Supplementary Information

Site-specific di-functionalization of structured RNAs yields probes for microRNA maturation

Ugo Pradère and Jonathan Hall*

Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland

Table of Content

1.	General experimental details	4
2.	Oligonucleotide synthesis, incorporation of modified phosphoramidites and work-up of modified pre-mi	RNAs .4
3.	Optimization of azidation reaction on pre-miR-21	6
	3.1 Azidation of 3'-Br-pre-miR-21	6
	Experimental procedure	6
	HPLC-profile of crude 3'-N₃-pre-miR-21	7
	3.2 Azidation of 3'-Br-pre-miR-21 in harsher conditions	8
	Experimental procedure	8
	HPLC-profile of crude 3'-N₃-pre-miR-21	9
	3.3 Azidation of 3'-Br-pre-miR-21 with and without Nal	11
	Experimental procedure	11
	HPLC-profile of crude 3'-N₃-pre-miR-21	11
	3.4 Azidation of 3'-Br-pre-miR-21 in various solvents	12
	Experimental procedure	12
	HPLC-profile of crude 3'-N ₃ -pre-miR-21	13
4.	Optimization of reverse-click reaction in solution phase on pre-miR-21	14
	Experimental procedure	14
	HPLC profiles of crude 5'-Cy5-pre-miR-21	14
	HPLC profiles of crude 3'-Cy5-pre-miR-21	15
5.	Evaluation of reverse-click reaction on solid support on pre-miR-21 in different conditions	16
	Experimental procedure	16
	HPLC profiles of crude 5'-Cy3-pre-miR-21	17
6.	Evaluation of click/reverse-click protocol on pre-miR-21	19
	Experimental procedure	19
	HPLC profiles of crude DMTon Cy3/N ₃ -pre-miR-21	19
	HPLC profiles of crude DMToff Cy3/N ₃ -pre-miR-21	20
	HPLC profiles of crude Cy3/Cy5-pre-miR-21	21
7.	Synthesis of reagents	22
-	7.1 2'-O-methylenetriazolobutylbromide cytidine phosphoramidite	22
	Synthetic procedures	22
	NMR Spectras	24
•	7.2 Cy3 alkyne	26

Synthetic procedures	26
NMR Spectras of Cy3 alkyne 2	28
7.2 Cy5 alkyne	29
Synthetic procedures	29
NMR Spectras of Cy5 alkyne 3	31
7.4 THPTA	32
Synthetic procedures	32
8. Sequences of ORN1 to ORN14	33
9. LCMS traces of ORN1 to ORN14	34
10. RNAse digestion assay	55
Experimental procedure	55
11. Dicer assays with ORN13-Cy3/Cy5 and ORN14-Cy3/Cy5	56
Experimental procedure	56
LCMS traces	57
Fluorescence measurments	59

1. General experimental details

Chemicals were purchased from Aldrich and TCI. Phosphoramidites were purchased from Thermo Fisher. The activator 5-benzylthiotetrazole was purchased from Biosolve. All oligonucleotides used in this work were synthesized with a MM12 synthesizer from Bio Automation Inc. on 1000 Å UnyLinker CPG from ChemGenes. The coupling time for phosphoramidites was 2 x 90 s. The oligonucleotides were purified on an Agilent 1200 series preparative HPLC on a Waters XBridge OST C-18 column, 10 x 50 mm, 2.5 μ m at 65 °C. Buffer A: 0.1M aqueous triethylamine/acetic acid, pH 8.0; buffer B: 100 % MeOH; flow-rate: 5 mL/min. Gradient for the DMT-on and DMT-off purification: 5 % to 100 % buffer B over 10 min. Fractions containing the product were collected and dried in a miVac duo SpeedVac from Genevac. The oligonucleotides were analyzed by LC-MS (Agilent 1200/6130 system) on a Waters Acquity OST C-18 column, 2.1 x 50 mm, 1.7 μ M, 65 °C. Buffer A: 0.4M HFIP, 15 mM triethylamine; buffer B: MeOH. Gradient: 5-80 % B in 10 min; flow-rate: 0.3 mL/min.

2. Oligonucleotide synthesis, incorporation of modified phosphoramidites and work-up of modified pre-miRNAs

10 solutions were prepared for these experiments directly prior use:

- Solution 1: PBS buffer/MeOH (1:1): 5 mL of PBS buffer, 5 mL of MeOH.
- Solution 2: TBTA [50 mM] in DMF: 0.27 mg of TBTA in 40 µL of DMF.
- Solution 3: Cy3 azide [50 mM] in DMF: 0.56 mg of Cy3 azide in 40 μL of DMF.
- Solution 4: CuSO₄.5H₂O [5 mM] in H₂O: 12.5mg of CuSO₄.5H₂O in 10 mL of water.
- Solution 5: Na-ascorbate [50 mM] in H₂O: 10mg of Na-ascorbate in 1 mL of water.
- Solution 6: NaN₃ [400 mM]: 0.65mg of NaN₃ in 110 μ L of DMF.
- Solution 7: THPTA [50mM]: 1.1mg of THPTA in 50 µL of water.
- Solution 8: Cy5 alkyne [20mM]: 1.18mg of Cy5 alkyne in 100 μL of DMF.
- Solution 9: CuSO₄.5H₂O [20mM]: 5mg of CuSO₄.5H₂O in 1 mL of water.
- Solution 10: Na ascorbate [100mM]: 20mg of Na ascorbate in 1 mL of water.

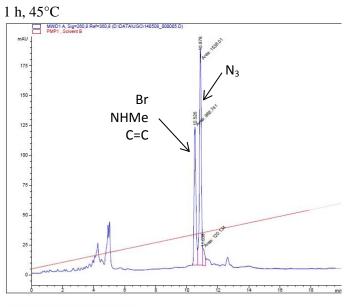
Oligoribonucleotides were synthesized with regular 2'-O-TBDMS-phosphoramidites on a 50 nmol scale using 5 mg of CPG (1000Å). For 2'-*O*-propargyl cytidine phosphoramidite and 2'-*O*-methylenetriazolobutylbromide cytidine phosphoramidite, the coupling time was prolonged to 2 x 3 min. After synthesis, the CPG with the modified RNA was suspended in 300 μ L of PBS buffer/MeOH (1:1) (solution 1) in an Eppendorf tube. Subsequently, freshly-prepared solutions of TBTA (solution 2, 40 μ L), azide (solution 3, 40 μ L), CuSO₄.5H₂O (solution 4, 10 μ L) and Na-ascorbate (solution 5, 10 μ L) were added to the suspension. The reaction mixture was shaken for 16 h at 45 °C in an Eppendorf shaker. CPG was filtered, washed three times with 0.5 mL of DMF, 0.1N aqueous EDTA, DMF, and acetonitrile.

CPG was transferred into an Eppendorf tube and suspended in a DMF solution of sodium azide (solution 6, 110 μ L). The reaction mixture was shaken vigorously for 6 h at 45°C in an Eppendorf shaker. The CPG was filtered and washed three times with successively 1 mL of DMF and acetonitrile. The CPG was transferred into an Eppendorf tube, dried under high vacuum for 2 h and treated with 200 μ L of ammonia (25% in H₂O) and 200 μ L of aqueous methylamine (40 % in H₂O) solutions for 6 h at room temperature. After filtration, the remaining RNA was washed from the solid support with 3 x 100 μ L H₂O/EtOH (1:1). To the solution was added 20 μ L of a mixture of NMP (60 μ L), TEA (30 μ L) and TEA.3HF (40 μ L) at 70 °C for 90 min. The reaction was quenched with trimethylethoxysilane (160 μ L) for 20 min at room temperature on an Eppendorf shaker. Diethylether (1 mL) was added, the mixture was vortexed and centrifuged at 4 °C for 2 min. The supernatant was taken off and the precipitate was washed twice with 1 mL diethylether, vortexed and centrifuged. The oligonucleotide was dissolved in 200 μ L of water and purified DMT-on by RP-HPLC. The isolated product was dried in a SpeedVac and tied for 1 h with 40 % aq. acetic acid at room temperature. The Cy3/N₃-DMToff pre-miRNA was dried in a SpeedVac and diluted in water.

To 2 nmol of modified RNA in 20 μ L of water was successively added PBS buffer (pH = 7.4, 28.5 μ L), THPTA (solution 7, 2.5 μ L), Cy5 alkyne (solution 8, 1.25 μ L), CuSO₄.5H₂O (solution 9, 1.25 μ L) and Na ascorbate (solution 10, 2.5 μ L). After incubation of the reaction mixture for 2 h at 65 °C, the solution was cooled down to room temperature. Water (150 μ L) was successively added and the solution extracted three times with 200 μ L of EtOAc. NaOAC (25 μ L of a 3M solution) and 800 μ L of EtOH:iPrOH (2:1) were added and RNA was precipitated for 30min at -80°C (alternatively, -20°C can be used for 12 h). After centrifugation (20min, 14000rpm), supernatant was removed, the RNA pellets dissolved in water (200 μ L) and purified by RP-HPLC to yield pure Cy3/Cy5 bis-labeled RNA.

3. Optimization of azidation reaction on pre-miR-21

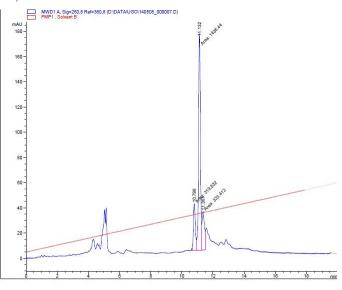
3.1 Azidation of 3'-Br-pre-miR-21


Experimental procedure

Two solutions were prepared for these experiments directly prior use:

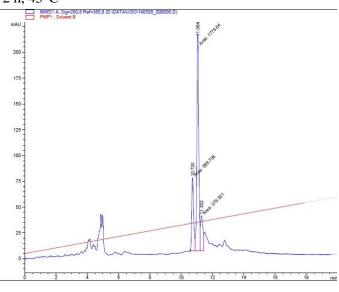
- Solution 1: 1.3 mg of NaN_3 in 600 µL of DMF.
- Solution 2: 3 mg of NaI in 200 µL of DMF.

Two CPG columns (5 mg of 1000Å, 50 nmol syntheses) with the sequence of pre-miR-21 (5'-CAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUC_{Br}) (C_{Br}: 2'-*O*-methylenetriazolo-bromobutane) were prepared. CPGs were combined and mixed in an Eppendorf tube before being equally redistributed into 4 Eppendorf tubes. Sodium azide (150 μ L of solution 1, final [NaN₃] = 25mM) and sodium iodide (50 μ L of solution 2, final [NaI] = 25mM) were added. The reaction mixture was shaken vigorously for the corresponding time (respectively 1 h, 2 h, 4 h, 8 h) on an Eppendorf shaker. The CPGs were filtered and washed successively with 1 mL of DMF and acetonitrile. After cleavage from the solid support and RNA deprotection (aq. MeNH₂/NH₄OH, TEA.HF), the composition of the crude solution was evaluated by integration of peaks in the HPLC chromatograms (see following spectra).


HPLC-profile of crude 3'-N₃-pre-miR-21

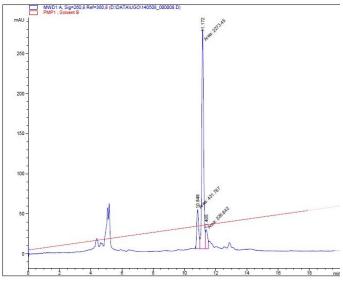
Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Pe	ak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	1	10.526	MM	0.1396	968.74078	115.61932	36.8779
	2	10.876	MM	0.1409	1538.01196	181.98970	58.5488
	3	11.038	MM T	0.1012	120.13427	14.37018	4.5733
Т	otal	Ls :			2626.88702	311.97920	



Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Peak #	RetTime [min]	Тут	pe	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.799	MM	т	0.1439	319.83182	37.03292	15.3053
2	11.132	MM	т	0.1390	1436.43750	172.28535	68.7395
3	11.361	MM	т	0.1818	333.41263	30.57044	15.9552
Tota:	.s :				2089.68195	239.88872	



Signal 1: MWD1 A, Sig=260,8 Ref=360,8

#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	10.730	MM T	0.1408	599.70612	70.96659	21.7326
2	11.064	MM T	0.1407	1779.83618	210.82298	64.4991
3	11.302	MM T	0.1852	379.93082	34.19912	13.7682
Tota:	ls :			2759.47311	315.98870	

Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.848	MM	0.1475	431.76706	48.77951	14.7257
2	11.172	MM	0.1383	2273.44604	273.98193	77.5376
3	11.405	MM	0.1598	226.84213	23.65924	7.7366
Tota:	ls :			2932.05524	346.42068	

3.2 Azidation of 3'-Br-pre-miR-21 in harsher conditions

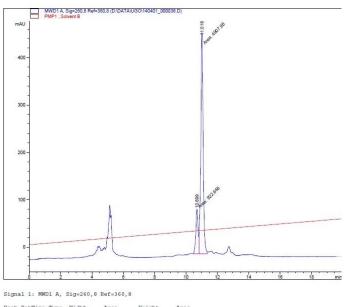
Experimental procedure

8 solutions were prepared for these experiments directly prior use:

- Solution 1: 1.3 mg of NaN₃ in 400 μL of DMF.
- Solution 2: 3 mg of NaI in 400 µL of DMF.
- Solution 3: 0.65 mg of NaN_3 in 65 μ L of DMF.
- Solution 4: 1.5 mg of NaI in 65 µL of DMF.
- Solution 5: Commercial solution LiN₃ 20% wt in H₂O.
- Solution 6: 1.34 mg of LiI in 397.5 µL of DMF.
- Solution 7: 3.25 mg of NaN_3 in 200 μ L of DMF.
- Solution 8: 7.5 mg of NaI in 200 µL of DMF.

