Silver-Catalyzed Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in Aqueous Solution

Chao Liu, ${ }^{a}$ Xiaoqing Wang, ${ }^{a}$ Zhaodong Li, ${ }^{a}$ Lei Cui, ${ }^{\text {a }}$ and Chaozhong Li* ${ }^{*}$, ${ }^{\text {, } b}$
${ }^{a}$ Key Laboratory of Organofluorine Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China, and ${ }^{\text {b }}$ School of Chemical Engineering, Ningbo University of Technology, No. 89 Cuibai Road, Ningbo 315016, P. R. China

Table of Contents

1. Characterizations of New Substrates. S2
2. Table S1. Optimization of Reaction Parameters. S3
3. Typical Procesure for Silver-Catalyzed Decarboxylative Azidation S3
4. Characterizations of New Products. S4-S13
5. Synthesis of (-)-Indolizidine 167B and 209D. S14 - S23
6. Optical Resolution of Acid 39. S23
7. References for Known Compounds. S24
8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of All Substrates. S25-S57
9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of All Products. S58-S106

1. Characterizations of New Substrates

The following substrates were commercially available and recrystallized prior to use: 1-adamantanecarboxylic acid (A-2), 2-methyl-4-oxo-4-phenylbutanoic acid (A-18), 4-chlorophenoxyaceticacid (A-24), 2,3-dihydro-benzo $[b][1,4]$ dioxine-2-carboxylic acid (A-25), tetradecanoic acid (A-27), stearic acid (A-28), 2,2-dimethylpentanedioic acid (A-30). The rest substrates were readily prepared by conventional methods.

Characterizations of New Substrates:

2-Allyltetradecanoic acid (A-15). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 5.82-5.72 (m, 1H), 5.10-5.02 (m, 2H), 2.48-2.23 (m, 3H), 1.66-1.46 (m, 2H), $1.26(\mathrm{br}$ $\mathrm{s}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.4,135.2,116.9$, $45.2,36.1,31.9,31.5,29.6,29.5,29.4,29.3,27.2,22.7,14.1$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3080$, 2925, 2854, 1708, 1643, 1465, 1417, 1285, 1249, 916; EIMS (m/z): (rel intensity) 268 $\left(\mathrm{M}^{+}, 6\right), 129$ (8), 113 (68), 100 (100), 83 (26), 69 (47), 57 (35), 55 (48), 43 (45), 41 (51); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{2}$ [M]: 268.2402; found: 268.2400.

7-Bromo-2-ethylheptanoic acid (A-17). Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.3(\mathrm{br}, 1 \mathrm{H}), 3.34(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 2 \mathrm{H})$, 1.64-1.28 (m, 8H), $0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.8$, $46.9,33.6,32.5,31.4,28.0,26.4,25.1,11.7$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2937,1705,1462$, 1416, 1228, 943, 783, 646; EIMS (m/z): (rel intensity) 157 (5), 139 (6), 113 (33), 100 (33), 88 (100), 73 (47), 69 (31), 55 (29), 41 (28); HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{2}$ [M-Br]: 157.1229; found: 157.1225.

2. Table S1. Optimization of Reaction Parameters

				n-C		
Entry	AgNO_{3} (equiv)	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (equiv)		Solvent (v:v)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)
1	0.2	2	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	50	18
2	0.2	2	2	$\mathrm{H}_{2} \mathrm{O}$	50	35
3	0.2	2	2	acetone/ $\mathrm{H}_{2} \mathrm{O}(1: 1)$	50	45
4	0.2	2	2	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	50	76
5	0.2	2	2	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	40	28
6	0.2	1.5	2	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	50	66
7	0.2	2	3	$\mathbf{C H}_{3} \mathbf{C N} / \mathbf{H}_{2} \mathbf{O}$ (1:1)	50	98
8	0	2	3	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	50	0
9	0.2	0	3	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	50	0

3. Typical Procedure for Silver-Catalyzed Decarboxylative Azidation

2-Ethyltetradecanoic acid (A-1, $51.2 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{AgNO}_{3}(6.8 \mathrm{mg}, 0.04$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(108 \mathrm{mg}, 0.40 \mathrm{mmol})$ and $3-\mathrm{PySO}_{2} \mathrm{~N}_{3}(110 \mathrm{mg}, 0.60 \mathrm{mmol})$ were placed in a Schlenk tube. Acetonitrile (1 mL) and water $(1 \mathrm{~mL})$ were then added under nitrogen atmosphere. The reaction solution was stirred at $50^{\circ} \mathrm{C}$ for 10 h . The resulting mixture was cooled down to RT and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 4)$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the removal of solvent under reduced pressure, the crude product was purified by column chromatography on silica gel with hexane as the eluent to give the pure product 3 -azidopentadecane (1) as colorless oil. Yield: $49.6 \mathrm{mg}(98 \%) . \mathrm{R}_{f}=0.55$ (hexane).

4. Characterizations of New Products

3-Azidopentadecane (1). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.21-3.14$ (m, 1H), 1.60-1.47 (m, 4H), 1.26 (brs, 20H), $0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=64.6,33.9,31.9,29.6,29.5,29.4,29.3$, 27.4, 26.1, 22.7, 14.1, 10.5; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2925,2854,2096,1464,1273,1253$; EIMS: m / z (rel intensity) 224 (5), 196 (100), 168 (5), 140 (7), 126 (11), 112 (15), 98 (60), 84 (29), 71 (62), 58 (34); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{2}\right): 196.2065$; found: 196.2064.

2-Azido-2-methylpropane-1,3-diyl diacetate (3). Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 4.11-4.05(\mathrm{AB}, J=16 \mathrm{~Hz}, 4 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.3,66.6,61.1,20.6,18.5$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2958,2108,1751$, 1466, 1380, 1234, 1049, 604; ESI-MS (m/z): 238 [M+Na] ${ }^{+}$; HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]: 238.0798$; found: 238.0803.

2-Azido-2-methyldodecane (4). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.43-1.39 (m, 2H), $1.20(b r s, 16 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}), 0.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 61.7,41.4,31.9,29.9,29.6,29.5,29.3,25.9,24.2,22.7,14.1 ;$ IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2928,2855,2095,1467,1388,1369,1260,1143,1096,1019,804$, 722; EIMS (m/z): (rel intensity) 182 (10), 126 (3), 113 (3), 98 (13), 85 (17), 71 (31), 56 (100), 43 (20); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}$ [M- $\left.\mathrm{CH}_{3} \mathrm{~N}_{2}\right]$: 182.1919; found, 182.1912.

5-Azido-5-ethylnonane (5). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 1.57-1.46 $(\mathrm{m}, 6 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.94-0.87(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 66.9$, 35.6, 29.0, 25.6, 23.1, 14.0, 7.9; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2959,2932,2861,2093,1464$, 1256; EIMS (m/z): (rel intensity) 155 (14), 140 (5), 112 (7), 99 (7), 84 (100), 71 (17), 57 (51), 41 (25); HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{2}\right]$: 140.1439 ; found: 140.1436.

1-Azido-1-octylcyclohexane (6). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.68-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 15 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 64.2,40.2,34.6,31.8,30.0,29.5,29.2,25.5,23.2$, 22.6, 22.1, 14.0; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2933,2855,2100,1449,1259,1148,902 ;$ EIMS (m/z): (rel intensity) 208 (1), 195 (11), 180 (4), 166 (21), 138 (10), 124 (19), 111 (37), 96 (100), 83 (26), 69 (32), 55 (32), 41 (24); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}\left[\mathrm{M}-\mathrm{HN}_{2}\right]$: 208.2065; found: 208.2067.

1-Azido-1-octylcyclopentane (7). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $1.82-1.59(\mathrm{~m}, 8 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.29$ (brs, 10 H$), 0.88(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 73.7,39.0,36.8,31.8,30.0,29.5,29.2$, 25.1, 23.7, 22.6, 14.0; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2928,2855,2097,1465,1257$; EIMS (m/z): (rel intensity) 194 (3), 181 (6), 166 (13), 152 (15), 124 (19), 110 (47), 97 (100), 82 (33), 55 (29), 41 (27); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}$ [M-HN H_{2} : 194.1909; found: 194.1907.

Cyclohexyl 4-azido-4-methylpentanoate (8). Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 4.78-4.72(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 172.6,72.8,60.8,36.2,31.6,29.8,25.8,25.3,23.7$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2938$, 2860, 2099, 1732, 1451, 1371, 1260, 1185, 1124, 1038, 1016; ESI-MS (m/z): 262 $[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]$: 262.1526; found: 262.1527 .

(2-Azidopropane-1,3-diyl)dicyclohexane (9). Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 3.42-3.35(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 10 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.10(\mathrm{~m}$, $8 \mathrm{H}), 0.97-0.82(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 57.5,42.4,34.5,33.8,32.8$, 26.5, 26.3, 26.1; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2924,2852,2100,1448,1342,1260,965$; EIMS (m/z): (rel intensity) 220 (2), 178 (10), 152 (12), 124 (100), 109 (7), 97 (23), 81 (28), 67 (22), 55 (98), 41 (34); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}\left[\mathrm{M}-\mathrm{HN}_{2}\right]: 220.2065$; found: 220.2061 .

(2-Azidobutyl)benzene (10). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.60-1.40 (m, 2H), $0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.9$, 129.3, 128.5, 126.7, 65.7, 40.6, 27.1, 10.5; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2965,2927,2877,2855$, 2097, 1496, 1455, 1344, 1259, 743, 699; EIMS (m/z): (rel intensity) 146 (1), 118 (4), 91 (100), 77 (2), 65 (9), 51 (2), 39 (3); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}$ [M-HN H_{2} : 146.0970; found: 146.0971.

1-(2-Azidobutyl)-4-methylbenzene (11). Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13-7.08(\mathrm{~m}, 4 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, 1.64-1.48(m, 2H), $1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.2$, $134.8,129.2,129.1,65.8,40.1,27.0,21.1,10.6$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2925,2854,2096$, 1516, 1461, 1378, 1341, 1254, 803; EIMS (m/z): (rel intensity) $189\left(\mathrm{M}^{+}, 2\right), 132$ (4), 105 (100), 91 (9), 77 (8), 63 (2); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3}[\mathrm{M}]: 189.1266$; found: 189.1270.

1-(2-Azidopropyl)-4-(tert-butyl)benzene (12). Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.80$ $(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=13.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~d}, J=$ 6.4 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 149.6, 134.7, 129.0, 125.4, 59.0, 42.0, $34.4,31.4,19.1$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3025,2965,2869,2104,1517,1458,1364,1269$, 1249, 1124, 1109, 1021, 837; EIMS (m/z): (rel intensity) 217 ($\mathrm{M}^{+}, 3$), 175 (2), 147 (100), 132 (22), 117 (17), 105 (12), 91 (11), 65 (4); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3}[\mathrm{M}]$: 217.1579; found: 217.1577.

