Supporting Information for:

A Multifunctional Block Copolymer – Where Polymetallic and Polyelectrolyte Blocks Meet

Mahboubeh Hadadpour¹, Jessica Gwyther², Ian Manners² and Paul J. Ragogna^{*1}

¹Department of Chemistry and the Centre for Materials and Biomaterials Research (CAMBR), *The* University *of* Western Ontario, London, Ontario, N6A 5B7, Canada ²School of Chemistry, University of Bristol, Cantocks Close, Bristol, BS8 1TS, UK *pragogna@uwo.ca

Table of Content:

Figure S.I.1. ¹H NMR Spectrum of random copolymer **5** (spectrum A) and a block copolymer consist of random copolymer **5** and monomer **6** (spectrum B) in deutrated chloroform. In Spectrum B, arrows point to the broad/overlapping signals of polyelectrolyte block. (*trace of DCM).

Figure S.I.2. Positive and negative mass spectroscopy of purified 7......4

Figure S.I.3. ¹H NMR Spectrum of purified RAFT agent 8 in deutrated chloroform......5

Figure S.I.4. ¹H NMR spectrum of crude random copolymer **9** at 20 minutes polymerization reaction time in deutrated chloroform. (Relative integrations values indicate 47% monomer conversion)......**5**

Figure S.I.8. ${}^{31}P{}^{1}H$ NMR Spectra of crude (bottom) and purified (top) (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf) (10).....7

Figure S.I.11. ${}^{19}F{}^{1}H{}$ NMR Spectrum of purified (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf)₄₄ (10) after 45 minutes polymerization reaction time in deutrated chloroform.

Figure S.I.15. ${}^{19}F{}^{1}H{}$ NMR Spectrum of purified (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf)₁₀₀ (10).....10

Figure S.I.16. TEM Image of spherical micelles made by injection of THF solution of (PolyCpCoCb₅₀-r-PMA₁₅₀)-b-(PS(P^+OTf)₁₀₀ (**10**) into methanol and size distribution analysis based on TEM data.....**11**

Figure S.I.17. DLS analysis of spherical micelles made by injection of THF solution of (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P^+OTf)₁₀₀ (**10**) into methanol (130 nm).**11**

Figure S.I.19. DLS analysis of heterobimetallic micelles made by injection of DCM solution of (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺AuCl₄⁻))₁₀₀ into benzene (65 nm)......12

Figure S.I.20. Heterobimetallic micelles with Poly-7AuCl core and PolyCpCoCb₅₀-*r*-PMA₁₅₀ corona made by injection of DCM solution of (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺AuCl₄⁻))_m (1; m=30, 2; m=100) into benzene. Vials on top are the same micelles samples after the core is reduced to AuNPs using NaBH₄ (3; m=30, 4; m=100)12

 Figure S.I.22. EDX analysis of AuNPs (copper signals are form the copper grid)......13

Figure S.I.23. A) TEM image of microtomed section of phase separated (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf⁻))₃₀ stained with RuO₄ B) and stained with HAuCl₄.

Figure S.I.24. EDX analysis of microtomed sections of (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf))₃₀ stained by RuO₄ revealing its elemental composition......**14**

Figure S.I.25. TEM image (left) and EDX analysis (right) of pyrolyzed (PolyCpCoCb₅₀*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf⁻))₃₀ block copolymer15

Figure S.I.1. ¹H NMR Spectrum of random copolymer **5** (spectrum A) and a block copolymer consist of random copolymer **5** and polymerized **6** (spectrum B) in deutrated chloroform. In Spectrum B, arrows point to the broad/overlapping signals of the polyelectrolyte block. (*trace of DCM).

Note: Clusters with Cl such as 637 (2 cation + 1 Cl⁻), 1027 (3 cation + 2 Cl⁻) were not detected.

Note: Clusters with Cl such as 743 (2 cation + 3 Cl⁻), 1099 (3 cation + 4 Cl⁻) were not detected. **Figure S.I.2.** Positive and negative mass spectroscopy of purified **7**.

Figure S.I.3. ¹H NMR Spectrum of purified RAFT agent 8 in deutrated chloroform.

