ON THE BINARY GOLDBACH CONJECTURE

TATENDA KUBALALIKA

Abstract

By exploiting some classical identity of Buchstab, we demonstrate in this note that if $x \geq 6$ is an even integer $\equiv 2 \bmod 4$, then x can be expressed as a sum of two odd primes. This proves the binary Golbach conjecture for every even integer $\equiv 2 \bmod 4$.

2020 Primary Mathematics Subject Classification: 11AXX.
Keywords and phrases: Binary Goldbach conjecture; partial proof, primes.
Introduction. Let d be a fixed positive integer, and let $p_{1}, p_{2}, \cdots, p_{k}$ be the primes (in ascending order) which do not divide d and are $\leq y$, where $y \geq 3$ is fixed. Let $a_{i} ; b_{i}, \cdots ; a_{k} ; b_{k}$ be the of integers with $0 \leq a_{i}<p_{i}, 0 \leq b_{i}<p_{i}, a_{i} \neq b_{i}$ for every positive integer $i \leq k$. Let $6 \leq x \equiv 0(\bmod 2)$ and a be any positive integer $<p_{k}$. Then following [3, p.247], let $F\left(x ; d, y ; a_{i}, b_{i}, p_{i}\right)$ denote the number of integers $n \leq x$ for which $n \equiv a\left(\bmod p_{i}\right)$ and $\left(n-a_{i}\right)\left(n-b_{i}\right)$ is indivisible by p_{i} for every positive integer $i \leq k$. The arguments arguments a, a_{i}, b_{i}, p_{i} need not be written in the function F since the results will hold for every positive integer $a<p_{k}$ and every set a_{i}, b_{i} of the type described. Note that $F(x ;, d, 1)$ is nothing but the number of integers $n \leq x$ for which $n \equiv a(\bmod d)$ and will be abbreviated $F(x, d)$.

The connection between $F(x ; d, y)$ and Goldbach problem is indicated by the following considerations: Let $d=2, a=1, y=x^{1 / u}$ where x is an even integer and $u \in \mathbb{N}_{\geq 2}$. Let $a_{i}=0, b_{i} \equiv x\left(\bmod p_{i}\right)$ if x is indivisible by p_{i} and $x-b_{i}$ is indivisible by p_{i} if $p_{i} \mid x$. Then the function $F\left(x ; 2, x^{1 / u}\right)$ is the number of odd positive integers $n \leq x$ such that neither n nor $x-n$ is divisible by any prime not exceeding $x^{1 / u}$. Hence all prime factors of n and $x-n$ are greater than $x^{1 / u}$ and there cannot be more than $u-1$ of them. If $u=2$, each of n and $x-n$ is either a prime or equal to 1 . But recall that $x \geq 6$, hence x and $x-n$ cannot be both equal to 1 .

Thus if it could be shown that $F\left(x ; 2, x^{1 / 2}\right) \geq 1$, it would follow that there exists at least one representation $x=n+(x-n)$ where each of n and $x-n$ is a prime.

Recall the following key definitions from the introduction (which was entirely borrowed from [3]):

Definitions. Let d be a fixed positive integer, and let $p_{1}, p_{2}, \cdots, p_{k}$ be the primes (in ascending order) which do not divide d and are $\leq y$, where $y \geq 3$ is fixed. Let $a_{i} ; b_{i}, \cdots ; a_{k} ; b_{k}$ be the set of integers with $0 \leq a_{i}<p_{i}, 0 \leq b_{i}<p_{i}, a_{i} \neq b_{i}$ for every positive integer $i \leq k$. Let $6 \leq x \equiv 0(\bmod 2)$ and a be any positive integer. Recall that $F(x ; d, y)$ is the number of positive integers $n \leq x$ for which $n \equiv a\left(\bmod p_{i}\right)$ and $\left(n-a_{i}\right)\left(n-b_{i}\right)$ is indivisible by p_{i} for every positive integer $i \leq k$. In particular, $F(x ; 2, \sqrt{x})$ is the number of odd positive integers $n \leq x$ such that both n and $x-n$ are prime, and $F(x ; 2)$ is the number of positive integers $n \leq x$ such that $n \equiv a \bmod 2$ for any fixed $a \in \mathbb{N}$. Thus, $F(x ; 2)=x / 2$.

Main Results

Lemma 1 (equation (2.6) of [3]). Let p_{k} be the largest prime $\leq \sqrt{x}$. Then

$$
\begin{align*}
F\left(x ; 2, p_{k}\right) & =F(x ; 2)-\sum_{r=1}^{k} F\left(x ; 2 p_{r}, p_{r-1}\right) \tag{1}\\
& =x / 2-\sum_{r=1}^{k} F\left(x ; 2 p_{r}, p_{r-1}\right) . \tag{2}
\end{align*}
$$

Theorem 1. If $6 \leq x \equiv 2 \bmod 4$, then x can be expressed as a sum of two odd primes.

Proof. Let p_{k} be the largest prime $\leq \sqrt{x}$. Suppose that Theorem 1 is false, so that $F\left(x ; 2, p_{k}\right)=0$. Then from (2), it follows that

$$
\begin{equation*}
x / 2=2 \sum_{r=1}^{k} F\left(x ; 2 p_{r}, p_{r-1}\right) . \tag{3}
\end{equation*}
$$

But $x / 2$ is odd whereas the right-hand side of (3) is even, thus we have a contradiction. This implies that our supposition must be false, so we are done.

References

[1] D.M. Burton, Elementary number theory, McGraw-Hill, 2007.
[2] M. S., Goldbach Christian, Dictionary of Scientific Biography. Ed. Charles Coulston Gillipsie. New York: Scribner 1970-1980.
[3] R.D. James, Recent progress in the Goldbach problem, Bulletin of the American Math. Soc. (55), 1949, 246-260.
Email address: tatendakubalalika@yahoo.com

