Regioswitchable Palladium-Catalyzed Decarboxylative Coupling of 1,3-Dicarbonyl Compounds

Miles Kenny, ${ }^{\dagger}$ Jeppe Christensen, ${ }^{\ddagger}$ Simon J. Coles, ${ }^{\ddagger}$ and Vilius Franckevičius ${ }^{\star,}{ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
${ }^{\ddagger}$ National Crystallography Service, School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
E-mail: v.franckevicius@lancaster.ac.uk

SUPPORTING INFORMATION

1. General Experimental Section 1
2. Ligand and Solvent Screen 2
3. Experimental Procedures 3
3.1. Synthesis of 1,3-Dicarbonyl Compounds 3
3.2. Propargyl Enol Carbonate Formation 6
3.3. Palladium-Catalysed Alkenylation Reactions 12
3.4. Mechanistic Studies 23
4. References 26
5. X-Ray Crystal Structure Data for 7a (CCDC 1411246) 27
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 29
7. Deuterium-Labelling Studies: Mass Spectrometry Data 75

1. General Experimental Section.

All reactions were performed under an argon atmosphere in oven dry glassware. All solvents used were either purchased and kept over molecular sieves or passed through an activated alumina column. All other reagents and solvents were used as supplied and all aqueous reagents were saturated unless otherwise specified.

Thin layer chromatography (TLC) was carried out using pre-coated Fluka analytical silica gel on aluminium foils, with a fluorescent indicator (254 nm). Column chromatography was carried out using Fisher Silica $60 \AA$ particle size. Petrol refers to the fraction of petroleum ether that boils between $40-60^{\circ} \mathrm{C}$. Visualisation of the TLC plates was done via staining with potassium permanganate or aqueous acidic ammonium molybdate (IV).

NMR spectra was recorded on a Bruker 400 MHz Ultra Shield Plus and was reported as follows: chemical shift δ_{H} (in parts per million, ppm), multiplicity, coupling constant, J, and number of protons. Couplings are classed as singlet, s, doublet, d, triplet, t , quartet, q , quintet, quint, broad, br, multiplet, m, or a combination of these. ${ }^{13} \mathrm{C}$ NMR spectra was recorded on the same instrument at 100 MHz . Residual solvent CHCl_{3} was referenced at 7.26 p.p.m for ${ }^{1} \mathrm{H}$ NMR spectra and the central signal of CDCl_{3} was referenced to 77.0 p.p.m for ${ }^{13} \mathrm{C}$ NMR spectra. A range of NMR techniques (DEPT-135, COSY, HMBC and HSQC) were used to aid the analysis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra.

IR spectroscopy analysis was performed on an Agilent Technologies Cary 630 FTIR spectrometer. Accurate mass spectrometry was recorded using electron spray ionisation on Shimadzu HRMS LCMS-IT-TOF mass spectrometer at Lancaster University, Lancaster UK, as well as using the EPSRC Finnigan MAT 95 XP instrument at the UK EPSRC National Mass Spectrometry facility, Swansea UK. Melting points were measured on a Gallenkamp melting point apparatus and are uncorrected. X-ray crystallography data was recorded using a Beamline I19 diffractometer AT the UK EPSRC National Crystallography Service at the University of Southampton.

2. Ligand and Solvent Screen.

Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, phosphine ligand (0.024 mmol) and 2-acetylcyclohexanone ($30 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. Solvent (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80{ }^{\circ} \mathrm{C}$. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded 5a.

Table S1. Ligand and solvent screen.

${ }^{a}$ Ratio determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product mixture. ${ }^{b}$ Yield of isolated $\mathbf{5 a}$. ${ }^{c}\left[\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ used in place of $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right] .{ }^{d}$ Reaction was performed at $60^{\circ} \mathrm{C}$.

3. Experimental Procedures.

3.1. Synthesis of 1,3-Dicarbonyl Compounds.

3-Allylpentane-2,4-dione (4c): According to a literature procedure, ${ }^{1}$ to a solution of acetylacetone ($1.50 \mathrm{ml}, 15.0 \mathrm{mmol}$) in acetone $(20 \mathrm{~mL})$ was added potassium carbonate $(2.40 \mathrm{~g}, 18.0 \mathrm{mmol})$ portionwise. The suspension was stirred at room temperature for 15 minutes. Allyl bromide ($1.55 \mathrm{~mL}, 18.0 \mathrm{mmol}$) was added dropwise. The mixture was heated to reflux at $80^{\circ} \mathrm{C}$ for 18 hours. The mixture was filtered under reduced pressure and the filtrate was concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 99:1] afforded 4c (355 mg, 17\%) as a pale liquid. $R_{F} 0.65$ [Petrol:EtOAc 4:1]; $v_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 2980,1699,1597,1418 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, 1.4:1 keto:enol tautomer, enol tautomer annotated by an asterisk) $16.68\left(\mathrm{~s}, 1 \mathrm{H}^{*}\right), 5.86-5.75$ $\left(\mathrm{m}, 1 \mathrm{H}^{*}\right), 5.72-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.09-4.93\left(\mathrm{~m}, 2 \mathrm{H}\right.$ and $\left.2 \mathrm{H}^{*}\right), 3.70(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dt}, \mathrm{J}$ $\left.=5.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}^{*}\right), 2.55(\mathrm{tt}, J=7.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 2.06\left(\mathrm{~s}, 6 \mathrm{H}^{*}\right) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 1.4: 1$ keto:enol tautomer, enol tautomer annotated by an asterisk) 203.6, 191.4*, $135.6^{*}, 134.0,117.4^{*}, 114.8,107.0^{*}, 67.9,32.1,31.1^{*}, 29.2,22.8^{*}$. Synthesis of this compound has been reported in literature. ${ }^{1}$

3-Benzylpentane-2,4-dione (4d): According to a literature procedure, ${ }^{2}$ to a solution of acetylacetone ($1.03 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in acetone (8 mL) was added
4d solid potassium carbonate ($1.38 \mathrm{~g}, 10.0 \mathrm{mmol}$), followed by benzyl bromide $(1.43 \mathrm{~mL}, 12.0 \mathrm{mmol})$. The mixture was heated to $65^{\circ} \mathrm{C}$ for 18 hours. The solution was allowed to cool to room temperature and quenched with aq. $\mathrm{HCl}(1 \mathrm{~N}, 20 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$ and the combined organic fractions were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol: $\mathrm{Et}_{2} \mathrm{O} 9: 1$] afforded 4d ($645 \mathrm{mg}, 34 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{F}} 0.50$ [Petrol:Et $\mathrm{E}_{2} \mathrm{O} 4: 1$]; $\mathrm{v}_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3062,2048$, 2924, 1723 1697, 1494; $\delta_{H}(400 \mathrm{MHz}, 1: 0.97$ enol:keto tautomer, keto tautomer annoted by an asterisk, CDCl_{3}) $16.84(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}$ and $2 \mathrm{H}^{*}$), 7.25-7.20 (m, 1 H and $\left.1 \mathrm{H}^{*}\right)$, 7.20-7.15 (m, 2 H and $2 \mathrm{H}^{\star}$), $4.03\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}^{\star}\right)$, 3.68 ($\mathrm{s}, 2 \mathrm{H}$), 3.17 (d, $\left.J=7.6 \mathrm{~Hz}, 2 \mathrm{H}^{*}\right)$, $2.14\left(\mathrm{~s}, 6 \mathrm{H}^{*}\right), 2.07(\mathrm{~s}, 6 \mathrm{H})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}, 1: 0.97$ enol:keto tautomer, keto tautomer annoted by an asterisk, CDCl_{3}) 203.5*, 191.9, 139.6, 137.9*, 128.7*, 128.6, 128.5*, 127.3, 126.7*, 126.2, 108.2, 69.8*, 34.2*, 32.8, 29.7*, 23.2;

HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 191.1058. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 191.1067. Data matches literature values. ${ }^{2}$

2-Methyl-1-phenylbutane-1,3-dione (4e): According to a literature procedure, ${ }^{2}$ to a stirred suspension of 1-phenyl-1,3-butadione (1.62 g, 10.0 mmol) and potassium carbonate ($3.04 \mathrm{~g}, 22.0 \mathrm{mmol}$) in acetone (40 mL) was added methyl iodide ($623 \mu \mathrm{~L}, 10.0 \mathrm{mmol}$). The mixture was heated to reflux at $60^{\circ} \mathrm{C}$ for 18 hours. After cooling to room temperature, the mixture was concentrated in vacuo to half the volume and quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 20 \mathrm{~mL})$. The mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with water (30 mL), brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 19:1] afforded 4 e ($1.00 \mathrm{~g}, 57 \%$) as a yellow oil. $\mathrm{R}_{\mathrm{F}} 0.44$ [Petrol:EtOAc 4:1]; $\mathrm{V}_{\max }($ film $) / \mathrm{cm}^{-1} 2927,1718,1675,1597$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.99-7.94$ (m, 2H$), 7.62-$ 7.56 (m, 1H), 7.52-7.45 (m, 2H), 4.48 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{dt}, J=7.0,0.7$ $\mathrm{Hz}, 3 \mathrm{H}$); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 205.0,197.3,135.9,133.7,128.8,128.6,56.8,27.8,13.6 ;$ HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 177.0905. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 177.0910. Data matches literature values. ${ }^{2}$