1-(2-Azidobutyl)-4-nitrobenzene (13). Light yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 8.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=$ $14.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 147.0,145.7,130.2,123.8,65.1,40.3,27.4$, 10.5; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2969,2933,2100,1606,1519,1347,1270,1110,855,745$, 699; EIMS (m/z): (rel intensity) 192 (2), 179 (4), 137 (100), 120 (23), 107 (44), 90 (71), 78 (52), 56 (40); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ [M- $\left.\mathrm{N}_{2}\right]$: 192.0899; found:
192.0896.

4,4'-(2-Azidopropane-1,3-diyl)bis(chlorobenzene) (14). Colorless oil; ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 1 \mathrm{H})$, 2.86-2.74 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.9,132.8,130.6,128.8,65.0$, 39.9; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2922,2111,1492,1409,1341,1273,1247,1092,1016,831$, 806; EIMS (m/z): (rel intensity) 305 ($\mathrm{M}^{+}, 4$), 139 (8), 125 (100), 91 (28), 84 (98), 49 (30); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{Cl}_{2}$ [M]: 305.0487; found: 305.0488.

4-Azidohexadec-1-ene (15). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 5.87-5.76 (m, 1H), 5.17-5.11 (m, 2H), 3.35-3.29 (m, 1H), $2.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.35(\mathrm{~m}$, $2 \mathrm{H}), 1.26$ (brs, 20 H), $0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.0$, $118.0,62.3,38.8,33.9,31.9,29.6,29.5,29.4,29.3,26.0,22.7,14.1$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2926, 2854, 2101, 1465, 1377, 1340, 1256, 918; EIMS (m/z): (rel intensity) 236 (1), 196 (13), 138 (4), 110 (11), 96 (26), 84 (50), 71 (57), 57 (100), 43 (84); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}\left[\mathrm{M}-\mathrm{HN}_{2}\right]: 236.2378$; found: 236.2381 .

(3-Azidobutyl)benzene (16). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.71(\mathrm{~m}$, 2 H), 1.29 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.2,128.5,128.4$, 126.0, 57.2, 37.9, 32.3, 19.5; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2924,2852,2098,1458,1259,1098$; EIMS (m/z): (rel intensity) 146 (77), 105 (43), 132 (15), 117 (13), 104 (100), 91 (99), 77 (27), 65 (19); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}$ [M-HN H_{2}]: 146.0970; found: 146.0974.

6-Azido-1-bromooctane (17). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.41$ (t, J $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.21-3.15(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.37(\mathrm{~m}, 8 \mathrm{H}), 0.98(\mathrm{t}, J=$ 7.6 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 64.4,33.8,33.7,32.6,27.9,27.4,25.3$, 10.5; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2967,2938,2096,1462,1406,1342,1253$; EIMS (m/z): (rel intensity) 206/204 (1/1), 178 (28)/176 (28), 107 (13)/109 (12), 98 (32), 84 (30), 69 (100), 56 (53), 41 (69); HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NBr}$ [M- HN_{2}]: 204.0388; found: 204.0382.

3-Azido-1-phenylbutan-1-one (18). Lightyellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.10$ (m, 1H), 3.18 (dd, $J=17.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (dd, $J=17.2,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 197.1,136.6,133.5,128.7,128.1,53.8$, 44.7, 19.8; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3060,2975,2931,2101,1686,1648,1598,1449,1422$, 1367, 1219, 919, 757, 689; ESI-MS (m/z): $212[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]:$ 212.0794; found: 212.0788.

(4-Azidopiperidin-1-yl)(phenyl)methanone (20). Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.08(\mathrm{br}, 1 \mathrm{H}), 3.65-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{br}, 2 \mathrm{H}), 1.84(\mathrm{br}$, 2H), $1.56(\mathrm{br}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.4,135.7,129.8,128.5,126.8$, 57.2, 45.1, 39.5, 31.0, 30.4; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3480,2929,2864,2097,1632,1446$, 1363, 1248, 1021, 789, 732, 710; ESI-MS (m/z): $253[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]: 253.1060$; found: 253.1056.

2-((4-Azidocyclohexyl)methyl)isoindoline-1,3-dione (21). This compound was isolated as the mixture of two stereoisomers in about 74:26 ratio determined by ${ }^{1} \mathrm{H}$ NMR (400 MHz). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of two stereoisomers): $\delta 7.83-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 2 \mathrm{H}), 3.78$ (br s, 0.7 H), 3.56-3.52 $(\mathrm{m}, 2 \mathrm{H}), 3.25-3.18(\mathrm{~m}, 0.3 \mathrm{H}), 2.00-1,78(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.09(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$: $\delta 168.6,134.0 / 133.9,132.0 / 131.9,123.3 / 123.2,59.9 / 57.5,43.2 / 43.1$, 36.0/35.6, 30.9/28.9, 28.7/25.0; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2926,2360,2342,2091,1768$, 1709, 1466, 1434, 1397, 1362, 1052, 724; ESI-MS (m/z): 307 [M+Na] ${ }^{+}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]: 307.1166$; found: 307.1179.

