Electronic Supplementary Information for "Simulation of the Resonance Raman Spectra For 5-Halogenated (F, Cl, and Br) Uracils"

Shuai Sun, Alex Brown*

Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2

E-mail: alex.brown@ualberta.ca

Phone: +01 (780) 492-1854. Fax: +01 (780) 492-8231

^{*}To whom correspondence should be addressed

List of Tables

S1	Cartesian Coordinates of 5-Halogenated Uracils Optimized in H_2O (C-PCM)	
	at the PBE0/aug-cc-pVTZ Level of Theory.	3
S2	Equilibrium Geometries of 5-Halogenated Uracils as Determined in H_2O (C-	
	PCM) at the PBE0/aug-cc-pVTZ Level of Theory.	4
S3	Potential Energy Distribution Analysis and Vibrational Frequencies $(\omega/{\rm cm^{-1}})$	
	of Ground State Normal Modes of 5-Fluorouracil at the $\ensuremath{PBE0}\xspace/\ensuremath{aug}\xspace-\ensuremath{pVTZ}\xspace$	
	level of theory in H_2O (C-PCM).	8
S4	Potential Energy Distribution Analysis and Vibrational Frequencies $(\omega/{\rm cm^{-1}})$	
	of Ground State Normal Modes of 5-Chlorouracil at the $\rm PBE0/aug\text{-}cc\text{-}pVTZ$	
	level of theory in H_2O (C-PCM).	12
S5	Potential Energy Distribution Analysis and Vibrational Frequencies $(\omega/{\rm cm^{-1}})$	
	of Ground State Normal Modes of 5-Bromouracil at the $\rm PBE0/aug\text{-}cc\text{-}pVTZ$	
	level of theory in H_2O (C-PCM).	16
S6	Vibrational Frequencies $(\omega/\mathrm{cm}^{-1})$ and Dimensionless Displacements (Δ) for	
	the S_1 Excited State of 5-Halogenated Uracils at the CAMB3LYP/aug-cc-	
	pVTZ level of theory with the ground state equilibrium geometry determined	
	using PBE0/aug-cc-pVTZ in H_2O (C-PCM)	20
S7	Relative Peak Intensities of Resonance Raman Spectra for 5-Fluorouracil Sim-	
	ulated with Different Incident Light Energies (ω_{in}) and Vertical Excitation	
	Energies (ω_{ge})	20

List of Figures

S1 Comparison between the ground state vibrational frequencies of (a) 5-fluorouracil
(b) 5-chlorouracil and (c) 5-bromouracil. x-axis is vibrational mode numbered
according to 5-fluorouracil, unless indicated otherwise, i.e., N^{Cl}, N^{Br}. 20

S2	The cosine similarity for the normal modes of 5-fluorouracil vs. uracil. x- and	
	y-axes are corresponding vibrational mode numbering	20
S3	The cosine similarity for the normal modes of 5-fluorouracil vs. 5-chlorouracil.	
	x- and y-axes are corresponding vibrational mode numbering	20
S4	The cosine similarity for the normal modes of 5-fluorouracil vs. 5-bromouracil.	
	x- and y-axes are corresponding vibrational mode numbering	21
S5	The cosine similarity for the normal modes of 5-chlorouracil vs. 5-bromouracil.	
	x- and y-axes are corresponding vibrational mode numbering	21
S6	Resonance Raman spectra for 5-fluorouracil simulated with (a) $\omega_{in} = \omega_{ge}$, (b)	
	$\omega_{\rm in} = 4.5 \text{ eV}$ (experiment) and $\omega_{ge} = 4.7 \text{ eV}$ (experiment), and (c) $\omega_{\rm in} = 4.5$	
	eV (experiment) and $\omega_{ge} = 4.9$ eV (computation).	21
S7	Resonance Raman spectra for 5-fluorouracil simulated with the experimentally-	
	fit and TD-DFT computed $ \Delta $ s	21
S8	Vectors illustrating the Cartesian gradients for each atom of uracil using TD-	
	CAMB3LYP/aug-cc-pVTZ in H ₂ O (C-PCM) for the S_1 excited state	21

Table S1: Cartesian Coordinates of 5-Halogenated Uracils Optimized in H_2O (C-PCM) at the PBE0/aug-cc-pVTZ Level of Theory.

5-fluorouracil

\mathbf{C}	1.19914	0.33679	0.00000
\mathbf{C}	1.13808	-1.00145	0.00000
Ν	-0.06709	-1.63969	0.00000
\mathbf{C}	-1.27164	-0.98792	0.00000
Ν	-1.15726	0.38364	0.00000
\mathbf{C}	0.00000	1.14616	0.00000
Ο	-2.34244	-1.56269	0.00000
Ο	-0.03403	2.36245	0.00000
Η	2.02226	-1.62275	0.00000
Η	-0.10265	-2.64640	0.00000
Η	-2.02929	0.89401	0.00000
F	2.36650	0.97866	0.00000
	5-ch	lorouracil	
\mathbf{C}	0.00000	0.89771	0.00000
\mathbf{C}	-1.29321	0.52604	0.00000
Ν	-1.65321	-0.78398	0.00000
\mathbf{C}	-0.75298	-1.81980	0.00000
Ν	0.55642	-1.40571	0.00000
\mathbf{C}	1.04753	-0.10791	0.00000
Ο	-1.08261	-2.98836	0.00000
Ο	2.24425	0.10519	0.00000
Η	-2.10297	1.24183	0.00000
Η	-2.62868	-1.03764	0.00000
Η	1.24794	-2.14239	0.00000
Cl	0.46236	2.55031	0.00000
	5-br	omouracil	
\mathbf{C}	0.00000	0.35821	0.00000
\mathbf{C}	1.34587	0.37934	0.00000
Ν	2.07257	-0.76806	0.00000
\mathbf{C}	1.51364	-2.02199	0.00000
Ν	0.14106	-2.00796	0.00000
\mathbf{C}	-0.70780	-0.90923	0.00000
Ο	2.17078	-3.04281	0.00000
Ο	-1.91406	-1.05997	0.00000
Η	1.91506	1.29811	0.00000
Η	3.07961	-0.72720	0.00000
Η	-0.30552	-2.91435	0.00000
Br	-1.00425	1.93599	0.00000

