Supporting Information

Activation of Surface ReO_x Sites on Al₂O₃ Catalysts for Olefin Metathesis

Soe Lwin^a, Yuanyuan Li^b, Anatoly I. Frenkel^b, Israel E. Wachs^{a*}

^a *Operando* Molecular Spectroscopy and Catalysis Laboratory, Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA

^b Department of Physics, Yeshiva University, New York, NY 10016, USA

*Corresponding author: iew0@lehigh.edu

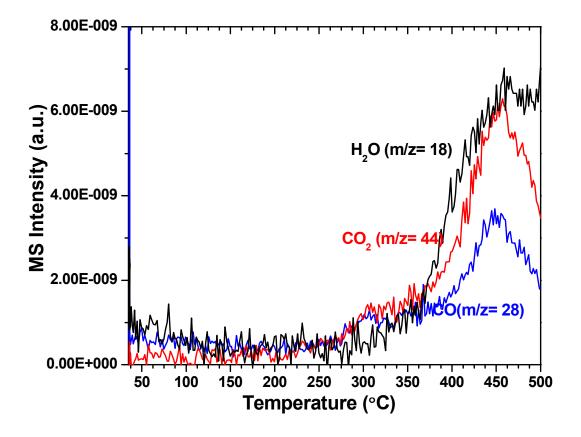


Figure S1. Oxidation products during TPO ($2\% O_2/Ar$) after $C_3^{=}$ adsorption at 30°C for 60 minutes, flushing with Ar at 30°C for 60 minutes, heating in flowing Ar to 200°C and cooling down to 30°C to begin the TPO experiment. The CO MS m/z=28 signal was corrected for contributions from CO₂ cracking in the MS.

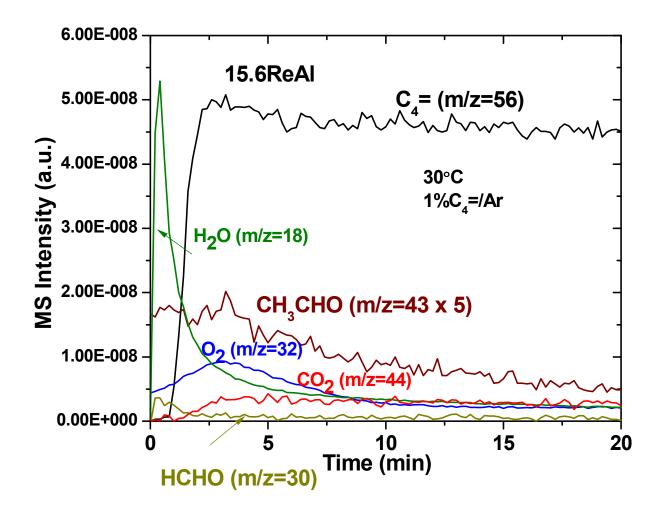
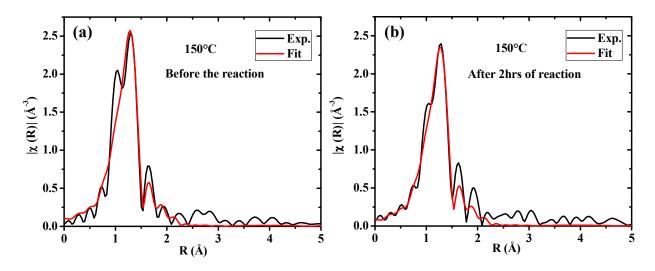
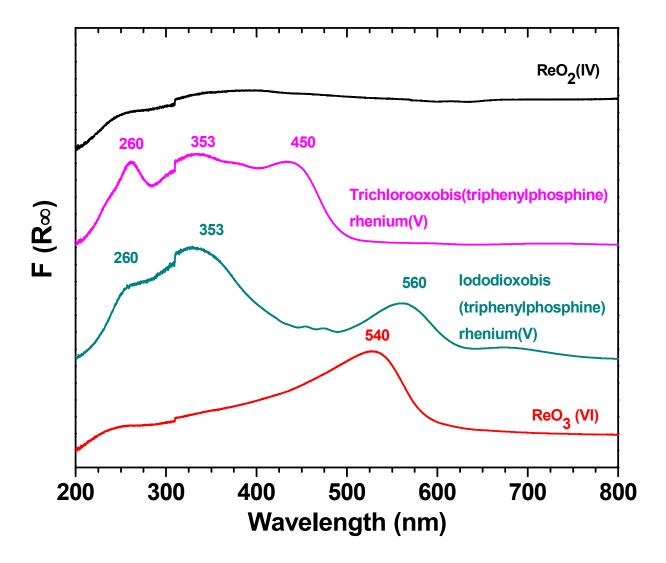




