In the one dimensional case, the solution to Eq. (5) with time dependent diffusivity is well
known
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Eq. (6) can be further simplified by applying Gauss's theorem:
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Combining the above two equations yields Eq. (7). To obtain Eq. (9), an approximation
must be made as shown in the following equation
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which comes from the asymptotic expansion. This approximation results in less than a 1%
error in the temperature range of 0°C <T<1300°C and the activation range of 30k]/mol<E,
<300kJ/mol. Substituting this approximation into Eq. (7) gives
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To locate the DSC curve peak position, &; is treated as an independent variable, and a value
for &, is found that makes DSC’(fp) zero, and then T, is found from ¢,
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An approximate is made because E,/RT always changes slowly compared to 0, and
therefore it can be viewed as a constant in the derivatives. The root of the above equation is
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independent of any system parameters can be found numerically as:



