
 
Factors affecting breeding success in the 

 
Peregrine Falcon (Falco peregrinus macropus) 

 
across Victoria 1991 - 2012 

 
 
 
 
 
 
 
 
 
 
 

Victor Gavin Hurley 
 

B.Sc. Monash University, Dip FLM Swinburne University of TAFE 
 
 
 
 
 
 

Submitted in fulfillment of the requirements for the degree of 
 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

Deakin University 
 
 

August, 2013 
 
 
 
 
 
 



 

 
 



parisr
Redacted stamp



 



parisr
Redacted stamp



 

 



 

i 

Frontispiece 

 
                                                      “Mother” Peregrine Falcon – Otway Ranges, Victoria, 2006. 

 
 

“There are some who can live without wild things, and some who cannot.   

These essays are the delights and dilemmas of one who cannot.” 
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Preface 

This thesis is a compilation of my own work spanning 22 years, where I designed all of 

the methods and field techniques for the study.  I conducted all of the field work, 

collected and analysed all of the data, and conducted all the statistical analysis for this 

research.  I have conducted all of the statistical data analysis presented and prepared all 

of the maps.  The preparation of the thesis has been undertaken with guidance from Dr 

Raylene Cooke, Associate Professor John White and Professor Andrew Bennett.  The 

genetic analysis in Chapter two was conducted in collaboration with Dr Fiona Hogan.  I 

drafted and revised all of the manuscripts and took all of the photographs included in the 

thesis except where otherwise photographic credit has been given. 

 

The reader is advised that this thesis has been written in Australian English as per the 

Australian Macquarie Dictionary.  So words such as colour and behaviour do not have 

the ‘u’ missing. 

 

All data chapters (2, 3, 4, 5 and 6) have been written and submitted as manuscripts for 

publication.  Each chapter is therefore self-contained and some repetition occurs, 

especially in the methods sections.  The abstracts to some chapters may be in different 

formats to suit style guides of the chosen journal for publication.  All references have 

been placed at the end of the thesis not at the conclusion of each chapter (manuscript).  

Two chapters (2 and 3) have been published, whilst chapters 4, 5 and 6 have been 

submitted for publication.  These manuscripts have been co-authored with the above 

mentioned supervisory panel and they have therefore contributed to the ideas presented 

in each.  In Chapters 2 and 3, which have been published prior to this thesis, I have used 

the personal pronoun of ‘we’ as per the published texts.  Elsewhere throughout the thesis 

the singular personal pronoun ‘I’ is used.  The thesis publications are as follows:- 

 

Chapter 2: 

Hurley, V.G., Hogan, F., White, J.G. and Cooke, R., (2007).  “A morphological model 

for sexing nestling Peregrine Falcons (Falco peregrinus macropus) verified by genetic 

analysis”.  Wildlife Research 34:1, pp 54-58. 



iv 

Chapter 3: 

Hurley, V.G., Cooke, R., and White, J.G., (2013).  “Methods for improving the 

efficiencies of banding Peregrine Falcon nestlings: climb hard, band fast.  Wildlife 

Research 40:4, pp 269-280.  

Chapter 4: 

Hurley, V.G., White, J.G., and Cooke, R. (under review).  “Peregrinations: Philopatric 

Peregrine Falcon (Falco peregrinus macropus) natal dispersers are more likely to adopt 

atypical nests”. (Submitted to Animal Behaviour). 

Chapter 5: 

Hurley, V.G., Bennett, A., Cooke, R., and White, J.G., (in prep.).  “Longevity legacy: 

lifetime reproductive output by the Peregrine Falcon (Falco peregrinus macropus) is 

enhanced by lifespan and nest choice rather than landscape level influences.” (In 

preparation for submission to a relevant journal). 

Chapter 6: 

Hurley, V.G., White, J.G., and Cooke, R. “Interventions for improving the breeding 

success of the Peregrine Falcon (Falco peregrinus macropus) at anthropogenic nest sites: 

plugging an attractive sink”. (Submitted to Biological Conservation). 
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Abstract 

Birds of prey (raptors) are a useful indicator of environmental health.  Due to their 

trophic level in food webs, raptors are particularly sensitive to bioaccumulation of toxic 

chemicals.  The bioaccumulation of certain anthropogenic chemicals has been linked to 

the production of thin shelled eggs (egg shell thinning) which caused widespread 

reproductive failure among some raptor species.  Thus, the monitoring of breeding 

performance of raptors can also inform us of the health of their environment and their 

ecology and resource requirements.  Whether they form part of a healthy population, one 

in a state of decline or recovery, monitoring can inform conservation biologists through 

each of these stages.  

 

This thesis investigated factors effecting the breeding success of the Peregrine Falcon 

(Falco peregrinus macropus) following the banning of the use of persistent 

organochloride pesticides in Victoria in south eastern Australia in 1987.  The field work 

for this thesis is based on a 22 year dataset (1991 to 2012).  A total of 1,504 nest site 

years (hereafter referred to as breeding events) were monitored (68.36±5.80, mean ± s.e., 

range 10-111 year-1).  Sites were monitored for an average of 7.78, ±0.44 s.e., breeding 

events (range 1-22) across an area of approximately 227,000 km2.  A total of 2,325 

nestlings were colour banded with metal visual identification (VID) bands (111.14±9.50, 

mean±s.e., range 14-179 nestlings year-1).   

 

To undertake this level of monitoring and in the planning of this thesis two broad 

research themes were developed.  The first involved enhancing field techniques in order 

to conduct the field work most efficiently and the second the monitoring and 

management of breeding success.   
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New field techniques were developed, based on morphometrics verified through genetic 

analysis, for determining the sex of nestlings with 98.6% accuracy.  This allowed 

banding of nestlings from the youngest age possible (15 days post hatching) and so 

provided the largest window of opportunity for banding at each nest.  This technique 

coupled with using recent breeding phenology of active Peregrine Falcon nest sites 

provided a priori knowledge to accurately predict when to band nestlings at each nest.  

Targeting nestlings of 25 days post hatching using this predictive method increased the 

proportion of whole broods banded from 67.4% to 97.4%.  This is compared to a more 

traditional approach of banding nestlings at or past asymptotic weight following multiple 

site visits.  These field techniques formed the basis of the capture-mark-re-sight (CMR) 

applied in the second theme of this thesis. 

 

These innovations in field techniques were critical to generating sufficient numbers of 

breeding adults of known age and origin as identified by the VID bands placed on them 

as nestlings.  These ‘known’ adults then provided the study subjects for monitoring 

patterns of dispersal, age at first breeding, nest territory fidelity, nest selection choices 

and lifetime attributes such as lifetime reproductive output and lifespan.  Nest site 

occupancy and breeding performance data was also collected for territories where adults 

were not wearing bands.  There were three primary questions under investigation: 

 

1) patterns of natal dispersal, nest site imprinting and consequences of nest site 

selection; 

2) effects of landscape features, levels of nest site protection and longevity on 

the total number of fledglings produced in a lifetime; and 
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3) the efficacy of nest site interventions at poorly performing nests on 

anthropogenic structures. 
 

The Peregrine Falcon is considered to be a cliff nesting specialist, however, in Victoria 

Australia they also use stick nests of other birds, tree hollows and building ledges.  These 

atypical nests accounted for 39.7% of 237 known nests in Victoria.  Using CMR 

techniques the type of nest birds fledged from and the nest type adopted for breeding was 

recorded for 102 individuals.  In addition to nest selection choices, the effect of search 

effort (dispersal distance) and search time (age at first breeding) on lifespan and lifetime 

reproductive output were examined.  Females dispersed further than males (t = -4.983, 

P<0.001), (♀61.2±6.4 km: ♂24.4±5.8 km; mean ± s.e.).  No bias in dispersal direction 

was recorded.  Novel dispersals (i.e. natal dispersals from one nest type to another) 

accounted for 30.4% of dispersals with no sex bias and dispersed shorter distances also 

with no sex bias (F(1,98) = 13.818, P<0.001).  Breeding success was lowest on building 

ledges and greatest in tree stick nests or hollow (cavities).  The level of novel dispersals 

recorded strongly suggests that once traditional nest sites (i.e. cliffs) are saturated, 

Peregrine Falcons will spontaneously adopt atypical (non-cliff) nest sites.  This was 

initiated among individuals that disperse significantly shorter distances, suggesting novel 

dispersals are due less to a lack of the natal nest type but maybe more due to a fidelity to 

a familiar and available prey resource. 