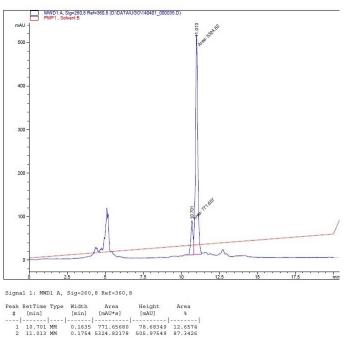
5 CPG columns (5 mg of 1000Å, 50 nmol syntheses) with the sequence of pre-miR-21 (5'-CAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUC_{Br}) (C_{Br}: 2'-O-methylenetriazolo-bromobutane) were prepared. CPGs were combined and mixed in an Eppendorf tube before being equally redistributed into 5 Eppendorf tubes. Respective azide and iodide solutions were added. The reaction mixtures were shaken vigorously for 6 h on an Eppendorf shaker at the corresponding temperature and the CPGs filtered and washed successively with 1 mL of DMF and acetonitrile. After cleavage from the solid support and RNA deprotection (aq. MeNH₂/NH₄OH, TEA.HF), the composition of the crude solution was evaluated by integration of peaks in the HPLC chromatograms (see following spectra).

Conditions:

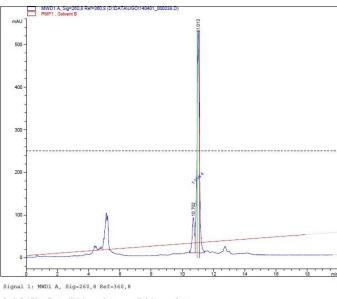

- Conditions A (control experiment): [NaN₃]=25 mM, [NaI]=25 mM, 45°C. 200 μL of solution 1 and 200 μL of solution 2.
- Conditions B (increased concentration): [NaN₃]=75 mM, [NaI]=75 mM, 45°C. 65 μL of solution 3 and 65 μLof solution 4.
- Conditions C (lithium counter-ion): [LiN₃]=25 mM, [LiI]=25 mM, 45°C. 2.45 μL of solution 5 and 397.5 μL of solution 6.
- Conditions D (increased equivalence): [NaN₃]=125 mM, [NaI]=125 mM, 45°C. 200 μL of solution 7 and 200 μL of solution 8.
- Conditions E (increased temperature): [NaN₃]=25 mM, [NaI]=25 mM, 65°C. 200 μL of solution 1 and 200 μL of solution 2.

HPLC-profile of crude 3'-N₃-pre-miR-21

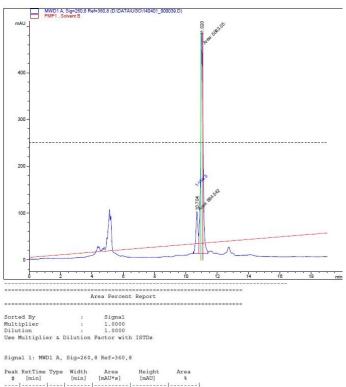
Image: State State


Conditions A (control experiment)

Conditions C (lithium counter-ion)


Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.699	MM	0.1640	922.64752	93.76894	15.8241
2	11.018	MM	0.1753	4907.98242	466.67819	84.1759
Tota:	Ls :			5830.62994	560.44714	

Conditions B (increased concentration)


Totals : 6096.47858 584.65899

Conditions D (increased equivalence)

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.702	MM	0.1613	796.11285	82.26608	12.5523
2	11.013	MM	0.1772	5546.26758	521.61694	87.4477
Tota	ls :			6342.38043	603.88302	

Conditions E (increased temperature)

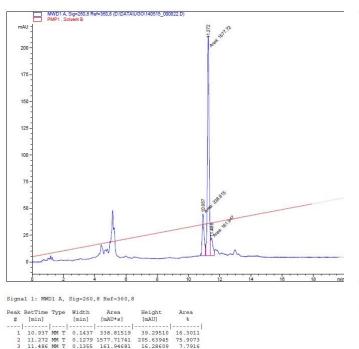
 Peak RetTime Type
 Width Int
 Area Int
 Height Int
 Area Int

 #
 [min]
 [mAU*s]
 Int
 Int

3.3 Azidation of 3'-Br-pre-miR-21 with and without NaI

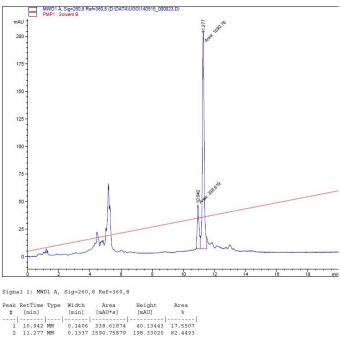
Experimental procedure

2 solutions were prepared for these experiments directly prior use:


- Solution 1: 2.6mg of NaN₃ in 440 μL of DMF.
- Solution 2: 6mg of NaI in 80 µL of DMF.

Two CPG columns (5 mg of 1000Å, 50 nmol syntheses) with the sequence of pre-miR-21 (5'-CAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUC_{Br}) (C_{Br}: 2'-*O*-methylenetriazolo-bromobutane) were prepared. CPGs were combined and mixed in an Eppendorf tube before being equally redistributed into 4 Eppendorf tubes. Sodium azide (110 μ L of solution 1, final [NaN₃] = 75mM) was added to both samples while sodium iodide (20 μ L of solution 2, final [NaI] = 75mM) was only added to one sample. The reaction mixture was shaken vigorously for 3 h at 45°C on an Eppendorf shaker. Solution were added a second time as described previously, the reaction mixtures shaken vigorously for 3 h at 45°C and the CPGs filtered and washed successively with 1 mL of DMF and acetonitrile. After cleavage from the solid support and RNA deprotection (aq. MeNH₂/NH₄OH, TEA.HF), the crude solution was evaluated by integration of peaks in the HPLC chromatograms (see following spectra).

HPLC-profile of crude 3'-N₃-pre-miR-21


With NaI

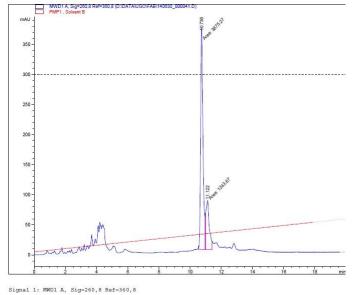
Totals :

2078.47940 261.22064

Without NaI

3.4 Azidation of 3'-Br-pre-miR-21 in various solvents

Experimental procedure


3 solutions were prepared for these experiments directly prior use:

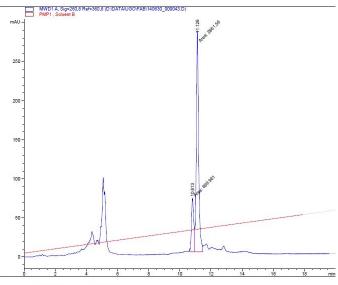
- Solution 1: 0.65 mg of NaN₃ in 110 μL of THF.
- Solution 2: 0.65 mg of NaN_3 in 110 μ L of DMSO.
- Solution 3: 0.65 mg of NaN_3 in 110 μ L of EtOH.

2 CPG columns (5 mg of 1000Å, 50 nmol syntheses) with the sequence of pre-miR-21 (5'-CAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUC_{Br}) (C_{Br}: 2'-*O*-methylenetriazolo-bromobutane) were prepared. CPGs were combined and mixed in an Eppendorf tube before being equally redistributed into 3 Eppendorf tubes. Sodium azide solutions (110 μ L, end [NaN₃] = 75mM) were added. The reaction mixture was shaken vigorously for 6 h at 45°C on an Eppendorf shaker, filtered and washed successively with 1 mL of DMF and acetonitrile. After cleavage from the solid support and RNA deprotection (aq. MeNH₂/NH₄OH, TEA.HF), the composition of the crude solution was evaluated by integration of peaks in the HPLC chromatograms (see following spectra).

HPLC-profile of crude 3'-N₃-pre-miR-21

In THF

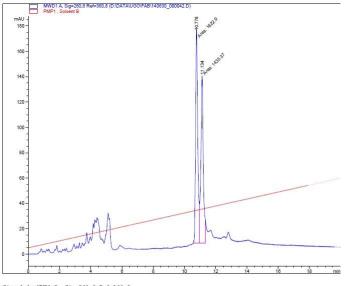
 Peak RetTime Type
 Width
 Area
 Height
 Area


 #
 [min]
 [min]
 [mAU*s]
 [mAU]
 %

 --- ---- ---- ---- ---- ----- %

 1
 10.736
 MM
 0.1753
 3875.26700
 368.44661
 757.7046

 2
 11.122
 MM
 0.2546
 1243.66699
 81.42271
 24.2954
 Totals : 5118.93408 449.87132


In DMSO

Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Peak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.813	MM	0.1701	699.96124	68.56350	19.6534
2	11.126	MM	0.1686	2861.56250	282.81107	80.3466
Tota	ls :			3561.52374	351.37457	

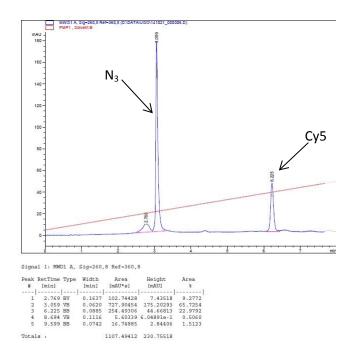
In EtOH

Signal 1: MWD1 A, Sig=260,8 Ref=360,8

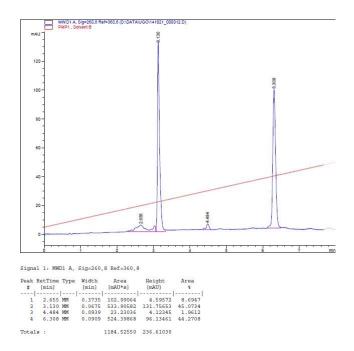
Totals : 3058.26758 302.58624

4. Optimization of reverse-click reaction in solution phase on pre-miR-21

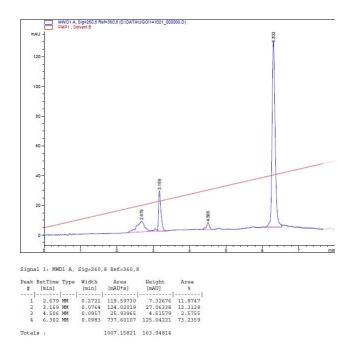
Experimental procedure

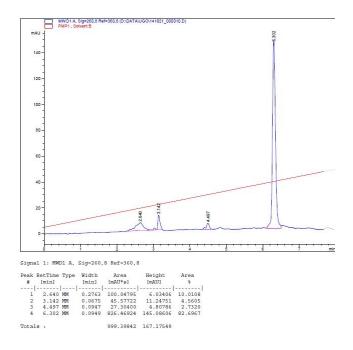

4 solutions were prepared for these experiments directly prior use:

- Solution 1: THPTA [50mM]: 1.1 mg of THPTA in 50 µL of water.
- Solution 2: Cy5 alkyne [20mM]: 1.18 mg of Cy5 alkyne in 100 µL of DMF.
- Solution 3: CuSO_{4.5}H₂O [20mM]: 5 mg of CuSO_{4.5}H₂O in 1 mL of water.
- Solution 4: Na ascorbate [100mM]: 20 mg of Na ascorbate in 1 mL of water.

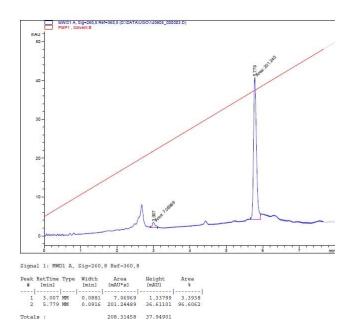

To solution of 5'-N₃-pre-miR-21 (10)1nmol) with the sequence (5'water μL, a C_{N3}CAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGU) (C_{N3}: 2'-*O*-methylenetriazolo-azidobutane) was successively added water (15 μ L), PBS buffer (pH = 7.4, 28.5 μ L), THPTA (solution 1, 2.5 μL, end [2.1mM]), Cy5 alkyne (solution 2, 1.25 μL, end [0.8mM]), CuSO₄ 5H₂O (solution 3, 1.25 μL, end [0.8mM]) and Na ascorbate (solution 4, 2.5 μ L, end [4.2mM]). After incubation of the reaction mixture for the reported time and at the reported temperature, the solution was cooled down to room temperature. Water (150 μ L) was added and the solution extracted three times with 200 µL of EtOAc. NaOAC (25 µL of a 3M solution) and 800 µL of a 2:1 EtOH/iPrOH mixture were added and RNA was precipitated for 30min at -80°C (alternatively, -20°C can be used for 12 h). After centrifugation (10min, 14000rpm), supernatant was removed and the RNA pellets dissolved in water (200 μ L) for HPLC purification (see following spectra).

HPLC profiles of crude 5'-Cy5-pre-miR-21


1 h at 25°C



1 h at 45°C



2 h at 45°C

HPLC profiles of crude 3'-Cy5-pre-miR-21

2 h at 45°C

5. Evaluation of reverse-click reaction on solid support on pre-miR-21 in different conditions

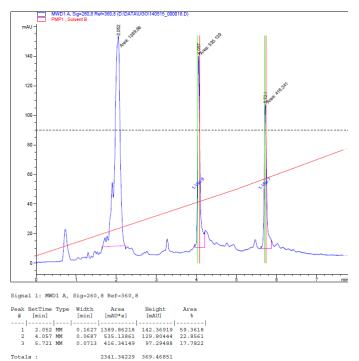
Experimental procedure

7 solutions were prepared for these experiments directly prior use:

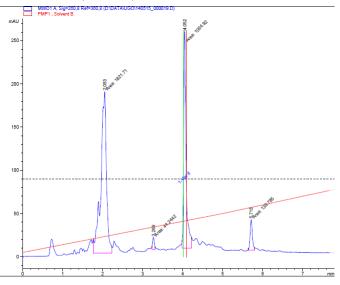
- Solution 1: CuSO₄.5H₂O [5 mM] in H₂O: 12.5 mg of CuSO₄.5H₂O in 10 mL of water.
- Solution 2: Na ascorbate [50 mM] in H₂O: 10 mg of Na ascorbate in 1 mL of water.
- Solution 3: TBTA [50 mM] in DMF: 2.7 mg of TBTA in 100 µL of DMF.
- Solution 4: THPTA [50 mM] in DMF: 2.2 mg of THPTA in 100 µL of DMF.
- Solution 5: H₂O/MeOH (1:1): 5 mL of H₂O, 5 mL of MeOH.
- Solution 6: PBS buffer/MeOH (1:1): 5 mL of PBS buffer, 5 mL of MeOH.
- Solution 7: Cy3 alkyne [50 mM] in DMF: 3.4 mg of Cy3 azide in 120 µL of DMF.
- Solution 8: Tris base [1M] in water: 121 mg of Tris in 1 mL of water
- Solution 9: NaN₃ [400 mM]: 4.55 mg of NaN₃ in 770 μL of DMF.


