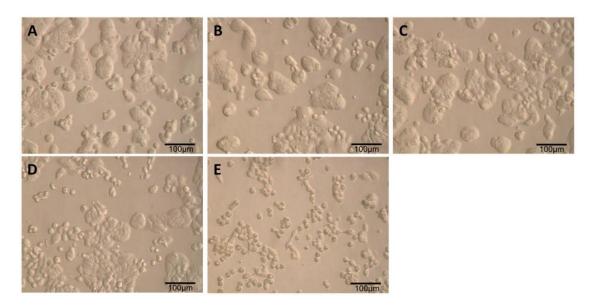
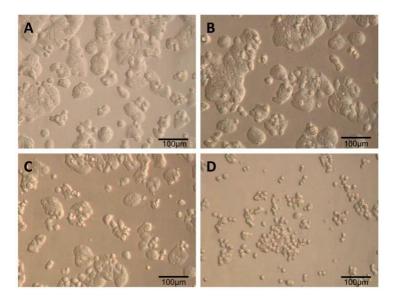

SUPPORTING INFORMATION

Amorfrutins are Natural PPARy Agonists with Potent Anti-inflammatory
Properties

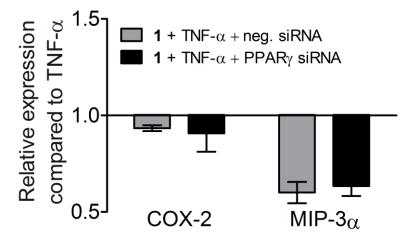

 $\textit{Luise Fuhr}^{\dagger}, \textit{Morten Rousseau}^{\dagger}, \textit{Annabell Plauth}^{\dagger}, \textit{Frank C. Schroeder}^{\sharp} \textit{ and Sascha Sauer}^{\sharp *}$

†Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.

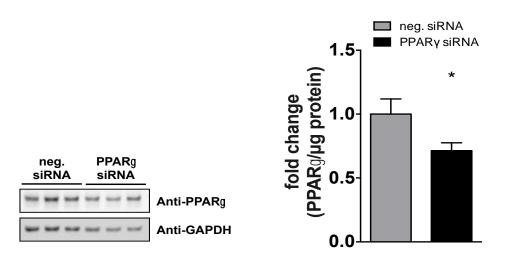
‡Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States.



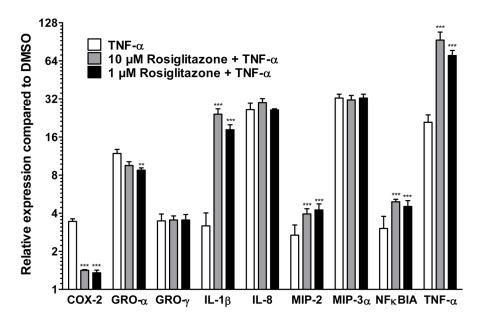
Supplementary Figure 1. PPAR γ protein levels (isoform 1) in HT-29 cells. Cells were incubated with 0.1 % DMSO (vehicle control) or 10 μ M **1** for 48 h and subsequently treated with 1 ng/mL TNF- α for 6 h. No significant changes in protein levels were observed after different treatment conditions. PPAR γ protein levels were determined by western blotting (A) using a well-established antibody (see for example references 2-4) followed by densitometric analysis (B). Data are expressed as mean \pm SD.


Supplementary Figure 2. HT-29 cells treated for 24 h with different concentrations of amorfrutin A (1).

A. 0.1 % DMSO. B. 1 μM of **1**. C. 10 μM of **1**. D. 20 μM of **1**. E. 50 μM of **1**.



Supplementary Figure 3. HT-29 cells treated for 24 h with different concentrations of amorfrutin B (2).


A. 0.1 % DMSO. B. 1 μM of 2. C. 10 μM of 2. D. 20 μM of 2.

Supplementary Figure 4. Effects of amorfrutin A (1) on COX-2 and MIP-3 α gene expression were not altered after PPAR γ knockdown. Gene expression analysis of COX-2 and MIP-3 α in HT-29 cells after siRNA-mediated PPAR γ knockdown. Gene expression analysis was performed using qPCR. Data are shown relative to TNF- α stimulated cells. Data are expressed as mean \pm SD (n=3).

Supplementary Figure 5. siRNA mediated knockdown of PPAR γ in HT-29 cells. Cells were transfected with PPAR γ silencer select validated siRNA or silencer select negative control #1 siRNA (vehicle control) using HT-29 transfection reagent. PPAR γ protein levels were determined via western blotting (left) followed by densitometric analysis (right). Expression of PPAR γ was normalized by overall protein content, as the expression of GADPH and in particular other house-keeping proteins such as tubulin or actin seemed to be at least slightly reduced, indicating major cellular effects and technical limitations of knockdown of PPAR γ in HT-29 cells. Data are expressed as mean \pm SD. * $p \le 0.05$ vs. neg. siRNA. The exact knockdown efficiency was 28.6% (p = 0.02). (Using alternatively GADPH for normalization resulted in knockdown efficiency of 19.79% (p = 0.04). Data analysis figure is not shown.)

Supplementary Figure 6. Gene expression analysis of pro-inflammatory genes in HT-29 cells treated with rosiglitazone for 48 hours and subsequently stimulated with TNF- α for 6 hours. Cells were treated with 0.1 % DMSO, 10 μ M rosiglitazone or 1 μ M rosiglitazone for 48 hours and subsequently treated with 1 ng/mL TNF- α for 6 h. Gene expression analysis was performed using qPCR. Data are shown relative to DMSO-treated cells. Data are expressed as mean \pm SD (n=3). ** $p \le 0.01$, *** $p \le 0.001$ vs. TNF α .

Supplementary Table 1. Primers

Gene	Forward primer	Reverse primer
COX-2	CAGCACTTCACGCATCAGTT	CGCAGTTTACGCTGTCTAGC
GAPDH	CTCCTCTGTTCGACAGTCA	CGACCAAATCCGTTGACTCC
GRO-α/ CXCL1	GCGGAAAGCTTGCCTCAATC	GGTCAGTTGGATTTGTCACTGT
GRO-γ/ CXCL3	GAAAAGATACTGAACAAGGGGAGC	GCAGGAAGTGTCAATGATACGC
IL-1β	GGACAGGATATGGAGCAACAAG	AACACGCAGGACAGGTACAG
IL-8	CTGATTTCTGCAGCTCTGTG	GGGTGGAAAGGTTTGGAGTATG
MIP-2/ CXCL2	ACAGTGTGTGGTCAACATTTCTC	TCGAAACCTCTCTGCTCTAACAC
MIP-3α / CCL20	CTGGCTGCTTTGATGTCAGTG	AGTCAAAGTTGCTTGCTGCTTC
NFκBIA	CTTCGAGTGACTGACCCCAG	TCACCCCACATCACTGAACG
TNF-α	AGGGACCTCTCTCTAATCAGC	CTCAGCTTGAGGGTTTGCTAC