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Figure S1. 8-oxoG and Base Excision Repair (BER) (A) Generation and repair of 8-oxoG by 

BER in eukaryotes is shown. Intracellular reactive oxygen species (ROS) damage genomic DNA 

and form various lesions including 8-oxoG (Go). Most anti-8-oxoG:anti-dC base pairs are 

repaired by removal of the damaged guanine base via an oxoguanine DNA glycosylase OGG1. 

The backbone of the resulting apurinic site is then cleaved by apurinic endonuclease 1 (APE1). 

DNA polymerase β (Polβ) then performs gap-filling synthesis and deoxyribose cleavage. Finally, 

DNA ligase I or III/XRCC1 complex ligates the nicked DNA substrate to complete BER. Any 

anti-8-oxoG:anti-dC pairs that go unrepaired may undergo erroneous DNA replication and result 

in syn-8-oxoG:anti-dA mispairs in genomic DNA. Repair of a syn-8-oxoG:anti-dA mispair begins 

with the removal of the undamaged adenine base via an adenine DNA glycosylase MYH. 

Subsequently, the apurinic site is processed by APE1, Polβ and DNA ligase I or III/XRCC1 in 

BER. Notably, Polβ-catalyzed gap-filling synthesis can result in either syn-8-oxoG:anti-dA 

mispairs or anti-8-oxoG:anti-dC correct pairs due to the dual coding potential of 8-oxoG. The 

anti-8-oxoG:anti-dC pairs can be repaired through the OGG1 branch of the BER pathway while 

the syn-8-oxoG:anti-dA pairs can reenter the MYH branch of the pathway. Alternatively, both 

base pairs could enter DNA replication where syn-8-oxoG:anti-dA base pairs would result in G to 

T transversion. (B) The anti-8-oxoG:anti-dCTP Watson-Crick base pair and the syn-8-oxoG:anti-

dATP Hoogsteen base pair. (C) A single-nucleotide gapped DNA substrate (8-oxoG-DNA) for 

our crystallization and 32P-labeled primer extension assay. The downstream primer 5-mer was 5′-

phosphorylated while the upstream primer 10-mer was not. The templating 8-oxoG is shown as 

Go. (D) Gel image of the 32P-labeled primer extension assay. A preincubated solution of hPolβ 

(10 nM) and 5-[32P]-labeled 8-oxoG-DNA (30 nM) was reacted with the indicated dNTP (100 

µM) for 15 s in the presence of either Mg2+ (left lanes) or Mn2+ (right lanes) at 25 °C and then 

quenched with 0.37 M EDTA. “Blank” indicates no nucleotides added in the reaction.  
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Figure S2. Structural differences between various ternary and binary complexes and the 

binding conformations of 8-oxoG at the active site of hPolβ in the pre-catalytic ternary 

complex of hPolβ●8-oxoG-DNA●dCTP or hPolβ●8-oxoG-DNA●dATP. (A) Superposition of 

the pre-catalytic ternary complexes of hPolβ●8-oxoG-DNA●dCTP and hPolβ●8-oxoG-

DNA●dATP in the presence of Ca2+. The close-up view shows the overlaying of the nascent base 

pair and Ca2+ ions at the A- and B-site. (B) Superposition of the binary structure of hPolβ●8-

oxoG-DNA (3RJE) and the pre-catalytic ternary structure of hPolβ●8-oxoG-DNA●dCTP with 

Ca2+. (C) Superposition of the binary structure of hPolβ●8-oxoG-DNA (3RJE) and the pre-

catalytic ternary structure of hPolβ●8-oxoG-DNA●dATP with Ca2+. In (B) and (C), Helix N is in 

the same but darker color relative to the rest of the corresponding structure. (D) Zoomed view of 

Helix N and the nascent base pair in (B). (E) Zoomed view of Helix N and the nascent base pair 

in (C). (F) Zoomed view of Helix N and the nascent base pair in the overlaid structures of the 

binary complex of hPolβ●undamaged DNA (magenta, 3ISB) and the ternary complex of 

hPolβ●undamaged DNA●dCTP (cyan, 4KLD). (G) The electron density map for the nascent anti-