(2-Azidocyclohexyl)(phenyl)methanone (22). This compound was isolated as the mixture of two stereoisomers in about 74:26 ratio determined by ${ }^{1} \mathrm{H}$ NMR (400 MHz). Light yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of two stereoisomers): δ $7.96 / 7.85(2 \mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.43$ (m, 3H), 4.10 (br s, 0.3 H), 3.85 (td, $J=10.8$ $4.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.41 / 3.30(2 \mathrm{td}, J=10.8 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.70$ (m, 3H), 1.63-1.25 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 201.6/200.9, 136.3, 133.3/132.9, 128.7, 128.3/128.1, 61.2/59.5, 50.2/47.6, 31.0/29.6, 29.9/24.1, 24.8/23.3, 24.4/20.8; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2937,2860,2100,1681,1597,1448,1316,1255,1216$, 1200, 1179, 700; ESI-MS (m/z): $252[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{NaO}$ [M+Na]: 252.11073; found: 252.11078.

1-(1-Azido-2-phenylethyl)pyrrolidine-2,5-dione (23). Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.52-3.41 (m, 2H), 2.68-2.53 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.1,134.9$, $129.0,128.8,127.4,67.1,36.4,27.8$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3030,2940,2108,1780,1713$, 1391, 1362, 1241, 1166; ESI-MS (m/z): 267 [M+Na] ${ }^{+}$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]: 267.0852$; found: 267.0840 .

1-(Azidomethoxy)-4-chlorobenzene (24). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta$ 154.2, 128.6, 126.8, 116.3, 78.9; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2963,2924,2108,1596,1584$, $1490,1261,1204,1171,1094,1026,896,825 ; \operatorname{EIMS}(m / z)$: (rel intensity) $183\left(\mathrm{M}^{+}\right.$, 9), 141 (14), 128 (100), 111 (13), 99 (23), 73 (10), 65 (15); HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{OCl}[\mathrm{M}]$: 183.0199; found: 183.0203.

2-Azido-2,3-dihydrobenzo[b][1,4]dioxine (25). Colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): δ 6.99-6.91 (m, 4H), 5,59 (t, $\left.J=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.15-4.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.7,140.6,122.7,122.3,117.7,117.3,82.7,65.2$, IR (neat): v $\left(\mathrm{cm}^{-1}\right) 2962,2930,2118,1597,1495,1263,1113,1093,906,833,749 ;$ EIMS (m/z): (rel intensity) $177\left(\mathrm{M}^{+}, 46\right), 135$ (14), 121 (100), 109 (15), 93 (9), 81 (13), 63 (18), 52 (12); HRMS calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$ [M]: 177.0538; found: 177.0537.

(5R,8R,9S,10S,13R,14S,17R)-17-((2R)-4-Azidopentan-2-yl)-10,13-dimethyltetrad ecahydro-1H-cyclopenta $[a]$ phenanthren-3(2H)-one (26). This compound was isolated as the mixture of two diastereoisomers in $\sim 1: 1$ ratio. Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of two stereoisomers): $\delta 3.53-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{t}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{td}, J=14.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}$, $3 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.59-0.83(\mathrm{~m}, 26 \mathrm{H}), 0.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 213.3,56.7,56.6,56.4,56.0,55.2,44.3,42.8,42.3,42.2,40.7,40.1$, $40.0,37.2,37.0,35.5,34.8,33.7,33.1,28.5,28.3,26.6,25.7,24.1,22.6,21.1,20.5$, 19.0, 18.7, 18.4, 12.0, 11.9; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2936,2865,2100,1715,1446,1378$, 1256; EIMS (m/z): (rel intensity) 357 (2), 342 (10), 288 (1), 231 (3), 176 (5), 124 (100), 111 (16), 98 (18), 84 (21), 57 (15); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{NO}\left[\mathrm{M}-\mathrm{N}_{2}\right]$: 357.3032; found: 357.3029 .

1-Azidotridecane (27). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.25$ ($\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{br} \mathrm{s}, 20 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 51.5,31.9,29.6,29.5,29.3,29.1,28.8,26.7,22.7,14.1 ;$ IR (neat): v (cm^{-1}) 2925, 2854, 2096, 1466, 1256; EIMS (m/z): (rel intensity) 196 (6), 168 (4), 154 (7), 140 (6), 126 (7), 112 (12), 98 (19), 84 (39), 70 (100), 56 (35), 43 (46); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}$ [M-HN N_{2} : 196.2065; found: 196.2061.

4-(2-Azidobutyl)benzoic acid (29). White solid, mp: 100-102 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.66$ (br, 1H), 8.08 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$),
3.53-3.46(m, 1H), 2.93-2.83(m, 2H), 1.70-1.52 (m, 2H), $1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 172.1,144.4,130.5,129.4,127.8,65.2,40.6,27.2,10.5 ;$ IR (KBr): $v\left(\mathrm{~cm}^{-1}\right)$ 2926, 2102, 1675, 1610, 1427, 1321, 1293, 1184, 945, 755; ESI-MS (m/z): $218\left[\mathrm{M}^{+}-\mathrm{H}\right]$; HRMS calcd. for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}-\mathrm{H}]$: 218.0935; found: 218.0933.

4-Azido-4-methylpentanoic acid (30). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $2.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 178.9,60.6,35.9,29.1,25.8$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2976,2933,2100,1712$, 1418, 1372, 1297, 1259, 1209, 1131; EIMS (m/z): (rel intensity) 115 (40), 97 (62), 84 (7), 73 (45), 69 (91), 56 (100), 41 (40); HRMS calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{2}\left[\mathrm{M}-\mathrm{N}_{3}\right]$: 115.0759; found: 115.0761.