 

Lifetime reproductive output (LRO; the total number of young produced) was recorded 

for a total of 66 individuals.  For each of these 66 breeding adults, landscape features 

within 5 km of the nest site were measured to contribute to an information-theoretic 

approach to comparing linear models to investigate factors effecting LRO.  These models 
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were developed to investigate the relative influence of nest site level and landscape level 

factors on the LRO of these Peregrine Falcons.   

 

There is no difference in lifespan between the sexes of breeding Peregrine Falcons  (t=-

0.768, df=64, P=0.446).  Years spent breeding and lifetime production of nestlings were 

all positively correlated.  Landscape features did not influence LRO, however, the level 

of protection of a nest site did.  Peregrine Falcons mate for life and display strong nest 

site fidelity.  Moving to an occupied higher quality territory risks mortal combat with one 

or both of the resident pair.  A safer strategy to overcome poor quality (less protected) 

site is longevity to increase LRO. 

 

The use of anthropogenic sites for nesting by Peregrine Falcons has grown without any 

captive breeding and release programmes in Victoria from 7.5% in 1987 to 36.4% by 

2012.  During this study breeding performance was monitored at 127 nests, for at least 

five years each, from 1991 to 2012 and anthropogenic sites tended to have lower 

breeding success than natural sites (72.4% and 88.0% respectively).  We tested whether 

this lower breeding success was the result of unsuitable physical features of the nests, 

exposing the eggs to the effects of temperature or rainfall.  Nest boxes were installed at 

18 poorly performing anthropogenic sites (eight quarry cliffs, 10 buildings) where egg 

hatch rates were particularly low (average 25.6%; ±5.63 s.e.) compared to 63.25% (±3.65 

s.e.) for 18 nearby reference cliff sites.  At the 18 treatment sites, where nest boxes were 

installed, egg hatch rates increased significantly (Tukey, P = 0.010) to 76.64% (± 2.74 

s.e.).   
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Urban growth projections globally suggest that nesting opportunities for Peregrine 

Falcons on anthropogenic structures are likely to continue to increase.  To inform both 

site managers and biologists, a decision matrix was developed outlining the strategies 

available for the management of Peregrine Falcons attempting to breed at anthropogenic 

sites.  Appropriate management of these sites will become increasingly important in the 

context of Victoria’s urban growth projections. 

 

Since the removal of the key threatening process (persistent organochloride pesticides) in 

1987 the Victorian Peregrine Falcon population has been recovering and continues to 

grow.  Much of this population growth has been through the adoption of anthropogenic 

structures for breeding.  Given the generally poor nest substrates provided by 

anthropogenic sites the significant ongoing increase in the proportion of anthropogenic 

nest sites being adopted by this species warrants careful monitoring.  Nest site 

interventions to improve the quality of the site can overcome this and result in significant 

improvement in the breeding performance of Peregrine Falcons at these sites.  This 

approach can include relocating nest sites to cater for land management requirements and 

so promotes a ‘living with wildlife’ message with management and staff in addition to 

improving the breeding performance of Peregrine Falcons.  The large scale recovery of 

Peregrine Falcon populations in the northern hemisphere (primarily due to banning the 

key threatening process and captive breeding and release programmes) is a welcome 

conservation success story.  Monitoring and managing nests on anthropogenic structures 

in the face of increasing urbanisation will assist in securing the future of the Victorian 

Peregrine Falcon population. 
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1.  
Introduction and thesis overview 
 

 
A Peregrine Falcon “lining up another would be climber”.  (Image by Chris Field © ) 

 
 
 
 
 
 
 
 
 
 

“No Peregrine Falcon would ever pass a college physics exam. 

Instead they live it, every day!” 

 

VG Hurley 
(Advice to students, regarding how the Peregrine Falcon can dive so fast ) 
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1.1. Introduction 

The scale of the environmental changes brought on by the Anthropocene has had 

significant consequences for global biodiversity, with reduced areas of habitat and 

substantial impacts to natural systems (Crutzen, 2002; Garden et al., 2006).  For these 

reasons, there is an increasing focus in environmental research on the impacts of 

anthropogenic change on biodiversity (Sinclair et al., 2007; Leu et al., 2008; Rodewald et 

al., 2011; Glennon & Kretser, 2013).  A key to understanding how anthropogenic 

changes influence species is the long-term monitoring of species, including non-

threatened species (Lindenmayer et al., 2011).  Longitudinal studies that monitor known 

individuals provide more robust datasets than space-for-time substitution studies, when 

attempting to untangle the relative roles of natural fluctuations and anthropogenic change 

in the environment (Clutton-Brock & Sheldon, 2010). 

 

Anthropogenic impacts on biodiversity tend to have a trophic level bias with higher order 

(predator) species disproportionately at risk of extinction than lower order consumers or 

producers (Duffy, 2002).  Whilst debated in the literature, one reason that top order 

predators have been monitored in long-term studies is due to the role they play in the 

healthy functioning of ecosystems (Sergio et al., 2008).  Due to their high trophic level, 

in most environmental systems they are influenced by distant changes throughout the 

food web and therefore are often regarded as strategic indicators of environmental health 

(Smits & Fernie, 2012).  The loss of higher order predators has also been shown to have 

far reaching consequences in communities, such as the effects of meso-predator release 

or unexpected trophic cascades (Ritchie & Johnson, 2009; Ripple & Beschta, 2012).   
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Raptors, as with most top-order predators, tend to be under greater anthropogenic 

pressure than lower order consumers (Martínez-Abraín et al., 2009; Amar et al., 2012).  

As such, they have been used as a priority group in environmental monitoring 

programmes and are also the recipients of considerable conservation efforts (Duffy, 

2002; Cade et al., 2009; Sielicki & Mizera, 2009).  Anthropogenic pressure on raptors 

occurs in a variety of forms ranging from alteration in prey abundance and direct 

persecution, to habitat modification and loss, to agricultural intensification, through to 

urbanisation; the latter not only destroys suitable habitat but replaces it with a more 

hostile environment containing novel threats (Hager (2009); Appendices I, II & VIII).  

These include increased risk of strikes due to overhead electricity wires and wire fences, 

more windows and the wind shear forces developed amongst high rise buildings, 

increased exposure to a range of exotic toxic chemicals and increased threat of direct 

persecution (Newton, 1979b; Hager, 2009; Park et al., 2011). 

 

The use of raptors as model species to investigate environmental change appears to be a 

valuable and efficient undertaking.  This is because these species tend to mate for life, 

display strong site fidelity, generally have a predictable breeding season, and are readily 

visible with vocal territorial defense (aiding in locating an active nest), thus making them 

well-suited for monitoring (Newton, 1979a; Steenhof & Newton, 2007; Kovács et al., 

2008).  The advantages of monitoring raptors, however, also have numerous biological 

and technical challenges.  Raptors tend to be long lived, are often slow to reach 

reproductive age, disperse over considerable distances, breed at low densities and often 

nest in remote or difficult to access locations, therefore reducing their appeal as targets 

for long-term monitoring programmes (Newton, 1979a; Bednarz, 2007).   
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Logistical and budgetary constraints seldom align with the timelines required for 

undertaking long-term monitoring-based research (Lindenmayer et al., 2012); and this is 

particularly manifest with raptors (Bednarz, 2007).  Unfortunately, these challenges have 

led to a distinct bias, particularly in the southern hemisphere, toward intensive research 

on birds that breed colonially or co-operatively, compared with non-passerines such as 

raptors (Clarke, 1997).  To overcome this bias, it is critical that the challenges associated 

with long-term research on raptors are addressed, and efficient approaches for their use in 

environmental monitoring are developed.  As such, one of the major themes of this thesis 

is focused on developing techniques and approaches for improving the efficiency, 

planning and conduct of fieldwork on raptors (Chapters 2 & 3).  Which is an essential 

component of long-term monitoring. 

 

The second major theme of this thesis concerns the factors that affect breeding success in 

a raptor population in a state of recovery.  The term ‘breeding success’, as applied in this 

study, extends beyond the basic metric of nest success or failure (Thompson et al., 2001).  

Data on the number of eggs laid, the number hatched, the hatch rate, and the number of 

nestlings that survive to fledging per breeding event, are different aspects of and are 

clearly defined and applied separately within the broad term of ‘breeding success’ in this 

thesis.  A history of crushed thin-shelled eggs causing reproductive failure by this species 

due to pesticide bioaccumulation warrants singling-out this aspect when monitoring the 

breeding success of this Peregrine Falcon population (Olsen et al., 1992; Ratcliffe, 1993).  

When these parameters are recorded over the entire breeding life of adult birds, they 

provide a measure of lifetime reproductive output and a broader perspective on 

reproduction (Clutton-Brock, 1988; Newton, 1989).  How each of these parameters is 

related to variables such as dispersal distance, nest type and quality, age at first breeding 
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and landscape features in the breeding territory, can combine to provide a meaningful 

assessment of the reproductive condition of a population (Chapters 4, 5 & 6).   

