

50 years of ISB – a lifelong connection with sports **Sports injury biomechanics**

Helen Bayne

Sports injury biomechanics: presentation outline

Model of injury causation

Load (L) : external force applied to the structure

<u>Stress</u>: internal resistance to an applied load, expressed relative to cross-sectional area

Strain: change in length relative to the normal length

Strain (%) = (dimension change/unloaded dimension) x 100

Injury = Load > Tissue capacity

A generalized stress-strain curve for biological tissues

Whiting, W.C. and Zernicke, R.F. Biomechanics of Musculoskeletal Injury. Human Kinetics

Bahr, R. and Krosshaug, T. (2005) Br J Sports Med.

Success stories: An ACL example

Cadaveric

PCL

Laboratory

Simulation

Playing situation	
Player/opponent behaviour	
Gross biomechanical description (whole body)	
Detailed biomechanical description (joint)	

Besier et al., (2001); Cerulli et al., (2003); Donnelly et al. (2012; 2014); Markolf, et al., (1995); Mclean et al., (2004; 2006; 2008); Woo et al., (1987). Graphic courtesy of Gillian Weir

Finch, C., et al. (2006) J Sci Med Sport; Donnelly, C. J., et al. (2012) Res Sports Med; Weir, G. (2022) Sports Biomech

Weir, G. (2022) Sports Biomech Weir, G., et al. (2019) Transl J Am Coll Sports Med

- Athlete screening
 - Based on strong relationship between the measured modifiable biomechanical factor within the screening test and ACL injury risk

Weir, G., et al (2018) Int J Sports Med.

Intervention stages:

- Understanding of the sporting and individual athlete behaviours context in which the interventions are to be implemented
- Potential modification of interventions to take this intervention context into account

knee valgus moments
 desirable muscle activation strategies
 63% I in lower limb injuries overall
 Zero ACL ruptures

Finch, C., et al. (2006) J Sci Med Sport Weir, G. (2022) Sports Biomech Weir, G., et al. (2019) Transl J Am Coll Sports Med

Measurement of load

- Inverse dynamics
- Musculoskeletal modelling

Limitations:

Ecological validity of laboratory scenarios Cost, time, complexity prohibits use in the field Individualised, real-time feedback

Xu, H., et al (2014) Comput Methods Biomech Biomed Engin Besier, T., et al (2003) J Biomech

Measurement of load

Example: Proxy measures of tibial force

• **GRF** assumed to represent tibial bone load during running, however:

RESEARCH ARTICLE

Ground reaction force metrics are not strongly correlated with tibial bone load when running across speeds and slopes: Implications for science, sport and wearable tech

Emily S. Matijevich^{1*}, Lauren M. Branscombe¹, Leon R. Scott², Karl E. Zelik^{1,3,4}

Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, United States of America,
 Department of Orthopaedics, Vanderbilt University, Nashville, TN, United States of America,
 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America,
 Department of Physical Medicine & Rehabilitation, Vanderbilt University, Nashville, TN, United States of America

Matijevich, E., et al (2019) Plos ONE Matijevich, E., et al (2020) Hum Mov Sco

Challenges

Measurement of load

Example: Proxy measures of tibial force

- Wearable sensors are appealing as accessible tools to measure correlates of load
- Tibial acceleration measured using an inertial measurement unit (IMU) worn on the lower tibia

Injury = Load > Tissue capacity

Understanding tissue capacity

Intrinsic risk factors

Prospective cohort studies: Injured vs uninjured

Bahr, R. and Krosshaug, T. (2005) Br J Sports Med Bahr, R. (2016) Br J Sports Med

Challenges

Injury = Load > Tissue capacity

Understanding tissue capacity

Individualised responses to load

- Stress and strain affected by tissue geometry and material properties
- For example, in bone:
 - Microarchitecture affects the stress concentrations when load is applied
 - Lower bone mineral density increases bone stress injury risk