bond length /Å	5-fluorouracil	$experiment^{d}$	5-chlorouracil	$\operatorname{experiment}^{\mathrm{e}}$	5-bromouracil	$\operatorname{experiment}^{\mathrm{f}}$	$ \Delta r ^{\mathrm{b}}$	$ \Delta r ^{\mathrm{c}}$
$r(C_5-C_6)$	1.3396	1.35	1.3456	1.370	1.3460	1.355	0.0060	0.0064
$r(C_5-C_4)$	1.4467	1.46	1.4521	1.432	1.4517	1.443	0.0054	0.0050
$r(C_5-X_{11})^a$	1.3322	1.36	1.7161	1.715	1.8703	1.867	0.3839	0.5381
$r(C_6-N_1)$	1.3637	1.39	1.3586	1.374	1.3582	1.372	0.0051	0.0055
$r(C_6-H_{12})$	1.0806		1.0808	0.96	1.0808	0.96	0.0002	0.0002
$r(N_1-C_2)$	1.3696	1.40	1.3723	1.363	1.3729	1.358	0.0027	0.0033
$r(N_1-H_7)$	1.0073		1.0079	1.03	1.0079	0.81	0.0006	0.0006
$r(C_2-N_3)$	1.3763	1.40	1.3733	1.359	1.3726	1.372	0.0030	0.0037
$r(C_2-O_8)$	1.2153	1.20	1.2142	1.227	1.214	1.224	0.0011	0.0013
$r(N_3-C_4)$	1.3859	1.39	1.3876	1.386	1.3884	1.389	0.0017	0.0025
$r(N_3-H_9)$	1.0104		1.0104	0.85	1.0104	0.94	0.0000	0.0000
$r(C_4-O_{10})$	1.2168	1.24	1.2155	1.238	1.2156	1.231	0.0013	0.0012
RMSD		0.01		0.02		0.003		
bond angle $/^{\circ}$	5-fluorouracil	$experiment^{d}$	5-chlorouracil	$experiment^{e}$	5-bromouracil	$\operatorname{experiment}^{\mathrm{f}}$	$ \Delta \theta ^{\rm b}$	$ \Delta \theta ^{\rm c}$
$\theta(C_6-C_5-C_4)$	121.4057	125	120.1343	120.6	120.0803	120.4	1.2714	1.3254
$\theta(C_6\text{-}C_5\text{-}X_{11})^a$	121.4162	122	121.6652	120.6	121.5771	120.4	0.2490	0.1609
$\theta(C_4\text{-}C_5\text{-}X_{11})^a$	117.1781	113	118.2005	118.8	118.3426	119.2	1.0224	1.1645
$\theta(C_5-C_6-N_1)$	120.5172	118	121.4007	119.3	121.4485	120.4	0.8835	0.9313
$\theta(C_5-C_6-H_{12})$	122.4832		122.4897		122.6778		0.0065	0.1946
$\theta(\mathrm{N_{1}\text{-}C_{6}\text{-}H_{12}})$	116.9996		116.1096		115.8737		0.8900	1.1259

Table S2: Equilibrium Geometries of 5-Halogenated Uracils as Determined in H_2O (C-PCM) at the PBE0/aug-cc-pVTZ Level of Theory.

	$\theta(C_6-N_1-C_2)$	123.6777	122	123.6403	123.4	123.6275	123.3	0.0374	0.0502
	$\theta(C_6-N_1-H_7)$	119.9282		119.9418		120.0245		0.0136	0.0963
	$\theta(C_2-N_1-H_7)$	116.3941		116.4179		116.348		0.0238	0.0461
	$\theta(N_1-C_2-N_3)$	113.6501	116	113.4447	115.4	113.4389	115.2	0.2054	0.2112
	$\theta(N_1-C_2-O_8)$	123.3571	121	123.2533	122.2	123.2038	122.8	0.1038	0.1533
	$\theta(N_3-C_2-O_8)$	122.9928	123	123.302	122.5	123.3573	122.0	0.3092	0.3645
	$\theta(C_2-N_3-C_4)$	128.1482	127	128.2766	126.4	128.2746	126.6	0.1284	0.1264
	$\theta(C_2-N_3-H_9)$	115.5719		115.6395		115.6436		0.0676	0.0717
	$\theta(C_4-N_3-H_9)$	116.2799		116.0839		116.0818		0.1960	0.1981
	$\theta(C_5-C_4-N_3)$	112.6011	112	113.1034	114.9	113.1302	114.1	0.5023	0.5291
	$\theta(C_5-C_4-O_{10})$	125.6207	126	126.0723	125.7	126.3039	125.8	0.4516	0.6832
0	$\theta(N_3-C_4-O_{10})$	121.7781	122	120.8243	119.4	120.5659	120.1	0.9538	1.2122
	RMSD		3.59		1.06		0.86		
	dihedral angle /°	5-fluorouracil		5-chlorouracil		5-bromouracil		$ \Delta \phi ^{\rm b}$	$ \Delta \phi ^{\rm c}$
	Ο,								
	$\phi(C_4-C_5-C_6-N_1)$	0.0		0.0		0.0		0	0
	$\frac{\phi(C_4-C_5-C_6-N_1)}{\phi(C_4-C_5-C_6-H_{12})}$	0.0 180.0		0.0 180.0		0.0 180.0		0 0	0 0
	$ \frac{\phi(C_4-C_5-C_6-N_1)}{\phi(C_4-C_5-C_6-H_{12})} \\ \phi(X_{11}-C_5-C_6-N_1)^a $	0.0 180.0 180.0		0.0 180.0 180.0		0.0 180.0 180.0		0 0 0	0 0 0
	$ \begin{array}{c} \phi(C_4-C_5-C_6-N_1) \\ \phi(C_4-C_5-C_6-H_{12}) \\ \phi(X_{11}-C_5-C_6-N_1)^a \\ \phi(X_{11}-C_5-C_6-H_{12})^a \end{array} $	0.0 180.0 180.0 0.0		0.0 180.0 180.0 0.0		0.0 180.0 180.0 0.0		0 0 0 0	0 0 0 0
	$ \begin{array}{c} \phi(C_4-C_5-C_6-N_1) \\ \phi(C_4-C_5-C_6-H_{12}) \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(C_6-C_5-C_4-N_3) \end{array} $	0.0 180.0 180.0 0.0 0.0		0.0 180.0 180.0 0.0 0.0		0.0 180.0 180.0 0.0 0.0		0 0 0 0 0	0 0 0 0 0
	$ \begin{array}{c} \phi(C_4-C_5-C_6-N_1) \\ \phi(C_4-C_5-C_6-H_{12}) \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(C_6-C_5-C_4-N_3) \\ \phi(C_6-C_5-C_4-O_{10}) \end{array} $	0.0 180.0 180.0 0.0 0.0 180.0		0.0 180.0 180.0 0.0 0.0 180.0		0.0 180.0 180.0 0.0 0.0 180.0		0 0 0 0 0 0	0 0 0 0 0 0
	$ \begin{array}{c} \phi(C_4-C_5-C_6-N_1) \\ \phi(C_4-C_5-C_6-H_{12}) \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(C_6-C_5-C_4-N_3) \\ \phi(C_6-C_5-C_4-N_3) \\ \phi(X_{11}-C_5-C_4-N_3)^a \end{array} $	0.0 180.0 180.0 0.0 0.0 180.0 180.0		0.0 180.0 180.0 0.0 0.0 180.0 180.0		0.0 180.0 180.0 0.0 0.0 180.0 180.0		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0
	$ \begin{array}{c} \phi(C_4-C_5-C_6-N_1) \\ \phi(C_4-C_5-C_6-H_{12}) \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(C_6-C_5-C_4-N_3) \\ \phi(C_6-C_5-C_4-N_3)^a \\ \phi(X_{11}-C_5-C_4-N_3)^a \\ \phi(X_{11}-C_5-C_4-O_{10})^a \end{array} $	0.0 180.0 180.0 0.0 0.0 180.0 180.0 0.0		0.0 180.0 180.0 0.0 0.0 180.0 180.0 0.0		$\begin{array}{c} 0.0 \\ 180.0 \\ 180.0 \\ 0.0 \\ 0.0 \\ 180.0 \\ 180.0 \\ 0.0 \\ 0.0 \end{array}$		0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0
	$\begin{array}{c} \phi(C_4-C_5-C_6-N_1) \\ \phi(C_4-C_5-C_6-H_{12}) \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(X_{11}-C_5-C_6-H_{12})^a \\ \phi(C_6-C_5-C_4-N_3) \\ \phi(C_6-C_5-C_4-N_3)^a \\ \phi(X_{11}-C_5-C_4-N_3)^a \\ \phi(X_{11}-C_5-C_4-O_{10})^a \\ \phi(C_5-C_6-N_1-C_2) \end{array}$	0.0 180.0 180.0 0.0 180.0 180.0 0.0 0.0 0.0		0.0 180.0 180.0 0.0 0.0 180.0 180.0 0.0 0.0 0.0		0.0 180.0 180.0 0.0 0.0 180.0 180.0 0.0 0.0 0.0 0.0		0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0