1-(6-Azidohex-3-en-1-yl)-4-chlorobenzene (33). This compound was isolated as the mixture of two stereoisomers in about 82:18 ratio determined by ${ }^{1} \mathrm{H}$ NMR (400 MHz). Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (mixture of two stereoisomers): $\delta 7.23$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.59-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.34(\mathrm{~m}, 1 \mathrm{H}), 3.24$ /3.15 ($2 \mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.2,132.4,131.5,129.9,129.8,128.4,128.3,126.7,125.9,51.0$, 50.9, 35.0, 34.2, 32.1, 29.1, 27.0; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2927,2857,2096,1492,1452$, 1262, 1092, 1015, 969, 817; EIMS (m/z): (rel intensity) 206 (6), 152 (4), 127 (34), 125 (100), 89 (9), 82 (12); HRMS calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NCl}\left[\mathrm{M}-\mathrm{HN}_{2}\right]$: 206.0737; found: 206.0739.

5. Synthesis of (-)-Indolizidine 209D and 167B

To the solution of benzyl 2-oxocyclopentanecarboxylate ($3.92 \mathrm{~g}, 18 \mathrm{mmol}$) and L-valine tert-butyl ester ($4.70 \mathrm{~g}, 27 \mathrm{mmol}$) in benzene $(150 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ $(0.50 \mathrm{~mL})$, and the reaction mixture was heated to reflux using Dean-Stark apparatus for 12 h . The resulting mixture was cooled down to rt and washed successively with aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$, saturated NaCl solution $(100 \mathrm{~mL})$. The aqueous phase was extracted with ether $(100 \mathrm{~mL} \times 4)$. The combined organic phase was dried over anhydrous NaSO_{4}. Evaporation of the solvent gave the crude product, which was purified by column chromatography on silica gel with hexane/EtOAc (10 : 1 , v:v) to give compound $35(6.52 \mathrm{~g}, 97 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+77.9(\mathrm{c} 0.80$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65(\mathrm{br}, 1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.18(\mathrm{AB}, J$ $=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2,167.8,163.7$, $137.4,128.3,127.6,127.5,94.3,81.6,64.3,63.8,32.3,31.7,29.2,28.0,20.9,19.2$, 17.7; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2965,1735,1663,1604,1456,1369,1261,1154,1131$; ESI-MS (m/z): $374\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]: 396.2145$; found: 396.2131.

n-BuLi ($1 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 2.5 mmol) was added to the solution of ${ }^{i} \mathrm{Pr}_{2} \mathrm{NH}(0.36$
$\mathrm{mL}, 2.5 \mathrm{mmol})$ in toluene $(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h. A solution of compound $\mathbf{3 5}(0.75 \mathrm{~g}, 2 \mathrm{mmol})$ in toluene (2 mL) was then added at $-78{ }^{\circ} \mathrm{C}$ and the resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . HMPA $(0.44 \mathrm{~mL}, 2.5$ mmol) was added and the reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Alkyl iodide (2.5 mmol) was added and the reaction mixture was stirred at $-25{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was then warmed up to rt and stirred overnight. The reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ and the resulting mixture was stirred at room temperature for 1 h and then extracted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL} \times 4)$. . The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated to leave the crude product, which was purified by column chromatography on silica gel with hexane/EtOAc (20:1, v:v) as the eluent to give compound $\mathbf{3 6}$.

Compound 36a ($0.470 \mathrm{~g}, 78 \%$), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}=+15.0$ (c $0.40, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.13(\mathrm{AB}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.48$ $(\mathrm{m}, 1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.23(\mathrm{br} \mathrm{s}, 8 \mathrm{H}), 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 214.9,170.9$, $135.7,128.5,128.2,127.9,66.9,60.7,38.0,33.9,32.6,31.5,29.5,24.7,22.5,19.6$, 14.0; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2955,2929,2858,1751,1726,1456,1273,1223,1137,697 ;$ ESI-MS (m/z): $325\left[\mathrm{M}^{+}+\mathrm{Na}\right]$; HRMS calcd for $\mathrm{C}_{19} \mathrm{~N}_{26} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]: 325.1774$; found: 325.1771. The chiral HPLC analysis indicated that the ee was 83%.

Compound 36b (0.398 g , 77\%), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}=+9.3$ (c 0.60, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 2.57-2.48(\mathrm{~m}, 1 \mathrm{H})$, 2.43-2.35 (m, 1 H$), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H})$, 1.37-1.15 (m, 2H), $0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 214.8$, $170.9,135.7,128.5,128.2,127.8,66.9,60.7,38.0,36.0,32.6,19.6,18.2,14.3$; IR
(neat): $v\left(\mathrm{~cm}^{-1}\right) 2962,1751,1725,1456,1274,1220,1143,1101,738,698 ;$ ESI-MS $(\mathrm{m} / \mathrm{z}): 283\left[\mathrm{M}^{+}+\mathrm{Na}\right]$; HRMS calcd for $\mathrm{C}_{16} \mathrm{~N}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]$: 261.1485; found: 261.1485 . The chiral HPLC analysis indicated that the ee was 88%.