Figure S.I.4. ¹H NMR spectrum of crude random copolymer **9** at 20 minutes polymerization reaction time in deutrated chloroform. (Relative integrations values indicate 47% monomer conversion)

Figure S.I.5. ¹H NMR spectrum of crude random copolymer **9** at 40 minutes polymerization reaction time in deutrated chloroform. (Relative integrations values indicate 77% monomer conversion)

Figure S.I.6. ¹H NMR spectrum of crude random copolymer **9** at 60 minutes polymerization reaction time in deutrated chloroform. (Relative integrations values indicate 82% monomer conversion)

Figure S.I.7. ¹H NMR spectrum of purified PolyCpCoCb₅₀-*r*-PMA₁₅₀ random copolymer (9) at 60 minutes polymerization reaction time.

Figure S.I.8. ³¹P{¹H} NMR Spectra of crude (bottom) and purified (top) (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf) (10)

Figure S.I.9. ¹⁹F ${^{1}H}$ NMR Spectrum of purified (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf)₂₀ (10) after 15 minutes polymerization reaction time in deutrated chloroform.

Figure S.I.10. ¹⁹F{¹H} NMR Spectrum of purified (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf)₃₃ (10) after 30 minutes polymerization reaction time in deutrated chloroform.

Figure S.I.11. ¹⁹F $\{^{1}H\}$ NMR Spectrum of purified (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf)₄₄ (10) after 45 minutes polymerization reaction time in deutrated chloroform.

Figure S.I.12. ¹⁹F $\{^{1}H\}$ NMR Spectrum of purified (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf) ₅₀ (10) after 60 minutes polymerization reaction time in deutrated chloroform.

Figure S.I.13. ¹H NMR spectrum of purified block copolymer **10** after 60 minutes polymerization reaction time. Arrows show broad signals of polyelectrolyte block in deutrated chloroform. (*Residue of dichloromethane)

Figure S.I.14. ¹⁹F {¹H} NMR Spectrum of purified (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf)₃₀ (10).

Figure S.I.15. ¹⁹F $\{^{1}H\}$ NMR Spectrum of purified (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf)₁₀₀ (10).

Figure S.I.16. TEM Image of spherical micelles made by injection of THF solution of (PolyCpCoCb₅₀-r-PMA₁₅₀)-b-(PS(P^+OTf)₁₀₀ (**10**) into methanol and size distribution analysis based on TEM data.

Figure S.I.17. DLS analysis of spherical micelles made by injection of THF solution of (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf)₁₀₀ (**10**) into methanol (130 nm).

Figure S.I.18. TEM Image of heterobimetallic micelles made by injection of DCM solution of (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS($P^+AuCl_4^-$))₁₀₀ into benzene and size distribution analysis based on TEM data.

Figure S.I.19. DLS analysis of heterobimetallic micelles made by injection of DCM solution of (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS($P^+AuCl_4^-$))₁₀₀ into benzene (65 nm).

Figure S.I.20. Heterobimetallic micelles with Poly-7AuCl core and PolyCpCoCb₅₀-*r*-PMA₁₅₀ corona made by injection of DCM solution of (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺AuCl₄⁻))_m(1; m=30, 2; m=100) into benzene. Vials on top are the same micelles samples after the core is reduced to AuNPs using NaBH₄(3; m=30, 4; m=100).

Figure S.I.21. TEM Image of AuNPs made by reduction of heterobimetallic micelles made $[(PolyCpCoCb_{50}-r-PMA_{150})-b-(PS(P^+AuCl_4^-))_m]$ and size distribution analysis based on TEM data.

Figure S.I.22. EDX analysis of AuNPs (copper signals are form the copper grid).

Figure S.I.23. A) TEM image of microtomed section of phase separated (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf⁻))₃₀ stained with RuO₄ B) and stained with HAuCl₄.

Figure S.I.24. EDX analysis of microtomed sections of $(PolyCpCoCb_{50}-r-PMA_{150})-b-(PS(P^+OTf))_{30}$ stained by RuO₄ revealing its elemental composition.

Figure S.I.25. TEM image (left) and EDX analysis (right) of pyrolyzed (PolyCpCoCb₅₀-*r*-PMA₁₅₀)-*b*-(PS(P⁺OTf⁻))₃₀ block copolymer .

Figure S.I.26. The pyrolyzed materials were attracted to permanent magnet, indicating the presence of magnetic particles.