Supporting Information for

Silver-Catalyzed Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in Aqueous Solution

Chao Liu,^a Xiaoqing Wang,^a Zhaodong Li,^a Lei Cui,^a and Chaozhong Li*,^{a, b}

^a Key Laboratory of Organofluorine Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China, and ^b School of Chemical Engineering, Ningbo University of Technology, No. 89 Cuibai Road, Ningbo 315016, P. R. China

Table of Contents

1.	Characterizations of New Substrates.	S2
2.	Table S1. Optimization of Reaction Parameters.	S3
3.	Typical Procesure for Silver-Catalyzed Decarboxylative Azidation	S3
4.	Characterizations of New Products.	S4 – S13
5.	Synthesis of (-)-Indolizidine 167B and 209D.	S14 – S23
6.	Optical Resolution of Acid 39.	S23
7.	References for Known Compounds.	S24
8.	¹ H and ¹³ C Spectra of All Substrates.	S25 – S57
9.	¹ H and ¹³ C Spectra of All Products.	S58 - S106

1. Characterizations of New Substrates

The following substrates were commercially available and recrystallized prior to use: 1-adamantanecarboxylic acid (A-2), 2-methyl-4-oxo-4-phenylbutanoic acid (A-18), 4-chlorophenoxyaceticacid (A-24), 2,3-dihydro-benzo[b][1,4] dioxine-2-carboxylic acid (A-25), tetradecanoic acid (A-27), stearic acid (A-28), 2,2-dimethylpentanedioic acid (A-30). The rest substrates were readily prepared by conventional methods.

Characterizations of New Substrates:

2-Allyltetradecanoic acid (A-15). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 5.82-5.72 (m, 1H), 5.10-5.02 (m, 2H), 2.48-2.23 (m, 3H), 1.66-1.46 (m, 2H), 1.26 (br s, 20H), 0.88 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 182.4, 135.2, 116.9, 45.2, 36.1, 31.9, 31.5, 29.6, 29.5, 29.4, 29.3, 27.2, 22.7, 14.1; IR (neat): v (cm⁻¹) 3080, 2925, 2854, 1708, 1643, 1465, 1417, 1285, 1249, 916; EIMS (m/z): (rel intensity) 268 (M⁺, 6), 129 (8), 113 (68), 100 (100), 83 (26), 69 (47), 57 (35), 55 (48), 43 (45), 41 (51); HRMS calcd for C₁₇H₃₂O₂ [M]: 268.2402; found: 268.2400.

7-Bromo-2-ethylheptanoic acid (A-17). Colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 11.3 (br, 1H), 3.34 (t, J = 6.8 Hz, 2H), 2.28-2.21 (m, 1H), 1.84-1.77 (m, 2H), 1.64-1.28 (m, 8H), 0.89 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 184.8, 46.9, 33.6, 32.5, 31.4, 28.0, 26.4, 25.1, 11.7; IR (neat): v (cm⁻¹) 2937, 1705, 1462, 1416, 1228, 943, 783, 646; EIMS (m/z): (rel intensity) 157 (5), 139 (6), 113 (33), 100 (33), 88 (100), 73 (47), 69 (31), 55 (29), 41 (28); HRMS calcd for C₉H₁₇O₂ [M-Br]: 157.1229; found: 157.1225.

	n-C ₁₂ H ₂₅	't `CO₂H + 1	SO ₂ N ₃	conditions → <i>n</i> - 10 h	$C_{12}H_{25}$ N ₃	
Enters	AgNO ₃	$K_2S_2O_8$	3-PySO ₂ N ₃	Solvent	Temp	Yield
Entry	(equiv)	(equiv)	(equiv)	(v:v)	(°C)	(%)
1	0.2	2	2	CH ₂ Cl ₂ /H ₂ O (1:1)	50	18
2	0.2	2	2	H_2O	50	35
3	0.2	2	2	acetone/H ₂ O (1:1)) 50	45
4	0.2	2	2	CH ₃ CN/H ₂ O (1:1)) 50	76
5	0.2	2	2	CH ₃ CN/H ₂ O (1:1)) 40	28
6	0.2	1.5	2	CH ₃ CN/H ₂ O (1:1)) 50	66
7	0.2	2	3	CH ₃ CN/H ₂ O (1:1) 50	98
8	0	2	3	CH ₃ CN/H ₂ O (1:1)) 50	0
9	0.2	0	3	CH ₃ CN/H ₂ O (1:1)) 50	0

2. Table S1. Optimization of Reaction Parameters

3. Typical Procedure for Silver-Catalyzed Decarboxylative Azidation

2-Ethyltetradecanoic acid (A-1, 51.2 mg, 0.20 mmol), AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (108 mg, 0.40 mmol) and 3-PySO₂N₃ (110 mg, 0.60 mmol) were placed in a Schlenk tube. Acetonitrile (1 mL) and water (1 mL) were then added under nitrogen atmosphere. The reaction solution was stirred at 50 °C for 10 h. The resulting mixture was cooled down to RT and extracted with CH₂Cl₂ (5 mL × 4). The combined organic phase was dried over anhydrous Na₂SO₄. After the removal of solvent under reduced pressure, the crude product was purified by column chromatography on silica gel with hexane as the eluent to give the pure product 3-azidopentadecane (1) as colorless oil. Yield: 49.6 mg (98%). R_f = 0.55 (hexane).

4. Characterizations of New Products

3-Azidopentadecane (1). Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ = 3.21-3.14 (m, 1H), 1.60-1.47 (m, 4H), 1.26 (brs, 20H), 0.98 (t, *J* = 7.2 Hz, 3H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 64.6, 33.9, 31.9, 29.6, 29.5, 29.4, 29.3, 27.4, 26.1, 22.7, 14.1, 10.5; IR (neat): v (cm⁻¹) 2925, 2854, 2096, 1464, 1273, 1253; EIMS: *m/z* (rel intensity) 224 (5), 196 (100), 168 (5), 140 (7), 126 (11), 112 (15), 98 (60), 84 (29), 71 (62), 58 (34); HRMS calcd for C₁₃H₂₆N (M–C₂H₅N₂): 196.2065; found: 196.2064.