To a 100 mL flask containing KHMDS ($6 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 6 mmol) in THF (20 mL) was added the solution of compound $36(5 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then the solution of $\mathrm{PhNTf}_{2}(1.8 \mathrm{~g}, 5$ mmol) in THF (15 mL) was added dropwise over 10 min . The solution was maintained at $-78^{\circ} \mathrm{C}$ for 1 h , and then warmed up to room temperature. The reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(20$ $\mathrm{mL} \times 4$). The combined organic phase were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude material was chromatographed on silica gel with hexane/ether (20:1) as the eluent to afford compound $\mathbf{3 7}$.

Compound 37a (1.97 g, 91\%), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{26}=+24.2$ (c 0.50, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.11 (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 2 \mathrm{H})$, $1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 172.7,148.4,135.6,128.5,128.2,128.1,118.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=318.9 \mathrm{~Hz}\right), 117.8$, $67.0,57.7,34.7,31.6,31.5,29.4,26.2,24.2,22.5,14.0$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2932,2861$, 1736, 1424, 1249, 1214, 1142, 840, 697, 608; ESI-MS (m/z): 457 [M $\left.{ }^{+}+\mathrm{Na}\right]$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NaO}_{5} \mathrm{~F}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]$: 457.1267; found: 457.1273.

Compound 37b ($1.80 \mathrm{~g}, 92 \%$), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{26}=+27.6$ (c $0.44, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 2 \mathrm{H})$, $1.66-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 172.7,148.4,135.6,128.5,128.2,128.1,118.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=318.9 \mathrm{~Hz}\right), 117.8$, $67.0,57.7,36.9,31.6,26.2,17.6,14.2$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2963,2878,1736,1655$, 1423, 1215, 1141, 839, 697; ESI-MS (m/z): $415\left[\mathrm{M}^{+}+\mathrm{Na}\right]$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{NF}_{3} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]: 410.1244$; found: 410.1239.

The zinc reagent $\mathrm{IZnCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ was prepared by literature method.
To the solution of compound 37 (3.5 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.079 \mathrm{~g}, 0.35 \mathrm{mmol})$, 1,1'-bis(diphenylphosphino)ferrocene ($0.39 \mathrm{~g}, 0.70 \mathrm{mmol}$) in THF (18 mL) was added $\mathrm{IZnCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$ (14 mmol in 15 mL THF). The resulting mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 18 h . The reaction was quenched with aqueous $\mathrm{NHCl}_{4}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL} \times 4)$. The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated to give the crude product, which was purified by chromatography on silica gel with hexane/EtOAc (20:1) as the eluent to afford compound 38.

Compound 38a ($0.98 \mathrm{~g}, 73 \%$), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27}=+55.6$ (c $0.44, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.08(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.22(\mathrm{~m}, 7 \mathrm{H}), 2.01-1.94(\mathrm{~m}$, $1 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.11(\mathrm{~m}, 11 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.5,173.2,143.9,136.3,128.4,128.0,127.9$, $126.8,66.1,61.4,60.3,35.7,33.6,32.7,31.7,30.7,29.7,24.7,22.7,22.6,14.2,14.0$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2930,2857,1732,1214,1155,697$; ESI-MS (m/z): $409\left[\mathrm{M}^{+}+\mathrm{Na}\right]$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]: 409.2349$; found: 409.2353.

Compound 38b ($0.88 \mathrm{~g}, 73 \%$), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27}=+66.0$ (c 0.40, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{AB}, J=12.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.11(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.21(\mathrm{~m}, 7 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}$, $1 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.15(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.5,173.2,143.9,136.3,128.4,128.0,127.8,126.8,66.1,61.4$, $60.3,37.9,33.6,32.7,30.7,22.7,18.0,14.6,14.2$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2956,2872$, 1732, 1456, 1217, 1155, 1106, 1030, 698; ESI-MS (m/z): 367 [M $\left.{ }^{+}+\mathrm{Na}\right] ;$ HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]: 345.2060$; found: 345.2059.

To the solution of compound $\mathbf{3 8}(3 \mathrm{mmol})$ in EtOH (30 ml) was added $\mathrm{Pd} / \mathrm{C}(30 \% \mathrm{wt})$, and then the resulting mixture was hydrogenated for 24 h at $20^{\circ} \mathrm{C}$. The reaction mixture was filtered and then filtrate was concentrated to give compound $\mathbf{3 9}$.

Compound 39a (0.89 g , 99\%), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{26}=+28.3$ (c $0.42, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.12(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.19(\mathrm{~m}$, 2H), 2.01-1.79 (m, 4H), 1.72-1.36 (m, 5H), 1.27-1.23 (m, 12H), $0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.4,173.6,60.3,56.8,50.3,38.0,33.9,33.7$, $31.7,30.2,29.9,26.3,25.8,22.6,22.2,14.2,14.0$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2933,2860$, 1737, 1693, 1456, 1374, 1251, 1182, 1161; ESI-MS (m/z): $321\left[\mathrm{M}^{+}+\mathrm{Na}\right] ;$ HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]: 321.2036$; found: 321.2025.

Compound 39b (0.76 g , 99\%), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{27}=+29.0$ (c $0.30, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 4.12$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.42-2.35 (m, 1H), 2.30-2.19 (m, $2 \mathrm{H}), 2.04-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.18(\mathrm{~m}, 11 \mathrm{H}), 0.90(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 182.4,173.6,60.3,56.8,50.3,40.3,34.0,33.7,30.2,26.2,22.3,19.1$, 14.7, 14.2; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2959,2873,1737,1694,1456,1374,1252,1185,1161$, 1096, 1034; ESI-MS (m/z): $279[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{4}$, 257.1747; found, 257.1746.