Ethyl 3-acetyl-4-oxopentanoate (4f): According to a literature procedure, ${ }^{2}$ to a solution of acetylacetone ($2.05 \mathrm{~mL}, 20.0 \mathrm{mmol}$) and ethyl bromoacetate ($2.22 \mathrm{~mL}, 20.0 \mathrm{mmol}$) in dichloromethane (20 mL), was added solid potassium carbonate ($2.76 \mathrm{~g}, 20.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 24 hours. The reaction was quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 20 \mathrm{~mL})$ and the aqueous layer was extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 49:1-4:1] afforded $4 f$ (1.82g, 48\%) as a yellow oil. $R_{F} 0.68$ [Petrol:EtOAc 1:1]; $v_{\max }(f i l m) / \mathrm{cm}^{-1}$ 2983, 1723, 1701, 1602; $\delta_{H}(400 \mathrm{MHz}, 1.9: 1$ keto:enol tautomer, enol tautomer annotated by an asterisk, CDCl_{3}) 16.76 ($\left.\mathrm{s}, 1 \mathrm{H}\right)^{*}$, 4.17-4.06 (m, $1 \mathrm{H}, 2 \mathrm{H}$ and $2 \mathrm{H}^{*}$), $3.22\left(\mathrm{~s}, 2 \mathrm{H}^{*}\right), 2.85(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}), 2.13\left(\mathrm{~s}, 6 \mathrm{H}^{*}\right), 1.27-$ $1.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$ and $\left.3 \mathrm{H}^{*}\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, 1.9:1 keto:enol tautomer, enol tautomer annotated by an asterisk, CDCl_{3}) 202.4, 191.8*, 171.4*, 171.1, 104.3*, 63.2, 61.1, 60.1*, 33.3*, 32.5, 29.5, 23.3*, 14.1*, 14.0; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 187.0964 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 187.0965. Data matches literature values. ${ }^{2}$

Ethyl 4-oxochroman-3-carboxylate (4i): According to a literature procedure, ${ }^{3}$ to a solution of 4-chromanone ($1 \mathrm{~g}, 6.80 \mathrm{mmol}$) in $\operatorname{THF}(20$ mL) stirred at $-78{ }^{\circ} \mathrm{C}$ was added a solution of LiHMDS (1 M in THF, $7.4 \mathrm{~mL}, 7.40 \mathrm{mmol})$ dropwise and the mixture was stirred for 30 minutes. Ethyl cyanoformate ($0.8 \mathrm{~mL}, 8.0 \mathrm{mmol}$) in THF (6 mL) was added dropwise and the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour. The mixture was allowed to warm to room temperature and was quenched by the addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 25 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 19:1] afforded $4 i$ ($478 \mathrm{mg}, 32 \%$) as a white solid. R $_{F} 0.76$ [Petrol:EtOAc 5:1]; m.p 51-53 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1} 2983,2935,1723,1679,1604,1578,1468 ; \delta_{H}(400 \mathrm{MHz}$, 2.1:1 keto:enol tautomer, enol tautomer shown by an asterisk, CDCl_{3}) 11.97 (s, $1 \mathrm{H}^{*}$), 7.82 (ddd, $J=7.8,1.5,0.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (dd, $J=7.87,1.94 \mathrm{~Hz}, 1 \mathrm{H}^{*}$), 7.39 (ddd, $J=7.3,1.8$, $0.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.21 (ddd, $J=7.6,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}^{*}$), 6.98-6.92 (m, 1 H), 6.91-6.85 (m, 1 H and $\left.1 \mathrm{H}^{\star}\right), 6.77\left(\mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right), 4.86\left(\mathrm{~s}, 2 \mathrm{H}^{*}\right), 4.69(\mathrm{dd}, J=11.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (dd, $J=11.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.11\left(\mathrm{~m}, 2 \mathrm{H}\right.$ and $\left.2 \mathrm{H}^{*}\right), 3.66(\mathrm{dd}, J=8.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25$ (t, $\left.J=7.5 \mathrm{~Hz}, 3 \mathrm{H}^{*}\right), 1.19(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}, 2.08: 1$ keto:enol tautomer, enol tautomer shown by an asterisk, CDCl_{3}) 186.7, 169.4*, 166.9, 162.3*, 161.0, 157.3*, 136.0, $132.7^{*}, 127.2,124.1^{*}, 121.4,121.1^{*}, 120.2,117.9^{*}, 117.5,116.1^{*}, 91.6^{*}, 67.9,63.4^{*}, 61.4$, 60.4^{*}, 52.2, 13.9*, 13.7; HRMS (ESI) Found: $\left[\mathrm{M}+\mathrm{H}^{+}\right.$, 221.0798. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 221.0808. Synthesis of this compound has been reported in the literature. ${ }^{3}$

4k
tert-Butyl-3-acetyl-2-oxopiperidine-1-carboxylate (4k): According to a literature procedure, ${ }^{2}$ to a stirred solution of N-Boc-2-piperidone (995 mg , 5.0 mmol) in THF (10 mL) at $-78^{\circ} \mathrm{C}$ was added a solution of LiHMDS (1 M in THF, $10.5 \mathrm{~mL}, 10.5 \mathrm{mmol}$) dropwise. The mixture was stirred at this temperature for 15 minutes. Acetic anhydride ($471 \mu \mathrm{~L}, 5.0 \mathrm{mmol}$) was added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for a further 1 hour. The reaction was quenched by addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$. The mixture was allowed to warm to room temperature and extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 19:1] afforded $\mathbf{4 k}$ ($222 \mathrm{mg}, 18 \%$) as a yellow oil. $\mathrm{R}_{\mathrm{F}} 0.36$ [Petrol:EtOAc 1:1]; $\mathrm{v}_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1}$ 2978, 2931, 1716, 1619; $\delta_{\text {H }}(400 \mathrm{MHz}$, 2:1 enol:keto tautomer, keto tautomer annotated by an asterisk, $\left.\mathrm{CDCl}_{3}\right) 14.90(\mathrm{~s}, 1 \mathrm{H}), 3.64-3.60\left(\mathrm{~m}, 2 \mathrm{H}\right.$ and $\left.2 \mathrm{H}^{*}\right), 3.55\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right)$,
$2.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.32\left(\mathrm{~s}, 3 \mathrm{H}^{*}\right), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.72\left(\mathrm{~m}, 2 \mathrm{H}\right.$ and $\left.4 \mathrm{H}^{*}\right), 1.51(\mathrm{~s}$, 9 H), $1.50\left(\mathrm{~s}, 9 \mathrm{H}^{*}\right)$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, 1.92: 1\right.$ enol:keto tautomer annoted by an asterisk, CDCl_{3}) 204.0*, 175.2, 171.8, 168.4*, 152.3*, 152.1, 97.2, 83.3*, 82.8, 57.8*, 46.1, 45.9*, 29.8*, 28.0, 27.9*, 23.8, 22.6*, 22.4, 20.9*, 19.5; HRMS (ESI) Found: [M+H] ${ }^{+}$, 242.1391. $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $\left[\mathrm{M}+\mathrm{H}^{+}, 242.1387\right.$. Data matches literature values. ${ }^{2}$

3-(Methylsulfonyl)butan-2-one (4I): According to a procedure, ${ }^{4}$ to a solution of methane sulfonylacetone $(1.0 \mathrm{~g}, 7.85 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$ was added potassium carbonate ($1 \mathrm{~g}, 7.85 \mathrm{mmol}$). Methyl iodide ($458 \mu \mathrm{~L}, 7.85 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 2 hours. The reaction was quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 20 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 2:1] afforded 41 ($268 \mathrm{mg}, 23 \%$) as a colourless oil. $\mathrm{R}_{F} 0.20$ [Petrol:EtOAc 1:1]; $\mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ 2935, 1716, 1699; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.99(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H})$, 2.40 (s, 3H), 1.56 (d, J=6.90 Hz, 3H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 201.7, 69.1, 37.2, 30.8, 11.5. Synthesis of this compound has been reported in the literature. ${ }^{4}$

3.2. Propargyl Enol Carbonate Formation.

1

Methyl prop-2-ynyl carbonate (1): According to a literature procedure, ${ }^{5}$ a solution of propargyl alcohol ($5.19 \mathrm{~mL}, 89.0 \mathrm{mmol}$) and pyridine (14.4 $\mathrm{mL}, 178 \mathrm{mmol})$ in diethyl ether (90.0 mL) was cooled to $0^{\circ} \mathrm{C}$. Methyl chloroformate ($6.91 \mathrm{~mL}, 89.0 \mathrm{mmol}$) was added dropwise over 10 min . The mixture was stirred at room temperature for 15 hours, then quenched with aq. $\mathrm{HCl}(1 \mathrm{~N}, 30 \mathrm{~mL})$ and extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The organic phases were combined and washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 3:1] afforded 1 ($5.27 \mathrm{~g}, 52 \%$) as a colourless liquid. δ_{H} $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.73(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$. Synthesis of this compound has been reported in the literature. ${ }^{5}$

3-Methyl-4-oxopent-2-en-2-yl prop-2-ynyl carbonate (3a) and prop-2-ynyl 2-acetyl-2-methyl-3-oxobutanoate (3b): According to a literature procedure, ${ }^{2}$ a suspension of sodium hydride ($60 \mathrm{wt} \%$, 76 $\mathrm{mg}, 1.90 \mathrm{mmol}$) in THF (10 mL) was cooled to $0^{\circ} \mathrm{C}$. A solution of 3-methylpentane-2,4-dione ($201 \mu \mathrm{~L}, 1.73 \mathrm{mmol}$) in THF (5 mL) was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Propargyl chloroformate ($187 \mu \mathrm{~L}, 1.90 \mathrm{mmol}$) was added dropwise and the mixture was stirred at this temperature for 1 hour. The reaction was quenched with aq. HCl ($1 \mathrm{~N}, 50$ $\mathrm{mL})$ and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic fractions were washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable 5.3:1 mixture of carbonate 3a and ester 3b (250 mg, 74\%) as a clear oil. $R_{F} 0.21$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }$ (film)/ cm^{-1} 3281, 2973, 2148, 1757, 1653, 1555; $\delta_{H}\left(400 \mathrm{MHz}, 3 \mathrm{~b}\right.$ annoted by an asterisk, $\left.\mathrm{CDCl}_{3}\right)$ $4.80\left(\mathrm{~s}, 2 \mathrm{H}^{*}\right), 4.79(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52\left(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right)$, $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.26\left(\mathrm{~s}, 6 \mathrm{H}^{*}\right), 2.08(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.61\left(\mathrm{~s}, 3 \mathrm{H}^{*}\right)$; $\delta_{C}\left(100 \mathrm{MHz}, 5: 1\right.$ carbonate/ester, ester annotated by an asterisk, CDCl_{3}) 201.5*, 199.1, $168.2^{*}, 151.7,150.5,125.0,76.3,76.2,75.8^{\star}, 75.3^{*}, 72.7^{*}, 56.0,53.2^{*}, 30.9,27.6^{*}, 17.9$, 17.3*, 14.0; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 197.0804 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 197.0808$. Data matches literature values. ${ }^{2}$

2-Acetylcyclohex-1-enyl prop-2-ynyl carbonate (6a): According to a literature procedure, ${ }^{2}$ a suspension of sodium hydride ($60 \mathrm{wt} \%, 439$ $\mathrm{mg}, 11.0 \mathrm{mmol}$) in THF (60 mL) was cooled to $0^{\circ} \mathrm{C}$. A solution of 2acetylcyclohexanone ($1.32 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in THF (5 mL) was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Propargyl chloroformate (1.07 $\mathrm{mL}, 11.0 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 1 hour. The reaction was quenched with aq. $\mathrm{HCl}(1 \mathrm{~N}, 30 \mathrm{~mL})$ and extracted with EtOAc (3 $x 30 \mathrm{~mL})$. The combined organic fractions were washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 9:1] afforded 6a ($1.57 \mathrm{~g}, 71 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{F}} 0.46$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1} 3283,2940$, 2864, 2128, 1757, 1695, 1649; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.80(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H})$; $\delta_{\mathrm{c}}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 198.2, 154.2, 151.6, 126.3, 76.4, 76.2, 56.0, 30.8, 28.2, 24.8, 22.2, 21.5;

HRMS (ESI) Found: $\left[\mathrm{M}+\mathrm{H}^{+}\right.$, 223.0964. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 223.0965. Data matches literature values. ${ }^{2}$

6ba

6bb

2-Acetyl-3,4-dihydronaphthalen-1-yl prop-2-ynyl carbonate

 (6ba) and (1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)ethyl prop-2-ynyl carbonate (6bb): According to a literature procedure, ${ }^{2}$ a suspension of sodium hydride ($60 \mathrm{wt} \%, 220 \mathrm{mg}, 5.50 \mathrm{mmol}$) in THF (40 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of 2 -acetyltetralone ($940 \mathrm{mg}, 5.0 \mathrm{mmol}$) in THF (2 mL) was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Propargyl chloroformate ($540 \mu \mathrm{~L}, 5.50 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 1 hour. The reaction was quenched by addition of aq. HCl ($1 \mathrm{~N}, 25 \mathrm{~mL}$) and the mixture was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic phases were washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 9:1] afforded an inseparable 7.7:1 mixture of carbonate $\mathbf{6 b a}$ and ester $\mathbf{6 b b}$ ($1.18 \mathrm{~g}, 87 \%$) as a pale solid. $\mathrm{R}_{\mathrm{F}} 0.27$ [Petrol:EtOAc 4:1]; m.p 53-55 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }(f i l m) \mathrm{cm}^{-1} 3278,2940,2840,2569,2137,1755,1654,1617,1569 ; \delta_{\mathrm{H}}$ (400 MHz , 6 bb annotated by an asterisk, CDCl_{3}) 8.08 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}^{*}$), 7.52 (td, J $\left.=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.20\left(\mathrm{~m}, 3 \mathrm{H}\right.$ and $\left.2 \mathrm{H}^{*}\right), 4.87(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.80\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}^{*}\right), 2.99\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}^{*}\right), 2.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-$ $2.69\left(\mathrm{~m}, 2 \mathrm{H}\right.$ and $\left.2 \mathrm{H}^{*}\right), 2.62(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51\left(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.37$ (s, 3H*); $\delta_{c}\left(100 \mathrm{MHz}\right.$, 6bb annotated by an asterisk, CDCl_{3}) 200.3*, 197.2, 191.5*, 167.7*, 151.7, 149.9, 142.8*, 138.5, 134.2*, 131.3*, 130.4, 129.5, 128.8*, 128.0*, 127.6, 127.0*, 126.8, 124.9, 123.1, 77.2*, 76.4, 76.2, 75.7*, 71.4*, 56.3, 53.2*, 30.5, 28.9*, 28.6*, 27.1, 25.5*, 23.4; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 271.0961 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 271.0965. Synthesis of this compound has been reported in the literature. ${ }^{2}$2-Isobutyrylcyclohex-1-enyl prop-2-ynyl carbonate (6c):

6c According to a literature procedure, ${ }^{2}$ a suspension of sodium hydride ($60 \mathrm{wt} \%, 110 \mathrm{mg}, 2.75 \mathrm{mmol}$) in THF (20 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of 2-iso-butyrylcyclohexanone ($410 \mu \mathrm{~L}, 2.5$ mmol) in THF (4 mL) was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes. Propargyl chloroformate ($268 \mu \mathrm{~L}, 2.75 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 1 hour. The reaction was
quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 25 \mathrm{~mL})$ and the mixture was extracted with EtOAc (3 $x 25 \mathrm{~mL})$. The combined organic phases were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 49:1-19:1] afforded carbonate $6 \mathbf{c}(384 \mathrm{mg}, 61 \%)$ as a white oil. $\mathrm{R}_{\mathrm{F}} 0.56$ [Petrol/EtOAc 4:1]; $\mathrm{v}_{\max }$ (film) $/ \mathrm{cm}^{-1} 3242,2939,2868,2122,1757,1638 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.66(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}$, 2 H), 2.83 (quint, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.51(\mathrm{~m}$, $4 \mathrm{H}), 0.94(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 206.0,151.4,150.3,125.7,76.3,75.9$, 55.5, 38.8, 27.3, 25.4, 21.9, 21.3, 17.9; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 251.1273. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 251.1278. Data matches literature values. ${ }^{2}$

6db

2-Methyl-3-oxo-1-phenylbut-1-enyl prop-2-ynyl carbonate (6da) and 3-methyl-4-oxo-4-phenylbut-2-en-2-yl prop-2-ynyl carbonate (6db): According to a literature procedure, ${ }^{2}$ a suspension of sodium hydride ($60 \mathrm{wt} \%, 240 \mathrm{mg}, 6.0 \mathrm{mmol}$) in THF (40 mL) was cooled to $0^{\circ} \mathrm{C}$. A solution of diketone $4 \mathbf{e}(880$ $\mathrm{mg}, 5.0 \mathrm{mmol}$) in THF (3 mL) was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Propargyl chloroformate ($590 \mu \mathrm{~L}, 6.0 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 1 hour. The reaction was quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 20 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic phases were washed with brine $(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 19:1] afforded an inseparable 4.9:1 mixture of carbonates $\mathbf{6 d a}$ and $\mathbf{6 d b}(1.16 \mathrm{~g}, 90 \%)$ as a colourless solid. $R_{F} 0.20$ [Petrol:EtOAc 9:1]; m.p $54-56{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }$ (film) $/ \mathrm{cm}^{-1} 3255,2126$, 1759, 1690, 1595; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, resonances due to 6 da quoted, CDCl_{3}) 7.85-7.80 (m, 2H), 7.54 (tt, $J=7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{q}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{q}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, resonances due to 6 da quoted, CDCl_{3}) 196.9, 151.6, 145.6, 136.8, 133.1, 128.8, 128.5, 123.9, 76.3 , $75.9,55.5,16.1,15.2$; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 259.0955 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 259.0965. Synthesis of this compound has been reported in the literature. ${ }^{2}$
 3-Acetylhexa-2,5-dien-2-yl prop-2-ynyl carbonate (6e): A suspension of sodium hydride ($60 \mathrm{wt} \%, 48.4 \mathrm{mg}, 1.21 \mathrm{mmol}$) in THF $(7 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. A solution of diketone $\mathbf{4 c}(154 \mathrm{mg}, 1.10$ $\mathrm{mmol})$ in THF (3 mL) was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes. Propargyl chloroformate ($118 \mu \mathrm{~L}, 1.21 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 1 hour. The reaction was quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 10 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 9:1] afforded 6e ($100 \mathrm{mg}, 41 \%$) as a light green oil. $\mathrm{R}_{\mathrm{F}} 0.64$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3285,2926,1757,1649 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 5.81-5.70 (m, 1H), 5.09-5.01 (m, 2H), 4.79 (d, $J=2.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.01 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, 2.07 (s, 3H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 198.5,152.1,151.6,133.8,127.0,115.9,76.3,75.8$, 56.0, 32.0, 31.0, 17.7; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 223.0967. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 223.0965.

3-Oxo-2-phenylcyclopent-1-enyl prop-2-ynyl carbonate (6f):
According to a literature procedure, ${ }^{2}$ a suspension of $\mathrm{NaH}(60 \mathrm{wt} \%, 132$ $\mathrm{mg}, 3.30 \mathrm{mmol})$ in THF (20 mL) was cooled to $0^{\circ} \mathrm{C}$. A solution of 2-phenyl-1,3-indandione ($666 \mathrm{mg}, 3.0 \mathrm{mmol}$) in THF (5 mL) was added dropwise and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Propargyl chloroformate (323 $\mu \mathrm{L}, 3.30 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 1 hour. The reaction was quenched with aq. $\mathrm{HCl}(1 \mathrm{~N}, 50 \mathrm{~mL})$ and diluted with EtOAc (50 mL). The aqueous layer was separated and extracted further with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic fractions were washed with brine (50 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 9:1] afforded $6 \mathbf{f}$ (784 $\mathrm{mg}, 86 \%$) as a bright orange solid. $\mathrm{R}_{\mathrm{F}} 0.28$ [Petrol:EtOAc 4:1]; m.p $90-92{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3244,1764,1716 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.60-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.41$ ($\mathrm{d}, J=7.2 \mathrm{~Hz}$, 1 H), 7.34-7.12 (m, 5H), 6.97 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.68 (d, $J=2.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.50(\mathrm{t}, J=2.5$ $\mathrm{Hz}, 1 \mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 192.7,162.8,149.7,138.7,133.4,130.0,129.7,128.6$, 128.4 (three signals), 122.6, 121.2, 119.0, 76.9, 75.7, 56.8. Data matches literature values. ${ }^{2}$
 tert-Butyl-2-oxo-3-(1((prop-2-ynyloxy)carbonyloxy)ethylidene) piperidine-1-carboxylate (6g):
According to a literature procedure, ${ }^{2}$ a suspension of sodium hydride ($60 \mathrm{wt} \%, 26 \mathrm{mg}, 0.65 \mathrm{mmol}$) in THF (7 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of $\mathbf{4 k}$ ($130 \mathrm{mg}, 0.54 \mathrm{mmol}$) in THF (3 mL) was added dropwise and the mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 15 minutes. Propargyl chloroformate ($59.0 \mu \mathrm{~L}, 0.60 \mathrm{mmol}$) was added dropwise and the mixture stirred at room temperature for 1 hour. The reaction was quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 10 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 9:1] afforded $\mathbf{6 g}$ (121 $\mathrm{mg}, 69 \%$) as a clear oil. $\mathrm{R}_{\mathrm{F}} 0.40$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1} 3268,2980,1759$, 1707,$1638 ; \delta_{\text {н }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.78(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (td, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.36(\mathrm{t}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.85-1.77$ (m, 2H), 1.53 (s, 9 H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 165.2,156.4,152.4,151.1,120.7,83.0,76.3$ (two signals), 56.0, 45.4, 28.0, 23.4, 21.7, 18.9; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 346.1258. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{6}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 346.1261$. Data matches literature values. ${ }^{2}$

6h 1-(2-Oxocyclopentylidene) ethyl prop-2-ynyl carbonate (6h): A suspension of sodium hydride ($60 \mathrm{wt} \%, 660 \mathrm{mg}, 16.50 \mathrm{mmol}$) in THF (40 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of 2 acetylcyclopentanone ($2.20 \mathrm{~mL}, 15.0 \mathrm{mmol}$) in THF (2 mL) was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes. Propargyl chloroformate ($1.61 \mathrm{~mL}, 16.50 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 1 hour. The reaction was quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 30$ mL) and the mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phases were washed with brine $(40 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 9:1] afforded 6 h ($2.60 \mathrm{~g}, 73 \%$) as a pale solid. $\mathrm{R}_{\mathrm{F}} 0.30$ [Petrol:EtOAc 4:1]; m.p $37-39{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3255,2983,2133,1766,1697,1653 ; \delta_{H}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 4.78 (d, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.15 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.68-2.60 (m, 4H), $2.55(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94$ (quint, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}$, CDCl_{3}) 163.3, 158.1, 150.8, 118.8, 76.3, 76.1, 60.2, 56.0, 32.9, 29.3, 18.8, 14.1; HRMS (ESI) Found: $\left[\mathrm{M}+\mathrm{H}^{+}, 239.0915 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{5}\right.$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 239.0914.
 Ethyl 2-fluoro-3-((prop-2-ynyloxy)carbonyloxy)but-2-enoate (6i): A suspension of sodium hydride ($60 \mathrm{wt} \%, 352 \mathrm{mg}, 8.80 \mathrm{mmol}$) in THF (30 mL) was cooled to $0^{\circ} \mathrm{C}$. A solution of 2-ethyl fluoroacetate $(1.00 \mathrm{~mL}, 8.0 \mathrm{mmol})$ in THF (5 mL) was added dropwise and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 minutes. Propargyl chloroformate ($857 \mu \mathrm{~L}, 8.80 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 1.5 hours. The reaction was quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 20 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 19:1] afforded $6 \mathbf{i}\left(1.2 \mathrm{~g}, 65 \%\right.$) as a colourless oil. $\mathrm{R}_{\mathrm{F}} 0.70$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }$ (film) $/ \mathrm{cm}^{-1} 3289,2987,2133,1768,1727,1686 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.79(\mathrm{~d}, \mathrm{~J}=2.4$, 2H), 4.26 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H})$; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 158.9(\mathrm{~d}, J=31.5 \mathrm{~Hz}), 151.4(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 145.1(\mathrm{~d}, J$ $=30.8 \mathrm{~Hz}$), 143.7 ($\mathrm{d}, J=235.1 \mathrm{~Hz}$), $76.3,76.1,61.7,56.2,15.3,13.9$; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 253.0471 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}_{5}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}$, 253.0483.

3.3. Palladium-Catalysed Alkenylation Reactions.

3-(3-(1-Acetyl-2-oxocyclohexyl)prop-1-en-2-yl)-3-methylpentane-2,4-

 dione (5a): Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012$ mmol), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and 2-acetyl cyclohexanone (31 $\mu \mathrm{L}, 0.24 \mathrm{mmol})$ were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of 5 a and $\mathbf{5 g}$ in an $8.8: 1$ ratio (66 mg , corresponding to 60 mg of $5 \mathrm{a}, 85 \%$, r.r. $>19: 1$) as a red solid. $R_{F} 0.40$ [Petrol:EtOAc 4:1]; m.p $68-71^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1} 3419,2911,2870$, 1693, 1644, 1421; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.02(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.59-2.37 (m, 6H), $2.18(\mathrm{~s}, 9 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 209.7, 208.3, 207.5 (two signals), 141.1, 116.8, 71.9, 67.1, 41.2, 36.2, 35.7, 27.2 (two signals), 27.0, 26.3, 21.9, 18.8; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 293.1736. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 293.1747$.

5b en-2-yl)-3-methylpentane-2,4-dione (5b): Carbonate 3 (23.5 mg , $0.12 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(5.5 \mathrm{mg}, 0.006 \mathrm{mmol})$, DPEphos $(6.5 \mathrm{mg}$, 0.012 mmol) and 2-acetyl-1-tetralone ($26.7 \mathrm{mg}, 0.12 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of $\mathbf{5 b}$ and $5 \mathbf{g}$ in a $14: 1$ ratio (34.8 mg , corresponding to 32.3 mg of $5 \mathbf{b}, 79 \%$, r.r. $>19: 1$) as a red solid. $\mathrm{R}_{\mathrm{F}} 0.33$ [Petrol:EtOAc 4:1]; m.p 82-84 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 2976,2931,1702,1674$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.01$ (dd, $J=7.9,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.47$ (td, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04$ (q, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.98(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dt}, J=17.4,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.75$ (dt, $J=17.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.56(\mathrm{dt}, J=14.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dt}, J=17.2,1.2$ Hz, 1H), 2.38-2.26 (m, 1H) 2.20 (s, 3H), 2.16 (s, 3H), 2.16 (s, 3H), 1.54 (s, 3H); $\delta_{c}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 207.2, 207.1, 206.8, 197.1, 143.3, 141.3, 134.0, 131.9, 128.8, 127.9, 126.8, 117.5, 72.0, 63.5, 36.0, 28.9, 27.2 (two signals), 27.1, 25.7, 18.7; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 363.1551 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 363.1554$.

3,6-Diacetyl-6-allyl-3-methyl-4-methyleneoctane-2,7-dione
(5c):
Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and $4 \mathrm{c}(33.6 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of $5 \mathbf{c}$ and 5 g in a 9.3:1 ratio (55 mg , corresponding to 49.4 mg of $5 \mathbf{c}, 70 \%$, r.r. $>19: 1$) as a pale yellow solid. $\mathrm{R}_{\mathrm{F}} 0.33$ [Petrol:EtOAc 4:1]; m.p. $64-66{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1} 2981,2926,1694,1638 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$, CDCl_{3}) 5.50-5.38 (m, 1H), 5.11-5.04 (m, 2H), $4.97(\mathrm{q}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{q}, J=1.8 \mathrm{~Hz}$, 1 H), $2.82(\mathrm{dt}, J=7.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 1.56$ (s, 3H); $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 207.0, 206.2, 141.9, 132.0, 119.4, 115.3, 71.9, 69.6, 35.5, 32.5, 27.1, 26.8, 18.9; HRMS (ESI) Found: $\left[\mathrm{M}+\mathrm{H}^{+}\right.$, 293.1736. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 293.1747.

3,6-Diacetyl-6-benzyl-3-methyl-4-methyleneoctane-2,7-dione (5d): Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and 4d ($44.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded 5d (60 mg, 73\%, r.r. > 19:1) as a yellow oil. R $\mathrm{R}_{\mathrm{F}} 0.38$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }$ (film) $/ \mathrm{cm}^{-1} 3386,2924,2338,1695,1638$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.97-$ $6.91(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{q}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=1.7$ Hz, 2H), 2.20 (s, 6H), $2.10(\mathrm{~s}, 6 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 206.9, 206.4, 142.1, 135.9, 129.5, 128.4, 127.2, 115.4, 71.8, 70.3, 37.4, 32.7, 27.3, 27.0, 18.6; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 343.1888 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 343.1904$.

3-Acetyl-6-benzoyl-3,6-dimethyl-4-methyleneoctane-2,7-dione (5e):
Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($11 \mathrm{mg}, 0.012 \mathrm{mmol}$), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and $4 \mathrm{e}(42.3 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of $\mathbf{5 e}$ and 5 g in a $13: 1$ ratio (46 mg , corresponding to 42.7 mg of $5 \mathbf{e}, 54 \%$, r.r. $>19: 1$) as a red oil. $R_{F} 0.31$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 2987,2928,1762,1674 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{tt}$, $J=7.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.80 (dt, $J=18.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dt} J=18.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$, $1.88(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 207.1$, 206.9 (two signals), 200.1, 141.6, 136.4, 132.9, 128.6, 128.5, 116.7, 72.2, 64.6, 36.8, 26.8, 26.4, 19.7, 18.5; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 351.1556 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 351.1567$.

$5 f$

Ethyl 3,3,6-triacetyl-6-methyl-5-methylene-7-oxooctanoate (5f):
Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and $\mathbf{4 f}(44.6 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4 Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of $5 \mathbf{f}$, homocoupled $\mathbf{4 f}$ and 5 g in a 11:1.2:1 ratio (59 mg , corresponding to 48.4 mg of $5 \mathbf{f}, 60 \%$, r.r. $>19: 1$) as an orange oil. $R_{F} 0.38$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1}$ 2992, 2967, 1700, 1678; $\delta_{H}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.97(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{q}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 3.26 (s, 2H), 2.82 (t, J = 1.7 Hz, 2H), 2.16 (s, 6H), 2.15 (s, 6H), 1.57 (s, 3H), 1.23 (t, J = $7.2 \mathrm{~Hz}, 3 \mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 206.7, 204.9, 171.2, 142.4, 115.3, 71.9, 68.5, 61.0, 35.6, 33.2, 27.0, 26.0, 18.8, 14.0; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 339.1789. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 339.1802$.