7 CPG columns (5 mg of 1000Å, 50 nmol syntheses) with the sequence of pre-miR-21 (5'-C_{Br}AGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUC) were prepared. CPGs were transferred into 7 Eppendorf tubes and were suspended in a DMF solution of sodium azide (110 μ L of solution 9). The reaction mixture was shaken vigorously for 6 h at 45°C on an Eppendorf shaker. The CPG was filtered and washed successively with 1 mL of DMF and acetonitrile. CPGs were combined and mixed in an Eppendorf tube before being equally redistributed into 7 Eppendorf tubes and successfully added solvent (H₂O/MeOH or PBS buffer/MeOH), DMF, ligand (TBTA or THPTA), Cy3 alkyne, Na ascorbate and copper sulfate. The reaction mixture was shaken vigorously for 16 h on an Eppendorf shaker and the CPGs filtered and washed successively with 1 mL of DMF, 0.1N aq. EDTA pH 8, DMF, and acetonitrile. After cleavage from the solid support and RNA deprotection (aq. MeNH₂/NH₄OH, TEA.HF), the composition of the crude solution was evaluated by integration of peaks in the HPLC chromatograms (see following spectra).

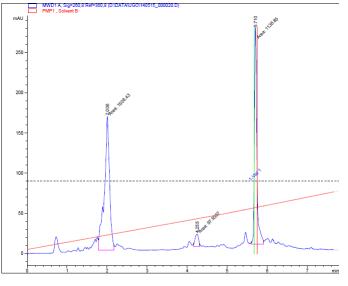
Conditions:


- Condition A (Control): 10 μ L of solution 1, 10 μ L of solution 2, 10 μ L of solution 3, 300 μ L of solution 5, 20 μ L of solution 7, 50 μ L of DMF.
- Condition B (Catalyst /5): 2 μ L of solution 1, 2 μ L of solution 2, 2 μ L of solution 3, 300 μ L of solution 5, 20 μ L of solution 7, 50 μ L of DMF.
- Condition C (TBTA x5): 10 μ L of solution 1, 10 μ L of solution 2, 50 μ L of solution 3, 300 μ L of solution 5, 20 μ L of solution 7, 50 μ L of DMF.

- Condition D (THPTA): 10 μ L of solution 1, 10 μ L of solution 2, 50 μ L of solution 4, 300 μ L of solution 5, 20 μ L of solution 7, 50 μ L of DMF.
- Condition E (PBS buffer): 10 μL of solution 1, 10 μL of solution 2, 10 μL of solution 3, 300 μL of solution 6, 20 μL of solution 7, 50 μL of DMF.
- Condition F (TRIS base): 10 μL of solution 1, 10 μL of solution 2, 10 μL of solution 3, 300 μL of solution 5, 20 μL of solution 7, 10 μL of solution 8, 50 μL of DMF.

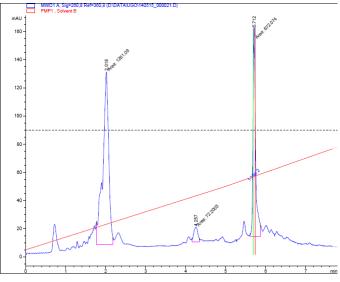

HPLC profiles of crude 5'-Cy3-pre-miR-21

Condition C (TBTA x5)


Condition D (THPTA)

Signal 1: MWD1 A, Sig=260,8 Ref=360,8

	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.053	MM	0.1626	1821.70557	186.76514	59.3263
2	3.269	MM	0.0515	44.24419	14.30862	1.4409
3	4.052	MM	0.0703	1064.91821	252.54262	34.6805
4	5.715	MM	0.0659	139.78519	35.37875	4.5523
Totals				3070.65315	488.99512	


Condition E (PBS buffer)

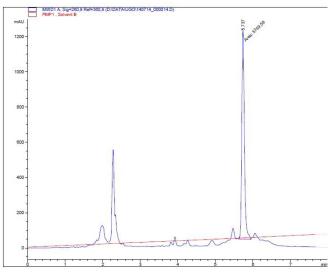
Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.006	MM	0.1509	1508.42883	166.60509	54.5806
2	4.255	MM	0.1041	97.93571	15.68348	3.5437
3	5.710	MM	0.0703	1138.84814	270.16788	41.2078
4	9.827	BV	0.1310	18.45837	1.76561	0.6679
Total	ls :			2763.67106	454.22205	

Condition F (TRIS base)

Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.018	MM	0.1716	1261.08765	122.47974	62.8858
2	4.257	MM	0.1161	72.20052	10.36317	3.6004
3	5.712	MM	0.0753	672.07379	148.66766	33.5138
Total	ls :			2005.36196	281.51058	


6. Evaluation of click/reverse-click protocol on pre-miR-21

Experimental procedure

Compounds were prepared following the reported procedure in section 2.

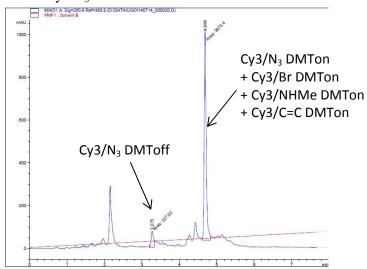
HPLC profiles of crude DMTon Cy3/N₃-pre-miR-21

ORN3-Cy3/N₃ DMTon

Signal 1: MWD1 A, Sig=260,8 Ref=360,8

 Peak RetTime Type
 Width
 Area
 Height
 Area

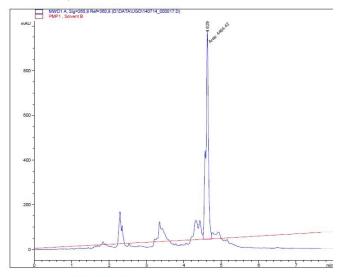
 #
 [min]
 [maU*s]
 [maU]
 %


 ---- ----- ----- ----- -----

 1
 5.737
 MM
 0.0807
 5749.58545
 1187.02576
 100.0000

5749.58545 1187.02576

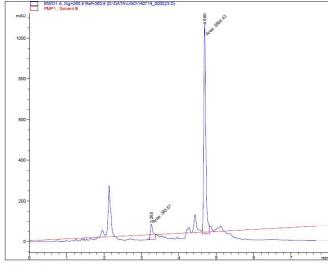
Totals :


ORN5-Cy3/N₃ DMTon

Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Totals	:	4002.93005	1052.94077

ORN4-Cy3/N₃ DMTon

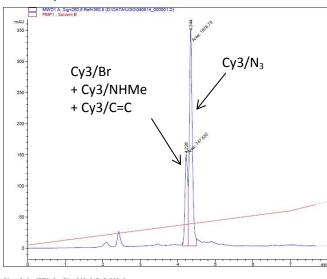


Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Peak RetTime Type Width # [min] [min] ----|-----|-----| 1 4.629 MM 0.0801 Area Height [mAU] Area % [mAU*s] ------|------|------|------| 0.0801 4464.41797 928.87146 100.0000

Totals : 4464.41797 928.87146

ORN6-Cy3/N₃ DMTon



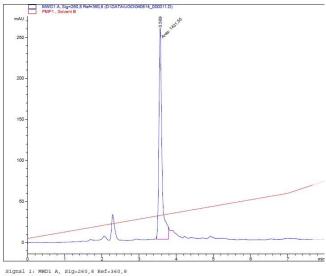
Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Totals : 4278.04410 1105.04737

HPLC profiles of crude DMToff Cy3/N₃-pre-miR-21

ORN3-Cy3/N₃

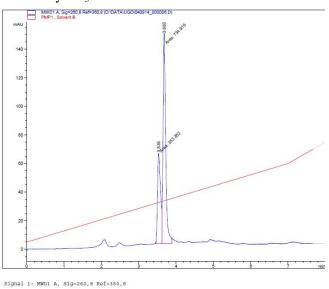
Signal 1: MWD1 A, Sig=260,8 Ref=360,8



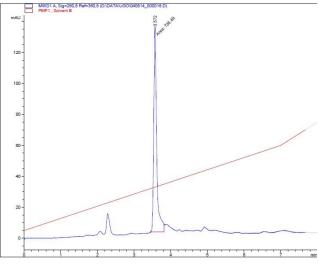
 Peak RetTime Type Width
 Area
 Height
 Area

 *
 [min]
 [min]
 [maW*8]
 [mAU]
 %

 1
 4.325 MM
 0.0848
 747.55206
 147.00591
 28.4641


 2
 4.344 MM
 0.0904 1287.74282
 346.36157
 71.5359
 347.00591
 Totals : 2626.30035 493.36748

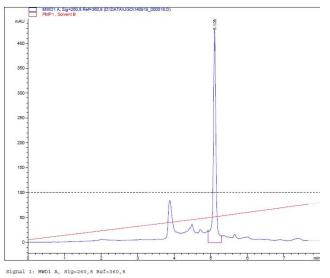
ORN5-Cy3/N₃


Totals : 1431.54956 258.<mark>14</mark>001

ORN4-Cy3/N₃

Totals : 1088.19809 211.10469

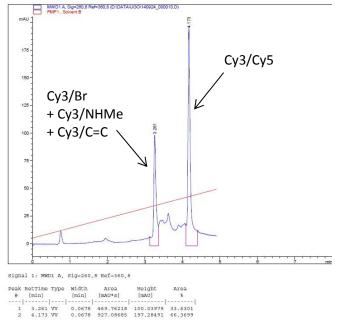
ORN6-Cy3/N₃



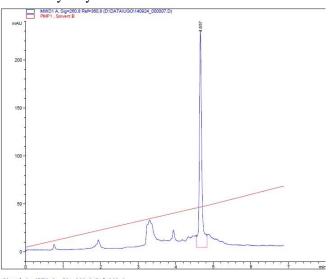
Signal 1: MWD1 A, Sig=260,8 Ref=360,8

Peak #	RetTime [min]	туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.572	MM	0.0922	736.48950	133.16005	100.0000
Total	ls :			736.48950	133.16005	

HPLC profiles of crude Cy3/Cy5-pre-miR-21


ORN3-Cy3/Cy5

 Peak RetTime Type Width Area Height Area
 Imin]
 Imin
 Imin]
 Image
 Image

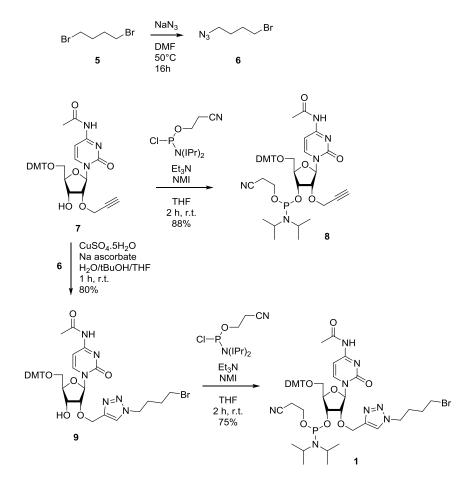

Totals : 2203.25073 427.70868

ORN5-Cy3/Cy5

Totals : 1396.84903 297.32470

ORN4-Cy3/Cy5

Signal 1: MWD1 A, Sig=260,8 Ref=360,8


Totals : 993.99146 224.29024

ORN6-Cy3/Cy5

7. Synthesis of reagents

Synthetic procedures

4-Azido-1-bromobutane 6 (CAS 116114-55-7)

4-Azido-1-bromobutane was prepared following the protocol of Agnew et al.¹

To a solution of 1,4-dibromobutane **5** (2 g, 9.26 mmol, 2 equiv.) in DMF (15mL) was added sodium azide (300 mg, 4.63 mmol). The reaction mixture was stirred at 50 °C for 16 h and partitioned between water (100mL) and CH₂Cl₂ (200mL). The organic layer was washed three times with water, once with brine and dried over Na₂SO₄. After filtration and evaporation of the volatiles, the crude residue was purified by silica gel column chromatography (up to 10% CH₂Cl₂ in hexanes, TLC revelation with KMnO₄) to give compound **6** (680 mg, 3.84 mmol, 83% yield) as a clear oil.