Compound $\mathbf{4 0}$ was prepared from the corresponding acid $\mathbf{3 9}$ according to the typical procedure for silver-catalyzed decarboxylative azidation of aliphatic carboxylic acids.

Compound 40a (0.056 g , 94\%), Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 4.15-4.09 (m, 2H), 2.40-2.18 (m, 2H), 1.97-1.23 (m, 22H), $0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 173.6,173.5,74.6,74.2,60.4,60.3,48.4,47.2,37.2$, $35.0,34.0,33.2,33.1,33.0,31.7,29.7,29.6,28.6,25.0,24.8,24.5,24.1,22.6,20.8$, 20.7, 14.2, 14.0; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2960,2872,2099,1737,1261,1180,1097,1023$, 802; EIMS (m/z): (rel intensity) 266 (1), 253 (7), 210 (12), 180 (43), 138 (32), 110 (41), 97 (100), 55 (38), 41 (55); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NO}_{2}\left[\mathrm{M}-\mathrm{HN}_{2}\right]:$ 266.2120; found: 266.2119 .

Compound 40b ($0.049 \mathrm{~g}, 97 \%$), Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 4.17-4.10 (m, 2H), 2.41-2.19 (m, 2H), 1.99-1.31 (m, 13H), 1.28-1.23 (m, 3H), $0.97-0.90(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.6,173.5,74.6,74.2,60.4$, $60.3,48.3,47.2,39.5,35.5,35.0,34.0,33.2,33.0,29.6,28.5,25.0,24.5,20.9,20.7$, 18.2, 17.5, 14.5, 14.2; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 2962,2100,1737,1261,1096,1021,802$; EIMS (m/z): (rel intensity) 224 (1), 211 (14), 180 (7), 165 (19), 138 (67), 124 (47), 96 (100), 81 (36), 67 (37), 55 (57), 41 (55); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{2}\left[\mathrm{M}-\mathrm{HN}_{2}\right]$: 224.1651; found: 224.1648 .

To the solution of compound $\mathbf{4 0}(0.30 \mathrm{mmol})$ in THF $(0.50 \mathrm{~mL})$ was added LiBH_{4}
($0.30 \mathrm{~mL}, 2 \mathrm{M}$ in THF, 0.60 mmol) at $0{ }^{\circ} \mathrm{C}$, the resulting mixture was stirred at room temperature for 48 h . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$, diluted with water $(1 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL} \times 4)$. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the crude product, which was purified by chromatography on silica gel with hexane/EtOAc (5:1) as the eluent to give compound 41.

Compound 41a ($0.064 \mathrm{~g}, 84 \%$), Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 3.69-3.60 (m, 2H), 2.00-1.84 (m, 2H), 1.82-1.24 (m, 20H), $0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 74.8,74.4,63.1,63.0,49.3,47.8,37.3,35.2,34.1$, $33.1,31.7,31.4,30.0,29.8,29.7,28.9,26.0,25.3,24.9,24.2,22.6,20.9,20.8,14.0$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right)$ 2933, 2861, 2097, 1457, 1263, 1057; EIMS (m/z): (rel intensity); 224 (2), 210 (5), 194 (10), 180 (41), 166 (17), 138 (26), 110 (70), 96 (100), 81 (35), 67 (47), 55 (42), 41 (51); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}\left[\mathrm{M}-\mathrm{HN}_{2}\right]: 224.2014$; found: 224.2012.

Compound 41b ($0.054 \mathrm{~g}, 85 \%$), Colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 3.66-3.61 (m, 2H), 1.99-1.84 (m, 2H), 1.80-1.21 (m, 14H), 0.96-0.92 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 74.8,74.4,63.1,62.9,49.3,47.7,39.6,35.5,35.2,34.1$, $31.7,31.4,30.0,28.9,26.0,25.3,20.9,20.8,18.3,17.6,14.5$; IR (neat): $v\left(\mathrm{~cm}^{-1}\right) 3339$, 2959, 2872, 2099, 1456, 1263, 1058; EIMS (m/z): (rel intensity); 182 (2), 168 (5), 152 (16), 138 (48), 124 (58), 110 (50), 96 (100), 81 (39), 67 (70), 55 (55), 41 (68); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NO}$ [$\mathrm{M}-\mathrm{HN}_{2}$]: 182.1545 ; found: 182.1546.

41a ($\mathrm{R}=n$-Hex) 41b ($\mathrm{R}=n-\mathrm{Pr}$)

(-)-indolizidine 209D (65\%)
(-)-indolizidine 167B (63\%)

To the solution of $\mathrm{NaH}(0.024 \mathrm{~g}, 60 \%$ in oil, 0.6 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added the solution compound $41(0.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , then $\mathrm{Tf}_{2} \mathrm{O}(102 \mathrm{mg}, 0.36 \mathrm{mmol})$ was added. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 8 h and then warmed up to rt and stirred overnight. $\mathrm{NaBH}_{4}(0.080 \mathrm{~g}, 2.1 \mathrm{mmol})$ in 15% aqueous $\mathrm{NaOH}(0.5 \mathrm{~mL})$ was added and the reaction mixture was stirred at rt for 3 h . The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL} \times 3)$ The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo to give the crude product, which was purified by column chromatography on silica gel with pentane $/ \mathrm{Et}_{2} \mathrm{O}(10: 1)$ as the eluent to afford (-)-Indolizidine 209D and 167B.