2-Azido-2-methylpropane-1,3-diyl diacetate (3). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 4.11-4.05 (AB, J = 16 Hz, 4H), 2.08 (s, 6H), 1.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 170.3, 66.6, 61.1, 20.6, 18.5; IR (neat): v (cm⁻¹) 2958, 2108, 1751, 1466, 1380, 1234, 1049, 604; ESI-MS (m/z): 238 [M+Na]⁺; HRMS calcd for C₈H₁₃N₃NaO₄ [M+Na]: 238.0798; found: 238.0803.

Me Me $n-C_{10}H_{21}$ N

2-Azido-2-methyldodecane (4). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 1.43-1.39 (m, 2H), 1.20 (brs, 16H), 1.17 (s, 6H), 0.81 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 61.7, 41.4, 31.9, 29.9, 29.6, 29.5, 29.3, 25.9, 24.2, 22.7, 14.1; IR (neat): v (cm⁻¹) 2928, 2855, 2095, 1467, 1388, 1369, 1260, 1143, 1096, 1019, 804, 722; EIMS (m/z): (rel intensity) 182 (10), 126 (3), 113 (3), 98 (13), 85 (17), 71 (31), 56 (100), 43 (20); HRMS calcd for C₁₂H₂₄N [M-CH₃N₂]: 182.1919; found, 182.1912.

$$n-C_4H_9$$
 Et
 $n-C_4H_9$ N₃

5-Azido-5-ethylnonane (5). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 1.57-1.46 (m, 6H), 1.35-1.25 (m, 8H), 0.94-0.87 (m, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 66.9, 35.6, 29.0, 25.6, 23.1, 14.0, 7.9; IR (neat): v (cm⁻¹) 2959, 2932, 2861, 2093, 1464, 1256; EIMS (m/z): (rel intensity) 155 (14), 140 (5), 112 (7), 99 (7), 84 (100), 71 (17), 57 (51), 41 (25); HRMS calcd for C₉H₁₈N [M-C₂H₅N₂]: 140.1439; found: 140.1436.

1-Azido-1-octylcyclohexane (6). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 1.68-1.65 (m, 2H), 1.56-1.50 (m, 7H), 1.39-1.29 (m, 15H), 0.89 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 64.2, 40.2, 34.6, 31.8, 30.0, 29.5, 29.2, 25.5, 23.2, 22.6, 22.1, 14.0; IR (neat): v (cm⁻¹) 2933, 2855, 2100, 1449, 1259, 1148, 902; EIMS (m/z): (rel intensity) 208 (1), 195 (11), 180 (4), 166 (21), 138 (10), 124 (19), 111 (37), 96 (100), 83 (26), 69 (32), 55 (32), 41 (24); HRMS calcd for C₁₄H₂₆N [M-HN₂]: 208.2065; found: 208.2067.

1-Azido-1-octylcyclopentane (7). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 1.82-1.59 (m, 8H), 1.55-1.50 (m, 2H), 1.44-1.36 (m, 2H), 1.29 (brs, 10H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 73.7, 39.0, 36.8, 31.8, 30.0, 29.5, 29.2, 25.1, 23.7, 22.6, 14.0; IR (neat): v (cm⁻¹) 2928, 2855, 2097, 1465, 1257; EIMS (m/z): (rel intensity) 194 (3), 181 (6), 166 (13), 152 (15), 124 (19), 110 (47), 97 (100), 82 (33), 55 (29), 41 (27); HRMS calcd for C₁₃H₂₄N [M-HN₂]: 194.1909; found: 194.1907.

Cyclohexyl 4-azido-4-methylpentanoate (8). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 4.78-4.72 (m, 1H), 2.36 (t, J = 8.0 Hz, 2H), 1.88-1.79 (m, 4H), 1.76-1.63 (m, 2H), 1.58-1.49 (m, 2H), 1.46-1.32 (m, 4H), 1.27 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 172.6, 72.8, 60.8, 36.2, 31.6, 29.8, 25.8, 25.3, 23.7; IR (neat): v (cm⁻¹) 2938, 2860, 2099, 1732, 1451, 1371, 1260, 1185, 1124, 1038, 1016; ESI-MS (m/z): 262 [M+Na]⁺; HRMS calcd for C₁₂H₂₁N₃NaO₂ [M+Na]: 262.1526; found: 262.1527.

(2-Azidopropane-1,3-diyl)dicyclohexane (9). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 3.42-3.35 (m, 1H), 1.78-1.64 (m, 10H), 1.47-1.39 (m, 4H), 1.31-1.10 (m, 8H), 0.97-0.82 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 57.5, 42.4, 34.5, 33.8, 32.8, 26.5, 26.3, 26.1; IR (neat): v (cm⁻¹) 2924, 2852, 2100, 1448, 1342, 1260, 965; EIMS (m/z): (rel intensity) 220 (2), 178 (10), 152 (12), 124 (100), 109 (7), 97 (23), 81 (28), 67 (22), 55 (98), 41 (34); HRMS calcd for C₁₅H₂₆N [M-HN₂]: 220.2065; found: 220.2061.

(2-Azidobutyl)benzene (10). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.24 (t, *J* = 7.6 Hz, 2H), 7.18-7.13 (m, 3H), 3.40-3.33 (m, 1H), 2.73 (d, *J* = 7.2 Hz, 2H), 1.60-1.40 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 137.9, 129.3, 128.5, 126.7, 65.7, 40.6, 27.1, 10.5; IR (neat): v (cm⁻¹) 2965, 2927, 2877, 2855, 2097, 1496, 1455, 1344, 1259, 743, 699; EIMS (m/z): (rel intensity) 146 (1), 118 (4), 91 (100), 77 (2), 65 (9), 51 (2), 39 (3); HRMS calcd for C₁₀H₁₂N [M-HN₂]: 146.0970; found: 146.0971.

1-(2-Azidobutyl)-4-methylbenzene (11). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.13-7.08 (m, 4H), 3.44-3.38 (m, 1H), 2.76 (d, J = 6.8 Hz, 2H), 2.32 (s, 3H), 1.64-1.48 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 136.2, 134.8, 129.2, 129.1, 65.8, 40.1, 27.0, 21.1, 10.6; IR (neat): v (cm⁻¹) 2925, 2854, 2096, 1516, 1461, 1378, 1341, 1254, 803; EIMS (m/z): (rel intensity) 189 (M⁺, 2), 132 (4), 105 (100), 91 (9), 77 (8), 63 (2); HRMS calcd for C₁₁H₁₅N₃ [M]: 189.1266; found: 189.1270.