 

Monitoring the reproduction of a population of a species in recovery from impaired 

reproduction, such as for the Peregrine Falcon (Falco peregrinus), is critically important 

to its persistence.  With the cause of the decline removed it is important to confirm, 

through monitoring, that reproduction rates have recovered and that no new threat has 

emerged to restrict the species recovery. 

 

This thesis on aspects of the ecology and breeding performance of the Peregrine Falcon, 

builds on earlier studies (1975-1984) that monitored this species in Victoria, led by the 

late W.B. “Bill” Emison (Cowling, 1981).  Those studies were motivated, in part, by a 

concern for the conservation status of the species after 30 years of exposure to the 

agricultural use of DDT and Deildrin (Emison, 1979).  However, these studies also 

represented the gathering of baseline data on the breeding biology and distribution of the 

Peregrine Falcon in Victoria (White et al., 1981).  The research in this thesis was 

initiated and undertaken entirely as a private monitoring project by the author.  The 

Victorian Peregrine Project (VPP) was established as part of this research, thus 

distinguishing it from the previous government-based studies.  Data for this thesis is 

based on a 22 year dataset (1991-2012) spread over ~227,000 km2 in which 143 active 

nest sites were “discovered”.  Breeding was monitored at 200 nest sites across Victoria.  

A total of 1,504 breeding events were monitored (68.36±5.80; mean ± s.e., range 10-111 

year-1).  Sites were monitored for an average of 7.78 (±0.44 s.e.) breeding events (range 

1-22) and a total of 2,325 nestlings were colour banded (111.14±9.50; mean±s.e., range 

14-179 nestlings year-1). 
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1.2. Ecology of Falcons 

Globally, the composition of the Order Falconiformes (comprising 39 species of falcons) 

and their relationships with other avian Orders remains controversial and is not 

completely resolved (Ferguson-Lees & Christie, 2005; Christidis & Boles, 2008).  For 

the purposes of this study, I have followed the systematics and taxonomy of Australian 

birds adopted by Christidis and Boles (2008).   

 

Falcons have an almost global distribution, with species recorded on every continent and 

large island group except Antarctica (Cade, 1982).  They are small to medium-sized 

diurnal raptors that are highly predatory and seldom eat carrion (Brown & Amadon, 

1989).  They represent a diverse genus and have in common a number of features that, 

combined, distinguish them from other raptors and these features include:   

i) Falcons do not construct nests per se but rather dig a scrape in a suitable substrate 

or adopt a variety of pre-existing structures in which to nest.  These include stick 

nests of other birds (or mammals), tree hollows, ledges on cliffs or near the 

entrance of caves and on buildings, or even on the ground in low lying treeless 

habitats or underground near the entrances of caves.   

ii) They seldom kill their prey by penetration with their talons; instead they kill their 

prey by neck biting or disarticulating cervical vertebrae.  The tominal teeth on the 

cutting edge of the upper jaw and corresponding notches on the lower mandible 

contribute to this killing mechanism. 

iii) Unlike members of the hawk family, perching falcons will head-bob when 

scrutinising an object intently.   

iv) They display strong reversed sexual dimorphism (i.e. females are larger). 
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v) The nostrils (nares) contain a central bony tubercle, which is an extension of the 

septum, which leads to a whirled passage in the anterior nasal cavity.  An exact 

function for these structures is yet to be confirmed. 

vi) Falcons have a distinctive molt sequence of flight and tail feathers from other 

raptors.  In falcons the primaries are molted in both the ascent (towards to 

outermost) and the descent (toward the innermost) directions beginning with P4.  

The tail molt begins with the central retrices progressing outwards, except that the 

outer pair R6 fall out before R5. 

vii) Falcons do not display nestling siblicide and have limited sibling aggression 

within the nest. 

These features are reported variously in the following references; Cade (1982); Brown 

and Amadon (1989); Ferguson-Lees and Christie (2005); and Ollila (2009). 

 

Falcons, however, share a number of ecological attributes in common with most raptor 

species.  These include a relatively slow rate of reproduction, they are generally long-

lived, they have a tendency to maintain lifetime pair bonds and they are usually fiercely 

territorial (at least during the breeding season; Ferguson-Lees and Christie (2005)).   

 

1.3. Falcon fauna of Australia 

As an island continent, Australia has six falcon species of which five are wholly 

endemic.  The endemic falcon species of Australia are the Brown Falcon (F. berigora; 

Vigors and Horsfield (1827)), Nankeen Kestrel (F. cenchroides; Vigors and Horsfield 

(1827)), Little Falcon (F. longipennis; Swainson (1837)), Grey Falcon (F. hypoleucos; 

Gould (1841)), and the Black Falcon (F. subniger; G.R. Gray (1843)).  The sixth species, 

the Peregrine Falcon (F. peregrinus macropus; Swainson (1837)) is an endemic 
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subspecies to Australia.  There are 19 subspecies of Peregrine Falcon worldwide with a 

natural breeding distribution covering almost every zone of latitude, climate and 

ecosystem except waterless and treeless deserts (White et al., 2013).  They nest from sea 

level up to the snow line on every continent and large island group except for Antarctica 

and New Zealand (White & Boyce, 1988).   

 

1.4. Peregrine Falcon ecology 

The natural breeding distribution of the Peregrine Falcon (Falco peregrinus) is arguably, 

second only to that of humans (Santana et al., 2006; White et al., 2013).  Despite this 

flexibility in habitats occupied, Peregrine Falcons exhibit three ecological specialisations: 

namely, they i) prefer to hunt birds in flight, ii) do not exhibit any nest building 

capabilities beyond digging a shallow scrape (usually on a rocky or sandy cliff ledge), 

and iii) they tend to occupy a single nest territory over a lifetime (Cade, 1982).   

 

1.4.1.   Diet 

Across its cosmopolitan distribution the Peregrine Falcon is adapted to hunting and 

feeding on birds (Ratcliffe, 1993).  With few exceptions dietary studies have found this 

species to feed almost exclusively on birds and feeds heavily on those species most 

commonly found in a particular area (Court et al., 1988; Rosenfield et al., 1995; Jenkins 

& Avery, 1999; Palmer et al., 2004; Dekker & Taylor, 2005; Zuberogoitia et al., 2013).  

Further, the Peregrine Falcon prefers flocking species that are quite aerial tending 

towards more open country (Pruett-Jones et al., 1981b; Ellis et al., 2004; Drewitt & 

Dixon, 2008; López-López et al., 2009).  Brightly coloured species or those with 

conspicuous habits are also favoured (Cade, 1982).  Recent intensive dietary studies 
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using compositional analyses of prey species have recorded Peregrine Falcons to be 

selective predators along the Yukon River, Canada (Dawson et al., 2011).  Prey remains 

collected over 13 years at 37 nest sites totaling 320 breeding events included 2,832 prey 

from 128 different species in the Bay of Biscay, Spain (Zuberogoitia et al., 2013).  These 

prey differed greatly in size from the Firecrest (Regulus ignicapilla) (6 g) to the Northern 

Gannet (Morus bassanus) (2,800 g).  However, just four species comprised 52.3% of the 

diet by biomass and these were: (7.3%) Yellow-legged Gull (Larus michahellis) (816 g), 

(9.1%) Whimbrel (Numenius phaeopus) (425 g), (25%) Rock Dove (300 g) and (11%) 

Common Blackbird (Turdus merula) (100 g). 

 

As with other studies, dietary studies of the Peregrine Falcon in Australia have 

consistently recorded an almost exclusively avian diet (Pruett-Jones et al., 1981b; Olsen 

& Georges, 1993; Olsen et al., 1993; Cogley, 1995; Olsen et al., 1998; MacKinnon, 

2011).  During the field work for this thesis a total of 1,504 breeding events were 

monitored and cursory inspections of each nest during each monitoring event revealed 

avian prey remains in all but two nests in different years.  These non-avian remains were 

a hind foot from a European Rabbit (Oryctolagus cuniculus) and the tail from a 

Shingleback Lizard (Tiliqua rugosa) both of which were dried out and uneaten.  It is 

presumed these two items may have been pirated from another raptor and most likely a 

Brown Falcon. 

