Supporting Information

Rational development of a potent 15-lipoxygenase-1 inhibitor with *in vitro* and *ex vivo* anti-inflammatory properties

Nikolaos Eleftheriadis,[†] Constantinos G. Neochoritis,[‡] Niek G.J. Leus,[†] Petra E. van der Wouden,[†] Alexander Dömling,[‡] Frank J. Dekker ^{†,*}

Table of Contents

NMR spectra	2
Enzyme inhibition studies	32
Focused library	32
Screening Results	37
Screening Results (column graphs)	38
IC ₅₀ graphs	40
Enzyme Kinetics	41
Molecular Modeling	42

NMR spectra

¹H NMR spectrum of **14a**, DN397

¹³C NMR and DEPT-135 spectra of **14a**, DN397

¹H NMR and ¹³C NMR spectra of **14b**, N239

S6

^1H NMR and ^{13}C NMR spectra of **14c**, N238

¹H NMR and ¹³C NMR spectra of **11d**, N240

¹H NMR and ¹³C NMR spectra of **12d**, N242

¹H NMR and ¹³C NMR spectra of **14e**, N246

^1H NMR and ^{13}C NMR spectra of 14f, DN433

¹³C NMR and DEPT-135 spectra of **14g**, DN432

¹H NMR and ¹³C NMR spectra of **14h**, N214

^1H NMR and ^{13}C NMR spectra of 14i, DN441

DN441_10_Col4_sol1_5-30%_6min

^1H NMR and ^{13}C NMR spectra of 14J, DN309

S23

^1H NMR and ^{13}C NMR spectra of 14k, N225

S25

^1H NMR and ^{13}C NMR spectra of **14l**, DN522

^1H NMR and ^{13}C NMR spectra of **14m**, DN312

DN312_10_Col4_sol1_5-30%_6min

^1H NMR and ^{13}C NMR spectra of 14n, DN427

Enzyme inhibition studies

Figure S1: Conversion of linoleic acid in present (Positive Control) or absent of the enzyme (Blank) following with UVabsorbance assay at 234 nm over time.

Focused library

Library of heterocycle nitrogen containing compounds (200). The name of every compound corresponds with the position of the compound in the next table.

	Α	В	С	D	E
1		HOOC		MeOOC	ZT
2		EtOOC		C H ₃ C H ₃ C	NC Ph
3		N		N H F	HOOC-S
4	HO	Н	HZ	Br N H	HOOC

Table S1. Screening Compound

5		HOOC-V-OH		NC N H F	HN Bn' NC NC
6	HOOC		H ₂ N N H	HOOC - CI	
7	$H_2N \xrightarrow{N}_{S} \xrightarrow{O}_{CH_3}$	HZ	CH ₃ N H ₂ N	O N	Br N
8	N Br		NH ₂ N N	NH ₂ N H ₂ N	
9	CH ₃	H ₃ C H N	H ₃ C	H ₃ C N	H ₃ C N NH
10	NH ₂ N		HN	N	HONNH
11	H ₃ C N OH		Br Br NH NH OH		O N H
12	NH ₂ S N N	$\begin{array}{c} NH_2\\ CI \\ \\ \\ \\ N \\ \\ N \\ \\ N \end{array} N$		(N) s	
13	CH ₃ HN-N	OH H ₃ C	H ₃ C ^O N NH	EtO ₂ C N	H ₂ N

14	CH ₃	NH ₂ N		N N H H	
15	NH ₂	NH ₂ N O	NH ₂ S	HN	HN CH ₃
16	HOOC HOOC N	NH ₂	NH ₂ N N N	O N	F F F
17		$H_2N \xrightarrow{N} CH_3$ S CH ₃	OH	HOOC COOH	
18	HZ	NH ₂ N N	N N H		H ₂ N
19	NH ₂ O NH NH O		NH ₂	NH ₂ N F F F	NH ₂ N F F F
20	Br N N N	NH ₂ N Br	Ph N Br	H NH	H ₂ N N
21	NH ₂ OH		HOOC	HOOCN	
22	H ₃ C _{NH}	H ₃ C HOOC	$ \begin{array}{c} $		HOCOOH