Figure S2. Time-resolved evolution of products during activation of supported ReO₄/Al₂O₃ catalyst with $C_4^{=}$ at 30°C

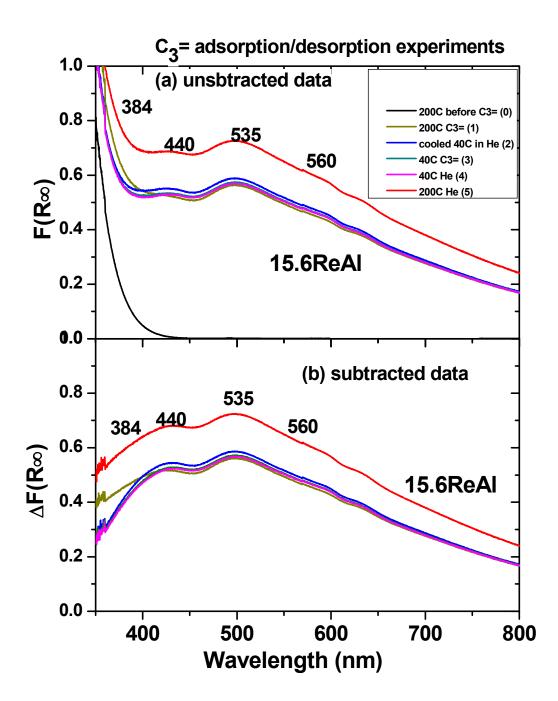
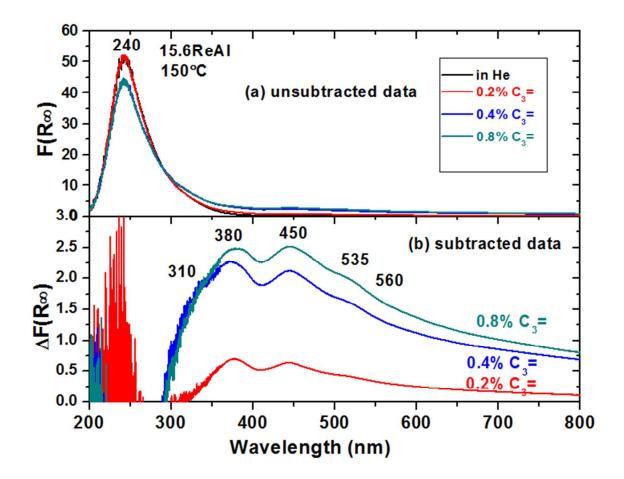


Figure S3. Experimental Re L₁-edge EXAFS spectrum in *R* space and corresponding fit for 15.6% ReO_x/Al₂O₃ catalyst (a) before and (b) after propylene metathesis at 150°C.


In EXAFS data analysis, the experimental data before and after reaction (150°C) were fitted concurrently. The correction in the threshold energy (ΔE_0) and disorder factor (σ^2) were constrained to be same for data before and after reaction. The bond distance (R) and coordination number (N) of Re-O were allowed to change freely. The fitting k-range is 2-16 Å and R-range is 1-1.85 Å. From the quantitative results, the coordination number of Re-O bond before and after reaction is 3.43 ± 0.41 and 3.09 ± 0.45 respectively. Under assumption that no changes in disorder factor, the maximum reduction in coordination after the reaction is: $(3.43-3.09)/3.43\approx 10\%$.

