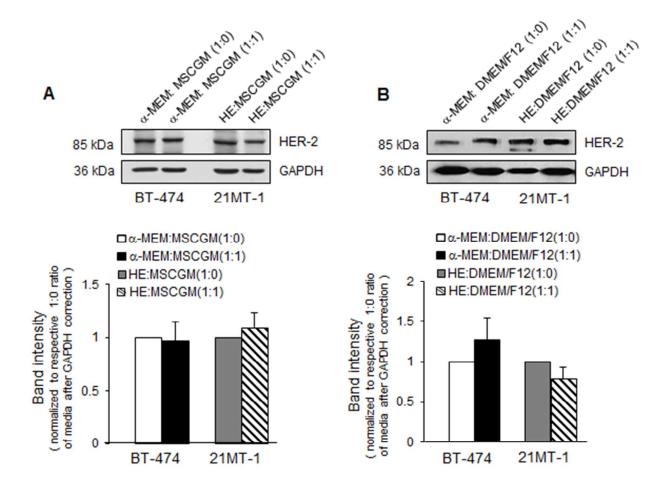
Breast Cancer/Stromal Cells Co-culture on Polyelectrolyte Films Emulates Tumor Stages and miRNA Profiles of Clinical Samples


Amita Daverey¹, Karleen M Brown¹ and Srivatsan Kidambi^{1,2,3,*}

¹Department of Chemical and Biomolecular Engineering,
University of Nebraska-Lincoln, NE, 68588

²Nebraska Center for Materials and Nanoscience,
University of Nebraska-Lincoln, NE, 68588

³Regenerative Medicine Program,
University of Nebraska Medical Center, NE, 68198.

^{*}indicates corresponding author. Email: skidambi2@unl.edu

Supplementary Figure 1: Optimized culture conditions for the co-culture platform. (A) Upper panel, representative immunoblot shows expression of HER-2 as a marker for breast cancer cell to optimize media condition for co-culture of breast cancer cells with MSCs. Lower panel, densitometry analysis of bands shows no significant change in HER-2 expression when breast cancer cells (MEM/HE) and MSCs (MSCGM) media was used in 1:1 ratio. (B) Upper panel, representative immunoblot shows expression of HER-2 as a marker for breast cancer cell to optimize media condition for co-culture of breast cancer cells with MCF10A. Lower panel, densitometry analysis of bands shows no significant change in HER-2 expression when breast cancer cells (MEM/HE) and MCF10A (DMEM/F12) media was used in 1:1 ratio.