$\phi(\mathrm{C}_5\text{-}\mathrm{C}_6\text{-}\mathrm{N}_1\text{-}\mathrm{H}_7)$	180.0	180.0	180.0	0	0
$\phi(H_{12}-C_6-N_1-C_2)$	180.0	180.0	180.0	0	0
$\phi({\rm H}_{12}{\rm -C}_6{\rm -N}_1{\rm -H}_7)$	0.0	0.0	0.0	0	0
$\phi(\mathrm{C_6\text{-}N_1\text{-}C_2\text{-}N_3})$	0.0	0.0	0.0	0	0
$\phi(\mathrm{C_6\text{-}N_1\text{-}C_2\text{-}O_8})$	180.0	180.0	180.0	0	0
$\phi(\mathrm{H}_{7}\text{-}\mathrm{N}_{1}\text{-}\mathrm{C}_{2}\text{-}\mathrm{N}_{3})$	180.0	180.0	180.0	0	0
$\phi(\mathrm{H_{7}\text{-}N_{1}\text{-}C_{2}\text{-}O_{8}})$	0.0	0.0	0.0	0	0
$\phi(\mathrm{N_1\text{-}C_2\text{-}N_3\text{-}C_4})$	0.0	0.0	0.0	0	0
$\phi(\mathrm{N_1\text{-}C_2\text{-}N_3\text{-}H_9})$	180.0	180.0	180.0	0	0
$\phi(\mathrm{O_8\text{-}C_2\text{-}N_3\text{-}C_4})$	180.0	180.0	180.0	0	0
$\phi(\mathrm{O_8\text{-}C_2\text{-}N_3\text{-}H_9})$	0.0	0.0	0.0	0	0
$\phi(\mathrm{C_2\text{-}N_3\text{-}C_4\text{-}C_5})$	0.0	0.0	0.0	0	0
$\phi(C_2-N_3-C_4-O_{10})$	180.0	180.0	180.0	0	0
$\phi(\mathrm{H_9}\text{-}\mathrm{N_3}\text{-}\mathrm{C_4}\text{-}\mathrm{C_5})$	180.0	180.0	180.0	0	0
$\phi(H_9-N_3-C_4-O_{10})$	0.0	0.0	0.0	0	0

^a X=F, Cl, Br.

^b Difference between 5-chlorouracil and 5-fluorouracil.

^c Difference between 5-bromouracil and 5-fluorouracil.

^d Crystal structure of 5-fluorouracil in Ref. 1.

^e Crystal structure of 5-chlorouracil in Ref. 2.

^f Crystal structure of 5-bromouracil in Ref. 2.

Table S3: Potential Energy Distribution Analysis and Vibrational Frequencies (ω/cm^{-1}) of Ground State Normal Modes of 5-Fluorouracil at the PBE0/aug-cc-pVTZ level of theory in H₂O (C-PCM).

mode	ω	PED
8	545	$+ stretch(O_8C_2)[2\%] + stretch(O_{10}C_4)[1\%] + stretch(C_5C_6)[2\%] + stretch(N_1C_6)[1\%]$
		$+ stretch(N_{3}C_{2})[7\%] + stretch(N_{3}C_{4})[13\%] + stretch(F_{11}C_{5})[1\%] + bend(C_{4}N_{3}C_{2})[1\%]$
		$-bend(H_{3}N_{3}C_{4})[1\%]-bend(H_{12}C_{6}C_{5})[1\%]-bend(O_{8}C_{2}N_{3})[1\%]+bend(O_{10}C_{4}N_{3})[25\%]$
		$+ bend(C_5C_6N_1)[5\%] - bend(C_6N_1C_2)[16\%] - bend(N_3C_2N_1)[22\%] + bend(F_{11}C_5C_4)[1\%]$
9	585	$+ torsion(H_7N_1C_6C_5)[94\%] + torsion(H_9N_3C_4C_5)[4\%] - out-of-plane(O_{10}N_3C_5C_4)[2\%]$
10	637	$-stretch(O_{10}C_4)[1\%] - stretch(C_5C_6)[5\%] + stretch(N_1C_2)[4\%] - stretch(N_3C_2)[1\%]$
		$-bend(C_4N_3C_2)[12\%]-bend(H_7N_1C_6)[1\%]+bend(H_9N_3C_4)[2\%]-bend(O_8C_2N_3)[27\%]$
		$+ bend(O_{10}C_4N_3)[15\%] - bend(C_5C_6N_1)[1\%] + bend(C_6N_1C_2)[1\%] - bend(N_3C_2N_1)[1\%]$
		$+bend(F_{11}C_5C_4)[28\%]$
11	662	$-torsion(H_7N_1C_6C_5)[4\%] + torsion(H_9N_3C_4C_5)[90\%] + torsion(H_{12}C_6C_5C_4)[2\%]$
		$-torsion(C_5C_6N_1C_2)[1\%] + torsion(N_3C_2N_1C_6)[2\%] - out-of-plane(O_8N_1N_3C_2)[1\%]$
		-out-of-plane($F_{11}C_6C_4C_5$)[1%]
12	762	$+ stretch(O_{10}C_4)[2\%] + stretch(C_5C_6)[1\%] + stretch(N_1C_6)[8\%] + stretch(N_1C_2)[17\%]$
		$+ stretch(N_{3}C_{2})[9\%] + stretch(N_{3}C_{4})[2\%] + stretch(F_{11}C_{5})[7\%] - bend(C_{4}N_{3}C_{2})[12\%]$
		$+ bend(H_9N_3C_4)[1\%] - bend(O_8C_2N_3)[2\%] - bend(C_5C_6N_1)[10\%] + bend(C_6N_1C_2)[5\%]$
		$+bend(N_3C_2N_1)[22\%]-bend(F_{11}C_5C_4)[1\%]$
13	772	+torsion(H ₉ N ₃ C ₄ C ₅)[1%]+torsion(C ₅ C ₆ N ₁ C ₂)[3%]-torsion(N ₃ C ₂ N ₁ C ₆)[5%]
		+torsion($C_4N_3C_2N_1$)[3%]+out-of-plane($O_8N_1N_3C_2$)[90%]