8-oxoG:anti-dCTP Watson-Crick base pair in the pre-catalytic ternary complex of hPolβ●8-

oxoG-DNA●dCTP with Ca2+. (H) The electron density map for the nascent syn-8-oxoG:anti-

dATP Hoogsteen base pair in the pre-catalytic ternary complex of hPolβ●8-oxoG-DNA●dATP 

with Ca2+. In (G) and (H), the 2Fo-Fc (blue) and Fo-Fc (green) maps were contoured at 1σ and 3σ, 

respectively.  
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Figure S3. Modeling of reactant-, reaction- and product-states during phosphodiester bond 

formation after 30 or 60 s of Mg2+/Ca2+ ion-exchange. The 2Fo-Fc (light blue) maps contoured 

at 1σ and the Fo-Fc omit maps contoured at either 3σ (green) or -3σ (red) are presented for the 

primer 3-terminal nucleotide, incoming nucleotide, incorporated nucleotide, and pyrophosphate. 

Only the occupancy of the reactant dCTP/dATP is listed below each structure. Strong positive 

(green) and negative (red) electron density blobs between the primer 3'-OH and the α-phosphate 

group of dCTP/dCMP, between the α and β-phosphate groups of dCTP, or between the 

phosphates of dCMP and pyrophosphate indicate unsatisfactory modeling, e.g. the modeling of 

the reactants at 100% (A), 70% (B), 20% (D), and 0% (E) occupancies for the 30 s structure and 

100% (F), 70% (G), 50% (H), and 0% (J) occupancies for the 60 s structure. In contrast, the 

absence of any positive or negative electron density with the modeling of the reactants at 50% (C) 

and 20% (I) occupancies suggests satisfactory modeling for the 30 and 60 s structures, 

respectively. Similarly, for dATP incorporation, the modeling of the reactants at 100% (K), 50% 

(M), 30% (N), and 0% (O) occupancies for the 30 s structure and 100% (P), 70% (Q), 50% (R), 

and 0% (T) occupancies for the 60 s structure is unsatisfactory while the modeling of the reactants 

at 70% (L) and 30% (S) occupancies for the 30 and 60 s structures, respectively, is satisfactory.  
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Figure S4. Comparison of structures captured at different time points while incorporating 

either dCTP or dATP opposite 8-oxoG. (A) Active site metal ion coordination distances for the 

dCTP incorporation product-state structure after Mg2+/Ca2+ ion-exchange for 80 s. (B) Active site 

metal ion coordination distances for the dATP incorporation product-state structure after 

Mg2+/Ca2+ ion-exchange for 80 s. (C) Superposition of the dCTP incorporation product-state 

structures after soaking crystals with Mg2+ for 80 s (salmon) and with Mn2+ for 35 s (blue). (D) 

Superposition of the dATP incorporation product-state structures after soaking crystals with Mg2+ 

for 80 s (pink) and with Mn2+ for 35 s (blue). From (A) to (D), active site metal ions, including 

Mg2+ (red), Mn2+ (purple) and Na+ (yellow), and water molecule ligands (blue) are represented as 

spheres. Note that the spheres for the metal ions are not representative of their relative ionic radii. 
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Figure S5. Structural overlay of the active sites of the product-state ternary complex and the 

post-catalytic binary complex. (A) Superposition of the closed ternary structure of the dCTP 

incorporation product-state complex (hPolβ●8-oxoG-DNA+1●PPi, brown) after Mg2+/Ca2+ ion-

exchange for 80 s and the open binary structure of the post-catalytic complex (hPolβ●8-oxoG-

DNA+1, green) after 1 hr Mg2+/Ca2+ ion-exchange. (B) Superposition of the closed ternary 

structure of the dATP incorporation product-state complex (hPolβ●8-oxoG-DNA+1●PPi, brown) 

after Mg2+/Ca2+ ion-exchange for 80 s and the open binary structure of the post-catalytic complex 