1-(2-Azidopropyl)-4-(*tert***-butyl)benzene (12).** Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.32 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 3.70-3.62 (m, 1H), 2.80 (dd, J = 13.6, 7.2 Hz, 1H), 2.67 (dd, J = 13.6, 6.4 Hz, 1H), 1.31 (s, 9H), 1.25 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.6, 134.7, 129.0, 125.4, 59.0, 42.0, 34.4, 31.4, 19.1; IR (neat): v (cm⁻¹) 3025, 2965, 2869, 2104, 1517, 1458, 1364, 1269, 1249, 1124, 1109, 1021, 837; EIMS (m/z): (rel intensity) 217 (M⁺, 3), 175 (2), 147 (100), 132 (22), 117 (17), 105 (12), 91 (11), 65 (4); HRMS calcd for C₁₃H₁₉N₃ [M]: 217.1579; found: 217.1577.

1-(2-Azidobutyl)-4-nitrobenzene (13). Light yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 3.53-3.47 (m, 1H), 2.95 (dd, J =14.0, 4.8 Hz, 1H), 2.85 (dd, J = 14.0, 8.4 Hz, 1H), 1.71-1.55 (m, 2H), 1.05 (t, J = 7.2Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 147.0, 145.7, 130.2, 123.8, 65.1, 40.3, 27.4, 10.5; IR (neat): v (cm⁻¹) 2969, 2933, 2100, 1606, 1519, 1347, 1270, 1110, 855, 745, 699; EIMS (m/z): (rel intensity) 192 (2), 179 (4), 137 (100), 120 (23), 107 (44), 90 (71), 78 (52), 56 (40); HRMS calcd for C₁₀H₁₂N₂O₂ [M-N₂]: 192.0899; found:

4,4'-(2-Azidopropane-1,3-diyl)bis(chlorobenzene) (14). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 8.0 Hz, 4H), 7.15 (d, J = 8.0 Hz, 4H), 3.75-3.69 (m, 1H), 2.86-2.74 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 135.9, 132.8, 130.6, 128.8, 65.0, 39.9; IR (neat): v (cm⁻¹) 2922, 2111, 1492, 1409, 1341, 1273, 1247, 1092, 1016, 831, 806; EIMS (m/z): (rel intensity) 305 (M⁺, 4), 139 (8), 125 (100), 91 (28), 84 (98), 49 (30); HRMS calcd for C₁₅H₁₃N₃Cl₂[M]: 305.0487; found: 305.0488.

4-Azidohexadec-1-ene (15). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 5.87-5.76 (m, 1H), 5.17-5.11 (m, 2H), 3.35-3.29 (m, 1H), 2.30 (t, *J* = 6.8 Hz, 2H), 1.55-1.35 (m, 2H), 1.26 (brs, 20H), 0.88 (t, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 134.0, 118.0, 62.3, 38.8, 33.9, 31.9, 29.6, 29.5, 29.4, 29.3, 26.0, 22.7, 14.1; IR (neat): v (cm⁻¹) 2926, 2854, 2101, 1465, 1377, 1340, 1256, 918; EIMS (m/z): (rel intensity) 236 (1), 196 (13), 138 (4), 110 (11), 96 (26), 84 (50), 71 (57), 57 (100), 43 (84); HRMS calcd for C₁₆H₃₀N [M-HN₂]: 236.2378; found: 236.2381.

N₃

(3-Azidobutyl)benzene (16). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.29 (t, *J* = 7.6 Hz, 2H), 7.21-7.18 (m, 3H), 3.47-3.39 (m, 1H), 2.79-2.62 (m, 2H), 1.87-1.71 (m, 2H), 1.29 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 141.2, 128.5, 128.4, 126.0, 57.2, 37.9, 32.3, 19.5; IR (neat): v (cm⁻¹) 2924, 2852, 2098, 1458, 1259, 1098; EIMS (m/z): (rel intensity) 146 (77), 105 (43), 132 (15), 117 (13), 104 (100), 91 (99), 77 (27), 65 (19); HRMS calcd for C₁₀H₁₂N [M-HN₂]: 146.0970; found: 146.0974.

6-Azido-1-bromooctane (17). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 3.41 (t, *J* = 6.8 Hz, 2H), 3.21-3.15 (m, 1H), 1.90-1.84 (m, 2H), 1.60-1.37 (m, 8H), 0.98 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 64.4, 33.8, 33.7, 32.6, 27.9, 27.4, 25.3, 10.5; IR (neat): v (cm⁻¹) 2967, 2938, 2096, 1462, 1406, 1342, 1253; EIMS (m/z): (rel intensity) 206/204 (1/1), 178 (28)/176 (28), 107 (13)/109 (12), 98 (32), 84 (30), 69 (100), 56 (53), 41 (69); HRMS calcd for C₈H₁₅NBr [M-HN₂]: 204.0388; found: 204.0382.

3-Azido-1-phenylbutan-1-one (18). Lightyellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 7.6 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H), 4.18-4.10 (m, 1H), 3.18 (dd, J = 17.2, 7.2 Hz, 1H), 2.94 (dd, J = 17.2, 5.8 Hz, 1H), 1.30 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 197.1, 136.6, 133.5, 128.7, 128.1, 53.8, 44.7, 19.8; IR (neat): v (cm⁻¹) 3060, 2975, 2931, 2101, 1686, 1648, 1598, 1449, 1422, 1367, 1219, 919, 757, 689; ESI-MS (m/z): 212 [M+Na]⁺; HRMS calcd for C₁₀H₁₁N₃NaO [M+Na]: 212.0794; found: 212.0788.

(4-Azidopiperidin-1-yl)(phenyl)methanone (20). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.28 (m, 5H), 4.08 (br, 1H), 3.65-3.61 (m, 2H), 3.26 (br, 2H), 1.84 (br, 2H), 1.56 (br, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 135.7, 129.8, 128.5, 126.8, 57.2, 45.1, 39.5, 31.0, 30.4; IR (neat): v (cm⁻¹) 3480, 2929, 2864, 2097, 1632, 1446, 1363, 1248, 1021, 789, 732, 710; ESI-MS (m/z): 253 [M+Na]⁺; HRMS calcd for C₁₂H₁₄N₄NaO [M+Na]: 253.1060; found: 253.1056.