14	789	$+ torsion(H_7N_1C_6C_5)[1\%] - torsion(H_9N_3C_4C_5)[1\%] - torsion(H_{12}C_6C_5C_4)[3\%]$
		$+ torsion (C_5 C_6 N_1 C_2) [1\%] + out-of-plane (O_{10} N_3 C_5 C_4) [80\%] + out-of-plane (F_{11} C_6 C_4 C_5) [15\%]$
15	826	$-stretch(O_8C_2)[8\%] - stretch(O_{10}C_4)[2\%] + stretch(C_5C_6)[3\%] - stretch(N_1C_6)[1\%]$
		$-stretch(N_1C_2)[8\%] - stretch(N_3C_2)[6\%] - stretch(N_3C_4)[2\%] + stretch(F_{11}C_5)[19\%]$
		$-bend(C_4N_3C_2)[11\%] + bend(H_7N_1C_6)[2\%] + bend(H_9N_3C_4)[2\%] - bend(H_{12}C_6C_5)[1\%]$
		$-bend(O_8C_2N_3)[1\%] + bend(O_{10}C_4N_3)[2\%] + bend(C_5C_6N_1)[25\%] - bend(C_6N_1C_2)[1\%]$
		$+bend(N_3C_2N_1)[6\%]+bend(F_{11}C_5C_4)[1\%]$
16	942	$+ torsion(H_{12}C_6C_5C_4)[75\%] + torsion(C_5C_6N_1C_2)[11\%] - torsion(N_3C_2N_1C_6)[4\%]$
		$-torsion(C_4N_3C_2N_1)[1\%] + out-of-plane(F_{11}C_6C_4C_5)[8\%]$
17	995	$-stretch(O_{10}C_4)[2\%] + stretch(N_1C_6)[1\%] + stretch(N_1C_2)[21\%] + stretch(N_3C_2)[12\%]$
		$-stretch(N_{3}C_{4})[1\%]-bend(C_{4}N_{3}C_{2})[12\%]+bend(H_{7}N_{1}C_{6})[1\%]-bend(H_{9}N_{3}C_{4})[6\%]$
		$-bend(H_{12}C_6C_5)[10\%] + bend(O_8C_2N_3)[1\%] - bend(O_{10}C_4N_3)[6\%] + bend(C_5C_6N_1)[5\%]$
		$-bend(C_6N_1C_2)[17\%] + bend(N_3C_2N_1)[4\%]$
18	1185	$-stretch(C_5C_6)[1\%] - stretch(N_1C_6)[26\%] + stretch(N_1C_2)[3\%] + stretch(N_3C_2)[3\%] - stretch(N_3C_2) - stretch(N_3C_2) - stretch(N_3C_2) - stretch(N_3C_2) - stretch(N_3C_2) - stretch(N_3C_2) $
		$+ stretch(N_{3}C_{4})[6\%] - stretch(F_{11}C_{5})[5\%] - bend(H_{7}N_{1}C_{6})[23\%] + bend(H_{12}C_{6}C_{5})[13\%]$
		$-bend(O_8C_2N_3)[3\%]-bend(O_{10}C_4N_3)[4\%]+bend(C_5C_6N_1)[10\%]-bend(F_{11}C_5C_4)[2\%]$
19	1227	$+ stretch(N_1C_2)[1\%] - stretch(N_3C_2)[18\%] + stretch(N_3C_4)[34\%] - stretch(F_{11}C_5)[4\%]$
		$-bend(C_4N_3C_2)[1\%] + bend(H_7N_1C_6)[3\%] + bend(H_9N_3C_4)[11\%] - bend(H_{12}C_6C_5)[18\%]$
		$-bend(O_{10}C_4N_3)[4\%] + bend(C_5C_6N_1)[1\%] - bend(C_6N_1C_2)[1\%] + bend(N_3C_2N_1)[2\%]$
		$-bend(F_{11}C_5C_4)[2\%]$
20	1278	$+ stretch(C_5C_6)[1\%] - stretch(N_1C_6)[27\%] + stretch(N_1C_2)[3\%] - stretch(N_3C_2)[8\%]$
		$+ stretch(N_{3}C_{4})[1\%] + stretch(F_{11}C_{5})[39\%] + bend(C_{4}N_{3}C_{2})[2\%] - bend(H_{7}N_{1}C_{6})[2\%]$

			$-bend(C_5C_6N_1)[8\%] + bend(C_6N_1C_2)[3\%] - bend(N_3C_2N_1)[5\%]$
	21	1370	$+ stretch(C_5C_6)[16\%] + stretch(N_1C_6)[1\%] + stretch(N_1C_2)[2\%] - stretch(N_3C_2)[9\%]$
			$+ stretch(N_{3}C_{4})[4\%] - stretch(F_{11}C_{5})[3\%] + bend(C_{4}N_{3}C_{2})[1\%] + bend(H_{7}N_{1}C_{6})[8\%]$
			$-bend(H_9N_3C_4)[2\%] + bend(H_{12}C_6C_5)[39\%] + bend(O_8C_2N_3)[1\%] - bend(C_5C_6N_1)[1\%]$
			$-bend(C_6N_1C_2)[6\%] + bend(N_3C_2N_1)[3\%] + bend(F_{11}C_5C_4)[5\%]$
	22	1415	$+ stretch(O_8C_2)[6\%] - stretch(O_{10}C_4)[8\%] + stretch(N_1C_6)[1\%] + stretch(N_1C_2)[2\%]$
			$+ stretch(N_{3}C_{2})[1\%] - stretch(N_{3}C_{4})[7\%] + bend(C_{4}N_{3}C_{2})[2\%] - bend(H_{7}N_{1}C_{6})[4\%]$
			$+ bend(H_9N_3C_4)[59\%] + bend(H_{12}C_6C_5)[3\%] + bend(O_8C_2N_3)[5\%] - bend(C_6N_1C_2)[1\%]$
	23	1454	$+$ stretch $(O_8C_2)[5\%]$ -stretch $(O_{10}C_4)[3\%]$ -stretch $(N_1C_6)[5\%]$ -stretch $(N_1C_2)[12\%]$
			$+ stretch(N_{3}C_{2})[10\%] + stretch(N_{3}C_{4})[4\%] + stretch(F_{11}C_{5})[4\%] - bend(C_{4}N_{3}C_{2})[8\%]$
			$+ bend(H_7N_1C_6)[25\%] + bend(H_9N_3C_4)[3\%] + bend(H_{12}C_6C_5)[1\%] - bend(O_8C_2N_3)[7\%]$
10			$-bend(O_{10}C_4N_3)[5\%]-bend(C_5C_6N_1)[3\%]+bend(C_6N_1C_2)[4\%]+bend(N_3C_2N_1)[1\%]$
	24	1533	$-stretch(O_8C_2)[7\%] - stretch(O_{10}C_4)[2\%] + stretch(C_5C_6)[1\%] + stretch(N_1C_6)[8\%]$
			$- stretch(N_1C_2)[18\%] + stretch(N_3C_4)[10\%] + stretch(F_{11}C_5)[2\%] - bend(C_4N_3C_2)[3\%]$
			$-bend(H_7N_1C_6)[23\%] + bend(H_{12}C_6C_5)[1\%] - bend(O_{10}C_4N_3)[2\%] - bend(C_5C_6N_1)[15\%]$
			$+bend(C_6N_1C_2)[5\%]+bend(N_3C_2N_1)[2\%]$
	25	1730	$-stretch(O_8C_2)[4\%] + stretch(O_{10}C_4)[15\%] + stretch(C_5C_6)[47\%] - stretch(N_1C_6)[3\%]$
			$-stretch(N_{3}C_{4})[2\%]-stretch(F_{11}C_{5})[3\%]-bend(C_{4}N_{3}C_{2})[2\%]-bend(H_{7}N_{1}C_{6})[1\%]$
			$+ bend(H_9N_3C_4)[4\%] - bend(H_{12}C_6C_5)[6\%] - bend(C_5C_6N_1)[1\%] + bend(C_6N_1C_2)[3\%]$
			$-bend(N_3C_2N_1)[4\%] + bend(F_{11}C_5C_4)[3\%]$
	26	1740	$-stretch(O_8C_2)[16\%] + stretch(O_{10}C_4)[40\%] - stretch(C_5C_6)[18\%] + stretch(N_1C_6)[2\%]$
			$- stretch(N_3C_4)[1\%] + stretch(F_{11}C_5)[3\%] + bend(H_7N_1C_6)[4\%] + bend(H_9N_3C_4)[6\%]$

		$+ bend(H_{12}C_6C_5)[4\%] + bend(O_8C_2N_3)[1\%] - bend(O_{10}C_4N_3)[2\%] - bend(C_6N_1C_2)[1\%]$
		$-bend(N_3C_2N_1)[3\%]$
27	1782	$+ stretch(O_8C_2)[49\%] + stretch(O_{10}C_4)[22\%] - stretch(N_1C_2)[7\%] - stretch(N_3C_2)[3\%]$
		$-bend(C_4N_3C_2)[6\%]-bend(H_7N_1C_6)[3\%]-bend(C_6N_1C_2)[3\%]+bend(N_3C_2N_1)[5\%]$