 

The range of avian prey species taken by the Peregrine Falcon in Victoria varies in 

weight from the European Gold Finch (Carduelis carduelis) (17 g) up to the Sulphur-

crested Cockatoo (Cacatua galerita) (890 g) (Olsen et al., 1993) and even the Australian 
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White Ibis (Threskiornis molucca) (2.5 kg) (in this study).  Typically the Peregrine 

Falcon, from the published Australian studies, preys heavily upon flocking, open country 

birds such as Galahs (Eolophus roseicapillus) (335 g), feral Pigeons or Rock Doves 

(Columba livia) (465 g) and European Starlings (Sturnus vulgaris) (75 g).  These three 

species comprised 42.9% of prey items and 49.8% of diet by biomass among prey 

remains collected at 53 nest sites across Victoria in spring 2010 (MacKinnon, 2011).  So 

the dietary approach of the Peregrine Falcon in Australia and in particular Victoria is 

similar to that of Peregrine Falcons globally.  That is, being predominantly a diurnal 

hunting specialist of avian species taking a wide range of prey but tending to focus on a 

small range of preferred open country flocking prey species. 

 

1.4.2.   Dietary adaptations 

Despite being identified as an avian hunting specialist the Peregrine Falcon has 

demonstrated a high degree of flexibility in hunting strategies; for example, to the point 

of switching from diurnal to nocturnal hunting in some urban environments (DeCandido 

& Allen, 2006; Drewitt & Dixon, 2008).  Detailed longitudinal monitoring of hunting 

and diet at one site in Canada recorded Peregrine Falcons modifying their diet to improve 

hunting efficiency over time (Dekker & Taylor, 2005).  Another population has adapted 

from exclusively hunting birds to including a high proportion of mammals during 

microtine rodent population peaks in an Arctic environment of the Keewatin District, 

Canada (Court et al., 1988) and Rankin Inlet, Canada (Bradley & Oliphant, 1991).  

Peregrine Falcons have also been recorded hawking for insects in tropical grasslands 

during fires in Fiji (White & Brimm, 1990).  The resident pair, to fend off starvation 

during severe drought, on Hongdo island south of South Korea, preyed heavily upon 

migrating dragonflies, most commonly the Lesser Emperor (Anax parthenope) and Globe 
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Skimmer (Pantala flavescens) (Choi & Nam, 2012).  Opportunistic catching of fish has 

been documented (White & Roseneau, 1970), and one female in Alaska was recorded 

regularly taking fish (namely: Rainbow Trout (Oncorhynchus mykiss)) to raise three 

young (Hetzler, 2013).  These examples all point to the Peregrine Falcon having an 

unexpected degree of flexibility in its diet, which no doubt has assisted it attaining a near 

global distribution. 

 

1.4.3.   Nest selection 

Primarily the Peregrine Falcon is considered to be a cliff nesting species (Cade, 1982; 

Ratcliffe, 1993).  Nest construction is limited to digging a shallow depression called a 

‘scrape’ on a rocky, gravely or sandy cliff ledge or cave and laying the eggs in the scrape.  

No material is added to line the nest with the eggs lying on the bare substrate.  During 

incubation the female will roll the eggs so each egg rests between two toes and is thus 

supported as she sits with her abdomen covering them. 

 

1.4.4.   Nest selection adaptations 

A lack of nest-building instinct has not restricted the Peregrine Falcon to nesting on cliff 

ledges alone.  A poorly protected nest ledge, however, can negatively impact on breeding 

success through reduced egg hatching rates due to exposure to the elements and nest 

inundation from rainfall (Olsen & Olsen, 1989b; Bradley et al., 1997) (Figure 1.1A&B).  A 

large stick-nesting population (~500 pairs) occurred across the extensive forests of 

northern Europe, and became extinct after 1972 primarily due to organochloride pesticide 

bioaccumulation coupled, in their final years, with direct persecution (Kirmse, 2001).  In 

addition to the use of stick nests of other birds, nesting in tree cavities has been recorded 
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in Australia (Emison et al., 1997).  Nesting has been recorded in grass tussocks on the 

ground in boreal bogs of Finland and Russia (Karyakin & Pazhenov, 2009; Ollila, 2009).  

Peregrine Falcons have also adopted a large range of built structures, from high rise city 

buildings to grain silos, power station chimneys and rail and road bridges (Bird et al., 

1996; Tordoff et al., 1998).  In Australia, they display the highest level of plasticity in 

selection of nest types, including cliffs, the stick nests of other birds, tree hollows 

(cavities) and buildings (Emison et al., 1997) (Figure 1.2).   

 

 

Figure 1.1  Clutches of Peregrine Falcon eggs at two sites.  A = healthy Peregrine Falcon 
eggs on a well-protected ledge, B = Peregrine Falcon eggs dead due to inundation of the 
nest ledge.  This same ledge (B) was occupied the year before and after this photo was 
taken, and four young fledged in each of those years.  C = ♀ Peregrine Falcon trying to 
shield eggs from radiant heat (~54° C).  This clutch did not hatch.  D = failed eggs from 
two separate years.  The metal beam acted as a heat sink to chill the eggs. 
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Figure 1.2  The four distinct nest types used by Peregrine Falcons in Victoria.  A = 

‘Building’ (a stone railway bridge); B = Stick nest (disused White-bellied Sea Eagle 

(Haliaeetus leucogaster nest; Photo. M. MacKinnon); C = ‘Cliff’ (an unusual nest behind 

a water fall.  Red arrow indicates flight path to nest; photo. S. King); and D = tree cavity 

(entrance is 12 m off the ground and the cavity is 1 m deep; photo. R. Bilney). 

 

1.5. The Peregrine Falcon in Australia 

Peregrine Falcons are distributed throughout mainland Australia and the southern island 

state of Tasmania, tending to avoid the arid interior where it is replaced by the Grey 

Falcon (Falco hypoleucos) in much of this region (Schoenjahn, 2012).  The Peregrine 

Falcon in Australia is sedentary, not undertaking annual migrations unlike those of the 

northern hemisphere (Norris et al., 1977; Fuller et al., 1998).  From a distributional view 

point, the strong hold for the species on mainland Australia is along the Great Dividing 
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Range, running down the eastern seaboard of Australia.  The fertile alluvial plains that 

extend either side of the Great Dividing Range from south east Queensland through 

eastern New South Wales and across Victoria appear to support the largest populations of 

the species’ distribution (Barrett et al., 2003) (Figure 1.3).   

 

Figure 1.3  Distribution map of the Peregrine Falcon in Australia.  ● = sighting record.  

Sourced from Birdlife Australia Bird Data database©.   

 

The Peregrine Falcon occupies a diverse range of ecosystems in Victoria, that are 

representative of those it occupies across the continent (White et al., 1981; Emison et al., 

1997).  Breeding records have been recorded from the low lying semi-arid north west (40 

m above sea level (asl)), the basalt and sandstone cliffs along the southern coast, rural 

landscapes throughout Victoria, to the highest nest recorded at 1,180 m asl on a cliff 

topped with Snow Gums (Eucalyptus pauciflora) and in the artificial canyons of 

Melbourne’s central business district with a human population of 4.25 M (Pruett-Jones et 

al., 1981b; Emison et al., 1997; ABS, 2011) (Figure 1.4).   
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Figure 1.4 A diversity of ecosystems occupied by the Peregrine Falcon in Victoria.  All 

pictures are of or near active nest sites.  A = coastal cliffs (Otway coast); B = Snow Gum 

forests above 1,200 m (Dandongedale Falls, ne Vic.); C = Urban environment, (Altona 

looking east towards Melbourne); D = farmland with treed riparian zone; E = Mountain 

Ash (Eucalyptus regnans) forest, (Gembrook, east of Melbourne; white circle signifies 

climber); F = Gippsland Forest Red Gum (Eucalyptus tereticornis subsp. mediana) ring 

barked in 1930s in now cleared grazing land (Gippsland Plains, east Vic.); and G = Treed 

Mallee vegetation in the semi-arid north west. 
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1.6. Recent history of the Peregrine Falcon 

1.6.1.   Globally 

Any comprehensive account of the breeding performance of the Peregrine Falcon in the 

past 60 years would not be complete without some reference to the effects of persistent 

organochloride pesticides (Ratcliffe, 1993).  The serious collapse in Peregrine Falcon 

populations across its northern hemisphere range and the many international captive 

breeding and release conservation programmes to re-establish the species has made the 

species a globally recognised bird of prey (Cade et al., 1988; Frank, 1994; Sielicki & 

Mizera, 2009).  The results of these programmes have led to the Peregrine Falcon as 

being an icon of successful reintroduction biology (Cade et al., 2009).  It is out of 

concern for the conservation of this species over this time that has also raised the 

Peregrine Falcon to the status of environmental sentinel, due to their susceptibility to the 

toxic effects of certain anthropogenic chemicals. 