2-((4-Azidocyclohexyl)methyl)isoindoline-1,3-dione (21). This compound was isolated as the mixture of two stereoisomers in about 74:26 ratio determined by ¹H NMR (400 MHz). Colorless oil; ¹H NMR (400 MHz, CDCl₃) (mixture of two stereoisomers): δ 7.83-7.80 (m, 2H), 7.71-7.69 (m, 2H), 3.78 (br s, 0.7H), 3.56-3.52 (m, 2H), 3.25-3.18 (m, 0.3H), 2.00-1,78 (m, 4H), 1.55-1.09 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 134.0/133.9, 132.0/131.9, 123.3/123.2, 59.9/57.5, 43.2/43.1, 36.0/35.6, 30.9/28.9, 28.7/25.0; IR (neat): v (cm⁻¹) 2926, 2360, 2342, 2091, 1768, 1709, 1466, 1434, 1397, 1362, 1052, 724; ESI-MS (m/z): 307 [M+Na]⁺; HRMS calcd for C₁₅H₁₆N₄NaO₂ [M+Na]: 307.1166; found: 307.1179.

(2-Azidocyclohexyl)(phenyl)methanone (22). This compound was isolated as the mixture of two stereoisomers in about 74:26 ratio determined by ¹H NMR (400 MHz). Light yellow oil; ¹H NMR (400 MHz, CDCl₃) (mixture of two stereoisomers): δ 7.96/7.85 (2d, J = 7.6 Hz, 2H), 7.57-7.43 (m, 3H), 4.10 (br s, 0.3H), 3.85 (td, J = 10.8 4.4 Hz, 0.7H), 3.41/3.30 (2td, J = 10.8 Hz, 3.2 Hz, 1H), 2.19-2.09 (m, 1H), 1.96-1.70 (m, 3H), 1.63-1.25 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 201.6/200.9, 136.3, 133.3/132.9, 128.7, 128.3/128.1, 61.2/59.5, 50.2/47.6, 31.0/29.6, 29.9/24.1, 24.8/23.3, 24.4/20.8; IR (neat): v (cm⁻¹) 2937, 2860, 2100, 1681, 1597, 1448, 1316, 1255, 1216, 1200, 1179, 700; ESI-MS (m/z): 252 [M+Na]⁺; HRMS calcd for C₁₃H₁₅N₃NaO [M+Na]: 252.11073; found: 252.11078.

1-(1-Azido-2-phenylethyl)pyrrolidine-2,5-dione (23). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.32-7.23 (m, 3H), 7.19 (d, J = 7.2 Hz, 2H), 5.55 (t, J = 7.6 Hz, 1H), 3.52-3.41 (m, 2H), 2.68-2.53 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 176.1, 134.9, 129.0, 128.8, 127.4, 67.1, 36.4, 27.8; IR (neat): v (cm⁻¹) 3030, 2940, 2108, 1780, 1713, 1391, 1362, 1241, 1166; ESI-MS (m/z): 267 [M+Na]⁺; HRMS calcd for C₁₂H₁₂N₄NaO₂ [M+Na]: 267.0852; found: 267.0840.

1-(Azidomethoxy)-4-chlorobenzene (24). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 7.21-7.18 (m, 2H), 6.88-6.85 (m, 2H), 5.05 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 154.2, 128.6, 126.8, 116.3, 78.9; IR (neat): v (cm⁻¹) 2963, 2924, 2108, 1596, 1584, 1490, 1261, 1204, 1171, 1094, 1026, 896, 825; EIMS (m/z): (rel intensity) 183 (M⁺, 9), 141 (14), 128 (100), 111 (13), 99 (23), 73 (10), 65 (15); HRMS calcd for C₇H₆N₃OCl [M]: 183.0199; found: 183.0203.

2-Azido-2,3-dihydrobenzo[b][1,4]dioxine (25). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 6.99-6.91 (m, 4H), 5,59 (t, J = 2.8 Hz, 1H), 4.15-4.06 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 142.7, 140.6, 122.7, 122.3, 117.7, 117.3, 82.7, 65.2; IR (neat): v (cm⁻¹) 2962, 2930, 2118, 1597, 1495, 1263, 1113, 1093, 906, 833, 749; EIMS (m/z): (rel intensity) 177 (M⁺, 46), 135 (14), 121 (100), 109 (15), 93 (9), 81 (13), 63 (18), 52 (12); HRMS calcd for C₈H₇N₃O₂[M]: 177.0538; found: 177.0537.

(5R,8R,9S,10S,13R,14S,17R)-17-((2R)-4-Azidopentan-2-yl)-10,13-dimethyltetrad ecahydro-1*H*-cyclopenta[*a*]phenanthren-3(2*H*)-one (26). This compound was isolated as the mixture of two diastereoisomers in ~1:1 ratio. Colorless oil; ¹H NMR (400 MHz, CDCl₃) (mixture of two stereoisomers): δ 3.53-3.41 (m, 1H), 2.66 (t, *J* = 14.4 Hz, 1H), 2.30 (td, *J* = 14.8, 5.2 Hz, 1H), 2.13 (d, *J* = 14.4 Hz, 1H), 2.03-1.98 (m, 3H), 1.89-1.77 (m, 3H), 1.59-0.83 (m, 26H), 0.68 (d, *J* = 8.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 213.3, 56.7, 56.6, 56.4, 56.0, 55.2, 44.3, 42.8, 42.3, 42.2, 40.7, 40.1, 40.0, 37.2, 37.0, 35.5, 34.8, 33.7, 33.1, 28.5, 28.3, 26.6, 25.7, 24.1, 22.6, 21.1, 20.5, 19.0, 18.7, 18.4, 12.0, 11.9; IR (neat): v (cm⁻¹) 2936, 2865, 2100, 1715, 1446, 1378, 1256; EIMS (m/z): (rel intensity) 357 (2), 342 (10), 288 (1), 231 (3), 176 (5), 124 (100), 111 (16), 98 (18), 84 (21), 57 (15); HRMS calcd for C₂₄H₃₉NO [M-N₂]: 357.3032; found: 357.3029.

$\overline{10}$ N₃

1-Azidotridecane (27). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 3.25 (t, *J* = 6.8 Hz, 2H), 1.63-1.56 (m, 2H), 1.26 (br s, 20H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 51.5, 31.9, 29.6, 29.5, 29.3, 29.1, 28.8, 26.7, 22.7, 14.1; IR (neat): v (cm⁻¹) 2925, 2854, 2096, 1466, 1256; EIMS (m/z): (rel intensity) 196 (6), 168 (4), 154 (7), 140 (6), 126 (7), 112 (12), 98 (19), 84 (39), 70 (100), 56 (35), 43 (46); HRMS calcd for C₁₃H₂₆N [M-HN₂]: 196.2065; found: 196.2061.

4-(2-Azidobutyl)benzoic acid (29). White solid, mp: 100-102 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.66 (br, 1H), 8.08 (d, J = 8.0 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H),

3.53-3.46 (m, 1H), 2.93-2.83 (m, 2H), 1.70-1.52 (m, 2H), 1.04 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 144.4, 130.5, 129.4, 127.8, 65.2, 40.6, 27.2, 10.5; IR (KBr): v (cm⁻¹) 2926, 2102, 1675, 1610, 1427, 1321, 1293, 1184, 945, 755; ESI-MS (m/z): 218 [M⁺-H]; HRMS calcd. for C₁₁H₁₂N₃O₂ [M-H]: 218.0935; found: 218.0933.

4-Azido-4-methylpentanoic acid (30). Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 2.45 (t, J = 8.0 Hz, 2H), 1.84 (t, J = 8.0 Hz, 2H), 1.30 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 178.9, 60.6, 35.9, 29.1, 25.8; IR (neat): v (cm⁻¹) 2976, 2933, 2100, 1712, 1418, 1372, 1297, 1259, 1209, 1131; EIMS (m/z): (rel intensity) 115 (40), 97 (62), 84 (7), 73 (45), 69 (91), 56 (100), 41 (40); HRMS calcd for C₆H₁₁O₂ [M-N₃]: 115.0759; found: 115.0761.

1-(6-Azidohex-3-en-1-yl)-4-chlorobenzene (33). This compound was isolated as the mixture of two stereoisomers in about 82:18 ratio determined by ¹H NMR (400 MHz). Colorless oil; ¹H NMR (400 MHz, CDCl₃) (mixture of two stereoisomers): δ 7.23 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 5.59-5.49 (m, 1H), 5.43-5.34 (m, 1H), 3.24 /3.15 (2t, J = 6.8 Hz, 2H), 2.64 (t, J = 7.6 Hz, 2H), 2.38-2.22 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 140.2, 132.4, 131.5, 129.9, 129.8, 128.4, 128.3, 126.7, 125.9, 51.0, 50.9, 35.0, 34.2, 32.1, 29.1, 27.0; IR (neat): v (cm⁻¹) 2927, 2857, 2096, 1492, 1452, 1262, 1092, 1015, 969, 817; EIMS (m/z): (rel intensity) 206 (6), 152 (4), 127 (34), 125 (100), 89 (9), 82 (12); HRMS calcd. for C₁₂H₁₃NCl [M-HN₂]: 206.0737; found: 206.0739.

5. Synthesis of (-)-Indolizidine 209D and 167B

To the solution of benzyl 2-oxocyclopentanecarboxylate (3.92 g, 18 mmol) and L-valine *tert*-butyl ester (4.70 g, 27 mmol) in benzene (150 mL) was added BF₃·Et₂O (0.50 mL), and the reaction mixture was heated to reflux using Dean-Stark apparatus for 12 h. The resulting mixture was cooled down to rt and washed successively with aqueous NaHCO₃ (100 mL), water (100 mL), saturated NaCl solution (100 mL). The aqueous phase was extracted with ether (100 mL \times 4). The combined organic phase was dried over anhydrous NaSO₄. Evaporation of the solvent gave the crude product, which was purified by column chromatography on silica gel with hexane/EtOAc (10 : 1, v:v) to give compound **35** (6.52 g, 97%) as a colorless oil. $[\alpha]_D^{25} = +77.9$ (c 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.65 (br, 1H), 7.38-7.26 (m, 5H), 5.18 (AB, J = 12.8 Hz, 2H), 3.64 (dd, J = 10.0, 5.6 Hz, 1H), 2.58 (t, J = 6.8 Hz, 2H), 2.48 (t, J =7.6 Hz, 2H), 2.15-2.06 (m, 1H), 1.86-1.78 (m, 2H), 1.45 (s, 9H), 0.97 (d, J = 6.8 Hz, 3H), 0.95 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 167.8, 163.7, 137.4, 128.3, 127.6, 127.5, 94.3, 81.6, 64.3, 63.8, 32.3, 31.7, 29.2, 28.0, 20.9, 19.2, 17.7; IR (neat): v (cm⁻¹) 2965, 1735, 1663, 1604, 1456, 1369, 1261, 1154, 1131; ESI-MS (m/z): 374 [M⁺+H]; HRMS calcd for $C_{22}H_{31}NO_4Na$ [M+Na]: 396.2145; found: 396.2131.

n-BuLi (1 mL, 2.5 M in hexane, 2.5 mmol) was added to the solution of ⁱPr₂NH (0.36

mL, 2.5 mmol) in toluene (3 mL) at -78 °C, and the mixture was stirred at 0 °C for 0.5 h. A solution of compound **35** (0.75 g, 2 mmol) in toluene (2 mL) was then added at -78 °C and the resulting solution was stirred at -78 °C for 1 h. HMPA (0.44 mL, 2.5 mmol) was added and the reaction mixture was stirred at -78 °C for 1 h. Alkyl iodide (2.5 mmol) was added and the reaction mixture was stirred at -25 °C for 3 h. The reaction mixture was then warmed up to rt and stirred overnight. The reaction was quenched with 1N HCl (5 mL) and the resulting mixture was stirred at room temperature for 1 h and then extracted with Et₂O (10 mL × 4). The organic phase was dried over anhydrous Na₂SO₄, concentrated to leave the crude product, which was purified by column chromatography on silica gel with hexane/EtOAc (20:1, v:v) as the eluent to give compound **36**.

Compound 36a (0.470 g, 78%), Colorless oil; $[\alpha]_D^{24} = +15.0$ (c 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.29 (m, 5H), 5.13 (AB, J = 12.4 Hz, 2H), 2.56-2.48 (m, 1H), 2.41-2.34 (m, 1H), 2.29-2.20 (m, 1H), 1.99-1.81 (m, 4H), 1.60-1.52 (m, 1H), 1.23 (br s, 8H), 0.85 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 214.9, 170.9, 135.7, 128.5, 128.2, 127.9, 66.9, 60.7, 38.0, 33.9, 32.6, 31.5, 29.5, 24.7, 22.5, 19.6, 14.0; IR (neat): v (cm⁻¹) 2955, 2929, 2858, 1751, 1726, 1456, 1273, 1223, 1137, 697; ESI-MS (m/z): 325 [M⁺+Na]; HRMS calcd for C₁₉N₂₆NaO₃ [M+Na]: 325.1774; found: 325.1771. The chiral HPLC analysis indicated that the ee was 83%.

Compound 36b (0.398 g, 77%), Colorless oil; $[\alpha]_D^{24} = +9.3$ (c 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.29 (m, 5H), 5.14 (s, 2H), 2.57-2.48 (m, 1H), 2.43-2.35 (m, 1H), 2.29-2.20 (m, 1H), 2.01-1.86 (m, 4H), 1.61-1.53 (m, 1H), 1.37-1.15 (m, 2H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 214.8, 170.9, 135.7, 128.5, 128.2, 127.8, 66.9, 60.7, 38.0, 36.0, 32.6, 19.6, 18.2, 14.3; IR

(neat): v (cm⁻¹) 2962, 1751, 1725, 1456, 1274, 1220, 1143, 1101, 738, 698; ESI-MS (m/z): 283 [M⁺+Na]; HRMS calcd for $C_{16}N_{21}O_3$ [M+H]: 261.1485; found: 261.1485. The chiral HPLC analysis indicated that the ee was 88%.

To a 100 mL flask containing KHMDS (6 mL, 1 M in THF, 6 mmol) in THF (20 mL) was added the solution of compound **36** (5 mmol) in THF (10 mL) at -78 °C. The reaction mixture was stirred at -78 °C for 1 h. Then the solution of PhNTf₂ (1.8 g, 5 mmol) in THF (15 mL) was added dropwise over 10 min. The solution was maintained at -78 °C for 1 h, and then warmed up to room temperature. The reaction was quenched by the addition of aqueous NH₄Cl (20 mL) and extracted with Et₂O (20 mL × 4). The combined organic phase were dried over anhydrous Na₂SO₄ and concentrated. The crude material was chromatographed on silica gel with hexane/ether (20:1) as the eluent to afford compound **37**.

Compound 37a (1.97 g, 91%), Colorless oil; $[\alpha]_D^{26} = +24.2$ (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.30 (m, 5H), 5.76 (s, 1H), 5.21 (d, J = 12.0 Hz, 1H), 5.11 (d, J = 12.4 Hz, 1H), 2.60-2.43 (m, 2H), 2.37-2.30 (m, 1H), 1.98-1.89 (m, 2H), 1.65-1.59 (m, 1H), 1.28-1.17 (m, 8H), 0.86 (t, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 148.4, 135.6, 128.5, 128.2, 128.1, 118.4 (q, $J_{C-F} = 318.9$ Hz), 117.8, 67.0, 57.7, 34.7, 31.6, 31.5, 29.4, 26.2, 24.2, 22.5, 14.0; IR (neat): v (cm⁻¹) 2932, 2861, 1736, 1424, 1249, 1214, 1142, 840, 697, 608; ESI-MS (m/z): 457 [M⁺+Na]; HRMS calcd for C₂₀H₂₅NaO₅F₃S [M+Na]: 457.1267; found: 457.1273.

Compound 37b (1.80 g, 92%), Colorless oil; $[\alpha]_D^{26} = +27.6$ (c 0.44, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.37-7.29 (m, 5H), 5.76 (s, 1H), 5.19 (d, J = 12.4 Hz, 1H), 5.12 (d, J = 12.4 Hz, 1H), 2.55-2.42 (m, 2H), 2.38-2.30 (m, 1H), 1.97-1.89 (m, 2H), 1.66-1.58 (m, 1H), 1.32-1.20 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 172.7, 148.4, 135.6, 128.5, 128.2, 128.1, 118.4 (q, $J_{C-F} = 318.9$ Hz), 117.8, 67.0, 57.7, 36.9, 31.6, 26.2, 17.6, 14.2; IR (neat): v (cm⁻¹) 2963, 2878, 1736, 1655, 1423, 1215, 1141, 839, 697; ESI-MS (m/z): 415 [M⁺+Na]; HRMS calcd for C₁₇H₂₃O₅NF₃S [M+NH₄]: 410.1244; found: 410.1239.

The zinc reagent IZnCH₂CH₂CO₂Et was prepared by literature method.

To the solution of compound **37** (3.5 mmol), Pd (OAc)₂ (0.079g, 0.35 mmol), 1,1'-bis(diphenylphosphino)ferrocene (0.39 g, 0.70 mmol) in THF (18 mL) was added IZnCH₂CH₂CO₂Et (14 mmol in 15 mL THF). The resulting mixture was stirred at 50 °C for 18 h. The reaction was quenched with aqueous NHCl₄ (20 mL) and extracted with Et₂O (20 mL \times 4). The combined organic phase was dried over anhydrous Na₂SO₄ and then concentrated to give the crude product, which was purified by chromatography on silica gel with hexane/EtOAc (20:1) as the eluent to afford compound **38**.

Compound 38a (0.98 g, 73%), Colorless oil; $[\alpha]_D^{27} = +55.6$ (c 0.44, CHCl₃); ¹H

NMR (400 MHz, CDCl₃): δ 7.36-7.27 (m, 5H), 5.48 (s, 1H), 5.13 (d, J = 12.8 Hz, 1H), 5.08 (d, J = 12.0 Hz, 1H), 4.11 (q, J = 7.2 Hz, 2H), 2.51-2.22 (m, 7H), 2.01-1.94 (m, 1H), 1.79-1.72 (m, 1H), 1.47-1.40 (m, 1H), 1.29-1.11(m, 11H), 0.86 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.5, 173.2, 143.9, 136.3, 128.4, 128.0, 127.9, 126.8, 66.1, 61.4, 60.3, 35.7, 33.6, 32.7, 31.7, 30.7, 29.7, 24.7, 22.7, 22.6, 14.2, 14.0; IR (neat): v (cm⁻¹) 2930, 2857, 1732, 1214, 1155, 697; ESI-MS (m/z): 409 [M⁺+Na]; HRMS calcd for C₂₄H₃₄NaO₄ [M+Na]: 409.2349; found: 409.2353.