$5 g$

3,6-Diacetyl-3,6-dimethyl-4-methyleneoctane-2,7-dione (5g):

Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11.0 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.020 \mathrm{mmol}$) and 3-methyl-2,4-pentanedione (28 $\mu \mathrm{L}, 0.24 \mathrm{mmol})$ were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded $5 \mathrm{~g}(47 \mathrm{mg}, 74 \%)$ as a yellow solid. $\mathrm{R}_{\mathrm{F}} 0.42$ [Petrol:EtOAc 4:1]; m.p. $72-74{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3386,2909,1698,1652,1426 ; \delta_{H}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.99(\mathrm{q}, ~ J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.15 (s, 6H), $2.13(\mathrm{~s}, 6 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 207.0$ (two signals), 141.9, 115.7, 72.0, 66.0, 36.0, 27.1, 26.3, 18.8, 18.2; HRMS (ESI) Found: [M+H] ${ }^{+}$, 267.1578. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 267.1591$.

Ethyl 2,5-diacetyl-2-fluoro-5-methyl-4-methylene-6-oxoheptanoate (5h): Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012$ mmol), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and ethyl-2-fluoroacetoacetate ($30 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded 5h (40 mg, 55\%, r.r. > 19:1) as a yellow oil. $R_{F} 0.39$ [Petrol:EtOAc 4:1]; $v_{\max }($ film $) / \mathrm{cm}^{-1}$ 2987, 2933, 2341, 1736, 1762, 1717; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.37(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.20(\mathrm{~m}, 2 \mathrm{H}), 2.84$ (quint, $J=28.2$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.30(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}$ (100 MHz, CDCl_{3}) 206.6, $201.0(\mathrm{~d}, ~ J=27.5 \mathrm{~Hz}), 165.6$ (d, $J=25.4 \mathrm{~Hz}$), 139.8, 118.8, 99.8 (d, $J=197.1 \mathrm{~Hz}$), 71.7, 62.9, 35.1 (d, $J=20.0 \mathrm{~Hz}$), 27.0, 26.9, 25.5, 18.7, 13.9; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 301.1451 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{FO}_{5}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 301.1446$.

Ethyl 3-(3-acetyl-3-methyl-2-methylene-4-oxopentyl)-4-oxochroman-3-carboxylate (5i): Carbonate 3 ($47.1 \mathrm{mg}, 0.24$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024$ mmol) and $4 \mathbf{i}$ ($53 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80{ }^{\circ} \mathrm{C}$. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded 5i (55 $\mathrm{mg}, 62 \%$) as a brown oil. $\mathrm{R}_{\mathrm{F}} 0.42$ [Petrol:EtOAc 5:1]; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1}$ 2982, 2117, 1695, 1607, 1480; $\delta_{н}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.88$ (ddd, $J=7.9,1.8,0.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (ddd, $J=8.4$, $1.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=8.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{q}, ~ J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{qd}, J=$ 7.2, 1.2 Hz, 2H), 2.69 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}$, 3 H), 1.57 ($\mathrm{s}, 3 \mathrm{H}$), 1.18 (t, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 207.2, 207.1, 189.6, 169.3, $160.8,140.8,136.2,127.9,121.8,119.8,118.5,117.7,71.9,70.9,62.0,56.7,31.8,27.1$, 27.0, 18.6, 13.8; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 373.1629 . \mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{6}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 373.1646.

Ethyl 1-(3-acetyl-3-methyl-2-methylene-4-oxopentyl)-2-
oxocyclopentanecarboxylate (5j): Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.0120 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and ethyl-2-oxocyclopentane carboxylate ($35 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded 5j ($43 \mathrm{mg}, 58 \%$, r.r. $>19: 1$) as a yellow oil. $\mathrm{R}_{\mathrm{F}} 0.35$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1}$ 2982, 2110, 1752, 1702; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.99(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.14 (dq, J= 7.2, 1.3 Hz, 2H), 2.78-2.69 (m, 2H), 2.44-2.24 (m, 2H), 2.16 (s, 3H), 2.14 (s, $3 \mathrm{H}), 2.10-1.88(\mathrm{~m}, 4 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 213.5$, 207.2 (two signals), 170.0, 142.6, 115.5, 71.5, 61.7, 59.6, 37.4, 36.3, 32.3, 27.3, 26.9, 19.6, 18.6, 13.9; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 331.1502. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}$, 331.1516.

tert-Butyl-3-acetyl-3-(3-acetyl-3-methyl-2-methylene-4-

 oxopentyl)-2-oxopiperidine-1-carboxylate (5k): Carbonate 3 (47.1 $\mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos $(13.1 \mathrm{mg}$, $0.024 \mathrm{mmol})$ and $\mathbf{4 k}(58 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane $(1.5 \mathrm{~mL})$ was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of $\mathbf{5 k}$ and homocoupled product of $\mathbf{4 k}$ in a $17: 1$ ratio (81 mg , corresponding to 76 mg of $\mathbf{5 k}$, 81%, r.r. $>19: 1$); as a red oil. $\mathrm{R}_{\mathrm{F}} 0.30$ [Petrol:EtOAc 4:1]; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2980,2933,1768,1714$; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.98(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.95(\mathrm{q}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.78(\mathrm{dt}, J=16.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.24$ (s, 3H), 2.13 (s, 3H), 2.11 (s, 3H), 2.00-1.91 (m, 1H), 1.80$1.70(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 207.3$, 207.1, 206.1, 171.6, 152.6, 141.3, 117.9, 83.1, 71.8, 62.5, 46.5, 37.4, 27.8, 27.3, 27.1, 26.9, 26.7, 20.6, 18.7; Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 416.2029 . \mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{6}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 416.2044$.

51

3-Acetyl-3,6-dimethyl-4-methylene-6-(methylsulfonyl)octane-2,7dione (5I): Carbonate 3 ($47.1 \mathrm{mg}, 0.24 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012$ mmol), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and $41(36.0 \mathrm{mg}, 0.24 \mathrm{mmol})$ were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded 5 II ($39 \mathrm{mg}, 54 \%$, r.r. $>19: 1$) as a dark yellow solid. $R_{F} 0.15$ [Petrol:EtOAc 4:1]; m.p $89-92{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1} 3006,2931,1701,1641$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.05(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{q}, ~ J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=15.8$ Hz, 1H), 2.80 (s, 3H), 2.45 (s, 3H), 2.45 (dd, J = 16.4, 1.1 Hz, 1H), 2.17 (s, 3H), 2.13 (s, 3 H), $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 206.6,206.5,206.0,140.5,118.0$, 74.8, 71.8, 35.4, 33.6, 28.8, 27.1, 27.0, 18.9, 14.5; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 303.1250$. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 303.1261$.

3-(2-(1-Acetyl-2-oxocyclohexyl)allyl)-3-methylpentane-2,4-dione (7a): Carbonate $6 \mathbf{a}(53.3 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012$ $\mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and 3-methyl-2,4pentanedione ($28 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80{ }^{\circ} \mathrm{C}$. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded 7a (49 $\mathrm{mg}, 70 \%$, r.r. $>19: 1$) as a yellow solid. $\mathrm{R}_{\mathrm{F}} 0.38$ [Petrol:EtOAc 4:1]; m.p. $55-58{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }$ (film) $/ \mathrm{cm}^{-1} 3389,2933,1699 ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.97(\mathrm{q}, ~ J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{q}, ~ J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.54(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}$, 6 H), $2.13(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 209.3,207.3$ (two signals), 207.1, 141.2, 116.4, 73.9, 65.8, 41.0, 36.5, 32.9, 27.1, 26.7, 26.3 (two signals), 21.8, 18.3; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 293.1749. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 293.1782$.

3-(2-(2-Acetyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)allyl)-3-
methylpentane-2,4-dione (7b): Carbonate $6 \mathbf{b} \quad(64.8 \mathrm{mg}, 0.24$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024$ mmol) and 3-methyl-2,4-pentanedione ($28 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded 7b ($58 \mathrm{mg}, 71 \%$ yield, r.r. $>19: 1$) as a yellow oil. $R_{F} 0.34$ ($4: 1$ Petrol:EtOAc); $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 2929,1695,1599$; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.03$ (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (td, $J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{tt}, J=8.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{q}, J=1.2$ $\mathrm{Hz}, 1 \mathrm{H}$), $4.79(\mathrm{q}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{dt}, J=18.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.63$2.44(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 206.9, 206.8, 206.0, 196.4, 142.9, 140.5, 133.8, 132.1, 128.6, 127.8, 127.0, 116.9, 70.4, 66.1, 36.5, 29.3, 28.3, 26.3, 25.8, 18.1; HRMS (ESI) Found: [M+Na] ${ }^{+}$, 363.1568. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}$, 363.1567.

3-(2-(1-Isobutyryl-2-oxocyclohexyl)allyl)-3-methylpentane-2,4dione (7c): Carbonate $6 \mathbf{c}(60.1 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}$, 0.012 mmol), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and 3-methyl-2,4pentanedione ($28 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80{ }^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded product 7c (47 mg, 61\%, r.r. > 19:1) as a yellow solid. $R_{F} 0.35$ [4:1 Pet:EtOAc]; m.p. $82-84{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\max }$ (film) $/ \mathrm{cm}^{-1} 2968,2935,1694,1636$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.93(\mathrm{q}, ~ J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{q}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (quint, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.64(\mathrm{dt}, J=18.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.43(\mathrm{~m}$, 3H), 2.33-2.22 (m, 2H), 2.17 (s, 3H), 2.17 (s, 3H), 1.92-1.81 (m, 2H), 1.77-1.67 (m, 2H), $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 213.7$, 209.9, 207.4, 207.3, 140.6, 116.2, 74.5, 66.0, 41.1, 37.2, 36.5, 32.4, 26.9, 26.4 (two signals), 21.8, 20.9, 20.5, 18.3; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}, 343.1872 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 343.1880$.