¹ Agnew, H.D., Rohde, R.D.; Millward, S.W.; Nag, A.; Yeo, W.-S.; Hein, J.E.; Pitram, S.M.; Tariq, A.; Burns, V.M.; Krom, R.J.; Fokin, V.V.; Sharpless, K.B.; Heath, J.R. *Angew. Chem. Int. Ed.* **2009**, *48*, 4944–4948

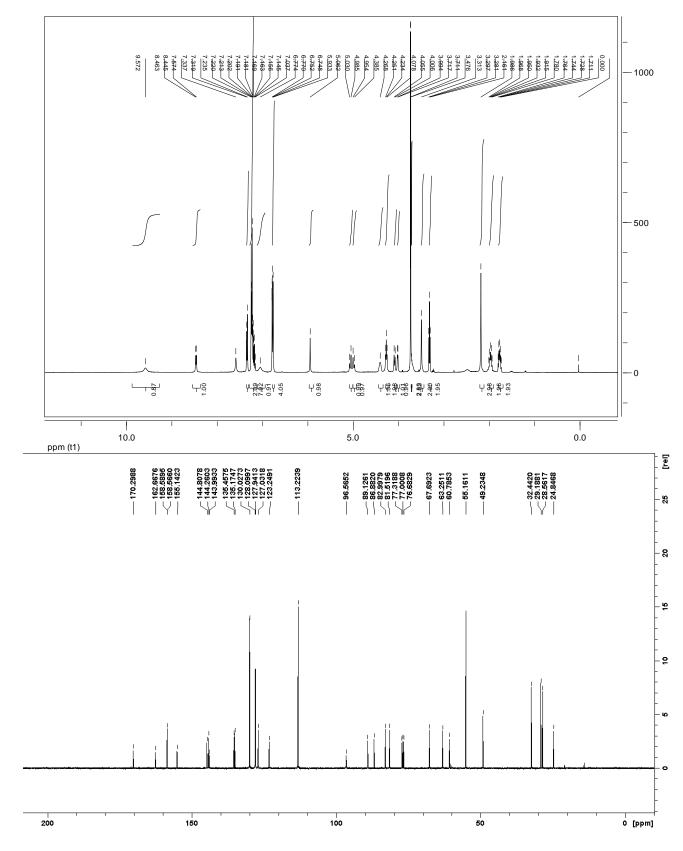
2'-O-propargyl-5'-dimethoxytrityl-N⁴-acetyl-cytidine 7

For a detailed synthesis in three steps starting from cytidine, see our previous report.²

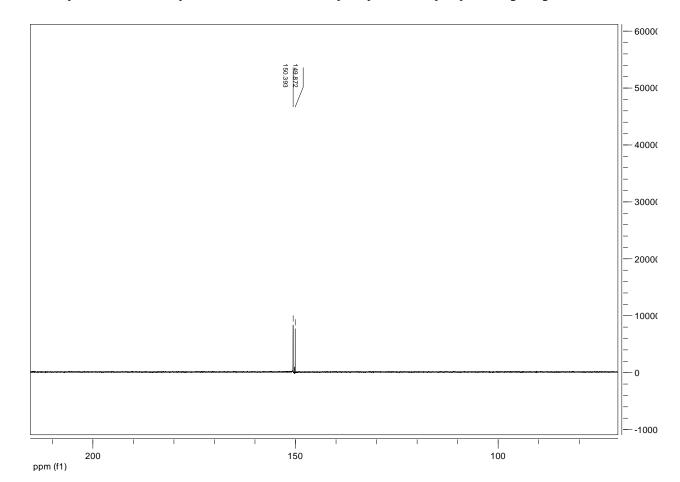
2'-O-propargyl-5'-dimethoxytrityl- N^4 -acetyl-cytidine phosphoramidite 8

For a detailed synthesis in three steps starting from cytidine, see our previous report.²

2'-O-methylenetriazolobutylbormide-5'-dimethoxytrityl- N^4 -acetyl-cytidine 9

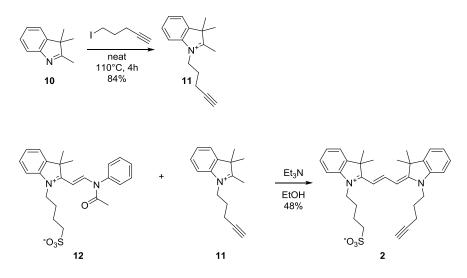

To a solution of compound **7** (1.5 g, 2.4 mmol) dissolved in a mixture of water (5 mL), tBuOH (5 mL), and THF (5 mL) at room temperature were successively added azidobutylbromide **6** (850 mg, 4.8 mmol, 2 equiv.), CuSO₄.5H₂O (60 mg, 0.24 mmol, 0.1 equiv.) and sodium ascorbate (95 mg, 0.48 mmol, 0.2 equiv.). After 1 h stirring at room temperature, the reaction mixture was partitioned between EtOAc (250 mL) and water (250 mL). The organic phase was washed twice with water, once with brine and dried over Na₂SO₄. After filtration and evaporation of the volatiles, the crude residue was purified by silica gel column chromatography (up to 5% MeOH in EtOAc to give compound **9** (1.544 g, 1.92 mmol, 80% yield) as a white amorphous solid. 1H-NMR (400 MHz, CDCl₃) δ =9.57 (s, 1H), 8.45 (d, J = 7.3 Hz, 1H), 7.57 (s, 1H), 7.32 (d, J = 7.2 Hz, 2H), 7.34-7.14 (m, 8H), 7.04 (br, 1H), 6.76 (dd, J = 8.9, 1.6 Hz, 4H), 5.93 (s, 1H), 5.05 (d, J = 12.7 Hz, 1H), 4.97 (d, J = 12.7 Hz, 1H), 4.39 (br, 1H), 4.25 (t, J = 6.8 Hz, 2H), 4.07 (d, J = 9.1 Hz, 1H), 4.00 (d, J = 4.6 Hz, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 3.48 (s, 2H), 3.30 (t, J = 6.4 Hz, 2H), 2.16 (s, 3H), 1.99-1.91 (m, 2H), 1.78-1.71 (m, 2H). 13C-NMR (100 MHz, CDCl₃) δ =170.30, 162.67, 158.59, 158.57, 155.14, 144.81, 144.26, 143.99, 135.46, 135.17, 130.03, 128.10, 127.94, 127.03, 123.25, 113.22, 96.57, 89.13, 86.88, 83.00, 81.52,67.69, 63.25, 60.79, 55.16, 49.23, 32.44, 29.19, 28.56, 24.85. ESI-MS: negative mode 801.3 ([M-H]⁻). Calc.: 802.2.

2'-O-methylenetriazolobutylbormide-5'-dimethoxytrityl- N^4 -acetyl-cytidine phosphoramidite 1


To a solution of 2'-O-methylenetriazolobutylbormide-5'-dimethoxytrityl-N⁴-acetyl-cytidine **9** (1.15g, 1.43 mmol, 1 equiv.) in THF (10 mL) at 0 °C were added Et₃N (0.96 mL, 7.16 mmol, 5 equiv.), 2-Cyanoethyl N,N-diisopropylchlorophosphoramidite (1.01 g, 4.29 mmol, 3 equiv.). After 2 h stirring at 0 °C, the reaction mixture was partitioned between a 5% NaHCO₃ aqueous solution (100 mL) and EtOAc (100 mL). The aqueous layer was extracted three times by EtOAc (3x 30 mL). The combined organic layer was washed twice with water (2x 20 mL) and once with brine (20 mL), dried over sodium sulfate, filtered and evaporated to dryness. The residue was purified by flash column chromatography with a gradient up to 2% MeOH in EtOAc (0.5% Et₃N) to afford phosphoramidite **1** (1.07 g, 1.07 mmol, 75% yield) as a white foam. 31P-NMR (66 MHz, CDCl3) δ =150.39, 149.87. ESI-HRMS calculated for C48 H60 Br N8 Na O9 P positive mode ([M+Na]+) 1025.3291. Calc.:1025.3296.

² Pradère, U.; Brunschweiger, A.; Gebert, L.F.R.; Lucic, M.; Roos, M.; Hall, J. Angew. Chem. Int. Ed. **2013**, 52, 12028–12032

NMR Spectras


 $\label{eq:2-O-methylenetriazolobutylbormide-5'-dimethoxytrityl-N^4-acetyl-cytidine 9$

$\label{eq:2-O-methylenetriazolobutylbormide-5'-dimethoxytrityl-N^4-acetyl-cytidine phosphoramidite 1$$

7.2 Cy3 alkyne

Synthetic procedures

5-iodopent-1-yne (CAS 2468-55-5)

5-iodopent-1-yne was prepared following a modified procedure of Barber et al.³

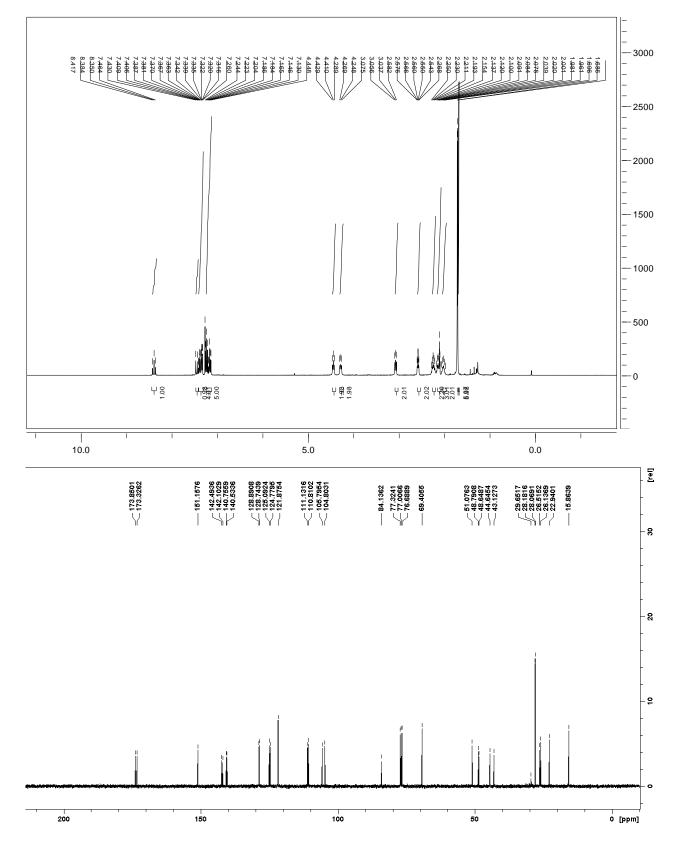
2,3,3-Trimethyl-1-(pent-4-yne)-3H-indolium 11 (CAS 1354932-44-7)⁴

To a 5 mL round bottom flask were added 2,3,3-trimethylindolenine **10** (372mg, 2.34 mmol, 1 equiv.) and 5iodopent-1-yne (500 mg, 2.58 mmol, 1.1 equiv.). The reaction mixture was stirred at 110 °C for 4 h, cooled to room temperature and diluted with CH_2Cl_2 (3 mL) and MeOH (0.5 mL). Precipitation in Et_2O (75 mL), filtration and washing with Et_2O afforded compound **11** (440 mg, 1.76 mmol, 84%) as a purple solid.

2-[2-(Acetylphenylamino)ethenyl]-3,3-dimethyl-1-(4-sulfobutyl)-3H-indolium 12

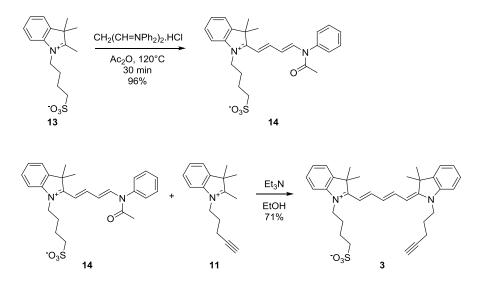
For a detailed synthesis of 2-[2-(Acetylphenylamino)ethenyl]-3,3-dimethyl-1-(4-sulfobutyl)-3H-indolium**12**in three steps starting from 2,3,3-trimethylindolenine**10**, see our previous report.²

2-[3-[1,3-Dihydro-3,3-dimethyl-1-(4-sulfobutyl)-2H-indol-2-ylidene]-1-propen-1-yl]-3,3-dimethyl-1-(4-azidobutyl)-3H-Indolium 2 (Cy3 alkyne)


To solution of hemicyanine **12** (454 mg, 1.03 mmol, 1 equiv.) and compound **11** (225 mg, 1.03 mmol, 1 equiv.) in EtOH (20 mL) was added triethylamine (420 μ L, 3.09 mmol, 3 equiv.). The reaction mixture was heated to 80 °C for 30 min, cooled to room temperature and evaporated to dryness. The residue was partitioned between water (50 mL)

³ Barber, D.M.; Sanganee, H.J.; Dixon D.J. Org. Lett. 2012, 14, 5290–5293

⁴ Gerowska, M.; Hall, L.; Richardson, J.; Shelbourne, M.; Brown, T. Tetrahedron 2012, 68, 857–864


and CH₂Cl₂ (50 mL). The organic phase was washed twice with water (2x 25 mL), dried over Na₂SO₄ and evaporated to dryness. The crude residue was purified by silica gel column chromatography (gradient up to 5% MeOH in CH₂Cl₂) to afford Cy3 alkyne **2** (263 mg, 0.50 mmol, 48% yield) as a dark purple solid. ¹H-NMR (400 MHz, CDCl₃) δ =8.38 (t, J = 13.4 Hz, 1H), 7.45 (d, J = 13.5 Hz, 1H), 7.43-7.32 (m, 4H), 7.24-7.13 (m, 5H), 4.43 (t, J = 7.4 Hz, 2H), 4.27(t, J = 8.0 Hz, 2H), 3.06 (t, J = 7.7 Hz, 2H), 2.56 (td, J = 6.5, 2.5 Hz, 2H), 2.27-2.19 (m, 2H), 2.15-2.08 (m, 3H), 2.04-1.96 (m, 2H), 1.70 (s, 6H), 1.69 (s, 6H). ¹³C-NMR (100 MHz, CDCl₃) δ =173.85, 173.33, 151.16, 142.49, 142.10, 140.76, 140.53, 128.89, 128.74, 125.09, 124.78, 121.88, 111.13, 110.81, 105.80, 104.80, 84.14, 69.41, 51.08, 48.79, 48.65, 44.65, 43.13, 29.65, 28.18, 28.07, 26.52, 26.14, 22.94, 15.86. ESI-HRMS calculated for C32 H39 N2 O3 S positive mode ([M]+) 531.2671. Calc.: 531.2676.