(-)-Indolizidine 209D
(-)-Indolizidine 209D ($0.041 \mathrm{~g}, 65 \%$), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{22}=-56.4$ (c $0.45, \mathrm{CHCl}_{3}$). The chiral GC analysis indicated that the ee was 83%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 3.23 (td, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.60(\mathrm{~m}, 9 \mathrm{H}), 1.44-1.10(\mathrm{~m}, 14 \mathrm{H}), 0.85(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 65.0,63.9,51.5,34.6,31.8,31.0,30.8,30.5$, 29.7, 25.8, 24.7, 22.6, 20.4, 14.1. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched nicely with those reported in the literature.

(-)-Indolizidine 167B
(-)-Indolizidine 167B ($0.032 \mathrm{~g}, 63 \%$), Colorless oil; $[\alpha]_{\mathrm{D}}{ }^{24}=-50.7$ (c $0.5, \mathrm{CHCl}_{3}$). The chiral GC analysis indicated that the ee was 86%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 3.23 (t, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.59(\mathrm{~m}, 9 \mathrm{H}), 1.44-1.10(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 65.0,63.7,51.5,36.9,31.0,30.8,30.5,24.7$, 20.4, 19.1, 14.5. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched nicely with those reported in the literature.

6. Optical Resolution of Compound 39

Compound 39 (0.50 mmol) and (S)-2-amino-2-phenylethanol ($0.034 \mathrm{~g}, 0.25$ $\mathrm{mmol})$ were dissolved in $\mathrm{Et}_{2} \mathrm{O} /$ Hexane ($1: 3,12 \mathrm{~mL}$). After an appropriate period of time, the precipitated salt was filtered and acidified with $1 \mathrm{~N} \mathrm{HCl}(1 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$. The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL} \times 4)$ and then the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the removal of solvent, optically pure 39 was obtained. (39a: $[\alpha]_{\mathrm{D}}{ }^{26}=+35.4\left(\mathrm{c} 0.34, \mathrm{CHCl}_{3}\right)$, 39b: $[\alpha]_{\mathrm{D}}{ }^{25}=$ $+39.1\left(\mathrm{c} 0.40, \mathrm{CHCl}_{3}\right)$).

7. References of Known Compounds.

entry	references	compound
1	Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 4258.	$\begin{gathered} \text { A-1, A-4, } \\ \text { A-6-10, A-14 } \\ \text { A-16, A-22, } \\ \text { A-23, A-31 } \end{gathered}$
2	Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 10401.	$\begin{gathered} \text { A-3, A-21, } \\ \text { A-26, A-29, } \\ \text { A-33 } \end{gathered}$
3	Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. $\text { 2012, } 134,14330 .$	A-5, A-11
4	Yamada, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2005, 70, 5471.	A-12
5	Lellmann, E.; Schleich, C. Ber. Dtsch. Chem. Ges. 1887, 20, 434.	A-13
6	Nyfeler, E.; Renaud, P. Org. Lett. 2008, 10, 985.	A-19, 2, 19
7	Cintas, P.; Martina, K.; Robaldo, B.; Garella, D.; Boffa, L.; Cravotto, G. Collect. Czech. Chem. Commun. 2007, 72, 1014.	28
8	Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.	31
9	Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, $4639 .$	32
10	Christoffers, J.; Önal, N. Eur. J. Org. Chem. 2000, 1633.	34
11	Yu, R. T.; Lee, E. E.; Malik, G.; Rovis, T. Angew. Chem. Int. Ed. 2009, 48, 2379.	(-)-Indolizidine 209D
12	Kapat, A.; Nyfeler, E.; Giuffredi, G. T.; Renaud, P. J. Am. Chem. Soc. 2009, 131, 17746.	(-)-Indolizidine 167B

8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of All Substrates

Compound A-1

Compound A-2

Compound A-3

Compound A-4

Compound A-5

Compound A-6

Compound A-7

i
$\underbrace{10}_{-12}$

Compound A-8

Compound A-9

Compound A-10

Compound A-11

Compound A-12

Compound A-13

Compound A-14

Compound A-15

 $\xrightarrow{-1}$

Compound A-16

Compound A-17

Compound A-18

Compound A-19

Compound A-20

Compound A-21

Compound A-22-cis

Compound A-22-trans

Compound A-23

Compound A-24

Compound A-25

Compound A-26

Compound A-27

Compound A-28

Compound A-29

Compound A-30

Compound A-31

Compound A-33

9. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectra of All Products

Compound 1

Compound 2

Compound 3

Compound 4

Compound 5

Compound 6

Compound 7

$\square<\mathrm{N}_{3} \mathrm{C}_{8} \mathrm{H}_{17}$

Compound 8

Compound 9

Compound 10

Compound 11

Compound 12

Compound 13

Compound 14

Compound 15

Compound 16

Compound 17

Compound 18

Compound 19

Compound 20

Compound 21

Compound 22

Compound 23

Compound 24

Compound 25

Compound 26

Compound 27

Compound 28

Compound 29

Compound 30

Compound 31

Compound 32

Compound 33

Compound 34

Compound 35

Compound 36a

Compound 36b

Compound 37a

Compound 37b

Compound 38a

Compound 38b

Compound 39a

Compound 39b

Compound 40a

Compound 40b

Compound 41a

Compound 41b

tol

(-)-Indolizidine 209D

(-)-Indolizidine 167B

