Supporting Information

Towards Anisotropic Hybrid Materials: Directional Crystallization of Amphiphilic Polyoxazoline-based Triblock Terpolymers

Tobias Rudolph;^{1,2} Matthias Hartlieb;^{1,2} Moritz von der Lühe;^{1,2} Sebastien Norsic;³ Ulrich S. Schubert;^{1,2,4} Christophe Boisson;³ Franck D'Agosto;³ Felix H. Schacher^{1,2,*}

Affiliations

- [1] Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr.10, 07743 Jena, Germany
- E-mail: felix.schacher@uni-jena.de
- [2] Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany[3] Université de Lyon, Univ. Lyon 1, CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie, Catalyse, Polymères et
- Procédés (C2P2), Equipe LCPP, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France

Scheme S1: Catalyzed polyethylene chain growth on Mg and subsequent conversion *via* iodide and sodium azide (NaN₃), leading to azide functionalized PE-N₃.

Scheme S2: Microwave-assisted CROP of alkyne functionalized diblock copolymers of poly-(2-(4-((*tert*-butoxycarbonyl)amino)butyl)-2-oxazoline)-*block*-poly(2-*iso*-propyl-2-oxazoline) (PBocAmOx-*b*-P*i*PrOx) initiated by propargyl *p*-toluenesulfonate.

Figure S1: Molar mass distribution of PE₃₆-N₃ determined *via* high temperature SEC (column temperature: 150 °C; solvent: trichlorobenzene; $M_n = 1290$ g mol⁻¹; D = 1.16).

Figure S2: ¹H-NMR spectrum for PE₃₆-N₃; degree of azide-functionality of $\approx 87\%$ (C₂Cl₄/C₆D₆ at 363K).

Figure S3: FT-IR spectrum for PE_{36} -N₃ and the characteristic peak for the azide at 2094 cm⁻¹.

Figure S4: Comparison of SEC traces for TB-PBocAmOx₁₅ (dashed line) and TB-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (straight line) (CHCl₃-SEC).

Figure S5: Comparison of NMR spectra for the block copolymerization of BocAmOx and *i*PrOx: TB-PBocAmOx₁₅ (black trace) and TB-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (red trace, 300 MHz; CDCl₃).

Figure S6: A) FT-IR spectrum for TB-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ and an inset (B).

Figure S7: Comparison of DSC traces for PE₃₆-N₃: 1st run (20 K min⁻¹), 2nd run (20 K min⁻¹), and 3rd run (10 K min⁻¹).

Figure S8: Comparison of FT-IR spectra for PE₃₆-N₃ (blue trace), PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (black trace), PE₃₆-*b*-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (red trace).

Figure S9: Comparison of FT-IR spectra in the range of 3200 to 2700 cm⁻¹ for PE₃₆-N₃ (blue trace), PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (black trace), PE₃₆-*b*-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (red trace).

Figure S10: ¹H-NMR of PE₃₆-*b*-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ and peak assignment and integration for characteristic signals (300MHz, CDCl₃).

Figure S11: Comparison of SEC traces for PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (black dashed line) and PE₃₆-*b*-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (red straight line) with different eluents: A) chloroform (CHCl₃), B) dimethylacetamide (DMAC).

Figure S12: TEM micrograph for kite-like PE_{36} -N₃ aggregate obtained after heating in DMF to 120 °C and cooling to room temperature.

Figure S13: Comparison of NMR spectra before (red trace) and after (black trace) deprotection of PE_{36} -*b*-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (300MHz, CDCl₃).

Figure S14: Comparison of ¹H-NMR spectra before (red trace) and after (black trace) deprotection of PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (300 MHz, CDCl₃).

Figure S15: Comparison of FT-IR spectra before (black trace) and after (red trace) deprotection of PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅.

Figure S16: Comparison of FT-IR spectra before (black trace) and after (red trace) deprotection of PE₃₆-*b*-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅.

Figure S17: DLS CONTIN plot for PE_{36} -*b*-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ after heating to 120 °C for 10 minutes and cooling to room temperature in DMF.

Figure S18: Time-dependent normalized intensity autocorrelation functions for PE_{36} -*b*-PAmOx₁₅-*b*-P*i*PrOx₁₄₅ (A) and PE_{36} -*b*-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (B) after: 1 (black line), 76 (red line), 247 (blue line), 416 (pink line) and 756 (green line) minutes.

Figure S19: Normalized scattering intensity (black) over time annealed at 65 °C (0.1 mg mL⁻¹) for TB-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ (A) and TB-PAmOx₁₅-*b*-P*i*PrOx₁₄₅ (B) diblock copolymers.

Figure S20: TEM micrographs for PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ after 24 hours at 65 °C in water (0.33 mg mL⁻¹).

Figure S21: SEM micrographs for the diblock copolymers $PAmOx_{15}-b-PiPrOx_{145}$ (A) and $PBocAmOx_{15}-b-PiPrOx_{145}$ (B) after 24 hours at 65 °C in water (0.33 mg mL⁻¹), respectively.

Figure S22: TEM micrographs for PE_{36} -*b*-PAmOx₁₅-*b*-P*i*PrOx₁₄₅ after 24 hours at 65 °C in water (0.33 mg mL⁻¹) at pH 12 (adjusted by NaOH).

Figure S23: Histogram of width distribution determined for PE_{36} -*b*-PAmOx₁₅-*b*-P*i*PrOx₁₄₅ after directional crystallization of PiPrOx at pH 12 determined by grey-scale analysis from TEM micrographs (for 57 positions).

Figure S24: TEM micrographs for PE_{36} -*b*-PAmOx₁₅-*b*-P*i*PrOx₁₄₅ after 24 hours at 65 °C in water (0.33 mg mL⁻¹) and *in-situ* reduced HAuCl₄ with different equivalents of gold precursor to PAmOx: 0.1 eq. Au/AmOx (top micrographs) and 10 eq. Au/AmOx (bottom micrographs).

Figure S25: TEM micrograph for as-synthesized Fe₃O₄ -nanocrystals.

Figure S26: TEM micrographs for PE_{36} -*b*-PAmOx₁₅-*b*-P*i*PrOx₁₄₅ after 24 hours at 65 °C in water (0.33 mg mL⁻¹) and Fe₃O₄ nanocrystals.

Figure S27: Comparison of UV-Vis spectra for PE_{36} -*b*-PAmOx₁₅-*b*-*Pi*PrOx₁₄₅ (red trace) and PE_{36} -*b*-PAmOx₁₅-*b*-*Pi*PrOx₁₄₅ (black trace) after reduction of HAuCl₄ (0.1 eq. Au/AmOx) in water.

Figure S28: TEM micrographs for PE₃₆-*b*-PBocAmOx₁₅-*b*-P*i*PrOx₁₄₅ after 24 hours at 65 °C in water (0.33 mg mL⁻¹) and *in-situ* reduced HAuCl₄.