(hPolβ●8-oxoG-DNA+1, green) after 1 hr Mg2+/Ca2+ ion-exchange. For the 80 s product-state 

structures (hPolβ●8-oxoG-DNA+1●PPi), the A-site metal ion is modeled as a Na+ ion (purple 

sphere) while the B-site metal ion is modeled as an Mg2+ ion (red sphere). 8-oxoG-DNA+1 

indicates that the 8-oxoG-DNA substrate was elongated by one nucleotide as a result of either 

dCTP or dATP incorporation and became a nicked DNA substrate. 
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Figure S6. Electron density maps for the modeling of 8-oxoG conformation in the open 

binary complex of hPolβ●8-oxoG-DNA+1 after 1 hr Mg2+/Ca2+ ion-exchange. (A) Both anti- 

and syn-conformations of the templating nucleotide 8-oxoG were modeled after dCTP 

incorporation. (B) Only the anti-conformation of the templating nucleotide 8-oxoG was modeled 

after dATP incorporation. For (A) and (B), both 2Fo-Fc (blue, 1σ) and Fo-Fc (green, 3σ) maps are 

shown. 
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Table S1. Data collection and refinement statistics of the pre-catalytic ternary complex of 

hPolβ●8-oxoG-DNA●dCTP after soaking crystals with Mg2+ for 30 s, 60 s, 80 s and 1 hr, or with 

Mn2+ for 35 s.   

 Pre-catalytic 

ternary 

complex 

30 s 60 s 80 s 1 hr 35 s (MnCl2) 

Data collection*       

Space group P21 P21 P21 P21 P21 P21 

Cell dimension        

   a, b, c (Å) 49.6, 79.3, 55.6 49.4, 79.5, 55.5 49.4, 79.3, 55.4 49.6, 79.5, 55.4 55.4, 80.3, 55.8 49.8, 82.2, 54.6 

   α, β, γ (°)  90, 106.3, 90 90, 106.6, 90 90, 106.2, 90 90, 106.6, 90 90, 110.2, 90 90, 110.6, 90 

Resolution (Å) 31.85-1.90  

(1.94-1.90) 

31.85-1.90  

(1.94-1.90) 

44.19-2.19  

(2.26-2.19) 

47.52-2.20  

(2.27-2.20) 

52.34-2.70  

(2.83-2.70) 

46.64-2.20  

(2.27-2.20) 

Rmerge
† 0.083 (0.370) 0.092 (0.506) 0.122 (0.548) 0.154 (0.587) 0.079 (0.426) 0.097 (0.604) 

I/σI 6.8 (2.0) 7.7 (2.2) 6.4 (2.1) 4.7 (2.1) 8.3 (2.1) 7.7 (2.3) 

Completeness (%) 95.4 (91.6) 99.7 (99.8) 97.6 (96.6) 99.3 (99.4) 92.9 (92.5) 90.8 (90.1) 

Redundancy 3.3 (3.1) 3.3 (3.2) 3.5 (3.1) 3.2 (3.2) 3.2 (3.0) 3.6 (3.5) 

Refinement       

Resolution (Å)  31.43-1.90 31.23–1.90 44.19–2.19 44.18–2.20 45.63–2.70 46.64–2.20 

No. reflections 29702 30816 19738 19866 11202 18209 

Rwork/Rfree
‡ 0.188/0.226 0.189/0.229 0.195/0.251 0.207/0.268 0.203/0.280 0.194/0.268 

No. atoms       

    Protein 2641 2636 2627 2628 2598 2692 

    DNA 633 671 671 652 716 652 

    Water 246 286 158 126 10 155 

B-factors (Å2)       

    Protein 23.7 21.9 28.0 27.7 62.4 35.9 

    DNA/dCTP/PPi 25.1/15.9/- 21.5/14.3/15.6 26.5/20.4/28.3 29.1/-/29.3 53.4/-/- 36.9/-/33.6 

    Water 28.7 29.0 27.8 25.1 33.1 32.9 

    Metal A/B/C** 18.3/18.7/- 11.3/14.5/17.5 22.4/24.3/25.5 22.1/23.0/30.6 -/-/- 26.3/23.7/35.4 

R.m.s deviations       

    Bond lengths (Å)  0.006 0.006 0.007 0.007 0.008 0.010 

    Bond angles (º) 1.283 1.327 1.303 1.320 1.367 1.403 

Reaction ratio       

 Ratio of RS/PS*** 1.0/0.0 0.5/0.5 0.2/0.8 0.0/1.0 0.0/1.0 0.0/1.0 

Occupancy       

    Metal A/B/C** 1.0/1.0/0 1.0/1.0/0.5 1.0/1.0/0.5 1.0/1.0/1.0 -/-/- 1.0/1.0/0.8 

    Pyrophosphate - 0.5 0.8 1.0 - 1.0 

PDB ID 4RPX 4RPY 4RPZ 4RQ0 4RQ1 4RQ2 

   *Highest resolution shell is shown in parenthesis.  