Table S4: Potential Energy Distribution Analysis and Vibrational Frequencies (ω/cm^{-1}) of Ground State Normal Modes of 5-Chlorouracil at the PBE0/aug-cc-pVTZ level of theory in H₂O (C-PCM).

mode	ω	PED
8	549	$+ stretch(O_8C_2)[1\%] + stretch(O_{10}C_4)[2\%] + stretch(C_5C_6)[2\%] + stretch(N_3C_2)[12\%]$
		$+ stretch(N_{3}C_{4})[14\%] + stretch(Cl_{11}C_{5})[2\%] + bend(C_{4}N_{3}C_{2})[9\%] - bend(H_{12}C_{6}C_{5})[1\%]$
		$-bend(O_8C_2N_3)[2\%] + bend(O_{10}C_4N_3)[28\%] + bend(C_5C_6N_1)[1\%] - bend(C_6N_1C_2)[17\%]$
		$-bend(N_3C_2N_1)[7\%]$
9	611	$+ torsion(H_7N_1C_6C_5)[89\%] + torsion(H_9N_3C_4C_5)[7\%] - out-of-plane(O_{10}N_3C_5C_4)[3\%]$
10	613	$+ stretch(O_{10}C_4)[1\%] + stretch(C_5C_6)[2\%] - stretch(N_1C_6)[1\%] - stretch(N_1C_2)[2\%]$
		$+ stretch(N_3C_2)[2\%] + stretch(Cl_{11}C_5)[1\%] + bend(C_4N_3C_2)[13\%] + bend(H_7N_1C_6)[2\%]$
		$-bend(H_{3}N_{3}C_{4})[1\%] + bend(O_{8}C_{2}N_{3})[27\%] - bend(O_{10}C_{4}N_{3})[17\%] + bend(C_{5}C_{6}N_{1})[2\%]$
		$-bend(C_6N_1C_2)[4\%] + bend(N_3C_2N_1)[8\%] - bend(Cl_{11}C_5C_4)[16\%]$
11	675	$-torsion(H_7N_1C_6C_5)[7\%] + torsion(H_9N_3C_4C_5)[87\%] + torsion(H_{12}C_6C_5C_4)[1\%]$
		$-torsion(C_5C_6N_1C_2)[1\%] + torsion(N_3C_2N_1C_6)[2\%] - out-of-plane(O_8N_1N_3C_2)[1\%]$
12	676	$-stretch(O_8C_2)[1\%] + stretch(C_5C_6)[1\%] + stretch(N_1C_6)[1\%] + stretch(N_1C_2)[3\%]$
		$+ stretch(N_3C_2)[1\%] + stretch(Cl_{11}C_5)[27\%] - bend(C_4N_3C_2)[10\%] + bend(H_9N_3C_4)[2\%]$
		$-bend(O_8C_2N_3)[4\%] + bend(O_{10}C_4N_3)[3\%] - bend(C_5C_6N_1)[6\%] - bend(C_6N_1C_2)[7\%]$
		$+bend(N_3C_2N_1)[33\%]$
13	773	$-torsion(H_7N_1C_6C_5)[1\%] + torsion(H_9N_3C_4C_5)[1\%] + torsion(C_5C_6N_1C_2)[2\%]$
		$-torsion(N_{3}C_{2}N_{1}C_{6})[4\%] + torsion(C_{4}N_{3}C_{2}N_{1})[2\%] + out-of-plane(O_{8}N_{1}N_{3}C_{2})[88\%]$
		-out-of-plane($O_{10}N_3C_5C_4$)[3%]-out-of-plane($Cl_{11}C_6C_4C_5$)[1%]

14	787	$+ torsion(H_7N_1C_6C_5)[1\%] - torsion(H_{12}C_6C_5C_4)[2\%] + torsion(C_5C_6N_1C_2)[3\%]$
		$-torsion(N_{3}C_{2}N_{1}C_{6})[1\%] + torsion(C_{4}N_{3}C_{2}N_{1})[2\%] + out-of-plane(O_{8}N_{1}N_{3}C_{2})[3\%]$
		$+ out-of-plane(O_{10}N_3C_5C_4)[79\%] + out-of-plane(Cl_{11}C_6C_4C_5)[9\%]$
15	797	$+$ stretch $(O_8C_2)[5\%]$ +stretch $(O_{10}C_4)[3\%]$ +stretch $(C_5C_6)[1\%]$ +stretch $(N_1C_6)[4\%]$
		$+ stretch(N_1C_2)[24\%] + stretch(N_3C_2)[12\%] + stretch(N_3C_4)[5\%] - stretch(Cl_{11}C_5)[3\%]$
		$+ bend(C_4N_3C_2)[5\%] - bend(H_7N_1C_6)[1\%] - bend(O_{10}C_4N_3)[1\%]$
		$-bend(C_5C_6N_1)[2\%] + bend(C_6N_1C_2)[19\%] - bend(N_3C_2N_1)[14\%]$
16	958	$+ torsion(H_{12}C_6C_5C_4)[78\%] + torsion(C_5C_6N_1C_2)[12\%] - torsion(N_3C_2N_1C_6)[5\%]$
		$-torsion(C_4N_3C_2N_1)[1\%] + out-of-plane(Cl_{11}C_6C_4C_5)[5\%]$
17	999	$+ stretch(O_{10}C_4)[1\%] - stretch(N_1C_6)[1\%] - stretch(N_1C_2)[21\%] - stretch(N_3C_2)[12\%]$
		$+ stretch(N_3C_4)[1\%] + bend(C_4N_3C_2)[12\%] - bend(H_7N_1C_6)[1\%] + bend(H_9N_3C_4)[6\%]$
		$+ bend(H_{12}C_6C_5)[9\%] - bend(O_8C_2N_3)[1\%] + bend(O_{10}C_4N_3)[6\%] - bend(C_5C_6N_1)[7\%]$
		$+bend(C_6N_1C_2)[17\%]-bend(N_3C_2N_1)[4\%]$
18	1102	$-stretch(O_8C_2)[1\%] + stretch(N_1C_6)[2\%] - stretch(N_1C_2)[1\%] + stretch(N_3C_4)[5\%]$
		$-stretch(Cl_{11}C_5)[23\%]-bend(C_4N_3C_2)[4\%]+bend(H_9N_3C_4)[4\%]-bend(O_8C_2N_3)[1\%]$
		$-bend(O_{10}C_4N_3)[1\%] + bend(C_5C_6N_1)[38\%] - bend(C_6N_1C_2)[8\%] + bend(N_3C_2N_1)[11\%]$
19	1207	$+ stretch(C_5C_6)[2\%] + stretch(N_1C_6)[51\%] - stretch(N_1C_2)[2\%] - stretch(N_3C_2)[1\%]$
		$-stretch(N_{3}C_{4})[4\%] - stretch(Cl_{11}C_{5})[3\%] + bend(C_{4}N_{3}C_{2})[1\%] + bend(H_{7}N_{1}C_{6})[24\%]$
		$-bend(H_{12}C_6C_5)[6\%] + bend(O_8C_2N_3)[1\%] + bend(O_{10}C_4N_3)[2\%] - bend(C_6N_1C_2)[1\%]$
		$+bend(N_3C_2N_1)[1\%]+bend(Cl_{11}C_5C_4)[2\%]$
20	1233	$-stretch(N_1C_6)[1\%] - stretch(N_3C_2)[25\%] + stretch(N_3C_4)[35\%] + bend(H_7N_1C_6)[3\%]$
		$+ bend(H_9N_3C_4)[8\%] - bend(H_{12}C_6C_5)[19\%] - bend(O_{10}C_4N_3)[2\%] - bend(C_5C_6N_1)[1\%]$