 

Bioaccumulation of persistent organochloride pesticides (i.e. DDT, dieldrin and 

cyclodiene), introduced into agricultural systems as a seed dressing after 1946, interfered 

with calcium uptake and deposition on the eggshell membrane causing female Peregrine 

Falcons to lay thin-shelled eggs.  These eggs collapsed under the weight of the incubating 

female late in the incubation period, crushing the embryo inside (Grier, 1982; Peakall & 

Kiff, 1988; Newton et al., 1989; Ratcliffe, 1993).  This effect of the pesticides had 

significant global impacts on Peregrine Falcon populations, resulting in its extinction 

from several countries in Europe and large tracts of north America (Hickey, 1969; Cade 

et al., 1988).  Parallel declines were also detected in populations of other raptor species, 

most notably the Sparrowhawk (Accipiter nisus), Common Kestrel (Falco tinnunculus), 

Barn Owl (Tyto alba) and Bald Eagle (Haliaeetus leucocephalus) (Prestt, 1965; Grier, 
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1982).  The timing of breeding failures (i.e. late in the incubation period) often meant 

that a second clutch was not attempted that year, thus significantly reducing the fecundity 

of those populations of Peregrine Falcons affected by these toxins (Pruett-Jones et al., 

1981a).  Furthermore, increased concentrations of these chemicals also killed embryos 

outright and still higher concentrations in the adults proved lethal and led to increased 

adult mortality and further acceleration in population declines (Ratcliffe, 1993).   

 

Large-scale captive breeding programmes for Peregrine Falcons in many countries 

throughout Europe and North America up until the mid-1990s, coupled with the gradual 

removal of the legal use of organochloride pesticides in agriculture in many developed 

countries in the ‘70s and ‘80s, led to a reversal in population decline across much of the 

species’ range (Cade et al., 2009; Sielicki & Mizera, 2009).  Much of the recovery and 

population growth has been by captive bred Peregrine Falcons nesting on anthropogenic 

structures in urban and non-urban environments (Cade et al., 1996).  Many of these early 

urban-breeding birds are considered to be the result of captive bred birds released near 

fledging into urban nest boxes and fed until fledging (a process called ‘hacking’; Sherrod 

et al. (1982)); resulting in the successful adoption of an urban nesting habit in Europe 

and North America (White, 2009).   

 

1.6.2.   Australia 

The Peregrine Falcon population in Australia also experienced a significant decline, but 

not as disastrous as that recorded in the northern hemisphere (Pruett-Jones et al., 1981a; 

Olsen & Olsen, 1988b; Emison & Hurley, 1995).  Peregrine Falcon eggs in Victoria, 

south eastern Australia, recorded the highest levels of shell thinning and concentrations 

of dieldrin and DDE (the metabolite of DDT) of any region in Australia (Olsen et al., 
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1992).  The levels in Victoria, the highest recorded anywhere in Australia, were 

comparable with those from northern hemisphere countries where population declines 

had occurred (Pruett-Jones et al., 1981a).  In addition to toxic chemicals the Peregrine 

Falcon has been subject to continual persecution.  The first band recovery in Australia 

was recorded in Hamilton in south west Victoria in 1958 of a Peregrine Falcon that had 

been shot (Appendix I).  Persecution, particularly by Pigeon fanciers, remains a constant 

pressure on this population (Appendix II & VIII) as it does elsewhere (Hager, 2009). 

 

1.6.3.   Victoria 

Due to concerns for the conservation of this species in Victoria following 30 years of 

exposure to the use of DDT in local agriculture, several investigations were undertaken 

by the Victorian Government’s conservation department (1975-1977) (Emison & Bren, 

1981; Pruett-Jones et al., 1981b; Pruett-Jones et al., 1981a; White et al., 1981; Emison & 

White, 1988).  These were the first studies of the species in Victoria and provided 

baseline data and the location of 110 nest sites (of which 57 were subsequently 

monitored as part of the research presented in this thesis).  A reduced level of banding 

and monitoring continued until 1984 (Emison et al., 1993).  During these studies (1975-

1984) there appeared to be a steady decline in the occupancy rate of 20 regularly 

monitored Peregrine Falcon nests within a 100 km radius of Melbourne, Victoria 

(Emison 1988).  A subsequent survey in 1992 established that occupancy at those 20 nest 

sites had recovered to 86% of the 1976 levels (Emison & Hurley, 1995).  The 1976 

occupancy rates, however, represented a population that had potentially been subject to a 

30 year exposure to damaging persistent organochloride pesticides (Pruett-Jones et al., 

1981a), and so is not necessarily a reliable benchmark for a healthy population.  

Following the banning of these chemicals in Australian agriculture, not out of 
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environmental or human health concerns but due to threats of trade bans on Australian 

beef (Ford, 1987), it seemed timely to begin a new long-term, large-scale monitoring 

project of this species in 1991. 

 

1.6.4.   The Victorian Peregrine Project 

The Victorian Peregrine Project (VPP) is a private initiative established by the author to 

conduct a long-term monitoring study of the Peregrine Falcon across Victoria.  In the 

appendices of this thesis copies of banding, monitoring and egg measurement field data 

sheets, a copy of the 2013 edition of the banding manual developed for this project, and 

an example of a completed public band recovery report are included (Appendix III, IV, 

V, VI, VII & VIII).  While this information (e.g. the data sheets and manuals) do not 

warrant publication in the scientific literature, they complement the data chapters of this 

thesis.  Appending these to this thesis provides a more detailed reference to the practical 

aspects of undertaking this project in a single volume.  Information in the appendices is 

the product of 22 years of development and refinement and will remain a valuable 

resource to anybody wishing to undertake some component of this project in the future.  

Including such items in the appendices of a thesis has been shown to have real practical 

application to facilitate follow-up monitoring programmes (Lindenmayer et al., 2012).  

Unfortunately due to the ongoing persecution of this species it was not considered 

appropriate to provide the grid references or location details of the nest sites.  These are 

available to interested conservation biologists through the Victorian Government’s 

Biodiversity Atlas databases or by contacting the author directly.  
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1.7. Thesis aims and structure 

The overall aim of this research (when it began in 1991) was to monitor the breeding 

performance of the Peregrine Falcon at a large temporal and spatial scale following the 

banning of the use of persistent organochloride pesticides in Australia in 1987 (Ford, 

1987).  This work builds on the pioneering research (1975-1984) lead by W.B. ‘Bill’ 

Emison (deceased) of the Fisheries and Wildlife Division in Victoria, Australia.  Key 

questions unresolved in the previous studies are investigated in this research.  These 

include, but are not restricted to; nest site selection and the consequences of adopting 

non-cliff nest sites (White & Jones, 1977), natal dispersal distances, age at first breeding, 

lifespan, years spent breeding (Emison & Bren, 1981) and influences on lifetime 

reproductive output (Emison et al., 1993).  Many of these questions could only be 

answered through a long-term study using some form of capture-mark-re-sight or 

recapture (CMR) procedure conducted at temporal and spatial scales reflective of the 

longevity and dispersal capabilities of the Peregrine Falcon. 

 

Most detailed studies of dispersal patterns and lifetime reproduction in birds have 

focused on short lived species that breed in discrete (Cooper & Walters, 2002), or island 

populations (Pärn et al., 2009), or are colonial breeders (Calabuig et al., 2008).  

Targeting such species makes the studies logistically and financially more viable (Clarke, 

1997).  In this study, the integration of data on natal dispersal with that on lifetime 

reproduction for a long–lived raptor over a large spatial scale, means that this thesis is 

distinctive in its field.  The data chapters in this thesis follow two, broadly 

complementary themes: (1) enhancing field techniques for long-term raptor research 

(Chapters 2 & 3), and (2) understanding the factors influencing breeding success and 

management of the Peregrine Falcon (Chapters 4 – 6; Figure 1.5).  
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Breeding success and management 

Chapter 1 
Introduction and thesis overview 

Enhancing field techniques 

Chapter 3 
Improved techniques for large 

scale banding 

Chapter 2 
Morphological sex determination 

of nestlings 

Chapter 4 
Patterns of dispersal and 

consequences of nest choice 

Chapter 5 
Longevity and nest quality 

effects on LRO 

Chapter 6 
Nest site management at 

anthropogenic sites 

Chapter 7 
Synthesis, conclusions and 
future research prospects 

 

Figure 1.5  Overview of the structure of this thesis. 