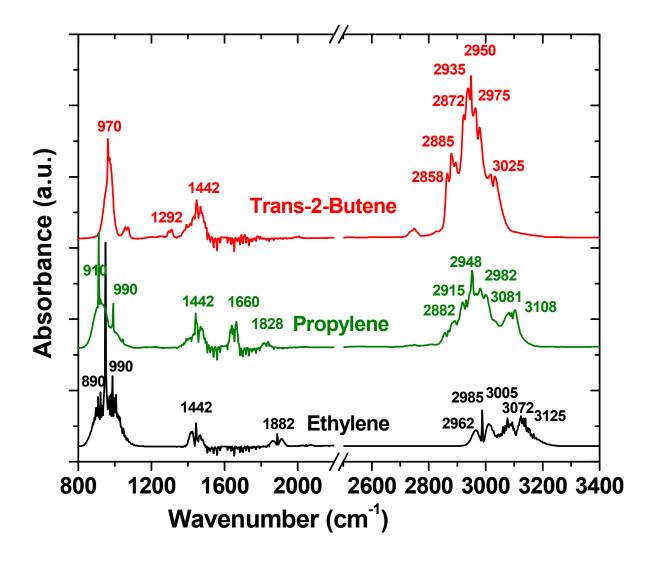

Figure S4. UV-vis spectra of Re^{+4} , Re^{+5} and Re^{+6} reference compounds under ambient conditions.

Figure S5. *In situ* UV-vis spectra of the supported 15.6% ReO₄/Al₂O₃ catalyst in the 350-800nm region during several propylene adsorption/reaction/desorption cycles, (a) unsubtracted data and (b) subtracted data. The numbers in parentheses (0-5) indicate the order in which the experiments were performed.

Figure S6. (a) *In situ* UV-vis spectra of the supported 15.6% ReO₄/Al₂O₃ catalyst at 150°C as a function of increasing propylene concentration. (b) The *in situ* UV-vis difference spectra are obtained by subtraction of the spectrum in flowing He at 150°C prior to propylene metathesis.

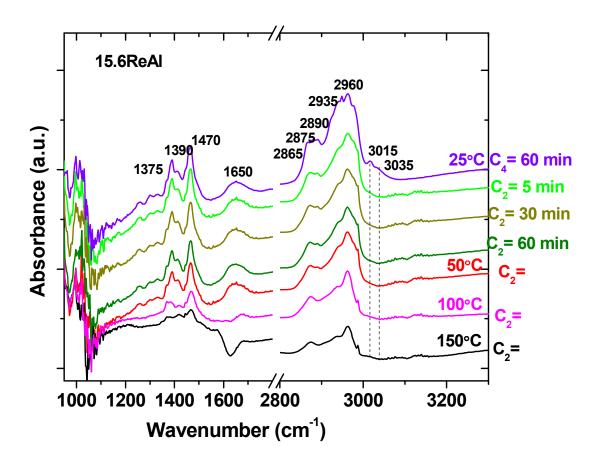
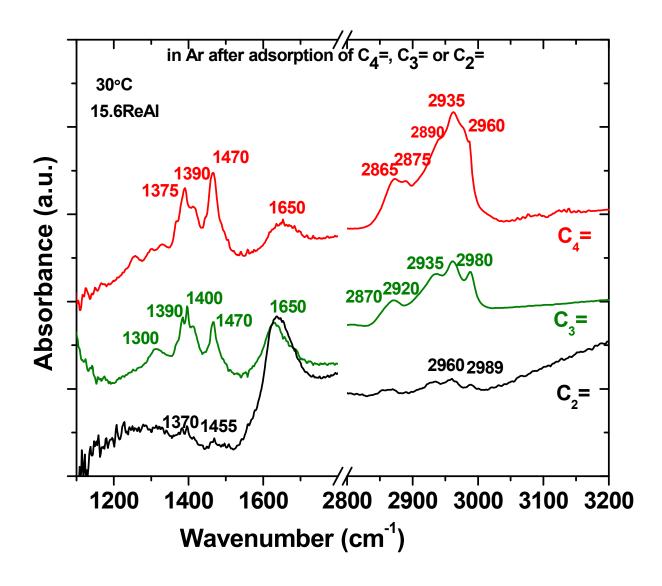


Figure S7. IR spectra of gas phase ethylene, propylene and 2-butene. IR bands were not present in the 1800-2800 cm⁻¹ range.