6-Acetyl-3-benzoyl-3,6-dimethyl-4-methyleneoctane-2,7-dione (7d): Carbonate 6d $(61.9 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012$ mmol), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and 3-methyl-2,4pentanedione ($28 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80{ }^{\circ} \mathrm{C}$. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of $\mathbf{7 d}$ and homocoupled $\mathbf{4 e}$ in a $5.1: 1$ ratio (60 mg , corresponding to 49.5 mg of $\mathbf{7 d}$, 63%, r.r. $>19: 1$) as a red solid. $\mathrm{R}_{\mathrm{F}} 0.26$ [Petrol:EtOAc 4:1]; m.p. 73-76 ${ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 2976,2928,1717,1698,1667$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.83-7.79(\mathrm{~m}, 2 \mathrm{H})$, 7.50 (tt, $J=7.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{q}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.80(\mathrm{dt}, J=18.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dt}, J=18.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.14$ (s, 3H), 2.12 (s, 3H), 1.68 (s, 3H), 1.43 (s, 3H); $\delta_{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 207.2$ (two signals), 206.2, 200.7, 143.0, 135.7, 132.9, 129.3, 128.3, 115.8, 70.3, 65.9, 36.7, 27.6, 26.3, 26.2, 20.9, 18.2; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 329.1759 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 329.1747$.

3,6-Diacetyl-3-allyl-6-methyl-4-methyleneoctane-2,7-dione (7e):

 Carbonate 6 e ($53.2 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and 3-methyl-2,4-pentanedione (28 $\mu \mathrm{L}, 0.24 \mathrm{mmol})$ were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4 Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded product 7e (32 mg, 46\%, r.r. 10:1) as a brown oil. $R_{F} 0.34$ [Pet:EtOAc 4:1]; $\mathrm{v}_{\text {max }}(f i l m) / \mathrm{cm}^{-1} 3386,2924,2835,1694 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 5.67-5.55 (m, 1H), 5.16-5.04 (m, 3H), $4.90(\mathrm{q}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dt}, J=7.0,1.5 \mathrm{~Hz}$, 2 H), $2.57(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) ; \delta_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 206.8, 205.8, 140.6, 132.9, 118.8, 117.2, 76.8, 65.9, 36.0, 35.7, 27.8, 26.2, 18.2; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$293.1741, $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 293.1747.

2-(4-Acetyl-4-methyl-5-oxohex-1-en-2-yl)-2-phenyl-1H-indene-1,3(2H)-dione (7f): Carbonate 6 ($73.0 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($11 \mathrm{mg}, 0.012 \mathrm{mmol}$), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and 3-methyl-2,4-pentanedione ($28 \mu \mathrm{~L}, 0.240 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded 7f ($66 \mathrm{mg}, 74 \%$) as an orange oil. $\mathrm{R}_{\mathrm{F}} 0.33$ [Pet:EtOAc 4:1]; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1} 2102,1740,1699$, $1591 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8.08-8.02 (m, 2H), 7.91-7.84 (m, 2H), 7.45-7.39 (m, 2H), 7.367.27 (m, 3H), 4.96 (q, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.92(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.08 (s, 6H), 1.42 (s, 3H); $\delta_{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 207.0,199.0,141.6,141.2,136.1,134.6$, 128.8, 128.4, 128.1, 123.9, 118.7, 69.8, 66.3, 36.3, 26.1, 17.8; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 397.1397. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}$, 397.1410.

tert-Butyl 3-acetyl-3-(4-acetyl-4-methyl-5-oxohex-1-en-2-yl)-2-oxopiperidine-1-carboxylate ($\mathbf{7 g}$): Carbonate $\mathbf{6 g}$ ($77.6 \mathrm{mg}, 0.24$ $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024$ mmol) and 3-methyl-2,4-pentanedione ($28 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded product $7 \mathrm{~g}\left(50 \mathrm{mg}, 53 \%\right.$, r.r. $>19: 1$) as a red oil. $\mathrm{R}_{\mathrm{F}} 0.31$ (4:1 Pet:EtOAc); $\mathrm{v}_{\max }$ (film) $/ \mathrm{cm}^{-1} 2978,2933,1764,1714,1695,1457$; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.98(\mathrm{q}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.78(\mathrm{q}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{dt}, J=1.82,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dt}, J$ $=18.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.07-1.99$ (m, 1H), 1.83-1.74 (m, 2H), 1.49 (s, 9H), 1.46 (s, 3H); $\delta_{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 207.1, 206.8, 204.4, 170.6, 153.0, 142.0, 116.2, 83.3, 69.5, 66.2, 46.5, 36.1, 28.1 (two signals), 27.9, 26.4, 26.1, 19.6, 18.1; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 416.2049. $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{6}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 416.2044$.

Ethyl 1-(4-acetyl-4-methyl-5-oxohex-1-en-2-yl)-2-
oxocyclopentanecarboxylate (7h): Carbonate 6h (57.2 mg, 0.24 $\mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos ($13.1 \mathrm{mg}, 0.024$ mmol) and 3-methyl-2,4-pentanedione ($28 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane $(1.5 \mathrm{~mL})$ was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of $\mathbf{7 h}$ and $\mathbf{5 g}$ in a $17: 1$ ratio (45 mg , corresponding to 43 mg of $\mathbf{7 h}$, 58%, r.r. $>19: 1$) as a red oil. $R_{F} 0.36$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1} 3015,2935,1716 ;$ $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.99(\mathrm{q}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dq}, J=7.2$, $0.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.81 (dt, $J=18.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.66(\mathrm{dt}, J=17.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.49(\mathrm{~m}$, $1 \mathrm{H}), 2.37-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}$, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ; \delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 212.0,207.1,207.0,170.2,139.3,114.8,67.4,66.2$, $61.8,37.7,35.9,33.2,26.3,26.1,19.2,17.8,14.0$; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}, 309.1699$. $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 309.1697$.

$7 i$

Ethyl 2,5-diacetyl-2-fluoro-5-methyl-3-methylene-6-oxoheptanoate (7i): Carbonate $6 \mathbf{i}(55.2 \mathrm{mg}, 0.240 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012$ mmol), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$), and 3-methyl-2,4pentanedione ($28 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded product $7 \mathbf{i}$ (25 mg, 35\%, r.r. > 19:1) as a colourless oil. $\mathrm{R}_{\mathrm{F}} 0.35$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }(f \mathrm{film}) / \mathrm{cm}^{-1}$ 2987, 2937, 1753, 1727, 1697; $\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.33$ (q, J=0.7 Hz, 1H), 5.09 (sextet, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.12(\mathrm{~s}$, $6 \mathrm{H}), 1.38$ ($\mathrm{s}, 3 \mathrm{H}$), 1.31 (t, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 206.6,206.5$, 199.9 (d, $J=$ 29. 5 Hz), 165.1 (d, $J=26.0 \mathrm{~Hz}), 136.7(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 119.1(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 100.0(\mathrm{~d}, J$ $=197.1 \mathrm{~Hz}$), 66.2, 62.9, 34.4 (d, $J=4.1 \mathrm{~Hz}$), 26.4 (two signals), 25.7, 17.9, 13.9; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 301.1448. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{FO}_{5}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 301.1446.

Ethyl 2-acetyl-4-(1-acetyl-2-oxocyclohexyl)-2-fluoropent-4-enoate (7j): Carbonate 6a ($53.3 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012$ mmol), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and ethyl 2-fluoroacetoacetate $(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$ were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of diastereoisomers of $\mathbf{7 j}$ in a $1: 1$ ratio ($49 \mathrm{mg}, 63 \%$, r.r. $>19: 1$) as a yellow oil. $\mathrm{R}_{\mathrm{F}} 0.37$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1}$ 2944, 2870, 1751, 1699, 1640; $\delta_{H}(400 \mathrm{MHz}$, diastereoisomer 7jb annotated by an asterisk, CDCl_{3}) 5.37 (s, 1 H and $1 \mathrm{H}^{*}$), 5.02 (d, $J=$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}$ and $1 \mathrm{H}^{*}$), $4.23\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$ and $2 \mathrm{H}^{*}$), 2.96-2.68 (m, 2 H and $2 \mathrm{H}^{*}$), 2.58$2.35\left(\mathrm{~m}, 2 \mathrm{H}\right.$ and $\left.2 \mathrm{H}^{\star}\right), 2.30(\mathrm{dd}, J=8.9,1.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.27-2.21\left(\mathrm{~m}, 1 \mathrm{H}\right.$ and $\left.1 \mathrm{H}^{\star}\right), 2.13(\mathrm{~s}$, 3 H and $3 \mathrm{H}^{*}$), 2.11-2.01 $\left(\mathrm{m}, 1 \mathrm{H}\right.$ and $\left.1 \mathrm{H}^{*}\right), 1.85-1.52\left(\mathrm{~m}, 4 \mathrm{H}\right.$ and $\left.4 \mathrm{H}^{*}\right), 1.26(\mathrm{t}, \mathrm{J}=7.2, \mathrm{~Hz}$, $3 \mathrm{H}), 1.25\left(\mathrm{t}, ~ J=7.2 \mathrm{~Hz}, 3 \mathrm{H}^{*}\right)$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, diastereoisomer 7jb annotated by an asterisk, CDCl_{3}) 208.9, 208.7*, 206.7, 206.5*, 201.2 (d, $J=28.8 \mathrm{~Hz}$), 200.9* (d, $J=28.8 \mathrm{~Hz}$), 165.7 (d, $J=25.3 \mathrm{~Hz}$), 165.7* (d, $J=25.5 \mathrm{~Hz}$), 139.2 (d, $J=22.4 \mathrm{~Hz}$), 139.2* (d, $J=22.3 \mathrm{~Hz}$), 119.5 (d $J=3.4 \mathrm{~Hz}$), 118.8* (d, $J=3.8 \mathrm{~Hz}$), 99.8 (d, $J=201.5 \mathrm{~Hz}$), $99.7^{*}(\mathrm{~d}, J=201.1 \mathrm{~Hz})$, 73.8*, 73.4, 62.8, 62.8*, 40.8*, 40.8, 35.4 (d, $J=20.0 \mathrm{~Hz}$), 35.3* (d, $J=20.0 \mathrm{~Hz}$), 33.2, 33.2*, 27.0, 26.9, 26.9*, 26.7*, 25.6, 25.4*, 21.7, 21.7*, 13.9, 13.8*; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 327.1604. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{FO}_{5}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 327.1602$.