			$-bend(C_6N_1C_2)[2\%] + bend(N_3C_2N_1)[2\%] - bend(Cl_{11}C_5C_4)[1\%]$
	21	1360	$+ stretch(C_5C_6)[23\%] + stretch(N_1C_2)[2\%] - stretch(N_3C_2)[10\%] + stretch(N_3C_4)[2\%]$
			$+ bend(C_4N_3C_2)[2\%] + bend(H_7N_1C_6)[4\%] - bend(H_9N_3C_4)[2\%] + bend(H_{12}C_6C_5)[44\%]$
			$+ bend(O_8C_2N_3)[1\%] - bend(C_5C_6N_1)[2\%] - bend(C_6N_1C_2)[4\%] + bend(N_3C_2N_1)[1\%]$
			$+ bend(Cl_{11}C_5C_4)[2\%]$
	22	1419	$+ stretch(O_8C_2)[6\%] - stretch(O_{10}C_4)[7\%] + stretch(N_1C_6)[1\%] + stretch(N_1C_2)[1\%]$
			$+ stretch(N_{3}C_{2})[1\%] - stretch(N_{3}C_{4})[8\%] + bend(C_{4}N_{3}C_{2})[1\%] - bend(H_{7}N_{1}C_{6})[5\%]$
_			$+ bend(H_9N_3C_4)[62\%] + bend(H_{12}C_6C_5)[2\%] + bend(O_8C_2N_3)[5\%] - bend(C_6N_1C_2)[1\%]$
	23	1442	$-stretch(O_8C_2)[3\%] + stretch(O_{10}C_4)[3\%] + stretch(N_1C_2)[19\%] - stretch(N_3C_2)[12\%]$
			$-stretch(N_{3}C_{4})[7\%] - stretch(Cl_{11}C_{5})[1\%] + bend(C_{4}N_{3}C_{2})[9\%] - bend(H_{7}N_{1}C_{6})[15\%]$
14			$-bend(H_9N_3C_4)[3\%]-bend(H_{12}C_6C_5)[4\%]+bend(O_8C_2N_3)[7\%]+bend(O_{10}C_4N_3)[7\%]$
			$+ bend(C_5C_6N_1)[5\%] - bend(C_6N_1C_2)[3\%] - bend(N_3C_2N_1)[3\%]$
	24	1522	$+ stretch(O_8C_2)[9\%] - stretch(N_1C_6)[15\%] + stretch(N_1C_2)[12\%] - stretch(N_3C_4)[8\%]$
			$+ bend(C_4N_3C_2)[1\%] + bend(H_7N_1C_6)[36\%] + bend(O_{10}C_4N_3)[1\%] + bend(C_5C_6N_1)[13\%]$
			$-bend(C_6N_1C_2)[2\%]-bend(N_3C_2N_1)[2\%]$
	25	1688	$+ stretch(C_5C_6)[64\%] - stretch(N_1C_6)[7\%] - stretch(N_1C_2)[2\%] + stretch(N_3C_2)[1\%]$
			$-stretch(N_{3}C_{4})[1\%]-stretch(Cl_{11}C_{5})[2\%]-bend(C_{4}N_{3}C_{2})[1\%]-bend(H_{7}N_{1}C_{6})[3\%]$
			$+ bend(H_9N_3C_4)[1\%] - bend(H_{12}C_6C_5)[13\%] - bend(C_5C_6N_1)[2\%] + bend(C_6N_1C_2)[1\%]$
			$-bend(N_3C_2N_1)[1\%] + bend(Cl_{11}C_5C_4)[1\%]$
	26	1738	$-stretch(O_8C_2)[13\%] + stretch(O_{10}C_4)[65\%] + stretch(N_1C_2)[1\%] + stretch(N_3C_2)[1\%]$
			$- stretch(N_3C_4)[1\%] - bend(C_4N_3C_2)[2\%] + bend(H_7N_1C_6)[1\%] + bend(H_9N_3C_4)[9\%] \\$
			$-bend(O_{10}C_4N_3)[1\%] + bend(C_6N_1C_2)[1\%] - bend(N_3C_2N_1)[4\%]$

27 1782 +stretch(O_8C_2)[60%]+stretch($O_{10}C_4$)[16%]-stretch(N_1C_2)[6%]-stretch(N_3C_2)[4%] -bend($C_4N_3C_2$)[5%]-bend($H_7N_1C_6$)[4%]-bend($C_6N_1C_2$)[2%]+bend($N_3C_2N_1$)[3%] Table S5: Potential Energy Distribution Analysis and Vibrational Frequencies (ω/cm^{-1}) of Ground State Normal Modes of 5-Bromouracil at the PBE0/aug-cc-pVTZ level of theory in H₂O (C-PCM).

mode	ω	PED
8	547	$+ stretch(O_8C_2)[1\%] + stretch(O_{10}C_4)[2\%] + stretch(C_5C_6)[2\%] + stretch(N_3C_2)[13\%]$
		$+ stretch(N_{3}C_{4})[11\%] + stretch(Br_{11}C_{5})[3\%] + bend(C_{4}N_{3}C_{2})[13\%] - bend(H_{12}C_{6}C_{5})[1\%]$
		$-bend(O_8C_2N_3)[2\%] + bend(O_{10}C_4N_3)[28\%] + bend(C_5C_6N_1)[3\%] - bend(C_6N_1C_2)[17\%]$
		$-bend(N_3C_2N_1)[2\%]-bend(Br_{11}C_5C_4)[1\%]$
9	605	$+ stretch(O_8C_2)[1\%] - stretch(O_{10}C_4)[2\%] - stretch(C_5C_6)[1\%] + stretch(N_1C_6)[2\%]$
		$+$ stretch $(N_1C_2)[1\%]$ -stretch $(N_3C_2)[2\%]$ -stretch $(Br_{11}C_5)[2\%]$ -bend $(C_4N_3C_2)[9\%]$
		$-bend(H_7N_1C_6)[2\%] + bend(H_9N_3C_4)[1\%] - bend(O_8C_2N_3)[25\%] + bend(O_{10}C_4N_3)[16\%]$
		$+ bend(C_6N_1C_2)[5\%] - bend(N_3C_2N_1)[18\%] + bend(Br_{11}C_5C_4)[13\%]$
10	609	$+ torsion(H_7N_1C_6C_5)[90\%] + torsion(H_9N_3C_4C_5)[6\%] - out-of-plane(O_{10}N_3C_5C_4)[3\%]$
11	639	$-stretch(O_8C_2)[2\%] + stretch(N_1C_2)[2\%] - stretch(N_3C_4)[1\%] + stretch(Br_{11}C_5)[24\%]$
		$-bend(C_4N_3C_2)[8\%] + bend(H_9N_3C_4)[3\%] - bend(O_8C_2N_3)[10\%] + bend(O_{10}C_4N_3)[7\%]$
		$-bend(C_5C_6N_1)[4\%]-bend(C_6N_1C_2)[6\%]+bend(N_3C_2N_1)[31\%]-bend(Br_{11}C_5C_4)[1\%]$
12	676	$-torsion(H_7N_1C_6C_5)[6\%] + torsion(H_9N_3C_4C_5)[88\%] + torsion(H_{12}C_6C_5C_4)[1\%]$
		$-torsion(C_5C_6N_1C_2)[1\%] + torsion(N_3C_2N_1C_6)[2\%] - out-of-plane(O_8N_1N_3C_2)[1\%]$
13	774	$-torsion(H_7N_1C_6C_5)[1\%] + torsion(H_9N_3C_4C_5)[1\%] + torsion(C_5C_6N_1C_2)[2\%]$
		$-torsion(N_{3}C_{2}N_{1}C_{6})[4\%] + torsion(C_{4}N_{3}C_{2}N_{1})[2\%] + out-of-plane(O_{8}N_{1}N_{3}C_{2})[87\%]$
		-out-of-plane $(O_{10}N_3C_5C_4)[5\%]$ -out-of-plane $(Br_{11}C_6C_4C_5)[1\%]$
14	787	$+ torsion(H_7N_1C_6C_5)[1\%] - torsion(H_{12}C_6C_5C_4)[1\%] + torsion(C_5C_6N_1C_2)[4\%]$