 *** Metal A/B/C refers to the metal ions at the A-, B- and C-site, respectively. Values indicate the occupancy at which the metal ion 

was modeled in the given structure. 

**RS and PS are abbreviations for the reactant state and product state.      

 †Rmerge = Σ|I-<I>|/ΣI, where I is the integrated intensity of each reflection. 

     ‡R value = Σ||Fo| - |Fc||/Σ|Fo|, where Fo and Fc are observed and calculated structure factor amplitudes, respectively. 
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Table S2. Data collection and refinement statistics of the pre-catalytic ternary complex of hPolβ●8-

oxoG-DNA●dATP after soaking crystals with Mg2+ for 30 s, 60 s, 80 s and 1 hr, or with Mn2+ for 

35 s. 

 Pre-catalytic 

ternary 

complex 

30 s 60 s 80 s 1 hr 35 s (MnCl2) 

Data collection*       

Space group P21 P21 P21 P21 P21 P21 

Cell dimensions       
    a, b, c (Å) 49.3, 79.6, 55.4 49.1, 79.6, 55.3 49.2, 79.7, 55.3 50.4, 80.4, 55.6 55.3, 79.6, 55.8 50.2, 82.5, 54.7 

    α, β, γ (°)  90, 106.5, 90 90, 106.4, 90 90, 106.6, 90 90, 107.7, 90 90, 109.5, 90 90, 110.8, 90 

Resolution (Å) 53.16-2.00  
(2.05-2.00) 

40.59-2.10  
(2.16-2.10) 

79.70-2.32  
(2.45-2.32) 

44.28-2.25  
(2.32-2.25) 

52.61-2.00  
(2.05-2.00) 

41.27-2.00  
(2.11-2.00) 

Rmerge
† 0.103 (0.472) 0.076 (0.382) 0.081 (0.644) 0.082 (0.542) 0.104 (0.562) 0.120 (0.499) 

I/σI 7.3 (2.2) 7.8 (2.5) 11.6 (2.0) 8.7 (2.0) 6.8 (2.2) 5.0 (2.4) 
Completeness (%) 95.6 (95.0) 99.7 (99.8) 95.3 (88.2) 98.8 (98.0) 92.7 (90.8) 99.5 (98.7) 

Redundancy 3.5 (3.4) 3.2 (3.2) 3.3 (2.7) 3.7 (3.5) 3.6 (3.2) 3.4 (3.2) 

Refinement       
Resolution (Å) 47.29-2.00 40.59–2.10 50.0-2.32 44.28–2.25 45.40–2.00 40.79–2.00 

No. reflections 25340 22700 16065 18900 27220 26717 

Rwork/Rfree
‡ 0.191/0.245 0.189/0.243 0.196/0.265 0.197/0.252 0.206/0.260 0.206/0.270 

No. atoms       

    Protein 2636 2626 2614 2633 2610 2709 

    DNA 633 652 652 654 716 654 
    Water 242 195 77 71 202 231 

B-factors (Å2)       

    Protein 26.7 33.7 38.8 43.3 34.1 27.6 
    DNA/dCTP/PPi 34.14/25.1/- 40.5/24.6/19.8 44.1/28.8/31.8 51.9/-/34.6 31.3/-/- 32.06/-/23.7 

    Water 32.7 22.7 29.8 34.7 33.5 30.8 

    Metal A/B/C** 26.6/24.6/- 13.0/19.4/38.2 26.4/27.7/32.7 28.6/28.9/36.7 -/-/- 18.3/17.9/38.7 

R.m.s deviations       

     Bond lengths (Å)  0.007 0.008 0.009 0.007 0.007 0.009 

     Bond angles (º) 1.282 1.342 1.413 1.232 1.259 1.359 

Reaction ratio       

    Ratio of RS/PS*** 1.0/0.0 0.7/0.3 0.3/0.7 0.0/1.0 0.0/1.0 0.0/1.0 

Occupancy       
    Metal A/B/C** 1.0/1.0/0 1.0/1.0/0.8 1.0/1.0/0.8 1.0/1.0/0.8 -/-/- 1.0/1.0/1.0 

    Pyrophosphate - 0.3 0.7 1.0 - 1.0 

PDB ID 4RQ3 4RQ4 4RQ5 4RQ6 4RQ7 4RQ8 

*Highest resolution shell is shown in parenthesis.  