Wearable sensors

JOURNAL OF SPORTS SCIENCES https://doi.org/10.1080/02640414.2022.2107816	ROUTLEDGE	Routledge Taylor & Francis Group
SPORTS MEDICINE AND BIOMECHANICS		Check for updates
Tibial bone forces can be monitored using shoe-worn wearable sense running	ors	during
L.J Elstub ^a *, C.A Nurse ^a *, L.M Grohowski ^a , P. Volgyesi ^b , D.N Wolf ^a and K.E. Zelik ^{a,c,d}		
^a Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee, United States; ^b Institute for Softwa Vanderbilt University, Nashville, Tennessee, United States; ^c Department of Biomedical Engineering, Vanderbilt University United States; ^d Department of Physical Medicine & Rehabilitation, Vanderbilt University, Nashville, Tennessee, United Sta	re Inte , Nasł ates	egrated Systems, wille, Tennessee,

- Machine learning algorithms to determine critical signals needed to predict tibial bone force
- GRF estimates from pressure sensing insole + foot orientation angle from shoe-mounted IMU
- Tibial bone force prediction with <6% error compared to labbased inverse dynamics and musculoskeletal modelling procedures

Opportunities

Karl Zelik 🚊 오 @KarlZelik

Wearable sensor

5 years ago I was confused & concerned about how forces/impacts were being (mis)used in running **#biomechanics** & wearable tech to assess risks.

- Machine learnir needed to pred overcomes these issues.
- GRF estimates f orientation ang <sup>8 things I learned along the way...
 </sup>
- Tibial bone forc based inverse d procedures

Journal of Sports Sciences @JSportsSci · Aug 22
 First empirical evidence that shoe-worn wearable sensors combined with a trained ML algorithm can monitor tibial bone forces during running.

Applications may include sports #biomechanics, athlete management, or prevention of bone stress injuries.

tandfonline.com/doi/abs/10.108...

Show this thread

JOURNAL OF SPORTS SCIENCES https://doi.org/10.1080/02640414.2022.2107816

SPORTS MEDICINE AND BIOMECHANICS

Check for updates

Tibial bone forces can be monitored using shoe-worn wearable sensors during running

Wolgyesi^b, D.N Wolf^a and K.E. Zelik^{a,c,d}

versity, Nashville, Tennessee, United States; ^bInstitute for Software Integrated Systems, es; ^cDepartment of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, abilitation, Vanderbilt University, Nashville, Tennessee, United States

bio<mark>R</mark>χiv

OpenCap: 3D human movement dynamics from smartphone videos

Scott D. Uhlrich, Antoine Falisse, Łukasz Kidziński, Julie Muccini, Michael Ko, Akshay S. Chaudhari, Jennifer L. Hicks, Scott L. Delp

doi: https://doi.org/10.1101/2022.07.07.499061

3D video :: : keypoints iOS application simultaneous video capture augmented anatomical marker set OpenCap FIND ON GITHUB Trial nan START RECORDING DJClinic5 **Kinematics** STSFastClinic 2D keypoints **3D** anatomical Kinetics STSClinic1 open-source markers OpenSim muscle-driven squatsClinic1 dynamic simulation pose detector LSTM model squatsClinic1 walkingClinic walkingClinic2 Scalable cloud computing walkingClinic3 biomechanical analysis from video NEW SESSIO DOWNLOAD DAT Web application opencap.ai data collection and visualization

Video-based analyses

Boswell, M., et al (2021); Song, S., et al (2021); Kidzinski, L., et al (2020); Ulrich, S., et al (2020); Kidzinski, L., et al (2019); Halilaj, E., et al (2018)

Injury occurs when applied load exceeds the tissue capacity to withstand the load

Biomechanical knowledge is fundamental in understanding injury mechanisms, which underpins the development of countermeasures

Framework for injury risk reduction should also consider targeting most at-risk athletes and steps to improve programme adoption and compliance

Current challenges:

- Accessible measures of joint/tissue load
- Incorporating individual intrinsic factors in injury causation models

Opportunities:

• Technology and advances in data science enabling translation from the lab to the field and handling of multiple data sources

Thank you