		$-torsion(N_{3}C_{2}N_{1}C_{6})[2\%] + torsion(C_{4}N_{3}C_{2}N_{1})[3\%] + out-of-plane(O_{8}N_{1}N_{3}C_{2})[6\%]$
		+out-of-plane (O ₁₀ N ₃ C ₅ C ₄)[77%]+out-of-plane(Br ₁₁ C ₆ C ₄ C ₅)[7%]
15	794	$+ stretch(O_8C_2)[4\%] + stretch(O_{10}C_4)[3\%] + stretch(C_5C_6)[1\%] + stretch(N_1C_6)[5\%]$
		$+ stretch(N_1C_2)[25\%] + stretch(N_3C_2)[12\%] + stretch(N_3C_4)[5\%] - stretch(Br_{11}C_5)[2\%]$
		$+ bend(C_4N_3C_2)[4\%] - bend(C_5C_6N_1)[5\%] + bend(C_6N_1C_2)[21\%] - bend(N_3C_2N_1)[12\%]$
16	961	$+ torsion(H_{12}C_6C_5C_4)[78\%] + torsion(C_5C_6N_1C_2)[12\%] - torsion(N_3C_2N_1C_6)[5\%]$
		$-torsion(C_4N_3C_2N_1)[1\%] + out-of-plane(Br_{11}C_6C_4C_5)[3\%]$
17	1001	$-stretch(O_{10}C_4)[1\%] + stretch(N_1C_6)[1\%] + stretch(N_1C_2)[21\%] + stretch(N_3C_2)[12\%]$
		$-stretch(N_{3}C_{4})[1\%]-bend(C_{4}N_{3}C_{2})[13\%]+bend(H_{7}N_{1}C_{6})[1\%]-bend(H_{9}N_{3}C_{4})[6\%]$
		$-bend(H_{12}C_6C_5)[8\%] + bend(O_8C_2N_3)[1\%] - bend(O_{10}C_4N_3)[6\%] + bend(C_5C_6N_1)[6\%]$
		$-bend(C_6N_1C_2)[17\%] + bend(N_3C_2N_1)[3\%]$
18	1074	$-stretch(O_8C_2)[1\%] + stretch(N_1C_6)[3\%] - stretch(N_1C_2)[2\%] + stretch(N_3C_4)[3\%]$
		$-stretch(Br_{11}C_5)[16\%]-bend(C_4N_3C_2)[4\%]+bend(H_9N_3C_4)[4\%]-bend(H_{12}C_6C_5)[1\%]$
		$-bend(O_8C_2N_3)[1\%]-bend(O_{10}C_4N_3)[1\%]+bend(C_5C_6N_1)[40\%]-bend(C_6N_1C_2)[10\%]$
		$+bend(N_3C_2N_1)[13\%]$
19	1204	$+ stretch(C_5C_6)[2\%] + stretch(N_1C_6)[51\%] - stretch(N_1C_2)[3\%] - stretch(N_3C_4)[10\%]$
		$-stretch(Br_{11}C_5)[2\%] + bend(C_4N_3C_2)[1\%] + bend(H_7N_1C_6)[21\%] - bend(H_9N_3C_4)[1\%]$
		$-bend(H_{12}C_6C_5)[2\%] + bend(O_8C_2N_3)[1\%] + bend(O_{10}C_4N_3)[3\%] - bend(C_5C_6N_1)[1\%]$
		$-bend(C_6N_1C_2)[1\%] + bend(N_3C_2N_1)[1\%] + bend(Br_{11}C_5C_4)[2\%]$
20	1235	$+ stretch(N_1C_2)[1\%] - stretch(N_3C_2)[26\%] + stretch(N_3C_4)[29\%] + bend(H_7N_1C_6)[7\%]$
		$+ bend(H_9N_3C_4)[7\%] - bend(H_{12}C_6C_5)[20\%] - bend(O_{10}C_4N_3)[1\%] - bend(C_5C_6N_1)[2\%]$
		$-bend(C_6N_1C_2)[2\%] + bend(N_3C_2N_1)[3\%]$

	21	1361	$+ stretch(C_5C_6)[24\%] + stretch(N_1C_2)[2\%] - stretch(N_3C_2)[10\%] + stretch(N_3C_4)[2\%]$								
			$+ bend(C_4N_3C_2)[2\%] + bend(H_7N_1C_6)[3\%] - bend(H_9N_3C_4)[2\%] + bend(H_{12}C_6C_5)[47\%]$								
			$+ bend(O_8C_2N_3)[1\%] - bend(C_5C_6N_1)[1\%] - bend(C_6N_1C_2)[3\%] + bend(N_3C_2N_1)[1\%]$								
			$+bend(Br_{11}C_5C_4)[2\%]$								
-	22	1418	$+$ stretch $(O_8C_2)[5\%]$ -stretch $(O_{10}C_4)[7\%]$ +stretch $(N_1C_6)[1\%]$ +stretch $(N_1C_2)[2\%]$								
			$+ stretch(N_{3}C_{2})[1\%] - stretch(N_{3}C_{4})[8\%] + bend(C_{4}N_{3}C_{2})[2\%] - bend(H_{7}N_{1}C_{6})[6\%]$								
			$+ bend(H_9N_3C_4)[61\%] + bend(H_{12}C_6C_5)[2\%] + bend(O_8C_2N_3)[5\%] - bend(C_6N_1C_2)[1\%]$								
-	23	1438	$+ stretch(O_8C_2)[3\%] - stretch(O_{10}C_4)[3\%] + stretch(N_1C_6)[1\%] - stretch(N_1C_2)[19\%]$								
			$+ stretch(N_{3}C_{2})[12\%] + stretch(N_{3}C_{4})[7\%] - bend(C_{4}N_{3}C_{2})[10\%] + bend(H_{7}N_{1}C_{6})[14\%]$								
			$+ bend(H_9N_3C_4)[4\%] + bend(H_{12}C_6C_5)[4\%] - bend(O_8C_2N_3)[7\%] - bend(O_{10}C_4N_3)[7\%]$								
18			$-bend(C_5C_6N_1)[4\%] + bend(C_6N_1C_2)[3\%] + bend(N_3C_2N_1)[3\%]$								
	24	1518	$+ stretch(O_8C_2)[9\%] - stretch(N_1C_6)[16\%] + stretch(N_1C_2)[12\%] - stretch(N_3C_4)[8\%]$								
			$+ bend(C_4N_3C_2)[1\%] + bend(H_7N_1C_6)[37\%] - bend(H_{12}C_6C_5)[1\%] + bend(O_{10}C_4N_3)[1\%]$								
			$+ bend(C_5C_6N_1)[11\%] - bend(C_6N_1C_2)[2\%] - bend(N_3C_2N_1)[1\%]$								
_	25	1681	$+ stretch(C_5C_6)[63\%] - stretch(N_1C_6)[7\%] - stretch(N_1C_2)[2\%] + stretch(N_3C_2)[1\%]$								
			$- stretch(N_{3}C_{4})[1\%] - stretch(Br_{11}C_{5})[1\%] - bend(C_{4}N_{3}C_{2})[1\%] - bend(H_{7}N_{1}C_{6})[3\%]$								
			$+ bend(H_9N_3C_4)[1\%] - bend(H_{12}C_6C_5)[13\%] - bend(O_8C_2N_3)[1\%] - bend(C_5C_6N_1)[2\%]$								
			$+ bend(C_6N_1C_2)[2\%] - bend(N_3C_2N_1)[1\%] + bend(Br_{11}C_5C_4)[1\%]$								
_	26	1736	$-stretch(O_8C_2)[10\%] + stretch(O_{10}C_4)[68\%] + stretch(N_1C_2)[1\%] + stretch(N_3C_2)[1\%]$								
			$- stretch(N_3C_4)[1\%] - bend(C_4N_3C_2)[3\%] + bend(H_7N_1C_6)[1\%] + bend(H_9N_3C_4)[9\%]$								
			$-bend(O_{10}C_4N_3)[1\%] + bend(C_6N_1C_2)[1\%] - bend(N_3C_2N_1)[4\%]$								
-	27	1782	$+ stretch(O_8C_2)[62\%] + stretch(O_{10}C_4)[14\%] - stretch(N_1C_2)[6\%] - stretch(N_3C_2)[4\%]$								

