U U	-0.25091	5.90238	0.78248
H	-1.364	5.52136	-0.10244
H	0.40312	4.53073	1.3/29/
H	0.82413	-2.15105	-1.9/20/
Н	0.2351	-3.79817	-1.61606
Н	1.1203	-2.8716	-0.37463
Н	-1.43865	0.78933	2.90197
Н	0.01557	-0.23386	2.92401
Н	-1.44178	-0.72744	3.82484
0	-0.05122	0.05399	-1.76581
0	0.8491	-0.38058	0.67193
Н	2.25181	-0.20121	0.02942
С	3.36428	-0.13746	-0.36352
Н	0.75963	0.58053	-1.75465
С	4.11939	-1.27503	0.29668
Н	4.05037	-1.19364	1.38646
Н	3.71571	-2.24938	0.00774
С	3.91099	1.23637	-0.02437
Н	3.36083	2.03074	-0.53779
Н	3.83714	1.41723	1.05353
C	5.62279	-1.20013	-0.11534
й	6.15825	-1.99876	0 40537
н	5 7112	-1 400/1	-1 1883
C	5 /1/22	1 30377	-0/13665
с u	5 80100	7 78210	-0.1/692
п u	5 100400	2.20310	-0.14083
П	J.4894	1.23882	-1.32/28
U U	0.210/4	0.1/224	0.21398
H	1.25011	0.21485	-0.1303
Н	0.23799	0.31403	1.30041