** Metal A/B/C refers to the metal ions at the A-, B- and C-site, respectively. Values indicate the occupancy at which the metal ion was 

modeled in the given structure. 

***RS and PS are abbreviations for the reactant state and product state. 
†Rmerge = Σ|I-<I>|/ΣI, where I is the integrated intensity of each reflection. 

‡R value = Σ||Fo| - |Fc||/Σ|Fo|, where Fo and Fc are observed and calculated structure factor amplitudes, respectively. 
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Table S3. Coordinating ligands for each metal-ion site during dCTP or dATP incorporation. The 

table lists the identity of the ligands coordinating each metal ion, e.g. the primer 3-OH (3-OH), 

pyrophosphate (PPi), water molecule (W), and the oxygen atoms of the phosphate groups of 

bound dCTP/dATP or incorporated dCMP/dAMP, and their coordination numbers in parentheses. 

 

dCTP 

Metal 

Ion 

50% Incorporation 

(Mg2+ soak) 

80% Incorporation 

(Mg2+ soak) 

100% Incorporation 

(Mg2+ soak) 

100% Incorporation 

(Mn2+ soak) 

A-site 

Mg2+: D256 (1), D192 

(1), D190 (1), 3′-OH (1), 

dCTP/dCMP (1), W (1) 

Mg2+: D256 (1), D192 

(1), D190 (1), 3′-OH  (1), 

dCTP/dCMP (1) 

Na+:  D256 (1), D192 (1), 

D190 (1), 3′-OH  (1), 

dCMP (1),  

Mn2+: D256 (1), D192 

(1), D190 (1), 3′-OH  (1), 

dCMP (1), W (1) 

B-site 

Mg2+: D192 (1), D190 

(1), dCTP/dCMP (1), PPi 

(2), W (1) 

Mg2+: D192 (1), D190 

(1), dCTP/dCMP (1), PPi 

(2), W (1) 

Mg2+: D192 (1), D190 

(1), dCMP (1), PPi (2), W 

(1) 

Mn2+: D192 (1), D190 

(1), dCMP (1), PPi (2), W 

(1) 

C-site 
Mg2+: dCTP/dCMP (1), 

PPi (1), W (4) 
Mg2+: dCTP/dCMP (1), 

PPi (1), W (4) 
Mg2+: dCMP (1), PPi (1), 

W (4) 
Mn2+: dCMP (1), PPi (1), 

W (4) 

dATP 

Metal 

Ion 

30% Incorporation 

(Mg2+ soak) 

70% Incorporation 

(Mg2+ soak) 

100% Incorporation 

(Mg2+ soak) 

100% Incorporation 

(Mn2+ soak) 

A-site 

Mg2+: D256 (1), D192 

(1), D190 (1), 3′-OH  (1), 

dAMP /dATP (1), W (1) 

Mg2+: D256 (1), D192 

(1), D190 (1), 3′-OH  (1), 

dATP/dAMP  (1), W (1) 

Na+: D256 (1), D192 (1), 

D190 (1), 3′-OH  (1), 

dAMP (1)) 

Mn2+:  D256 (1), D192 

(1), D190 (1), 3′-OH  (1), 

dAMP (1), W (1) 

B-site 

Mg2+: D192 (1), D190 

(1), dATP/dAMP  (1), 

PPi (2), W (1) 

Mg2+: D192 (1), D190 

(1), dATP/dAMP (1), PPi 

(2), W (1) 

Mg2+: D192 (1), D190 

(1), dAMP (1), PPi (2), 

W (1) 

Mn2+: D192 (1), D190 

(1), dAMP (1), PPi (2), 

W (1) 

C-site 
Mg2+: dATP/dAMP  (1), 

PPi (1), W (3) 
Mg2+: dATP/dAMP  (1), 

PPi (1), W (2) 
Mg2+: dAMP (1), PPi (1), 

W (4) 
Mn2+: dAMP (1), PPi (1), 

W (3) 

 