NMR Spectras of Cy3 alkyne 2

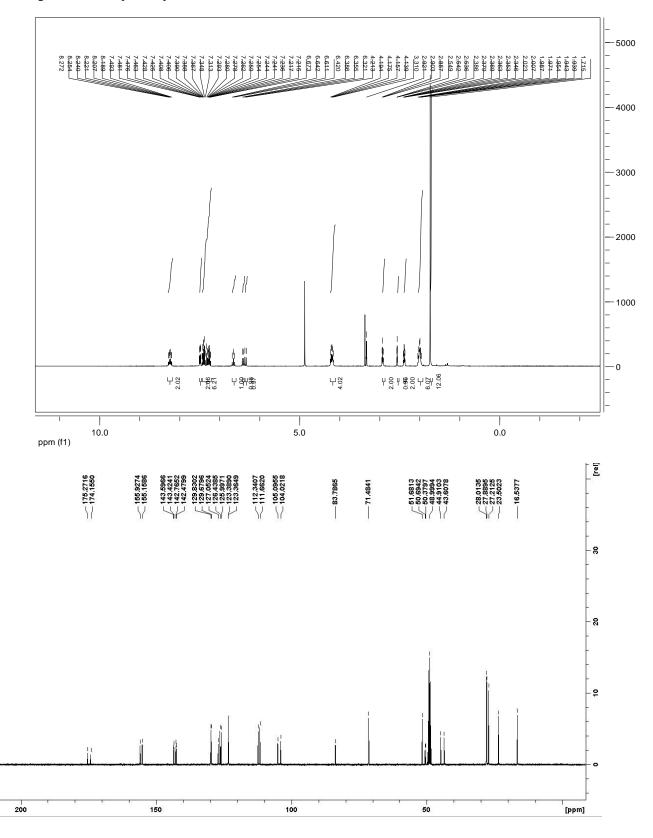
7.2 Cy5 alkyne

Synthetic procedures

2-[4-(acetylphenylamino)-1,3-butadien-1-yl]-3,3-dimethyl-1-(4-sulfobutyl)-3*H*-Indolium 14 (CAS 120725-11-3)

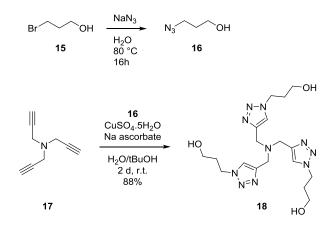
Compound 13 was prepared following the procedure of Kvach et al.⁵

To a stirred solution of compound **13** (1.588 g, 5.38 mmol, 1 equiv.) in acetic anhydride (20 mL) was added malonaldehyde bis(phenylimine) hydrochloride (1.805 g, 7.0 mmol, 1.3 equiv.). After 30 min stirring at 120 °C, the reaction mixture was evaporated to dryness and dissolved in dichloromethane (2 mL). Ether (50 mL) was added and the resulting gum was filtered. The gum was dissolved in dichloromethane (2 mL) and precipitated by addition of ether (100 mL) affording hemicyanine **14** (675 mg, 1.52 mmol, 86% yield) as a light brown solid.


2-[5-[1,3-dihydro-1-(4-sulfobutyl)-3,3-dimethyl-2*H*-indol-2-ylidene]-1,3-pentadien-1-yl]-3,3-dimethyl-1-(4-pentenyl)-3*H*-Indolium 3 (Cy5 alkyne)

To solution of hemicyanine **14** (1 g, 2.14 mmol, 1 equiv.) and **11** (549 mg, 2.14 mmol, 1 equiv.) in EtOH (20 mL) was added triethylamine (864 μ L, 6.42 mmol, 3 equiv.). The reaction mixture was heated to 80 °C for 30 min, cooled to room temperature and evaporated to dryness. The residue was partitioned between water (200 mL) and CH₂Cl₂ (200 mL). The organic phase was washed twice with water (2x 50 mL), dried over Na₂SO₄ and evaporated to dryness. The crude residue was purified by silica gel column chromatography (gradient up to 8% MeOH in CH₂Cl₂) to afford Cy5 alkyne **3** (850 mg, 1.53 mmol, 71% yield) as a dark blue solid. ¹H-NMR (400 MHz, CD₃OD) δ = 8.21 (dt, J =

⁵ Kvach, M.V.; Gontarev, S.V.; Prokhorenko, I.A.; Stepanova, I.A.; Shmanai, V.V.; Korshun, V.A. *Russ. Chem. Bull.* **2006**, *55*, 159-163.


13.0, 7.5 Hz, 2H), 7.48 (dd, J = 7.0, 5.0 Hz, 2H), 7.43-7.22 (m, 6H), 6.64 (t, J = 12.4 Hz, 1H), 6.41 (d, J = 13.8 Hz, 1H), 6.34 (d, J = 13.6 Hz, 1H), 4.21-4.14 (m, 4H), 2.90 (t, J = 6.8 Hz, 2H), 2.54 (t, J = 2.6 Hz, 1H), 2.37 (dt, J = 6.6, 2.6 Hz, 2H), 1.98 (br, 6H), 1.71 (s, 12H). ¹³C-NMR (100 MHz, CDCl₃) δ =175.27, 174.16, 155.93, 155.16, 143.60, 143.42, 142.77, 142.48, 129.83, 129.68, 127.05, 126.44, 126.00, 123.39, 123.36, 112.34, 111.66, 105.10, 104.02, 83.79, 71.48, 51.68, 50.69, 50.38, 44.91, 43.60, 28.01, 27.89, 27.21, 23.50, 16.54. ESI-HRMS calculated for C34 H41 N2 O3 S positive mode ([M]+) 557.2836. Calc.: 557.2832.

NMR Spectras of Cy5 alkyne 3

7.4 THPTA

Synthetic procedures

3-azido-1-propanol 16 (CAS 72320-38-8)

3-azido-1-propanol was prepared following the procedure of Chen et al.⁶

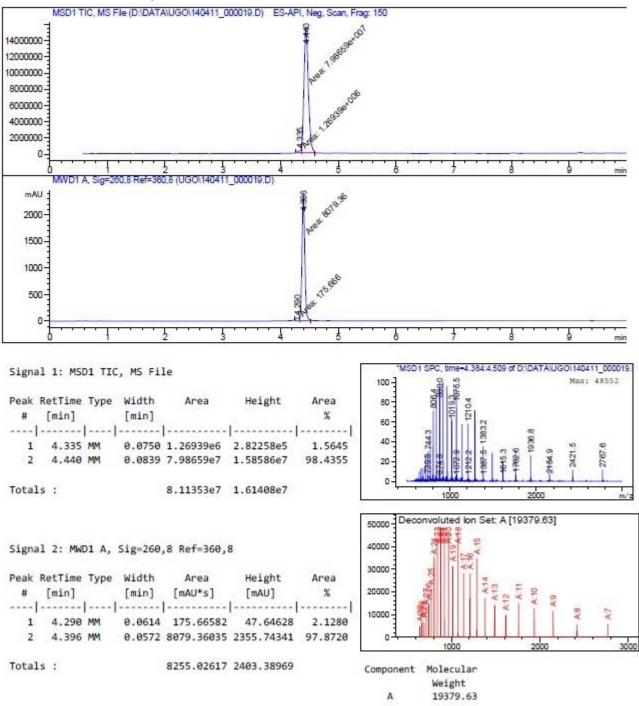
THPTA 18 (CAS 760952-88-3)

THPTA was prepared using a modified synthetic procedure of Peacock et al.⁷

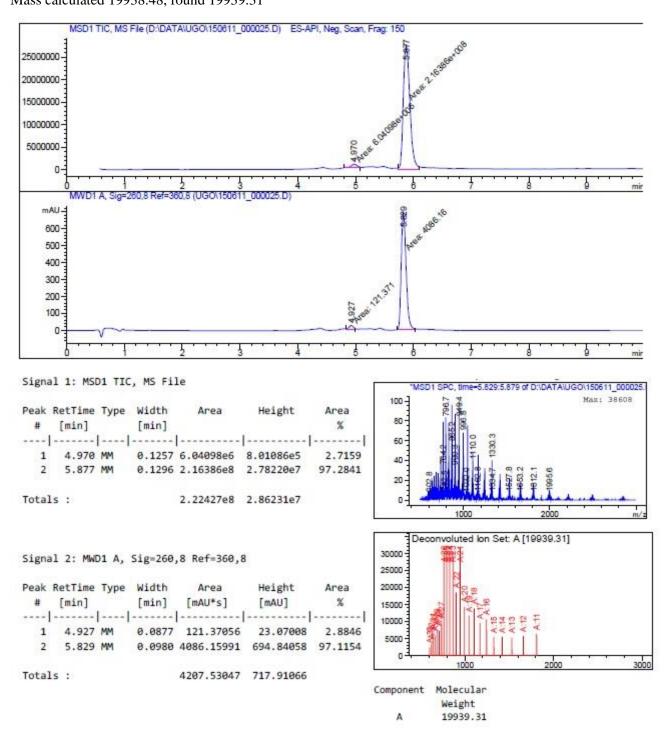
To solution of tripropargylamine **17** (393 mg, 3 mmol, 1 equiv.) and 3-azido-1-propanol **16** (1.33 g, 12 mmol, 4 equiv.) in a 1:1 H₂O/tBuOH mixture (6 mL) was added CuSO₄.5H₂O (75 mg, 0.3 mmol, 0.1 equiv.) and sodium ascorbate (119 mg, 0.6 mmol, 0.2 equiv.). The reaction mixture was stirred at room temperature for 2 days, evaporated to dryness and purified by silica gel column chromatography (gradient up to 30% MeOH in CH₂Cl₂, detection at 210 nm) to afford THPTA **18** (1.15 g, 2.64 mmol, 88% yield) as a yellow solid.

⁶ Chen, P.; Li, C.; Liu, D.; Li, Z. *Macromolecules* **2012**, *45*, 9579–9584

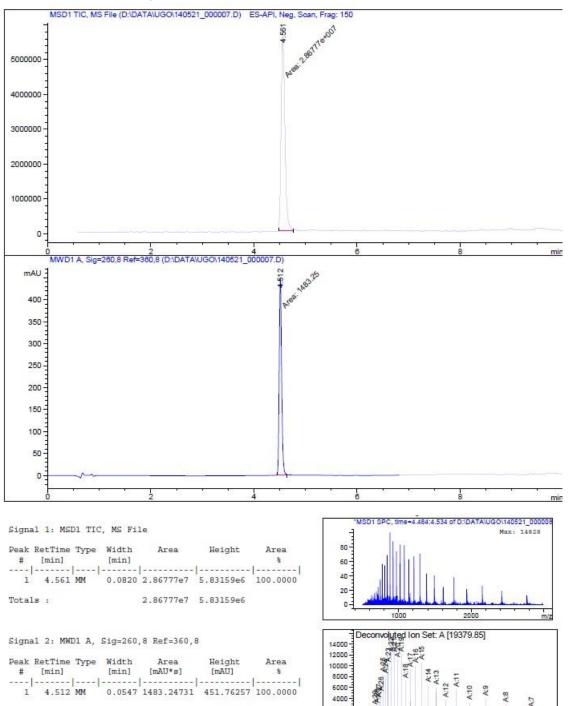
⁷ Peacock, H.; Maydanovych, O.; Beal, P.A. Org. Lett. 2010, 12, 1044–1047

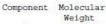

8. Sequences of ORN1 to ORN14

ORN1, pre-miR-21	UAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAG UCGAUGGGCUGU <u>C</u>
ORN2, pre-miR-21	<u>C</u> AGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAG UCGAUGGGCUGUC
ORN3, pre-miR-21	$\underline{\mathbf{C}} \mathbf{A} \mathbf{G} \mathbf{C} \mathbf{U} \mathbf{U} \mathbf{A} \mathbf{U} \mathbf{C} \mathbf{A} \mathbf{G} \mathbf{G} \mathbf{C} \mathbf{U} \mathbf{G} \mathbf{A} \mathbf{U} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} \mathbf{G} G$
ORN4, pre-miR-21	$\begin{array}{l} \textbf{UAGCUUAUCAGACUGAUGUUGACUGUUGAAU} \underline{\textbf{C}} \textbf{UCAUGGCAACACCAG} \\ \textbf{UCGAUGGGCUGU} \underline{\textbf{C}} \end{array}$
ORN5, pre-miR-21	UAGCUUAUCAGA <u>C</u> UGAUGUUGACUGUUGAAUCUCAUGGCAACAC <u>C</u> AG UCGAUGGGCUGUC
ORN6, pre-miR-21	UAGCUUAUCAGA <u>C</u> UGAUGUUGACUGUUGAAUCUCAUGGCAACACCAG U <u>C</u> GAUGGGCUGUC
ORN7, pre-miR-106a	AAAAGUG <u>C</u> UUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGUA AGCA <u>C</u> UUCUUAC
ORN8, pre-miR-106a	AAAAGUG <u>C</u> UUACAGUGCAGGUAGCUUUUUGAGAU <u>C</u> UACUGCAAUGUA AGCACUUCUUAC
ORN9, pre-miR-124	CGUGUU <u>C</u> ACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCAC G <u>C</u> GGUGAAUGCC
ORN10, pre-miR-124	CGUGUUCACAGCGGACCUUGAUUUAAAUGUC <u>C</u> AUACAAUUAAGGCAC G <u>C</u> GGUGAAUGCC
ORN11, pre-miR-20b	CAAAGUG \underline{C} UCAUAGUGCAGGUAGUUUUGGCAUGACUCUACUGUAGUAUGGGCA \underline{C} UUCCAG
ORN12, pre-miR-20b	CAAAGUG <u>C</u> UCAUAGUGCAGGUAGUUUUGG <u>C</u> AUGACUCUACUGUAGUA UGGGCACUUCCAG
ORN13, pre-miR-122	UGGAGUGUGA <u>C</u> AAUGGUGUUUGUGUCUAAACUAUCAAACGCCAUUAU CA <u>C</u> ACUAAAUA
ORN14, pre-miR-122	UGGAGUGUGA <u>C</u> AAUGGUGUUUGUGUCUAAA <u>C</u> UAUCAAACGCCAUUAU CACACUAAAUA


9. LCMS traces of ORN1 to ORN14

ORN1-N₃, pre-miR-21


UAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGU<u>C</u> Mass calculated 19381.72, found 19379.63

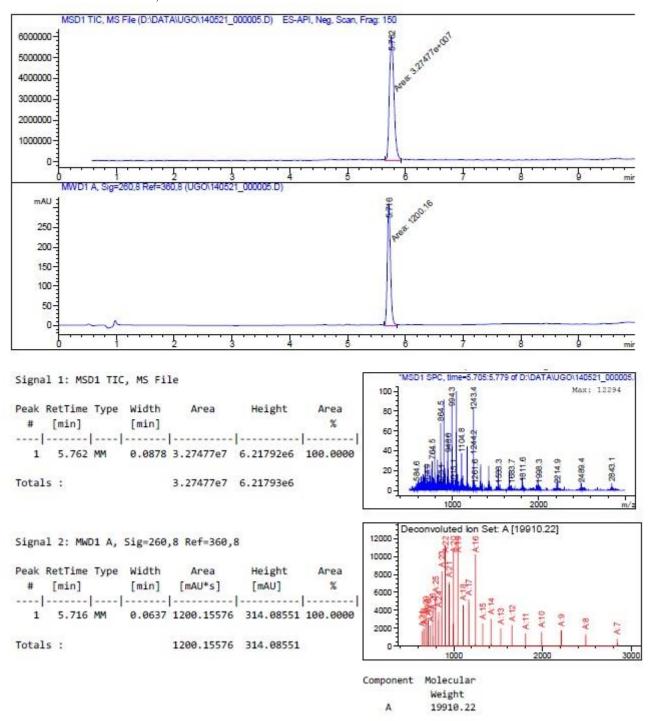

ORN1-Cy5, pre-miR-21 UAGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGU<u>C</u> Mass calculated 19938.48, found 19939.31