 $-\mathrm{bend}(C_4N_3C_2)[5\%]-\mathrm{bend}(H_7N_1C_6)[4\%]-\mathrm{bend}(C_6N_1C_2)[2\%]+\mathrm{bend}(N_3C_2N_1)[2\%]$

Table S6: Vibrational Frequencies (ω/cm^{-1}) and Dimensionless Displacements $(|\Delta|)$ for the S_1 Excited State of 5-Halogenated Uracils at the CAMB3LYP/augcc-pVTZ level of theory with the ground state equilibrium geometry determined using PBE0/aug-cc-pVTZ in $\rm H_2O$ (C-PCM).

	modes	8	9	10	11	12	13	14	15	16	17	18	19
	ω	545	585	637	662	762	772	789	826	942	995	1185	1227
5-fluorouracil	$ \Delta $	0.7051	0.0000	0.3025	0.0000	0.6311	0.0000	0.0000	0.5241	0.0000	0.0457	0.0253	0.5852
0-intorouracii	modes	20	21	22	23	24	25	26	27				
	ω	1278	1370	1415	1454	1533	1730	1740	1782				
	$ \Delta $	0.5348	0.9796	0.2126	0.0775	0.3863	1.1035	0.1935	0.2688				
	modes	8	9	10	11	12	13	14	15	16	17	18	19
	ω	549	611	613	675	676	773	787	797	958	999	1102	1207
5-chlorouracil	$ \Delta $	0.5591	0.0000	0.4572	0.0000	0.2412	0.0000	0.0000	0.8020	0.0000	0.0733	0.0312	0.0216
5-emotouraen	modes	20	21	22	23	24	25	26	27				
	ω	1233	1360	1419	1442	1522	1688	1738	1782				
	$ \Delta $	0.6093	0.9867	0.2054	0.1840	0.3436	1.0617	0.2603	0.2945	_	_	-	-
	modes	8	9	10	11	12	13	14	15	16	17	18	19
	ω	547	605	609	639	676	774	787	794	961	1001	1074	1204
5-bromouracil	$ \Delta $	0.4571	0.4802	0.0000	0.1282	0.0000	0.0000	0.0000	0.8029	0.0000	0.1084	0.0243	0.0202
o sromouraen	modes	20	21	22	23	24	25	26	27				
	ω	1235	1361	1418	1438	1518	1681	1736	1782				
	$ \Delta $	0.6261	0.9782	0.1603	0 1928	0.3367	1.0354	0.2775	0.2893				

 $0.6261 \quad 0.9782 \quad 0.1603 \quad 0.1928 \quad 0.3367 \quad 1.0354 \quad 0.2775 \quad 0.2893$

Relative Peak Intensities of Resonance Raman Spectra for 5-TableS7: Fluorouracil Simulated with Different Incident Light Energies (ω_{in}) and Vertical Excitation Energies (ω_{ge}).

$\omega_{ m in}$	ω_{ge}	mode	8	9	10	11	12	13	14	15	16	17
		$\omega/{ m cm}^{-1}$	545.10	585.46	636.95	662.36	762.31	771.98	788.83	826.33	941.63	994.51
$4.7 \ \mathrm{eV}$	$4.7 \ \mathrm{eV}$	intensity	0.04	0.00	0.01	0.00	0.06	0.00	0.00	0.05	0.00	0.00
$4.5~{\rm eV}$	$4.7 \ \mathrm{eV}$	intensity	0.11	0.00	0.03	0.00	0.13	0.00	0.00	0.10	0.00	0.00
$4.5~{\rm eV}$	$4.9~{\rm eV}$	intensity	0.19	0.00	0.04	0.00	0.20	0.00	0.00	0.15	0.00	0.00
$\omega_{ m in}$	ω_{ge}	mode	18	19	20	21	22	23	24	25	26	27
		ω/cm^{-1}	1184.77	1227.33	1277.98	1370.01	1414.68	1454.08	1533.47	1729.60	1740.35	1782.21
$4.7 \ \mathrm{eV}$	$4.7 \ \mathrm{eV}$	intensity	0.00	0.14	0.13	0.50	0.03	0.00	0.10	1.00	0.03	0.06
$4.5 \ \mathrm{eV}$	$4.7 \ \mathrm{eV}$	intensity	0.00	0.16	0.14	0.51	0.03	0.00	0.10	1.00	0.03	0.06
$4.5 \ \mathrm{eV}$	$4.9~{\rm eV}$	intensity	0.00	0.24	0.20	0.71	0.03	0.00	0.12	1.00	0.03	0.06

Figure S1: Comparison between the ground state vibrational frequencies of (a) 5-fluorouracil (b) 5-chlorouracil and (c) 5-bromouracil. x-axis is vibrational mode numbered according to 5-fluorouracil, unless indicated otherwise, i.e., N^{Cl} , N^{Br} .

Figure S2: The cosine similarity for the normal modes of 5-fluorouracil vs. uracil. x- and y-axes are corresponding vibrational mode numbering.

Figure S3: The cosine similarity for the normal modes of 5-fluorouracil vs. 5-chlorouracil. x- and y-axes are corresponding vibrational mode numbering.

Figure S4: The cosine similarity for the normal modes of 5-fluorouracil vs. 5-bromouracil. x- and y-axes are corresponding vibrational mode numbering.

Figure S5: The cosine similarity for the normal modes of 5-chlorouracil vs. 5-bromouracil. x- and y-axes are corresponding vibrational mode numbering.

Figure S6: Resonance Raman spectra for 5-fluorouracil simulated with (a) $\omega_{in} = \omega_{ge}$, (b) $\omega_{in} = 4.5 \text{ eV}$ (experiment) and $\omega_{ge} = 4.7 \text{ eV}$ (experiment), and (c) $\omega_{in} = 4.5 \text{ eV}$ (experiment) and $\omega_{ge} = 4.9 \text{ eV}$ (computation).

Figure S7: Resonance Raman spectra for 5-fluorouracil simulated with the experimentally-fit and TD-DFT computed $|\Delta|s$.

Figure S8: Vectors illustrating the Cartesian gradients for each atom of uracil using TD-CAMB3LYP/aug-cc-pVTZ in H_2O (C-PCM) for the S_1 excited state.

References

- Fallon III, L. The Crystal and Molecular Structure of 5-fluorouracil. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1973, B29, 2549–2556.
- (2) Sternglanz, H.; Bugg, C. E. Relationship Between the Mutagenic and Base-stacking Properties of Halogenated Uracil Derivatives. The Crystal Structures of 5–chloro– and 5–bromouracil. *Biochim. Biophys. Acta, Nucleic Acids Protein Synth.* 1975, 378, 1–11.