S1. In situ IR spectroscopy


The difference IR spectra of the adsorption of trans-2-butene on the supported 15.6% ReO_x/Al_2O_3 catalyst, followed by titration of the surface intermediates by ethylene, are given in Figure S8. After 60 mins of trans-2-butene adsorption, bands appear from gas phase trans-2-butene (875, 2945, 3015, and 3035 cm⁻¹) and adsorbed species $\delta_s(CH_3)$ [1375 and 1390 cm⁻¹],

 $\delta_s(CH_2)$ of vinyl group (-CH=CH₂) [1415 cm⁻¹], $\delta_{as}(CH_3)$ [1445 cm⁻¹], $\delta_s(CH_2)$ [1470 cm⁻¹], v(C=C) [1650 cm⁻¹], v_s(CH₂) [2865 cm⁻¹], v_s(CH₃) [2890 cm⁻¹], v_{as}(CH₂) [2925 and 2935 cm⁻¹], and v_{as}(CH₃) [2960 and 2980 cm⁻¹].^{1,2} Upon introduction of ethylene, new bands from gas phase ethylene appear at 2990, 3080, and 3125 cm⁻¹.^{1,2} Oddly, IR bands from the vinyl group and C=C still exist, but no bands at >3000 cm⁻¹ are detected for their corresponding =C-H stretching vibrations. The IR spectra do not change with increasing contact time with ethylene and no noticeable change is observed when increasing the temperature to 50°C under ethylene. Increasing the temperature to 100°C under ethylene causes a large decrease in bands at 1390, 1415, 1470, 1650, 2890, 2935, and 2980 cm⁻¹. This suggests that two adsorbed surface olefinic species exist: Species I (the decrease bands) that desorbs at ~100°C and Species II (remaining bands: 1375, 1390, 1445, ~1680, 1470, 2870, 2935, and 2960 cm⁻¹) that is stable up to 150°C. The exact identity of the adsorbed surface olefinic species cannot be determined, but the presence of v(C=C) bands indicates that both surface intermediates have olefinic bonds.

Figure S8. *In situ* difference IR spectra of the 15.6ReAl catalyst during $C_4^{=}$ adsorption and titration with $C_2^{=}$. IR bands were not present in the 1800-2800 cm⁻¹ range.

The *in situ* difference IR spectra of the 15.6 ReAl catalyst in Ar after adsorption of $C_4^=$, $C_3^=$ and $C_2^=$ are shown in Figure S9. For IR band assignments after $C_3^=$ and $C_4^=$ adsorption, please see the main article. Upon 45 minutes of flowing Ar after $C_2^=$ adsorption, bands from complexes of $C_2^=$ remain on the surface. 1370, 1455, 2960 and 2989 cm⁻¹ bands can be assigned to δ_s (CH₂), and v_s (CH₂) vibrations of the adsorbed $C_2^=$ complexes.² The higher v(C=C) band position at 1650 cm⁻¹ indicates these complexes are not of allylic nature.

Figure S9. *In situ* difference IR spectra of the 15.6 ReAl catalyst in Ar after adsorption of $C_4^=$, $C_3^=$ and $C_2^=$. IR bands were not present in the 1800-2800 cm⁻¹ range.

References

- Silverstein, M. Webster, F. X.; Kiemle, D. J. Spectrometric Identification of Organic Compounds, Wiley 7th Edition, 2005; pp 85–87.
- Davydov, A. Molecular Spectroscopy of Oxide Catalyst Surfaces, Wiley 3rd Edition, 2003; pp 332–334.