 

Because females require larger tarsus bands than males, it is critical to accurately 

determine nestling sex prior to banding.  Prior to this study there was no field based 

technique available to reliably determine the sex of nestling Peregrine Falcons smaller 

than asymptotic weight (i.e.  10 days pre-fledging).  Chapter 2 details a field-based 

technique developed to accurately determine the sex of nestlings from the earliest safe 
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banding age.  This approach was established using genetic sexing of individuals and 

validated in the field on a large sample set of nestlings.  Through the implementation of 

this field-based method for sexing nestlings, it was possible to increase the window of 

opportunity in which safe banding of nestlings could occur.  This was fundamental to 

being able to successfully monitor, and band nestlings in more nests each year.   

 

This study was initiated to establish long-term monitoring of a species during its recovery 

from a human facilitated decline.  The intent was to develop approaches and protocols to 

marking animals and banding as many individual nestlings in the population as possible.  

To facilitate the long-term viability of this research, field protocols and approaches 

needed to be developed that made the study more time and cost-effective.  Chapter 3 

develops methods to further improve the efficiencies of conducting capture-mark-re-sight 

(CMR) studies at a large temporal and spatial scale.  With the improved field techniques 

(from Chapters 2 & 3), it became possible to then investigate the ecology and 

conservation of breeding Peregrine Falcons.   

 

The influence of biogeographic features on the distribution of the various nest types (i.e. 

cliff, building, stick nest and tree cavity) used by Peregrine Falcons in Victoria has been 

well described by Emison et al. (1997).  Natural cliff nests tend to occur in the uplands 

(> 200 m above sea level) or along the coast.  Tree nests, in stick nests and tree cavities, 

were considered restricted primarily to the distribution of River Red Gum (Eucalyptus 

camaldulensis) and Belah (Casuarina pauper) (Emison et al., 1997).  White and Jones 

(1977) first raised the question of whether populations were behaviourally isolated by 

natal nest site imprinting that subsequently influenced nest type selection.  Chapter 4 

investigates patterns of dispersal; in particular, from fledge site to breeding site, to 
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determine to what degree nest site selection is influenced by natal site imprinting.  This 

chapter then compares the lifetime reproductive consequences of dispersal distance and 

nest site choice. 

 

Levels of nest site protection from the elements (referred to as nest quality) have been 

linked to variations in breeding success (Olsen & Olsen, 1989b; Emison et al., 1993).  

Despite this, Peregrine Falcons show a strong lifetime fidelity to a mate and nest territory 

(Mooney & Brothers, 1993; Ratcliffe, 1993).  Chapter 5 seeks to establish the relative 

influence of attributes of nest sites and the surrounding landscape on the lifetime 

reproductive output of Peregrine Falcons.  Specifically, this chapter seeks to determine 

whether site and landscape level factors influence lifetime reproductive output (LRO) 

beyond that which can be attributed to the number of years in which an animal attempts 

to breed. 

 

Globally there has been a growing trend of Peregrine Falcons adopting anthropogenic 

structures for nesting (Bird et al., 1996).  The first nesting by the Peregrine Falcon in 

Victoria on anthropogenic structures was identified in 1981 (White et al., 1981).  

Chapter 6 compares the level of use and the breeding performance of natural versus 

anthropogenic derived nest sites.  This chapter also then assesses the efficacy of nest site 

interventions for improving breeding performance of previously poorly performing nest 

sites. 

 

Finally, Chapter 7 presents a synthesis of the key findings of the preceding chapters and 

discusses the conservation prospects and management actions for the Peregrine Falcon in 

Victoria.  Recommendations for future research are also presented.



 

24  Victor G. Hurley 

 



 

Victor G. Hurley  25 

2.  
A morphological model for sexing nestling Peregrine Falcons 
(Falco peregrinus macropus) verified by genetic analysis 
 

This chapter has been published as:   

Hurley, V.G., Hogan, F., White, J.G. and Cooke, R., (2007).  “A morphological model for sexing 

nestling Peregrine Falcons (Falco peregrinus macropus) verified by genetic analysis”. Wildlife 

Research 34:1, pp 54-58. 

 

 
               Three male nestling Peregrine Falcons banded at 20-22 days old. Otway coast, 2008. 

 

 

“Nature does nothing needlessly.” 

Aristotle 
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2.1. Abstract 

In Australia, adult Peregrine Falcons (Falco peregrinus macropus) have monotypic 

plumage and display strong reversed sexual dimorphism (RSD), with females 

significantly larger than males.  RSD is measurable amongst nestlings in the latter stages 

of their development and can therefore be used to differentiate between sexes. In the 

early stages of development, however, nestlings cannot be sexed with any degree of 

certainty as morphological differentiation between the sexes is not well developed.  

During this study we developed a model for sexing younger nestlings based on genetic 

analysis and morphometric data collected as part of a long-term banding study of this 

species.  A discriminant function model based on morphological characteristics was 

developed for determining the sex of nestlings in the field and was shown to be 96.0% 

accurate.  This predictive model was further tested against an independent morphometric 

data set taken from a second group of nestlings (n = 131).  The model correctly allocated 

sex to 96.2% of this second group of nestlings.  Sex can reliably be determined (98.6% 

accurate) for nestlings which have a wing length of 9cm or greater using this model. 

Application of this model permits the banding of younger nestlings, and as such 

significantly increases the period of time over which banding can occur.  
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2.2. Introduction 

The Peregrine Falcon (Falco peregrinus) has a wider geographic distribution than any 

other bird species (Kiff, 1988).  This has lead to morphological variation across the 

species’ near global range (White & Boyce, 1988; Brown & Amadon, 1989), generating 

20 subspecies based on distinct colouration and sizes (White, 1987).  Many studies have 

been undertaken on Peregrine Falcons, particularly in relation to the impacts of pesticides 

such as DDT and Dieldrin (Porter et al., 1987; Cade et al., 1988).  No studies to date, 

however, have developed accurate field based methods for sexing nestlings prior to 

attaining asymptotic weights (Nisbet, 1988; Olsen, 1995). 

 

Within Australia, adult Peregrine Falcons (Falco peregrinus macropus) are considered 

monotypic in plumage (Marchant & Higgins, 1993; Olsen, 1995), however, they do 

display a high level of reversed sexual size dimorphism (RSD), with females 

significantly larger than males (Baker-Gabb, 1984).  Male and female adults of this 

species display virtually no overlap between commonly measured morphometric 

characteristics such as weight, wing length and culmen length (Baker-Gabb, 1984).  RSD 

is so significant in Peregrine Falcons that females warrant a larger sized leg band than 

males (Lowe, 1989).   

 

RSD is also clearly measurable amongst nestlings in the latter stages of their 35-40 day 

nestling period (Olsen, 1995).  Nestlings in the earlier stages of development, however, 

cannot be sexed with any level of certainty as RSD is not discernible.  Banding nestlings 

of unknown gender poses a number of risks, with the most obvious relating to band size 

and subsequent injuries (Berggren & Low, 2004) or band loss if the incorrect sized band 

is applied (Emison & Bren, 1981).   
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To reduce the risk of birds being incorrectly sexed a field based model needs to be 

developed.  This model needs to be accurate and easy to use to ensure that researchers 

adopt the model, especially when banding younger nestlings which display little or no 

size dimorphism.  This study aims, therefore, to use genetically validated morphometric 

data to develop a model for determining the sex of nestling Peregrine Falcons and 

secondly, establish the minimum size/age at which this model can accurately be applied. 

2.3. Methods 

2.3.1.   Study area 

This study was conducted at 64 eyries covering ~118,577 km2 (52.1%) of Victoria, 

Australia (2.1).  Sites surveyed were from each of the five geographical regions of 

Victoria as described in Emison et al. (1997).  The altitude of sites ranged from 18 to 528 

m above sea level and rainfall varied from 250 to 2,600 mm per year.  The average 

maximum winter (initiation of breeding) temperatures range from < 10o C at the higher 

elevations to 13o C along the coast and 17o C in the semi arid north-west. 
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Figure 2.1 Study sites where DNA and morphometric data were collected (2003 and 

2004).  Shaded area represents study area.  Black dots represent nest sample sites. 

 

This study involved taking blood samples, morphometric measurements and leg banding 

150 Peregrine Falcon nestlings prior to fledging.  This was undertaken over a two year 

period (2003-2004). Nestlings sampled ranged in age from 10 to 43 days post hatching.  

This range in age was selected to generate nestling growth curves commencing at pre-

banding age and ceasing at fledging.  Nestlings younger than 10 days were excluded as 

they were considered too small to retain the recommended adult sized bands.   

 

2.3.2.   Morphometric data collection 

Eleven morphometric features were measured for each nestling, however, only five of 

these were useful for determining gender.  The five features measured were body mass, 

wing chord length, culmen chord length, tarsus length and head-bill length. 
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Body mass was measured using spring Pesola balances accurate to ±1 g, ±5 g and ± 10 g 

for nestlings weighing up to 600, 1,000 and over 1,000 g respectively (nestling body 

masses recorded ranged from 40 - 1,153 g). 