ORN2-N3, pre-miR-21 <u>C</u>AGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUC Mass calculated 19380.72, found 19379.85

Totals : 1483.24731 451.76257

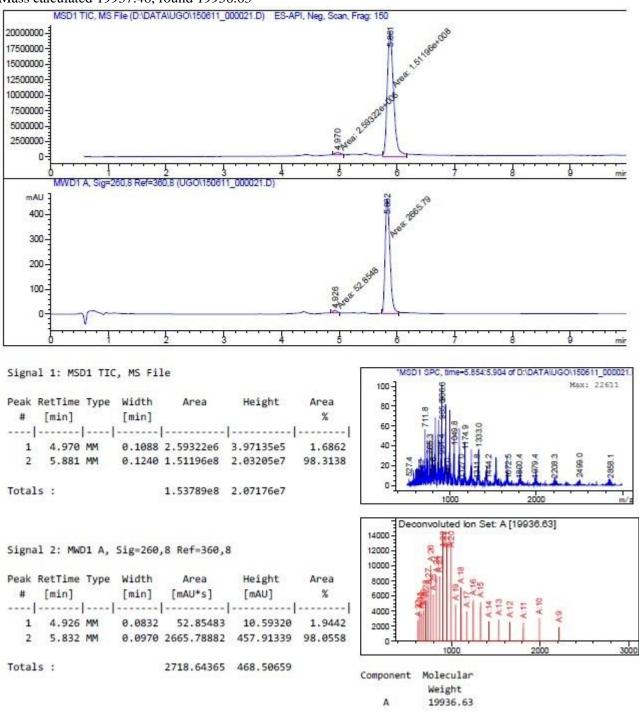
2000-

0

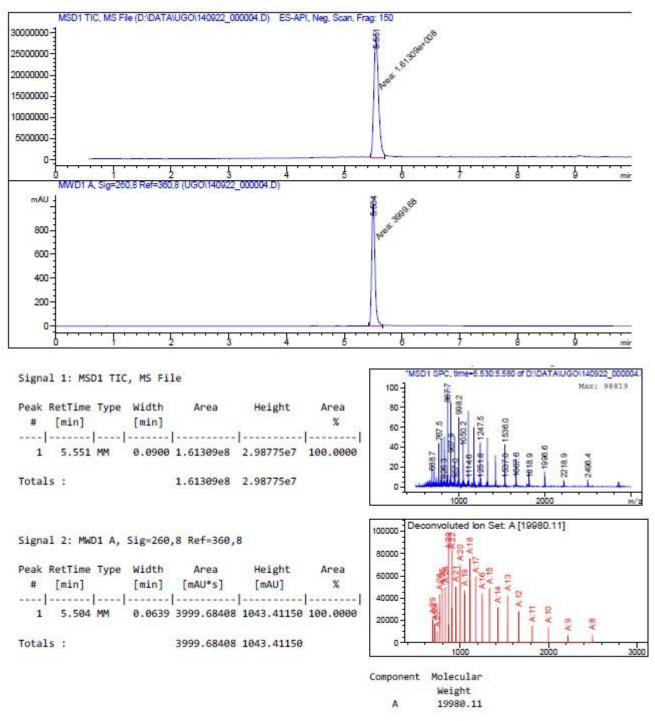


1000

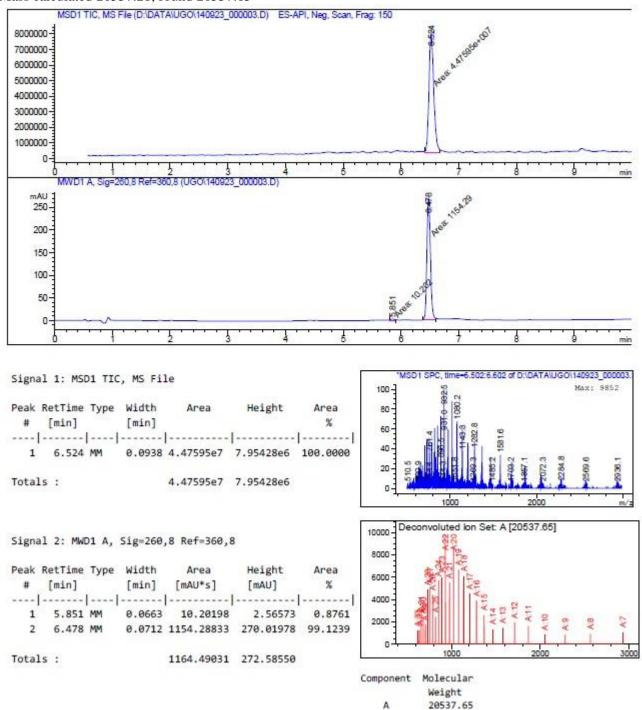
3000


2000

ORN2-Cy3, pre-miR-21 <u>C</u>AGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUC Mass calculated 19911.44, found 19910.22

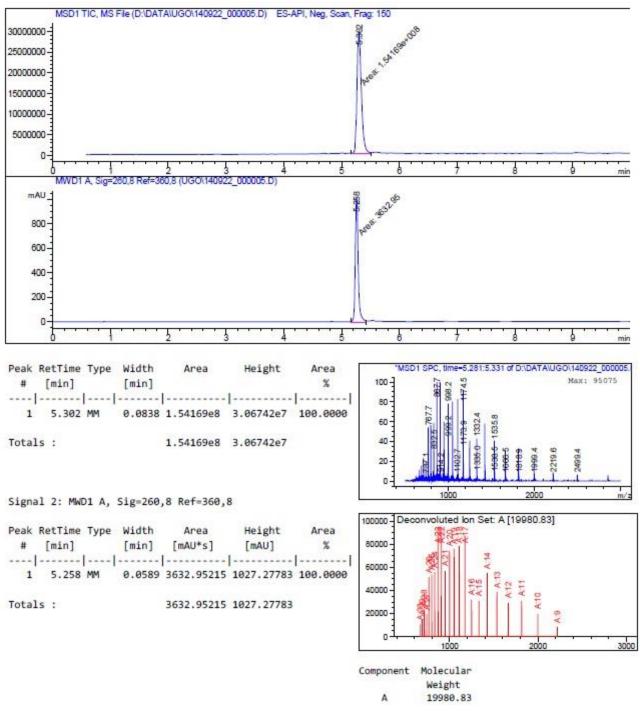

37

ORN2-Cy5, pre-miR-21 <u>C</u>AGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGUC Mass calculated 19937.48, found 19936.63

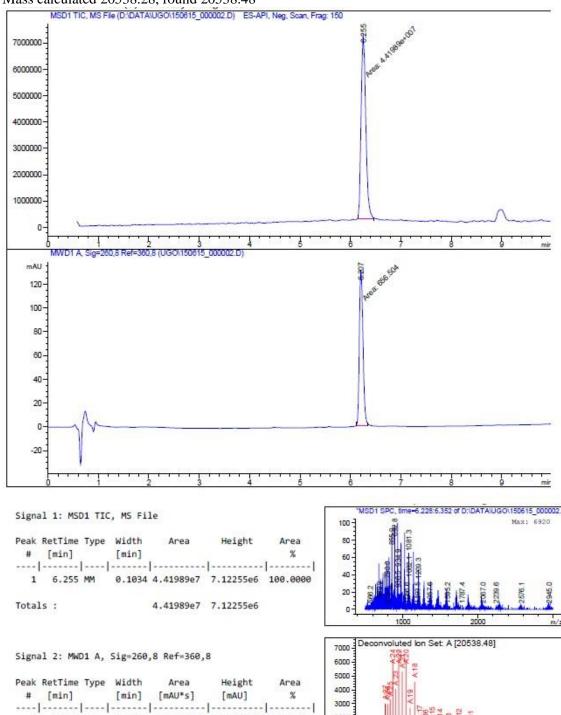


ORN3-Cy3/N₃, pre-miR-21

<u>C</u>AGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGU<u>C</u> Mass calculated 19980.52, found 19980.11

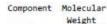


ORN3-Cy3/Cy5, pre-miR-21 <u>C</u>AGCUUAUCAGACUGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGU<u>C</u> Mass calculated 20537.28, found 20537.65



ORN4-Cy3/N₃, pre-miR-21

UAGCUUAUCAGACUGAUGUUGACUGUUGAAU<u>C</u>UCAUGGCAACACCAGUCGAUGGGCUGU<u>C</u> Mass calculated 19981.52, found 19980.83

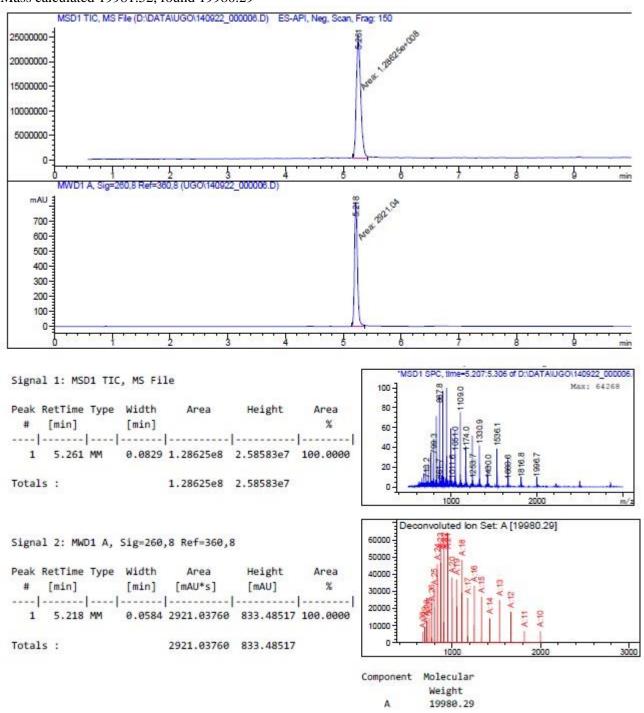


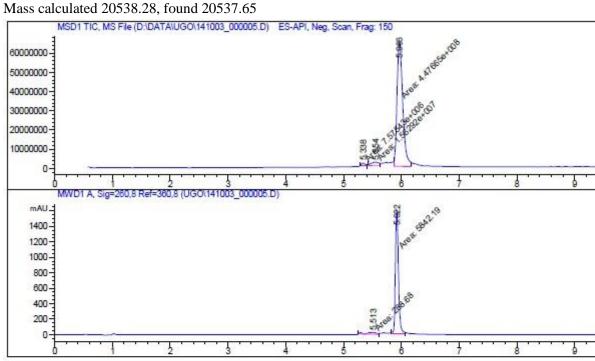
ORN4-Cy3/Cy5, pre-miR-21 UAGCUUAUCAGACUGAUGUUGACUGUUGAAU<u>C</u>UCAUGGCAACACCAGUCGAUGGGCUGU<u>C</u> Mass calculated 20538.28, found 20538.48

Totals : 656.50354 130.00429

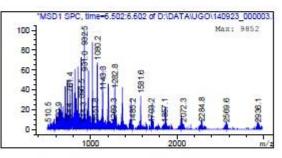
1 6.207 MM 0.0842 656.50354 130.00429 100.0000

2000-

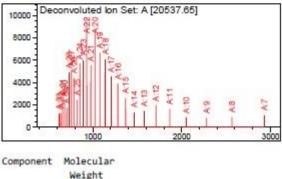

1000


1000

3000

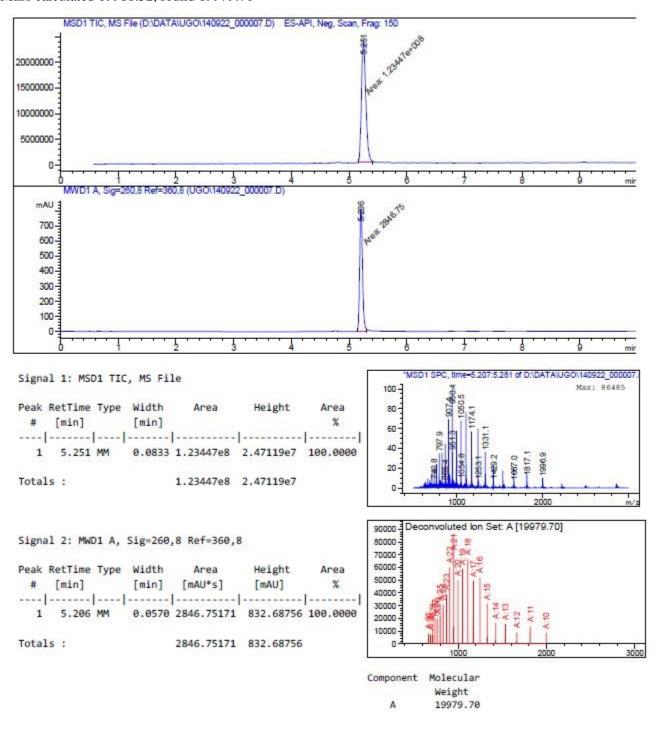

ORN5-Cy3/N3, pre-miR-21 UAGCUUAUCAGA<u>C</u>UGAUGUUGACUGUUGAAUCUCAUGGCAACAC<u>C</u>AGUCGAUGGGCUGUC Mass calculated 19981.52, found 19980.29