Compound 38b (0.88 g, 73%), Colorless oil; $[\alpha]_D^{27} = +66.0$ (c 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.27 (m, 5H), 5.48 (s, 1H), 5.10 (AB, J = 12.4 Hz, 2H), 4.11 (q, J = 7.2 Hz, 2H), 2.50-2.21 (m, 7H), 2.00-1.92 (m, 1H), 1.81-1.74 (m, 1H), 1.48-1.40 (m, 1H), 1.29-1.15 (m, 5H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.5, 173.2, 143.9, 136.3, 128.4, 128.0, 127.8, 126.8, 66.1, 61.4, 60.3, 37.9, 33.6, 32.7, 30.7, 22.7, 18.0, 14.6, 14.2; IR (neat): v (cm⁻¹) 2956, 2872, 1732, 1456, 1217, 1155, 1106, 1030, 698; ESI-MS (m/z): 367 [M⁺+Na]; HRMS calcd for C₂₁H₂₉O₄ [M+H]: 345.2060; found: 345.2059.

To the solution of compound **38** (3 mmol) in EtOH (30 ml) was added Pd/C (30% wt), and then the resulting mixture was hydrogenated for 24 h at 20°C. The reaction mixture was filtered and then filtrate was concentrated to give compound **39**.

Compound 39a (0.89 g, 99%), Colorless oil; $[\alpha]_D^{26} = +28.3$ (c 0.42, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 4.12 (q, J = 6.8 Hz, 2H), 2.43-2.35 (m, 1H), 2.30-2.19 (m, 2H), 2.01-1.79 (m, 4H), 1.72-1.36 (m, 5H), 1.27-1.23 (m, 12H), 0.86 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 182.4, 173.6, 60.3, 56.8, 50.3, 38.0, 33.9, 33.7, 31.7, 30.2, 29.9, 26.3, 25.8, 22.6, 22.2, 14.2, 14.0; IR (neat): v (cm⁻¹) 2933, 2860, 1737, 1693, 1456, 1374, 1251, 1182, 1161; ESI-MS (m/z): 321 [M⁺+Na]; HRMS calcd for C₁₇H₃₀NaO₄ [M+Na]: 321.2036; found: 321.2025.

Compound 39b (0.76 g, 99%), Colorless oil; $[\alpha]_D^{27} = +29.0$ (c 0.30, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 4.12 (q, J = 7.2 Hz, 2H), 2.42-2.35 (m, 1H), 2.30-2.19 (m, 2H), 2.04-1.80 (m, 4H), 1.72-1.18 (m, 11H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 182.4, 173.6, 60.3, 56.8, 50.3, 40.3, 34.0, 33.7, 30.2, 26.2, 22.3, 19.1, 14.7, 14.2; IR (neat): v (cm⁻¹) 2959, 2873, 1737, 1694, 1456, 1374, 1252, 1185, 1161, 1096, 1034; ESI-MS (m/z): 279 [M+Na]⁺; HRMS (m/z): [M+H]⁺ calcd. for C₁₄H₂₅O₄, 257.1747; found, 257.1746.

Compound **40** was prepared from the corresponding acid **39** according to the typical procedure for silver-catalyzed decarboxylative azidation of aliphatic carboxylic acids.

Compound 40a (0.056 g, 94%), Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 4.15-4.09 (m, 2H), 2.40-2.18 (m, 2H), 1.97-1.23 (m, 22H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 173.5, 74.6, 74.2, 60.4, 60.3, 48.4, 47.2, 37.2, 35.0, 34.0, 33.2, 33.1, 33.0, 31.7, 29.7, 29.6, 28.6, 25.0, 24.8, 24.5, 24.1, 22.6, 20.8, 20.7, 14.2, 14.0; IR (neat): v (cm⁻¹) 2960, 2872, 2099, 1737, 1261, 1180, 1097, 1023, 802; EIMS (m/z): (rel intensity) 266 (1), 253 (7), 210 (12), 180 (43), 138 (32), 110 (41), 97 (100), 55 (38), 41 (55); HRMS calcd for C₁₆H₂₈NO₂ [M-HN₂]: 266.2120; found: 266.2119.

Compound 40b (0.049 g, 97%), Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 4.17-4.10 (m, 2H), 2.41-2.19 (m, 2H), 1.99-1.31 (m, 13H), 1.28-1.23 (m, 3H), 0.97-0.90 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 173.6, 173.5, 74.6, 74.2, 60.4, 60.3, 48.3, 47.2, 39.5, 35.5, 35.0, 34.0, 33.2, 33.0, 29.6, 28.5, 25.0, 24.5, 20.9, 20.7, 18.2, 17.5, 14.5, 14.2; IR (neat): v (cm⁻¹) 2962, 2100, 1737, 1261, 1096, 1021, 802; EIMS (m/z): (rel intensity) 224 (1), 211 (14), 180 (7), 165 (19), 138 (67), 124 (47), 96 (100), 81 (36), 67 (37), 55 (57), 41 (55); HRMS calcd for C₁₃H₂₂NO₂ [M-HN₂]: 224.1651; found: 224.1648.

To the solution of compound 40 (0.30 mmol) in THF (0.50 mL) was added LiBH₄

(0.30 mL, 2 M in THF, 0.60 mmol) at 0 °C, the resulting mixture was stirred at room temperature for 48 h. The reaction was quenched with aqueous NH₄Cl (0.5 mL), diluted with water (1 mL) and extracted with Et₂O (3 mL × 4). The organic phase was dried over anhydrous Na₂SO₄ and concentrated in vacuo to give the crude product, which was purified by chromatography on silica gel with hexane/EtOAc (5:1) as the eluent to give compound **41**.

Compound 41a (0.064 g, 84%), Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 3.69-3.60 (m, 2H), 2.00-1.84 (m, 2H), 1.82-1.24 (m, 20H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 74.8, 74.4, 63.1, 63.0, 49.3, 47.8, 37.3, 35.2, 34.1, 33.1, 31.7, 31.4, 30.0, 29.8, 29.7, 28.9, 26.0, 25.3, 24.9, 24.2, 22.6, 20.9, 20.8, 14.0; IR (neat): v (cm⁻¹) 2933, 2861, 2097, 1457, 1263, 1057; EIMS (m/z): (rel intensity); 224 (2), 210 (5), 194 (10), 180 (41), 166 (17), 138 (26), 110 (70), 96 (100), 81 (35), 67 (47), 55 (42), 41 (51); HRMS calcd for C₁₄H₂₆NO [M-HN₂]: 224.2014; found: 224.2012.