 

Wing chord was taken as a straight line between the carpal joint and the tip of the 9th 

(longest) primary laid, not flattened or straightened along a stainless steel butted rule 

(Lowe, 1989).  Wing length increases linearly with age, at a steady rate, consistent for 

both sexes regardless of nutritional status (Olsen & Olsen, 1987b).  Wing chord length 

has therefore been utilized as a surrogate for absolute age in this study. 

 

The culmen, tarsus and head measurements were each taken to the nearest 0.1 mm with 

Mitutyo Digimatic (model number CD-6”) digital callipers (±0.01 mm, max. 150 mm). 

 

Culmen chord was taken as the chord from the tip of the upper mandible to the front of 

the feather line toward the rear of the cere.  Tarsus length was measured from the 

posterior notch between the tibia-fibula and the tarso-metatarsus to the anterior notch 

between the tarso-metatarsus and third toe joint.  This measurement was taken by gently 

holding the tibia and tarsus in a right angle and holding the metatarsi flexed in a right 

angle.  The combined head and bill measurement was taken from the tip of the upper 

mandible to the rear of the occipital condyles at the rear and base of the skull.   
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2.3.3.   Molecular sexing 

Blood samples were taken from the brachial vein of 150 nestlings using a 26-gauge 

syringe; 50 μL of whole blood was preserved in 99% ethanol (1 mL).  Samples were then 

stored at -20º C until analysis.  DNA was extracted from blood samples using Proteinase 

K digestion followed by extraction with ammonium acetate (Nicholls et al., 2000).  DNA 

was also extracted (ammonium acetate extraction) from muscle tissue of Peregrine 

Falcons of known sex via dissection (Museum of Victoria tissue collection). One male 

and two females were used to validate the genetic sexing protocol.   

 

PCR amplicons were prepared using the 2550F and 2718R primers (Fridolsson & 

Ellegren, 1999).  These primers provide a universal method for molecular sexing of non-

ratite birds which is based on the detection of a constant size difference between the 

chromo-helicase-DNA binding protein CHD1W and CHD1Z (Fridolsson & Ellegren, 

1999).   

 

PCR reactions were performed in 12.5 μL volumes on a Palmer Cycler (Corbett 

Research) Thermal Cycler using 0.05 U/μl Hot Star Taq (Qiagen), 0.1 mM dNTP’s, 1.5 

mM MgCl2 (Qiagen), 0.6 μM of primers 2550F (5`-GTTACTGATTCGTCT ACGAGA-

3`) and 2718R (5`- ATTGAAATGATCCAGTGCTTG-3`) and 1μL  DNA template.  The 

thermal profile comprised an initial denaturing step of 95º C (15 min), followed by 40 

cycles of 30 s denaturation at 95º C, 30 s annealing at 40º C, 30 s extension at 72º C, 

followed by a final extension 72º C (5 min).  PCR products were separated on 1.2% 

agarose gels, run in standard TBE buffer and visualised by ethidium bromide staining 
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2.3.4.   Analysis and model development 

Discriminant function analysis was used to develop a model for predicting the sex of 

nestling Peregrine Falcons based on the morphometric data and genetically derived 

sexes.  The final model was validated against the data used to derive the model and tested 

against a separate set of morphometric data from Peregrine Falcons of known sex which 

were not used to derive the model.   

 

2.4. Results 

2.4.1.   Molecular sexing 

The universal method for molecular sexing developed by Fridolsson and Ellegren (1999) 

provides a robust and simple PCR protocol for sexing birds.  The technique involves 

using a pair of highly conserved primers which consistently amplify a different-sized 

intron of CHD1 (W) and CHD1 (Z) in birds throughout the whole avian phylogeny, with 

the exception of ratites (Fridolsson & Ellegren, 1999).   Male birds can be recognised by 

a single fragment Z, while females show two fragments Z and W.   

 

Preferential amplification of the shorter CHD1 (W) intron led to no detectable CHD1 (Z) 

production in females in the case of F.p. macropus.  The single female product was due 

to CHD1 (W) amplification out competing that of the CHD1 (Z) when both templates are 

present as targets for PCR (Fridolsson & Ellegren, 1999).  Amplification of the CHD1 

(W) and CHD1 (Z) genes revealed a size difference of 150 bp, which was clearly 

detectable when run on a 1.2% agarose gel and stained with ethidium bromide (Figure 

2.2). 
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Figure 2.2  Molecular sexing of Falco Peregrinus macropus using PCR amplification of 

the CHD1 (W) and CHD1 (Z) genes separated on 1.2% agarose stained with ethidium 

bromide.  The molecular weight standard is 100bp ladder (promega). 

 

The molecular sexing technique accurately sexed all three museum samples.  This 

technique was then used to sex the blood samples taken from Peregrine Falcon nestlings 

and the results found that of the 150 nestlings sampled and tested 79 were female and 71 

were male. 

 

2.4.2.   Model development 

Morphometric data from the 79 female and 71 male Peregrine Falcon nestlings that were 

sexed using genetic techniques were used to develop a predictive model for determining 

sex using discriminant function analysis.  The morphometric measurements used in the 

model were wing chord (log10 cm), weight (log10 g), tarsus length (mm), head plus bill 

length (mm) and culmen chord (mm).  These variables were selected because they are 

frequently measured by field researchers (Olendorf, 1972; Arroyo et al., 2000; Balbontín 

et al., 2001) and they are likely to differ between sexes (Baker-Gabb, 1984; Olsen, 1995).  

Overall, body mass (weight), tarsus length, head plus bill length and culmen chord length 

all differed significantly between the sexes, with nestling females tending to have larger 
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measurements than males of the same age (Table 2.1).  Wing length did not differ 

significantly between the sexes (Table 2.1), however, it was maintained in the model as it 

is an indicator of and is directly proportional to the age of the nestlings (Olsen & Olsen, 

1987b; Olsen, 1995). 

 

Table 2.1 Morphometric characters and total body mass (means ± 1 s.d.) for nestling 

Peregrine Falcons, and statistical comparisons between sexes.  n = 150 (71 ♂, 79 ♀). 

Character female male t P 

Wing chord (log10 cm) 1.16 ± 0.14 1.13 ± 0.15 1.38   0.171 

Body weight (log10 g) 2.86 ± 0.09 2.73 ± 0.09   8.90 <0.001 

Tarsus length (mm) 48.12 ± 3.60 43.22 ± 3.22   8.74 <0.001 

Head+bill length (mm) 63.15 ± 4.42 58.59 ± 3.78   6.76 <0.001 

Culmen chord (mm) 24.60 ± 1.71 22.15 ± 1.47   9.38 <0.001 

 

The model discriminated between male and female groupings of Peregrine Falcons 

(Pillai’s trace = 0.750, df = 5,144, F-Ratio = 86.519, P<0.001).  The mean discriminant 

score for males was -1.791 (s.e. = 0.107) and for females was 1.657 (s.e. = 0.121) (Figure 

2.3).  The function that best discriminated between male and female Peregrine Falcon 

nestlings was: 

 

Di = -39.930 – 16.830 (wing chord (log10 cm)) + 12.128 (weight (log10 g)) + 0.124 

(head+bill length (mm)) + 0.130 (tarsus length (mm)) + 0.502 (culmen chord (mm)) 

 

Scores greater than zero were assigned as females and scores less than zero were 

allocated as males (Figure 2.3).  

 



Ch. 2  Morphometric sexing of nestlings 

Victor G. Hurley  35 

D

15131197531-1-3-5-7-9-11-13-15

16

14

12

10

8

6

4

2

0

 
Figure 2.3 Discriminant scores for male and female Peregrine Falcon F.p. macropus 

nestlings.  Grey bars represent males and white bars represent females as determined by 

genetic analysis (71♂, 79♀).  The reference line is at zero to indicate the pivot point 

between male and female classification. 

 

2.4.3.   Validation of model 

The above formula was tested on 150 birds that were sexed by molecular techniques and 

used in the original model development.  Overall, the model was able to correctly 

allocate the sex of 96.2% of this sample of birds (Figure 2.4).  Applying the model to 

females with wing chord lengths less than 9 cm was extremely inefficient with only 20% 

(1 in 5 birds) correctly identified as a female.  Females over 9 cm in wing length were 

correctly allocated 98.6% (73/74) of the time.  Overall, the model worked extremely well 

for males with 98.6% (70/71) of all males correctly sexed (Figure 2.4).   