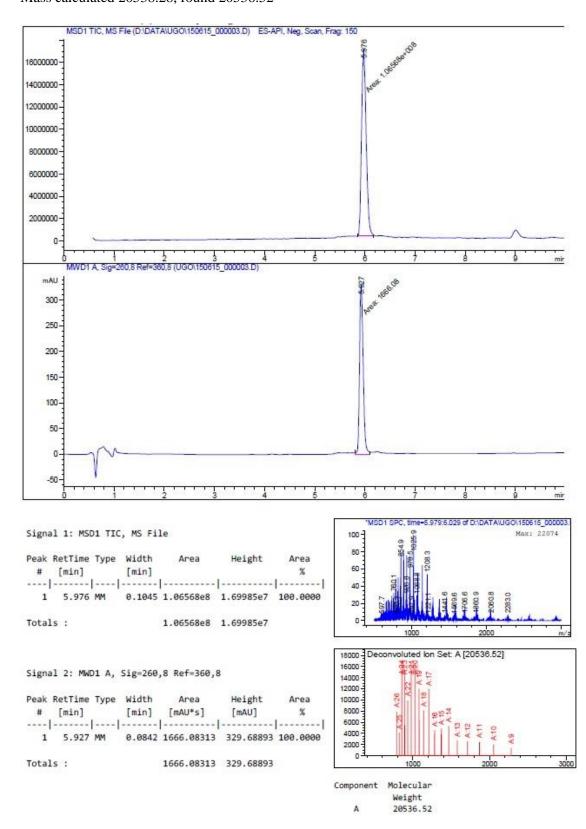
ORN5-Cy3/Cy5, pre-miR-21 UAGCUUAUCAGA<u>C</u>UGAUGUUGACUGUUGAAUCUCAUGGCAACAC<u>C</u>AGUCGAUGGGCUGUC


Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]			%
				<mark>-</mark>		
1	5.338	MM	0.0801	7.57543e6	1.57605e6	1.6088
2	5.554	MM	0.1526	1.56292e7	1.70723e6	3.3192
3	5.966	MM	0.1095	4.47665e8	6.81623e7	95.0720
Total	s :			4.70869e8	7.14456e7	

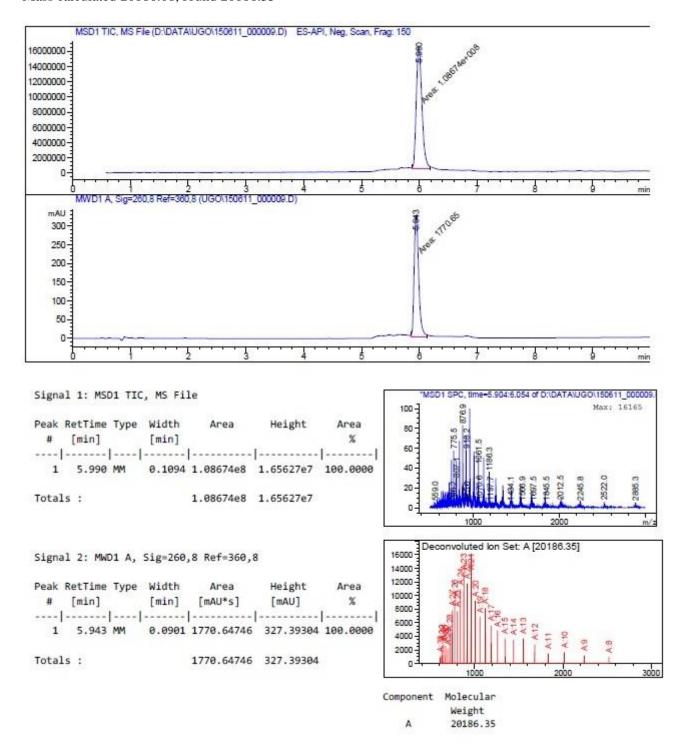
min

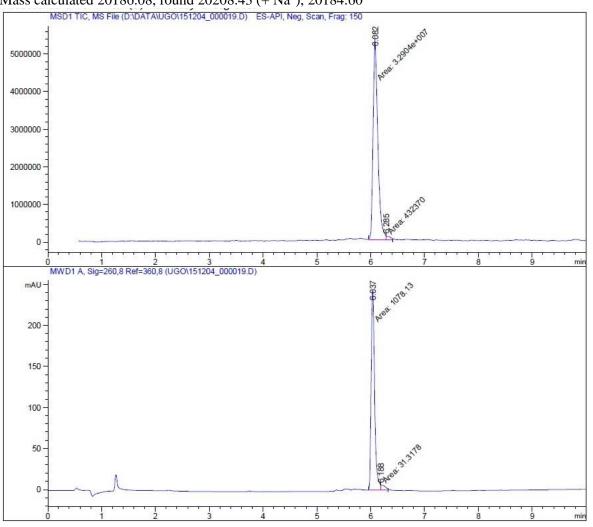
min


Signal 2: MWD1 A, Sig=260,8 Ref=360,8 Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [MAU] % ---- ---------1 5.513 MM 0.2044 288.68011 23.54071 4.7086 1 5.922 MM 0.0605 5842.19043 1608.63721 95.2914 2 Totals : 6130.87054 1632.17792



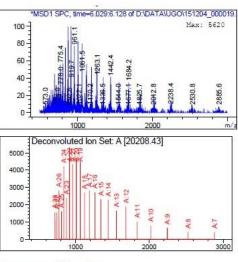
A


ORN6-Cy3/N3, pre-miR-21 UAGCUUAUCAGA<u>C</u>UGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGU<u>C</u>GAUGGGCUGUC Mass calculated 19981.52, found 19979.70

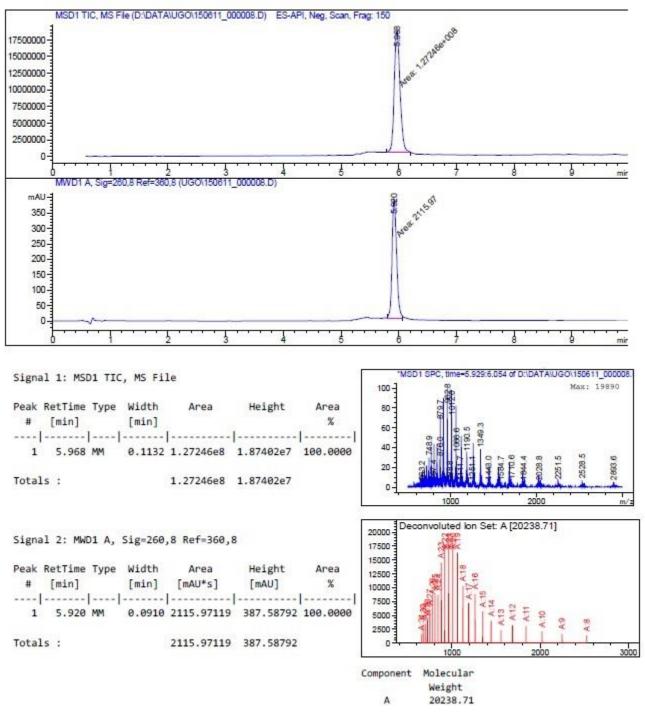

ORN6-Cy3/Cy5, pre-miR-21 UAGCUUAUCAGA<u>C</u>UGAUGUUGACUGUUGAAUCUCAUGGCAACACCAGU<u>C</u>GAUGGGCUGUC Mass calculated 20538.28, found 20536.52



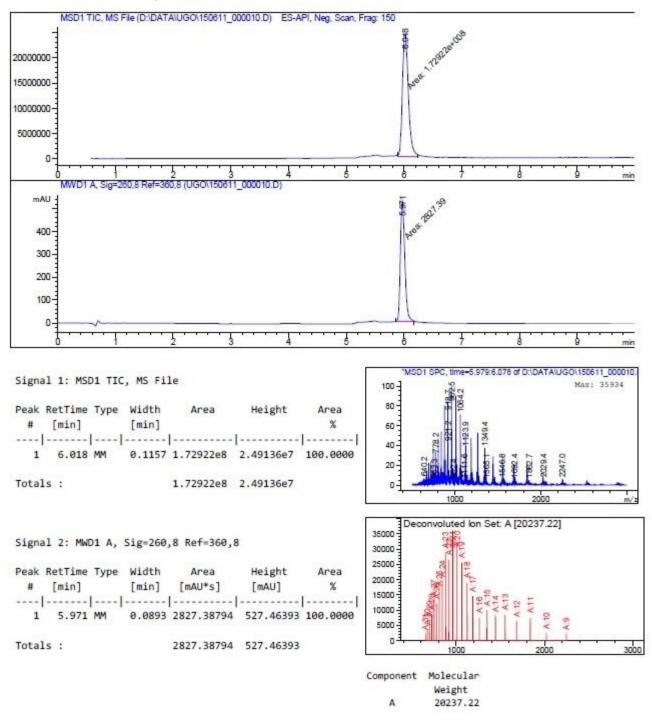
ORN7-Cy3/Cy5, pre-miR-106a AAAAGUG<u>C</u>UUACAGUGCAGGUAGCUUUUUGAGAUCUACUGCAAUGUAAGCA<u>C</u>UUCUUAC Mass calculated 20186.08, found 20186.35


ORN8-Cy3/Cy5, pre-miR-106a AAAAGUG<u>C</u>UUACAGUGCAGGUAGCUUUUUGAGAU<u>C</u>UACUGCAAUGUAAGCACUUCUUAC Mass calculated 20186.08, found 20208.43 (+ Na⁺), 20184.60

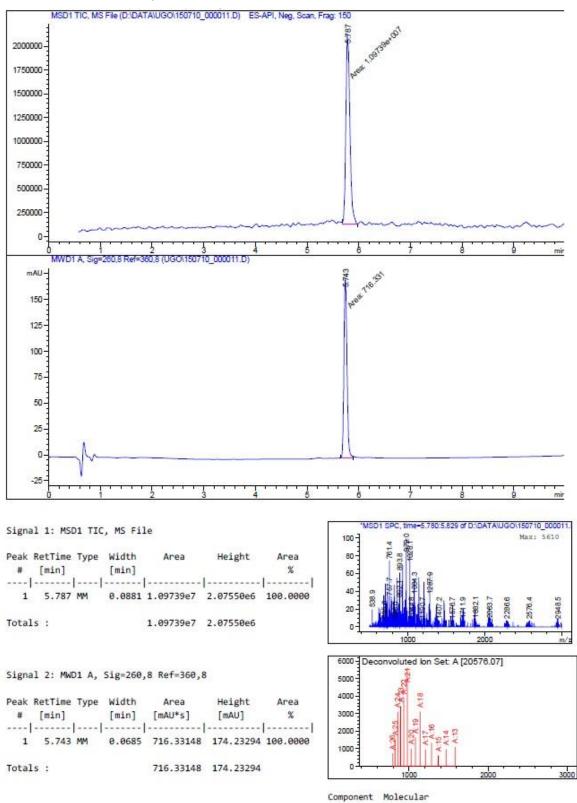
Peak #	RetTime [min]	Туре	Width [min]	Area	Height	Area %
1	6.082	MM	0.0993	3.29040e7	5.52002e6	98.7030
2	6.285	MM	0.0720	4.32370e5	1.02299e5	1.2970
Total	.s :			3.33364e7	5.62232e6	


Signal	L 2: MW	D1 A,	Sig=260	,8 Ref=360,8	3	
Peak F	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
-						
1	6.037	MM	0.0734	1078.13025	244.89534	97.1772
2	6.188	MM	0.0678	31.31784	5.97308	2.8228
Totals	5:			1109.44809	250.86842	

Component Molecular

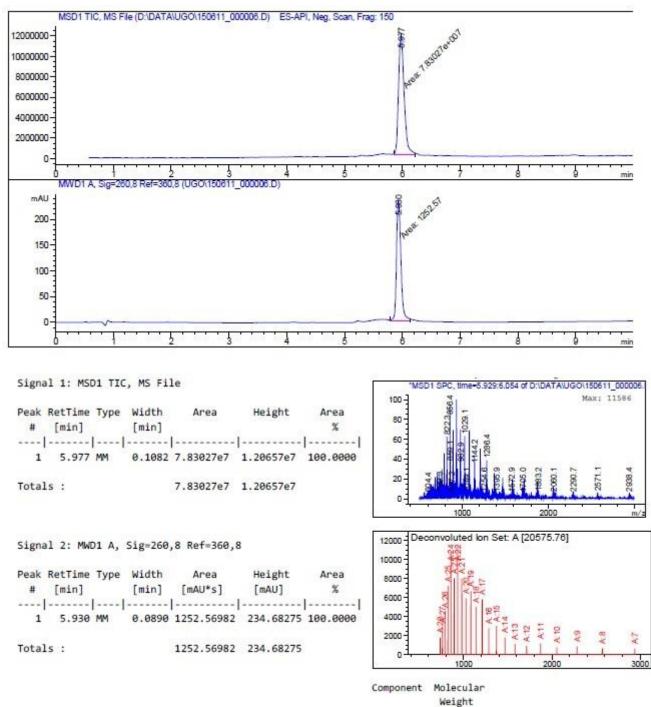

	Weight		
A	20208.43		
в	20184.60		

ORN9-Cy3/Cy5, pre-miR-124 CGUGUU<u>C</u>ACAGCGGACCUUGAUUUAAAUGUCCAUACAAUUAAGGCACG<u>C</u>GGUGAAUGCC Mass calculated 20238.18, found 20238.71