3.4. Mechanistic Studies.

11
d_{3}-3-Methyl 2,4-petanedione (11): To a solution of acetylacetone (1.02 mL , $10.0 \mathrm{mmol})$ in acetone $(30 \mathrm{~mL})$ was added potassium carbonate $(1.38 \mathrm{~g}, 10.0$ $\mathrm{mmol})$. The mixture was stirred at room temperature for 15 minutes then d_{3} iodomethane ($0.747 \mathrm{~mL}, 12.0 \mathrm{mmol}$) was added dropwise and the reaction was refluxed at $65{ }^{\circ} \mathrm{C}$ for 18 hours. The reaction was quenched with aq. $\mathrm{HCl}(1 \mathrm{~N}, 30 \mathrm{~mL})$. The mixture was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phases were washed with brine (30 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 19:1] afforded 11 (200 mg, 17\%) as a green liquid. Analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated 98% deuterium incorportation. $\mathrm{R}_{\mathrm{F}} 0.55$ [Petrol:EtOAc 4:1]; $v_{\max }($ film $) / \mathrm{cm}^{-1} 2240,1721,1700,1611 ; \delta_{H}(400 \mathrm{MHz}, 1.4: 1$ keto:enol tautomer, enol
tautomer is shown by an asterisk, CDCl_{3}) 16.39* (s, 1H), $3.62(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.08(\mathrm{~s}$, $\left.6 H^{*}\right) ; \delta_{C}\left(100 \mathrm{MHz}, 1.4: 1\right.$ keto:enol tautomer, enol shown by an asterisk, $\left.\mathrm{CDCl}_{3}\right)$ 205.1, 190.4*, 104.6*, 61.8, 28.6, 23.3*, 12.7-11.5 (m).

d_{3}-3-Methyl-4-oxopent-2-en-2-yl prop-2-ynyl carbonate ([D D_{3}]-3a) and d_{3}-prop-2-ynyl 2-acetyl-2-methyl-3-oxobutanoate ($\left.\left[D_{3}\right]-3 b\right)$: A suspension of sodium hydride ($60 \mathrm{wt} \%, 56 \mathrm{mg}, 1.40 \mathrm{mmol}$) in THF (15 mL) was cooled to $0^{\circ} \mathrm{C}$. A solution of 11 ($150 \mathrm{mg}, 1.28$ mmol) in THF (3 mL) was added dropwise and was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. Propargyl chloroformate ($136 \mu \mathrm{~L}, 1.40 \mathrm{mmol}$) was added dropwise and the mixture was stirred at room temperature for 1 hour. The reaction was quenched by addition of aq. $\mathrm{HCl}(1 \mathrm{~N}, 10 \mathrm{~mL})$ and the mixture was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic phases were washed with brine (15 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of carbonate $\left[D_{3}\right]-3 a$ and ester $\left[D_{3}\right]-3 b$ in a 5:1 ratio (120 $\mathrm{mg}, 47 \%)$ as a colourless oil. $\mathrm{R}_{\mathrm{F}} 0.21$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }$ (film)/cm ${ }^{-1} 3285,2130$, 1757, 1668, 1647; $\delta_{H}\left(400 \mathrm{MHz}\right.$, resonances due to $\left[\mathrm{D}_{3}\right]$-3a quoted, CDCl_{3}) 4.80 (d, $J=2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$; $\delta_{\mathrm{C}}(100 \mathrm{MHz}$, resonances due to $\left[D_{3}\right]$-3a quoted, CDCl_{3}) 199.1, 151.7, 150.6, 124.9, 76.4, 76.2, 56.0, 30.9, 18.0; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 200.1004. $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{D}_{3} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 200.0997.

 $d_{4}-3-M e t h y l-4-o x o p e n t-2-e n-2-y l$ prop-2-ynyl carbonate ([D $\left.D_{4}\right]$ 3a) and d_{4}-prop-2-ynyl 2-acetyl-2-methyl-3-oxobutanoate ($\left.\left[D_{3}\right]-3 b\right)$: According to a literature procedure, ${ }^{6}$ to a solution of $\left[D_{3}\right]-3(45.7 \mathrm{mg}, 0.23 \mathrm{mmol})$ in acetonitrile (4 mL) was added potassium carbonate ($95.5 \mathrm{mg}, 0.69 \mathrm{mmol}$) at room temperature and the suspension was stirred for 30 minutes. Deuterium oxide $(0.61 \mathrm{~mL})$ was added and the mixture was stirred at room temperature for 18 hours. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford an inseparable mixture of carbonate [$\left.D_{4}\right]$-3a and ester $\left[D_{4}\right]-3 b$ in a 5:1 ratio (44.5 $\mathrm{mg}, 97 \%$) as a colourless oil. Analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated 96% deuterium incorporation. $R_{F} 0.21$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }($ film $) / \mathrm{cm}^{-1} 3285$, 2924, 2585, 1991, 1760, 1648; $\delta_{H}\left(400 \mathrm{MHz}\right.$, resonances due to [$\left.\mathrm{D}_{4}\right]$-3a quoted, CDCl_{3}); $4.79(\mathrm{~s}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, resonances due to $\left[\mathrm{D}_{4}\right]$-3a quoted, CDCl_{3}) 199.0, 151.7, 150.5,
124.9, $76.3(\mathrm{t}, J=12.6 \mathrm{~Hz}$), $75.9(\mathrm{t}, J=8.3 \mathrm{~Hz}$), 56.0, 30.9, 17.9; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$201.1064. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{D}_{4} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}$, 201.1059.

d_{1}-3-Methyl-4-oxopent-2-en-2-yl prop-2-ynyl carbonate ([D]3a) and d_{4}-prop-2-ynyl 2-acetyl-2-methyl-3-oxobutanoate ($\left.\left[\mathrm{D}_{4}\right]-3 \mathrm{~b}\right)$: According to a literature procedure, ${ }^{6}$ to a solution of propargyl carbonate 3 ($144 \mathrm{mg}, 0.730 \mathrm{mmol}$) in $\mathrm{MeCN}(8 \mathrm{~mL})$ was added solid potassium carbonate ($311 \mathrm{mg}, 2.25 \mathrm{mmol}$). The suspension was stirred at room temperature for 30 min . Deuterium oxide (2 mL) was added via syringe and the solution was stirred at room temperature for 1 hour. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo to afford an inseparable mixture of deuterated alkyne [D]-3a and ester [D]-3b in a $5.3: 1$ ratio ($140 \mathrm{mg}, 97 \%$) as a pale yellow oil. Analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated 97% deuterium incorporation. $R_{F} 0.21$ [Petrol:EtOAc 4:1]; $v_{\max }$ (film)/cm ${ }^{-1} 2950,2584,1990,1757,1709,1653$; $\delta_{H}(400 \mathrm{MHz}$, resonances due to [D]-3a quoted, CDCl_{3}) $4.74(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$; $\delta_{\mathrm{c}}(100 \mathrm{MHz}$, resonances due to [D]-3a quoted, CDCl_{3}) 199.1, 151.7, 150.5, 125.0, 76.4 (t, $J=6.9 \mathrm{~Hz}$), 75.9 (t, $J=8.3 \mathrm{~Hz}$), 56.0, 30.9, 17.9, 14.0; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{Na}]^{+} 220.0685$. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{DO}_{4}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 220.0691$.

[D]-5b
d_{1}-3-(3-(2-Acetyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)prop-1-en-2-yl)-3-methylpentane-2,4-dione ([D]-5b): [D]-3 (47.3 mg, $0.24), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}, 0.012 \mathrm{mmol})$, DPEphos $(13.1 \mathrm{mg}, 0.024$ mmol) and 2-acetyl-1-tetralone ($53.2 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded an inseparable mixture of [D]-5b and the homocoupled product of 2-acetyl-1-tetralone (4b) in a $10: 1$ ratio (60 mg , corresponding to 54 mg of [D]-5b, 66%, r.r. $>19: 1$) as a red oil. ${ }^{1} \mathrm{H}$ NMR analysis indicated 35% deuterium incorporation at the vinylic position and 29% deuterium incorporation at the allylic position. $\mathrm{R}_{\mathrm{F}} 0.41$ [Petrol:EtOAc 4:1]; $\mathrm{v}_{\max }$ (film)/ cm^{-1} 2935, 1699, 1671, 1599; HRMS (ESI) Found: $[\mathrm{M}+\mathrm{H}]^{+}$, 342.1805. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{DO}_{4}$ requires $[\mathrm{M}+\mathrm{H}]^{+}, 342.1810$.

$\left[D_{4}\right]-5 b$

d_{4}-3-(3-(2-Acetyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)prop-1-en-2-yl)-3-methylpentane-2,4-dione ($\left.\left[D_{4}\right]-5 b\right)$ and 3-(3-(2-

Acetyl-1-oxo-1,2,3,4-tetrahydronaphthalen-2-yl)prop-1-en-2-yl)-3-methylpentane-2,4-dione (5b): Carbonate 3 (23.5mg, 0.12 $\mathrm{mmol})$, carbonate $\left[\mathrm{D}_{4}\right]-3(24.0 \mathrm{mg}, 0.12 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(11 \mathrm{mg}$, 0.012 mmol), DPEphos ($13.1 \mathrm{mg}, 0.024 \mathrm{mmol}$) and 2-acetyl-1tetralone ($53.2 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added to a dried tube under argon. The tube was fitted with a septum and purged further with argon. 1,4-Dioxane (1.5 mL) was added and the sealed tube was added to an oil bath preheated to $80^{\circ} \mathrm{C}$. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 hours, then cooled to room temperature and concentrated in vacuo. Flash column chromatography [Petrol:EtOAc 4:1] afforded a mixture of $\mathbf{5 b}$ and $\left[\mathrm{D}_{4}\right]$-5b ($57 \mathrm{mg}, 69 \%$, r.r. $>19: 1$) as a red oil. $\mathrm{R}_{\mathrm{F}} 0.41$ [Petrol:EtOAc 4:1]; $v_{\max }(f i l m) / \mathrm{cm}^{-1} 2927,1699,1671,1599 ;$ HRMS analysis indicated the presence 5b and $\left[\mathrm{D}_{4}\right]-5 b$ only. HRMS (ESI) 5b: Found: $[\mathrm{M}+\mathrm{Na}]^{+}$363.1559. $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\left[\mathrm{M}+\mathrm{H}^{+}, 363.1567\right.$; $\left[\mathrm{D}_{4}\right]-5 \mathrm{~b}$: Found: $[\mathrm{M}+\mathrm{Na}]^{+}$, 367.1813. $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{D}_{4} \mathrm{O}_{4}$ requires $[\mathrm{M}+\mathrm{Na}]^{+}, 367.1818$.