Compound 41b (0.054 g, 85%), Colorless oil; ¹H NMR (400 MHz, CDCl₃): δ 3.66-3.61 (m, 2H), 1.99-1.84 (m, 2H), 1.80-1.21 (m, 14H), 0.96-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 74.8, 74.4, 63.1, 62.9, 49.3, 47.7, 39.6, 35.5, 35.2, 34.1, 31.7, 31.4, 30.0, 28.9, 26.0, 25.3, 20.9, 20.8, 18.3, 17.6, 14.5; IR (neat): v (cm⁻¹) 3339, 2959, 2872, 2099, 1456, 1263, 1058; EIMS (m/z): (rel intensity); 182 (2), 168 (5), 152 (16), 138 (48), 124 (58), 110 (50), 96 (100), 81 (39), 67 (70), 55 (55), 41 (68); HRMS calcd for C₁₁H₂₀NO [M-HN₂]: 182.1545; found: 182.1546.

To the solution of NaH (0.024 g, 60% in oil, 0.6 mmol) in CH₂Cl₂ (1 mL) was added the solution compound **41** (0.30 mmol) in CH₂Cl₂ (3 mL) at -78 °C. The mixture was stirred at -78 °C for 1 h, then Tf₂O (102 mg, 0.36 mmol) was added. The resulting mixture was stirred at -78 °C for 8 h and then warmed up to rt and stirred overnight. NaBH₄ (0.080 g, 2.1 mmol) in 15% aqueous NaOH (0.5 mL) was added and the reaction mixture was stirred at rt for 3 h. The resulting mixture was extracted with CH₂Cl₂ (4 mL × 3) The combined organic phase was dried over anhydrous Na₂SO₄, concentrated in vacuo to give the crude product, which was purified by column chromatography on silica gel with pentane/Et₂O (10:1) as the eluent to afford (-)-Indolizidine 209D and 167B.

(-)-Indolizidine 209D

(-)-Indolizidine 209D (0.041 g, 65%), Colorless oil; $[\alpha]_D^{22} = -56.4$ (c 0.45, CHCl₃). The chiral GC analysis indicated that the ee was 83%. ¹H NMR (400 MHz, CDCl₃): δ 3.23 (td, *J* = 8.8, 2.0 Hz, 1H), 1.97-1.60 (m, 9H), 1.44-1.10 (m, 14H), 0.85 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 65.0, 63.9, 51.5, 34.6, 31.8, 31.0, 30.8, 30.5, 29.7, 25.8, 24.7, 22.6, 20.4, 14.1. The ¹H and ¹³C NMR spectra matched nicely with those reported in the literature.

(-)-Indolizidine 167B

(-)-Indolizidine 167B (0.032 g, 63%), Colorless oil; $[\alpha]_D^{24} = -50.7$ (c 0.5, CHCl₃). The chiral GC analysis indicated that the ee was 86%. ¹H NMR (400 MHz, CDCl₃): δ 3.23 (t, J = 8.4 Hz, 1H), 1.97-1.59 (m, 9H), 1.44-1.10 (m, 8H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 65.0, 63.7, 51.5, 36.9, 31.0, 30.8, 30.5, 24.7, 20.4, 19.1, 14.5. The ¹H and ¹³C NMR spectra matched nicely with those reported in the literature.

6. Optical Resolution of Compound 39

Compound **39** (0.50 mmol) and (S)-2-amino-2-phenylethanol (0.034 g, 0.25 mmol) were dissolved in Et₂O/Hexane (1:3, 12 mL). After an appropriate period of time, the precipitated salt was filtered and acidified with 1N HCl (1 mL) at 50°C. The resulting mixture was extracted with CH₂Cl₂ (3 mL × 4) and then the combined organic phase was dried over anhydrous Na₂SO₄. After the removal of solvent, optically pure **39** was obtained. (**39a**: $[\alpha]_D^{26} = +35.4$ (c 0.34, CHCl₃), **39b**: $[\alpha]_D^{25} = +39.1$ (c 0.40, CHCl₃)).

entry	references	compound
1	Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. <i>J. Am.</i> <i>Chem. Soc.</i> 2012 , <i>134</i> , 4258.	A-1, A-4, A-6-10, A-14 A-16, A-22, A-23, A-31
2	Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012 , 134, 10401.	A-3, A-21, A-26, A-29, A-33
3	Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330.	A-5, A-11
4	Yamada, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2005, 70, 5471.	A-12
5	Lellmann, E.; Schleich, C. Ber. Dtsch. Chem. Ges. 1887, 20, 434.	A-13
6	Nyfeler, E.; Renaud, P. Org. Lett. 2008, 10, 985.	A-19, 2, 19
7	Cintas, P.; Martina, K.; Robaldo, B.; Garella, D.; Boffa, L.; Cravotto, G. <i>Collect. Czech. Chem. Commun.</i> 2007 , <i>72</i> , 1014.	28
8	Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693.	31
9	Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639.	32
10	Christoffers, J.; Önal, N. Eur. J. Org. Chem. 2000, 1633.	34
11	Yu, R. T.; Lee, E. E.; Malik, G.; Rovis, T. Angew. Chem. Int. Ed. 2009, 48, 2379.	(-)-Indolizidine 209D
12	Kapat, A.; Nyfeler, E.; Giuffredi, G. T.; Renaud, P. J. Am. Chem. Soc. 2009 , 131, 17746.	(-)-Indolizidine 167B

7. References of Known Compounds.

8. ¹H and ¹³C Spectra of All Substrates

Compound A-1

Compound A-22-cis

Compound A-22-trans

9. ¹H and ¹³C Spectra of All Products

Compound 2

Compound 4

Compound 7

Compound 26

Compound 27

Compound 36a

Compound 36b

Compound 37a

Compound 37b

Compound 38a

Compound 38b

Compound **39a**

Compound **39b**

Compound 40a

Compound 40b

Compound 41a

Compound 41b

(-)-Indolizidine 209D

(-)-Indolizidine 167B