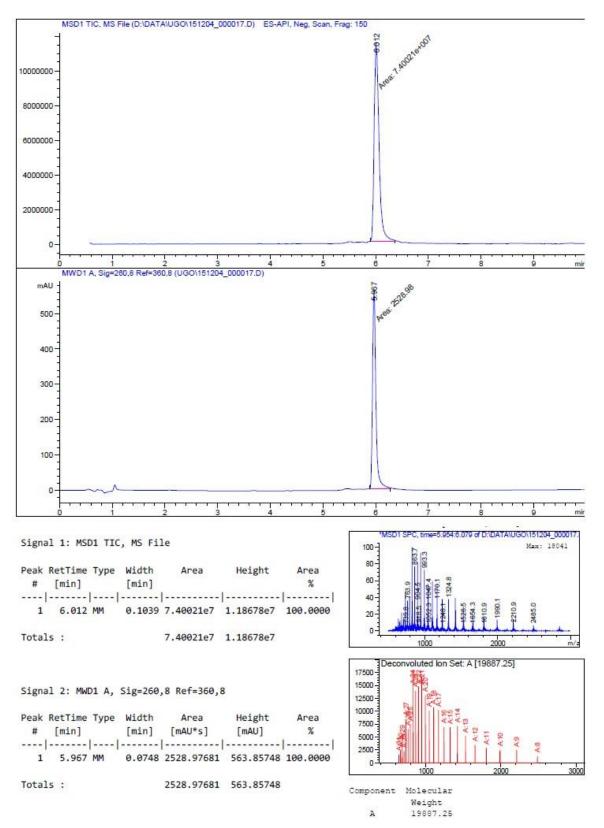


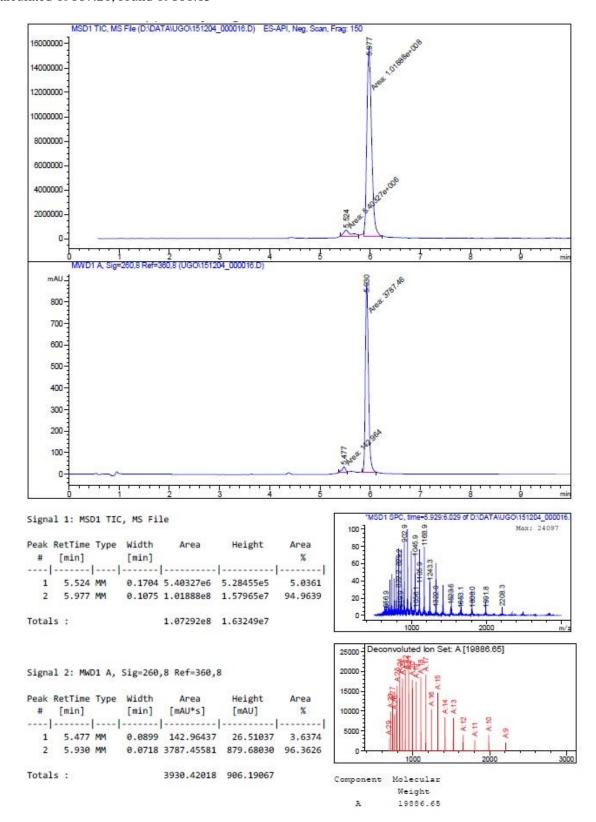
49

ORN10-Cy3/Cy5, pre-miR-124 CGUGUUCACAGCGGACCUUGAUUUAAAUGUC<u>C</u>AUACAAUUAAGGCACG<u>C</u>GGUGAAUGCC Mass calculated 20238.18, found 20237.22


ORN11-Cy3/Cy5, pre-miR-20b CAAAGUGCUCAUAGUGCAGGUAGUUUUUGGCAUGACUCUACUGUAGUAUGGGCACUUCCAG Mass calculated 20578.38, found 20576.07

ORN12-Cy3/Cy5, pre-miR-20b


CAAAGUG<u>C</u>UCAUAGUGCAGGUAGUUUUUGG<u>C</u>AUGACUCUACUGUAGUAUGGGCACUUCCAG Mass calculated 20578.38, found 20575.76



A

ORN13-Cy3/Cy5, pre-miR-122 UGGAGUGUGA<u>C</u>AAUGGUGUUUGUGUCUAAACUAUCAAACGCCAUUAUCA<u>C</u>ACUAAAUA Mass calculated 19887.20, found 19887.25

ORN14-Cy3/Cy5, pre-miR-122 UGGAGUGUGA<u>C</u>AAUGGUGUUUGUGUCUAAA<u>C</u>UAUCAAACGCCAUUAUCACACUAAAUA Mass calculated 19887.20, found 19886.65

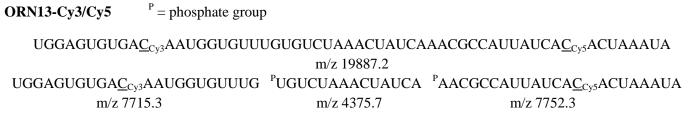
10. RNAse digestion assay

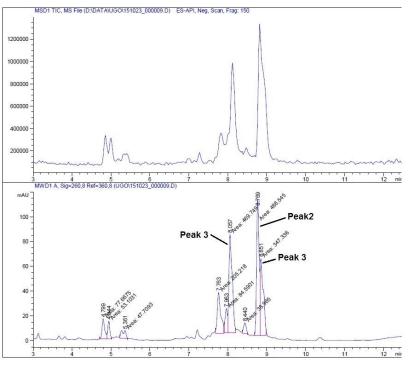
Experimental procedure

1 μ L of a 20 μ M solution of RNA was diluted in 15 μ L of water. Fluorescence was measured every minute for 5 min on a Tecan Plate-reader Infinite M1000 at 675 nm (5 nm bandwidth) after excitation at 548 nm (Cy3 excitation, FRET) and 640 nm (direct Cy5 excitation). 1 μ L of Fermentas RNAse A enzyme was added to the solution, incubated at room temperature for 1 minute and the fluorescence was measured every minute for 5 min as described previously.

11. Dicer assays with ORN13-Cy3/Cy5 and ORN14-Cy3/Cy5

Experimental procedure

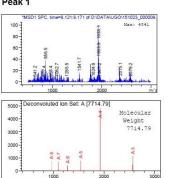

Dicer processing experiments were conducted with a Gelantis Recombinant Turbo Dicer Enzyme Kit (Cat # T520002) following manufacturer recommendations with minor modifications.

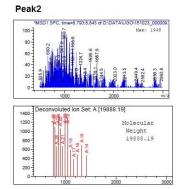

1.25 μ g of ORN-Cy3/Cy5 was deposed into an Eppendorf and dried on a SpeedVac. Successively 3 μ L of RNA free water, 1 μ L of 10mM ATP solution, 1 μ L of 5X BSA, 2 μ L of 50mM MgCl₂ and 1 μ L of Turbo Dicer Reaction Buffer were added. After mixing, 1.6 μ L of the solution was removed from the solution and stored separately as starting material reference for fluorescence measurements (sample 1). The remaining solution was added 2 μ L of Turbo Dicer Enzyme (1 unit) and incubated for 2 h at 37 °C under gentle shaking. The enzymatic reaction was stopped by the addition of 2 μ L of a Turbo Dicer Stop Solution. 2 μ L of the solution was removed from the solution and stored separately for fluorescence measurements (sample 2).

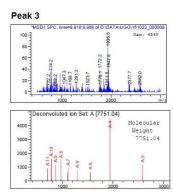
The remaining solution was analyzed by LC-MS with a gradient of 5 to 55% buffer B in buffer A over 10 min then 55% to 100% over 2.5 min (buffer A: 0.4M HFIP, 15 mM triethylamine; buffer B: MeOH).

Samples 1 and 2 were dissolved in water to reach a final volume of 15 μ L and analyzed on a Tecan Plate-reader Infinite M1000 at 675 nm (5 nm bandwidth) after excitation at 548 nm (Cy3 excitation, FRET) and 640 nm (direct Cy5 excitation). To sample 2 was added 1 μ L of a 200 μ M solution of a 2'-MeO antisense oligonucleotide (fully complementary 5p antisense, sequence: 5'-UAUUUAGUGUGAUAAUGGCGUU-3', end concentration 12.5 μ M). The solution was incubated for 15 min and fluorescence measurements were acquired as described previously. 4 μ L of the antisense oligonucleotide solution were added to the solution (end concentration 50 μ M) and fluorescence was measured once more as described previously. Fluorescence was normalized by dividing the fluorescence signal at 675 nm after excitation at 548 nm by the fluorescence signal at 675 nm after excitation at 640 nm.

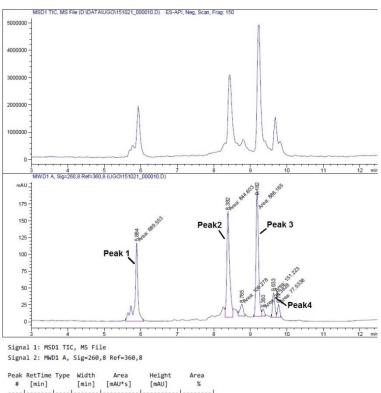
LCMS traces

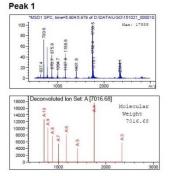

Signal 1: MSD1 TIC, MS File Signal 2: MWD1 A, Sig=260,8 Ref=360,8

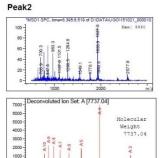

RetTime	Туре	Width	Area	Height	Area
[min]		[min]	[mAU*s]	[mAU]	%
4.799	MM	0.0799	77.66751	16.20817	4.2842
4.944	MM	0.0621	53.10308	14.25176	2.9292
5.361	MM	0.1273	47.70932	6.24467	2.6317
7.763	MM	0.1038	205.21797	32.95470	11.3200
7.963	MM	0.0715	84.59008	19.71201	4.6661
8.057	MM	0.0982	469.74890	79.74553	25.9117
8.440	MM	0.0781	38.96497	8.31680	2.1493
8.769	MM	0.0738	488.54495	110.39530	26.9485
8.851	MM	0.0933	347.33624	62.07744	19.1593
	4.799 4.944 5.361 7.763 7.963 8.057	[min] 4.799 MM 4.944 MM 5.361 MM 7.763 MM 8.057 MM 8.057 MM 8.440 MM 8.769 MM	[min] [min] 4.799 MM 0.0799 4.944 MM 0.0621 5.361 MM 0.1273 7.763 MM 0.1038 7.963 MM 0.0715 8.057 MM 0.0982 8.440 MM 0.0738	[min] [min] [mAU*s] 4.799 MM 0.0799 77.66751 4.944 MM 0.0621 53.10308 5.361 MM 0.1273 47.70932 7.763 MM 0.1038 205.21797 7.963 MM 0.0715 84.59008 8.057 MM 0.0922 469.74890 8.440 MM 0.0738 488.54495	[min] [mAU"s] [mAU]

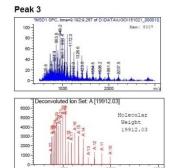

Totals : 1812.88303 349.90639

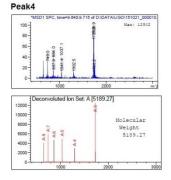
Peak 1



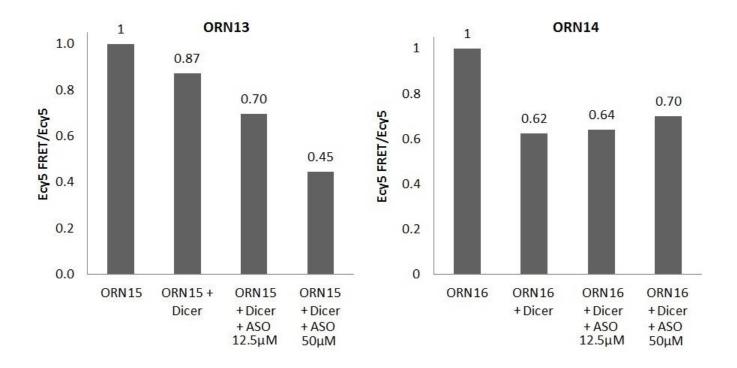



ORN14-Cy3/Cy5


UGGAGUGUGA<u>C</u>_{Cy3}AAUGGUGUUUGUGUCUAAA<u>C</u>_{Cy5}UAUCAAACGCCAUUAUCACACUAAAUA m/z 19887 UGGAGUGUGA<u>C</u>_{Cy3}AAUGGUGUUUG ^PUGUCUAAA<u>C</u>_{Cy5}UAUCA ^PAACGCCAUUAUCACACUAAAUA m/z 7715.3 m/z 5190.7 m/z 7017.3



1 5.884 MM 0.0983 689.55316 116.87001 24.6821 2 8.382 MM 0.0896 844.5026 157.09349 30.2320 3 8.765 MM 0.0896 844.5026 157.09349 30.2320 4 9.182 MM 0.0777 886.16492 190.17201 31.7197 5 9.350 MM 0.0635 38.38276 10.06780 1.3739 6 9.633 MM 0.0691 151.22289 36.49559 5.4129 7 9.771 MM 0.0678 77.53381 19.07162 2.7753 Totals : 2793.73825 547.13612 2.753 2.753		L.mwin 1		[man]	Fundo 21	[more]	10
2 8.382 MM 0.0896 844.60260 157.09349 30.2320 3 8.765 MM 0.1020 106.27811 17.36560 3.8042 4 9.182 MM 0.0777 886.16492 190.17201 31.7197 5 9.530 MM 0.6635 38.38276 10.06780 1.3739 6 9.633 MM 0.0691 151.22289 36.49559 5.4129 7 9.771 MM 0.0678 77.53381 19.07162 2.7753				-			
3 8.765 MM 0.1020 106.27811 17.36560 3.8042 4 9.182 MM 0.0777 885.16492 190.17201 31.7197 5 9.350 MM 0.0635 38.38276 10.06780 11.3739 6 9.633 MM 0.0691 151.22289 36.49559 5.4129 7 9.771 MM 0.0678 77.53381 19.07162 2.7753	1	5.884	MM	0.0983	689.55316	116.87001	24.6821
4 9.182 MM 0.0777 886.16492 190.17201 31.7197 5 9.350 MM 0.0635 38.38276 10.06780 1.3739 6 9.633 MM 0.0691 51.22289 36.49559 5.4129 7 9.771 MM 0.0678 77.53381 19.07162 2.7753	2	8.382	MM	0.0896	844.60260	157.09349	30.2320
5 9.350 MM 0.0635 38.38276 10.06780 1.3739 6 9.633 MM 0.0691 151.22289 36.49559 5.4129 7 9.771 MM 0.0678 77.53381 19.07162 2.7753	3	8.765	MM	0.1020	106.27811	17.36560	3.8042
6 9.633 MM 0.0691 151.22289 36.49559 5.4129 7 9.771 MM 0.0678 77.53381 19.07162 2.7753	4	9.182	MM	0.0777	886.16492	190.17201	31.7197
7 9.771 MM 0.0678 77.53381 19.07162 2.7753	5	9.350	MM	0.0635	38.38276	10.06780	1.3739
	6	9.633	MM	0.0691	151.22289	36.49559	5.4129
Totals : 2793.73825 547.13612	7	9.771	MM	0.0678	77.53381	19.07162	2.7753
	Totals	: :			2793.73825	547.13612	



Fluorescence measurments