4. References.

1) Wei, Y.; Liliang H.; Hong, L.; Wei, W.; Hao L. Chem. Commun. 2013, 49, 4667.
2) Schröder, S. P.; Taylor, N. J.; Jackson, P.; Franckevičius, V. Org. Lett. 2013, 15, 3778.
3) Hemavathi, S. N. Indian J. Heterocycl. Chem. 2011, 20, 409.
4) Alper, P.; Azimioara, M.; Christopher, C.; Epple, R.; Lelais, G.; Mutnick, D.; Nikulin, V. PCT Int. Appl, Feb $3^{\text {rd }}$ 2011, WO 2011/014520 A2.
5) Ding, X.; Nguyen, T.; Williams, J. D.; Norton, P. P. Tetrahedron. Lett. 2014, 55, 7002.
6) Bew, S. P.; Hiatt-Gipson, G. D.; Lovell, J. A. Poullain, C. Org. Lett. 2012, 14, 456.

5. X-Ray Crystal Structure Data for 7a (CCDC 1411246).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient
F(000)
Crystal
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to $\theta=24.415^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$F^{2}>2 \sigma\left(F^{2}\right)$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

2015ncs0412a

$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{4}$
292.36

100(2) K
0.6889 Å

Monoclinic
P21/n
$a=6.0924(2) \AA \quad \alpha=90^{\circ}$
$b=27.0824(6) \AA \quad \beta=97.770(2)^{\circ}$
$c=9.3335(2) \AA \quad \gamma=90^{\circ}$
1525.86(7) \AA^{3}

4
$1.273 \mathrm{Mg} / \mathrm{m}^{3}$
$0.083 \mathrm{~mm}^{-1}$
632.0

Chip; colourless
$0.03 \times 0.03 \times 0.01 \mathrm{~mm}^{3}$
$2.256-31.788^{\circ}$
$-9 \leq h \leq 9,-40 \leq k \leq 41,-14 \leq I \leq 13$
30947
$5401\left[R_{\text {int }}=0.0605\right]$
99.7 \%

Semi-empirical from equivalents
1.00000 and 0.81133

Full-matrix least-squares on F^{2}
5401 / 0 / 194
1.035
$R 1=0.0486, w R 2=0.1144$
$R 1=0.0674, w R 2=0.1282$
n/a
0.464 and -0.347 e $\AA-^{-3}$

Diffractometer: Beamline I19 situated on an undulator insertion device with a combination of double crystal monochromator, vertical and horizontal focussing mirrors and a series of beam slits (primary white beam and either side of the focussing mirrors). The experimental hutch (EH1) is equipped with a Crystal Logic 4-circle kappa geometry goniometer with a Rigaku Saturn 724 CCD detector and an Oxford Cryosystems Cryostream plus cryostat ($80-500 \mathrm{~K}$). For conventional service crystallography the beamline operates at a typical energy of 18 keV (Zr K absorption edge) and a Rigaku ACTOR robotic sample changing system is available. Cell determination and data collection: CrystalClear-SM Expert 2.0 $r 5$ (Rigaku, 2010 Data reduction and cell refinement \& Absorption correction: CrysalisPRO 171.37 .35 (Rigaku Oxford Diffraction 2015). Structure solution: SHELXST (G. M. Sheldrick, Acta Cryst. (2008) A64 112-122). Btructure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Mercury 3.5.1 (CCDC 2014). Publication material: WinGX: Farrugia, L. J. J. Appl. Cryst. 2012, 45, 849-854.

6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra.

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$4 e$

-204.993
-197.283

$\stackrel{\text { ®. }}{\text { ® }}$
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

8ั¢	추ํํ్ర	\%
大	¢¢¢	

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(1.9:1 keto:enol)

[^0]

[^1]

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(2:1 enol:keto)

4k

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(2:1 enol:keto)

4k
$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} 90$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

41

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$6 a$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

6a
$\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & \end{array}$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(6ba:6bb 7.7:1)

6ba

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(6ba:6bb 7.7:1)

6ba

[^2]


```
NへNへNへNへNへNへNへNべN
```

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
（6da：6db 4．9：1）

6da

6db

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
（6da：6db 4．9：1）

6db
$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\infty}{\stackrel{\infty}{\square}}$		$\stackrel{\circ}{\circ}$ $\stackrel{\text { m }}{1}$ $\stackrel{1}{1}$	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\oplus}{\Gamma} \\ & \stackrel{\mu}{\mid} \end{aligned}$	下人年先	N0	

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^3]
$\stackrel{98}{8.6}$
 铜军守

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \text { ن } \\ & \underset{\mathrm{O}}{\mathrm{I}} \end{aligned}$	$\begin{aligned} & N \\ & \hat{N} \\ & \dot{G} \end{aligned}$	ゅimpiomimiminioio 	

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^4]

	$\begin{aligned} & \stackrel{\leftrightarrow}{\sim} \\ & \stackrel{1}{\circ} \\ & \stackrel{n}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { } \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { F } \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 100 \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \infty \\ & \stackrel{\infty}{\infty} \stackrel{+}{\square} \end{aligned}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

6h

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5a

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5b

(
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5b

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

		$\stackrel{\rightharpoonup}{\circ}$ $\stackrel{\oplus}{\square}$	숭우웅웅「N゙员N		

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left.\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

		¢ ¢	¢
	¢ ${ }_{\text {¢ }}$	ヘั่	\bigcirc

(

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

5h
$\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

	$\begin{aligned} & \hat{0} \\ & \stackrel{0}{\infty} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{aligned} & \text { m} \\ & \stackrel{0}{0} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \tilde{w} \\ & 0 . \\ & \stackrel{0}{1} \end{aligned}$				

$\left.\begin{array}{llllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{0}{7}$
1
1

-142.589
$\stackrel{\hat{\sim}}{\stackrel{\sim}{4}}$
הill

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

(
 $\stackrel{\infty}{\infty}$ $\stackrel{\text { \% }}{\stackrel{\circ}{\circ}} \stackrel{\infty}{\infty}$ Non

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\underbrace{\text { OiNono }}$
$\stackrel{\stackrel{8}{7}}{\stackrel{8}{\square}}$
$\stackrel{\leftrightarrow}{0}$
$\stackrel{\oplus}{\oplus}$
$\stackrel{\oplus}{1}$

প아우№
Conicien
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{lllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7b

[^5]$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

7h

$\left.\begin{array}{lllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f}_{1}(\mathrm{ppm})\end{array}\right)$

[^6]

[^7]

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(1.69:1 keto:enol)

11

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ (1.69:1 keto:enol)

11

$\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} 90$
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
($\left[D_{3}\right]-3 a:\left[D_{3}\right]-3 b 5: 1$)

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 | |
| :--- |

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
([D]-3a:[D]-3b 5.3:1)

$\begin{aligned} & \text { N } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{1} \end{aligned}$		$\begin{aligned} & \text { Ò } \\ & \stackrel{\text { N }}{1} \\ & \stackrel{1}{1} \end{aligned}$		+	

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
([D]-3a:[D]-3b 5.3:1)

$\left.\begin{array}{llllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1 & (\mathrm{ppm})\end{array}\right)$

$\stackrel{\stackrel{\circ}{6}}{\stackrel{+}{+}}$
Noincion
$\underbrace{\text { ®ind }}$
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
35\%

[D]-5b
29\%

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\circ}{\stackrel{\circ}{\underset{~}{+}}}$

\section*{ํõํ.「iig} | $\hat{\circ}$ |
| :---: |
| |

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left[D_{4}\right]-5 b$

5b

[^8]
7. Deuterium-Labelling Studies: Mass Spectrometry Data.

A. Enolate Crossover.

Event\#: 1 MS(E+) Ret. Time : 0.040 -> 0.174 Scan\# : 11 -> 45

Measured region for $363.1559 \mathrm{~m} / \mathrm{z}$

$\mathrm{C} 21 \mathrm{H} 24 \mathrm{O} 4[\mathrm{M}+\mathrm{Na}]+$: Predicted region for $363.1567 \mathrm{~m} / \mathrm{z}$

Rank	Score Formula (M)	Ion	Meas. \mathbf{m} / \mathbf{z}	Pred. \mathbf{m} / \mathbf{z}	Df. (mDa)	Df. (ppm)	Iso	DBE
5	90.92	C21 H24 O4	$[\mathrm{M}+\mathrm{Na}]^{+}$	363.1559	363.1567	-0.8	-2.20	93.74

Measured region for $367.1813 \mathrm{~m} / \mathrm{z}$

C21 H20 2H4 O4 [M+Na]+ : Predicted region for $367.1818 \mathrm{~m} / \mathrm{z}$

Rank	Score	Formula (M)	Ion	Meas. m/z	Pred. m/z	Df. (mDa)	Df. (ppm)	Iso	DBE
1	62.36	C 21 H 202 H 4 O 4	[M+Na]+	367.1813	367.1818	-0.5	-1.36	62.93	10.0

B. Symmetrical π-Allylpalladium(II) Intermediate.

Event\#: 1 MS(E+) Ret. Time : 0.016 -> 0.190 Scan\# : 5 -> 49
(2000

Measured region for $342.1805 \mathrm{~m} / \mathrm{z}$

$\mathrm{C} 21 \mathrm{H} 232 \mathrm{H} \mathrm{O} 4[\mathrm{M}+\mathrm{H}]+$: Predicted region for $342.1810 \mathrm{~m} / \mathrm{z}$

1 98.85 C21 H23 2H O4

[^0]:

[^1]: $\left.\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^2]: $\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f}_{1}(\mathrm{ppm})\end{array} 90$

[^3]: $\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & f 1(\mathrm{ppm})\end{array}$

[^4]: $\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^5]: $\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^6]: $\left.\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^7]: $\begin{array}{llllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^8]: $\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f} 1 & 100 \\ (\mathrm{ppm})\end{array}$

