ON THE BINARY GOLDBACH CONJECTURE

TATENDA KUBALALIKA

ABSTRACT. By exploiting some classical identity of Buchstab, we demonstrate in this note that if $x \ge 6$ is an even integer $\equiv 2 \mod 4$, then x can be expressed as a sum of two odd primes. This proves the binary Golbach conjecture for every even integer $\equiv 2 \mod 4$.

2020 Primary Mathematics Subject Classification: 11AXX. Keywords and phrases: Binary Goldbach conjecture; partial proof, primes.

Introduction. Let d be a fixed positive integer, and let p_1, p_2, \dots, p_k be the primes (in ascending order) which do not divide d and are $\leq y$, where $y \geq 3$ is fixed. Let $a_i; b_i, \dots; a_k; b_k$ be the of integers with $0 \leq a_i < p_i, 0 \leq b_i < p_i, a_i \neq b_i$ for every positive integer $i \leq k$. Let $6 \leq x \equiv 0 \pmod{2}$ and a be any positive integer $< p_k$. Then following [3, p.247], let $F(x; d, y; a_i, b_i, p_i)$ denote the number of integers $n \leq x$ for which $n \equiv a \pmod{p_i}$ and $(n - a_i)(n - b_i)$ is indivisible by p_i for every positive integer $i \leq k$. The arguments arguments a, a_i, b_i, p_i need not be written in the function F since the results will hold for every positive integer $a < p_k$ and every set a_i, b_i of the type described. Note that F(x; d, 1) is nothing but the number of integers $n \leq x$ for which $n \equiv a \pmod{d}$ and will be abbreviated F(x, d).

The connection between F(x; d, y) and Goldbach problem is indicated by the following considerations: Let $d = 2, a = 1, y = x^{1/u}$ where x is an even integer and $u \in \mathbb{N}_{\geq 2}$. Let $a_i = 0, b_i \equiv x \pmod{p_i}$ if x is indivisible by p_i and $x - b_i$ is indivisible by p_i if $p_i \mid x$. Then the function $F(x; 2, x^{1/u})$ is the number of odd positive integers $n \leq x$ such that neither $n \operatorname{nor} x - n$ is divisible by any prime not exceeding $x^{1/u}$. Hence all prime factors of n and x - n are greater than $x^{1/u}$ and there cannot be more than u - 1 of them. If u = 2, each of n and x - n is either a prime or equal to 1. But recall that $x \geq 6$, hence x and x - n cannot be both equal to 1.

Thus if it could be shown that $F(x; 2, x^{1/2}) \ge 1$, it would follow that there exists at least one representation x = n + (x - n) where each of n and x - n is a prime. Recall the following key definitions from the introduction (which was entirely borrowed from [3]):

Definitions. Let d be a fixed positive integer, and let p_1, p_2, \dots, p_k be the primes (in ascending order) which do not divide d and are $\leq y$, where $y \geq 3$ is fixed. Let $a_i; b_i, \dots; a_k; b_k$ be the set of integers with $0 \leq a_i < p_i, 0 \leq b_i < p_i, a_i \neq b_i$ for every positive integer $i \leq k$. Let $6 \leq x \equiv 0 \pmod{2}$ and a be any positive integer. Recall that F(x; d, y)is the number of positive integers $n \leq x$ for which $n \equiv a \pmod{p_i}$ and $(n - a_i)(n - b_i)$ is indivisible by p_i for every positive integers $n \leq x$ such that both n and x - n are prime, and F(x; 2) is the number of positive integers $n \leq x$ such that $n \equiv a \mod 2$ for any fixed $a \in \mathbb{N}$. Thus, F(x; 2) = x/2.

MAIN RESULTS

Lemma 1 (equation (2.6) of [3]). Let p_k be the largest prime $\leq \sqrt{x}$. Then

$$F(x;2,p_k) = F(x;2) - \sum_{r=1}^k F(x;2p_r,p_{r-1})$$
(1)

$$= x/2 - \sum_{r=1}^{k} F(x; 2p_r, p_{r-1}).$$
(2)

Theorem 1. If $6 \le x \equiv 2 \mod 4$, then x can be expressed as a sum of two odd primes.

Proof. Let p_k be the largest prime $\leq \sqrt{x}$. Suppose that Theorem 1 is false, so that $F(x; 2, p_k) = 0$. Then from (2), it follows that

$$x/2 = 2\sum_{r=1}^{k} F(x; 2p_r, p_{r-1}).$$
(3)

But x/2 is odd whereas the right-hand side of (3) is even, thus we have a contradiction. This implies that our supposition must be false, so we are done.

References

- [1] D.M. Burton, Elementary number theory, McGraw-Hill, 2007.
- [2] M. S., Goldbach Christian, Dictionary of Scientific Biography. Ed. Charles Coulston Gillipsie. New York: Scribner 1970-1980.
- [3] R.D. James, Recent progress in the Goldbach problem, Bulletin of the American Math. Soc. (55), 1949, 246-260.

Email address: tatendakubalalika@yahoo.com