Screening Results

	Α	В	С	D	Ε
1	106,8	103,8	108,2	86,96	102,7
2	63,33	6,060	5,285	73,01	81,14
3	43,78	93,78	96,89	59,06	94,94
4	86,36	66,66	71,71	86,04	75,75
5	99,27	76,36	117,7	120,0	84,33
6	99,95	2,020	79,09	83,38	106,1
7	95,34	54,54	95,45	88,18	94,79
8	93,15	113,1	110,4	106,0	103,0
9	78,75	103,2	95,89	94,54	97,57
10	98,48	97,27	94,54	95,45	27,27
11	83,03	90,30	39,09	65,75	80,60
12	88,60	88,60	82,64	101,2	76,68
13	91,96	86,78	90,93	88,60	92,48
14	75,12	96,89	62,43	70,46	98,78
15	75,38	66,83	80,05	79,01	82,90
16	46,11	81,60	89,89	58,80	64,24
17	91,45	94,55	97,57	86,78	75,64
18	72,27	100,8	96,96	98,18	97,97
19	86,06	85,85	101,6	96,96	98,58
20	95,95	96,76	88,41	95,54	96,96
21	98,98	97,97	42,02	44,44	106,1
22	91,91	112,2	85,85	69,49	116,0
23	97,16	102,7	92,35	94,70	101,0
24	110,9	92,61	56,37	45,95	62,02
25	32,44	60,04	64,62	98,35	71,02
26	90,84	81,25	74,06	65,65	38,45
27	48,04	57,99	52,46	66,64	61,47
28	82,04	88,71	77,46	81,76	80,93
29	78,52	91,32	75,84	70,75	90,33
30	113,8	84,21	76,19	77,26	79,91
31	79,87	83,26	102,5	82,47	89,19
32	92,19	89,23	97,04	92,86	87,92
33	92,11	80,95	91,95	93,58	95,46
34	99,50	86,19	92,44	98,85	89,16
35	104,1	102,7	96,14	89,88	94,03
36	94,56	95,31	90,26	91,80	89,92
37	91,54	84,41	95,61	87,32	91,95
38	92,22	84,42	85,58	70,09	83,96
39	88,49	86,07	75,97	87,62	85,70
40	93,39	93,31	95,83	101,5	92,16

Table S2. Residual enzyme activity (%) that was observed for the screening of a compounds collection for inhibition of h-15-LOX-1 in presence of 50 μ M of the respective compounds.

Compounds

IC₅₀ graphs

Figure S2. IC₅₀ graphs

Enzyme Kinetics

Figure S3. Steady-State kinetic characterization of 15-LOX-1 in the presence of different concentrations of compound 14I: A) Michaelis-Menten representation and B) Lineweaver-Burk representation.

14l (µM)	K _m ^{app} (μΜ)	V _{max} ^{app} (absorbance/s)
0	16.9 ± 9.8	$4.6 \times 10^{-4} \pm 1.1 \times 10^{-4}$
1.5	20.0 ± 15	$3.9 \times 10^{-4} \pm 1.4 \times 10^{-4}$
3	27.5 ± 17	$3.4 \times 10^{-4} \pm 1.1 \times 10^{-4}$

Molecular Modeling

Since competitive inhibition was observed, the inhibitors were docked in the active site of the enzyme. The molecular modeling studies were performed in MOE software (2012.10) and highest scoring docking poses were chosen. The experiments were performed with rescoring model 1 London dG (refinement: forcefield) and rescoring 2: GBVI/WSA dG, followed by minimization energy (forcefield: MMFF94X; eps = r, cutoff $\{8,10\}$)

Figure S4. Three of the top five highest scoring poses of the compound 2. The docking score of the pink structure pose is - 5.51, from the yellow structure pose is -5.47 and from the green structure pose -5.36.

Figure S5. The surface of the active site with the compound 14d in the highest docking score pose. With green is the lipophilic and with red the lipophobic area in the active site of 15-LOX.