 

This model was further tested by applying it to 131 birds (66 females and 65 males) 

which had their sex confirmed by band recoveries later in life (via post-mortem of 
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individuals recovered injured, deceased or observed as breeding adults that had been 

banded and measured as nestlings).  The model correctly sexed 96.2% (126/131) of these 

birds.  Overall the model was 98.5% (64/65) accurate for males and 93.9% (62/66) 

accurate for females.  There was only one female with a wing length less than 9 cm, 

which was incorrectly classified by the model.  If this bird is excluded from the results 

females with a wing length greater than 9 cm were correctly classified 95.4% (63/66) of 

the time.   

 

 
Figure 2.4 Relationship between wing chord length and body mass in nestling Peregrine 

Falcons F. p. macropus as sexed by genetic analysis.  Triangles represent males and 

circles represent females.  Open symbols represent correct classification by the model 

whereas solid symbols represent incorrect classification.  The vertical dotted line 

represents a wing length of 9 cm.  The solid curved line represents cubic regression 

model of nestling growth for females (using data from open circles).  The lower dotted 

curved line represents the male growth cubic regression using data from open triangles. 
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2.5. Discussion 

Correctly identifying the sex of a raptor nestling is an essential component of any 

banding project and especially with dimorphic species where band sizes differ between 

the sexes.  This is often a difficult task as younger nestlings show very limited, if any, 

sexual size dimorphism.  During this study we successfully developed a field model to 

reliably sex nestling Peregrine Falcons.  This model has been genetically validated and 

correctly sexed 96.2% of field samples used.   

 

Previous Australian studies on Peregrine Falcon nestlings have relied on determining sex 

with older nestlings (i.e. larger individuals) as RSD is more pronounced in larger 

nestlings where sex can be determined through morphometric features such as body 

weight or tarsus length compared to wing length (Emison & Bren, 1981; Olsen et al., 

1982; Olsen & Cockburn, 1991; Mooney & Brothers, 1993). 

 

Wing length is directly proportional to age in nestling diurnal raptor species and formulae 

have been developed predicting age on wing length for nine raptor species in Australia 

(Olsen & Olsen, 1987b).  As egg hatching is rarely monitored during most raptor banding 

studies, wing length can be used as a surrogate for the age (in days since hatching) of 

raptor nestlings.  Our study set out to determine the minimum age (wing length) at which 

nestlings could be sexed in order to increase the number of days available for banding 

prior to fledging.  The model developed here predicted sex most accurately when 

nestlings had a wing length of 9 cm or greater.  When applied to the formula developed 

by Olsen and Olsen (1987b) this translates to 15 days post hatching and allows for 20 

days or 63% of the nestling period to accurately sex and band Peregrine Falcon nestlings 

at each nest.  
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Most studies on dimorphic raptors rely on morphometric measurements, in particular 

weight and wing length of adults and free flying juveniles, to accurately determine sex 

(Baker-Gabb, 1984; Hartley & Mundy, 2003; Delgado & Penteriani, 2004).  The use of a 

single feature, however, has been found to provide limited accuracy for some species 

even amongst adults, as was reported with footpad length in Northern spotted owls (Strix 

occidentalis caurina) (Fleming et al., 1991).  Further, the use of a single feature such as 

wing chord alone has been challenged on statistical grounds and the degree of overlap of 

this feature between the sexes of adult saw-whet owls (Aegolius acadicus) (Mueller, 

1990).  Although these features may become apparent in older nestlings, they are 

extremely difficult to distinguish in very young nestlings.  As a result, most studies 

attempting to sex nestling raptors have relied on using morphometric measurements of 

older nestlings approaching fledging.  These were successfully developed for nestling 

bald eagles (Haliaetuus leucocephalus) (Bortolotti, 1984a, b), Brown Falcons (Falco 

berigora) (McDonald, 2003), short-eared owls (Asio flammeus) (Arroyo et al., 2000) and 

brown goshawks (Accipiter fasciatus) (Olsen et al., 1982). 

 

(Bortolotti, 1984b) was able to allocate the sex of nestling bald-eagles using size 

measurements (foot-pad length and bill depth) at 51.2% of nestling period when growth 

was almost complete.  Arroyo et al. (2000) in their study on the dimorphic short-eared 

owl were able to sex nestlings (n = 16) on plumage features when the nestlings reached 

12 days of age.  The nestling period for this species is 30 days and therefore sex could be 

correctly assigned after 40% of the nestling period.  A study on the growth of nestling 

brown goshawks found weight plotted against age, derived from wing length, showed a 

clear size separation (not genetically tested) amongst nestlings from 20 days of age or by 

as late as 65.6% of the nestling period (Olsen et al., 1982).  Our study on Peregrine 
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Falcons was able to predict the sex of nestlings at 36% of the nestling period.  Correctly 

sexing raptor nestlings at 36% of the nestling period is a vast improvement on past 

studies as this provides a much greater time period to band nestlings with confidence. 



 

40  Victor G. Hurley 
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3.  
Techniques for optimising long-term, large-scale capture-
mark-re-sighting raptor studies: Climb hard, band fast. 
 

This chapter has been published as:  

Hurley, V.G., J.G. White and R. Cooke (2013). “Techniques for optimising long-term, large-scale 

capture–mark–re-sighting raptor studies: climb hard, band fast”. Wildlife Research, 40:4, pp 269-

280.  

 

 

 
 
 

 
The author ascending a coastal cliff.  

(Photo by M. MacKinnon ©) 

 
Banding on top of a petro-chemical plant, 2006. 

“To band a bird is to hold a ticket in a great lottery.” 
 
 

Aldo Leopold 
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3.1. Abstract 

Context. Efficiency of large-scale capture–mark–recapture (CMR) studies can be 

improved by developing accurate methods for predicting the window of opportunity in 

which banding can occur. 

Aims. This research aimed to investigate potential efficiency improvements in a long-

term CMR raptor study. The research focused on (1) developing selection processes for 

adopting CMR protocols; (2) testing methods for increasing the number of nestlings 

successfully banded and (3) assessing the efficacy of visual identification (VID) bands 

for collecting re-sight data. 

Methods. Ten selection criteria were developed into a robust CMR-technique selection 

process and used to assess marking techniques commonly applied to birds. Optimising 

banding effort by predicting banding dates using two different techniques a priori and a 

posteriori were tested against a traditional approach to the timing of banding. The cost 

(in time) to collect re-sight data at an active nest site was also measured. 

Key results. The CMR selection criteria and parameters provided a transparent selection 

process and scored metal VID bands the highest for the study design. This provided 

individual recognition of marked birds up to the expected life-span of 14 years. Both 

techniques for predicting banding dates improved the proportion of whole clutches 

banded by 40%. The average time to identify both Peregrine Falcon adults of a breeding 

pair wearing VID bands was 30 min. 

Conclusions. The two methods described here for predicting preferred banding dates are 

of particular value as efficient approaches to banding large numbers of nestlings are key 

to the success of CMR studies. All of the methods developed in this research can be 

applied to CMR studies of almost any bird species with a predictable seasonal breeding 

system. 

Implications. Optimisation and cost effectiveness of CMR studies for seasonal breeding 

birds can be significantly improved by accurately predicting the window of opportunity 

in which banding of nestlings can be carried out, and also utilising VID colour bands for 

rapid collection of recapture data. 
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3.2. Introduction 

Longitudinal studies are critical for increasing knowledge of ecological or evolutionary 

processes (Hobbie et al., 2003; Robertson et al., 2012). Whether it be charting the levels 

of carbon dioxide in the atmosphere (Keeling, 1998), assessing change in ecological 

communities through time (Nichols & Williams, 2006; Sinclair et al., 2007) or collecting 

data on lifetime reproductive success (hereafter LRS; (Newton, 1989; Brommer et al., 

2002), longitudinal studies provide more robust datasets than do space-for-time 

substitution studies (Clutton-Brock & Sheldon, 2010). The importance of improving the 

quality and efficiency of long-term studies has been recognised by numerous authors, 

with three key areas of focus being improved monitoring design (Black & Groombridge, 

2010; Lindenmayer et al., 2012), more efficient (Nichols & Williams, 2006) and targeted 

monitoring (McDonald-Madden et al., 2010) and greater rigor in archiving published 

data (Whitlock, 2011). Inherent, if not explicitly stated, is the requirement for greater 

efficiency in data collection to make continuing long-term monitoring sustainable. 

 

An important area of faunal population research dependant on longitudinal monitoring is 

the estimation of individual fitness (Brommer et al., 2002). The collection of data to 

determine LRS requires knowledge of breeding success of marked individuals 

throughout their entire life and broad-scale surveying for their offspring, to determine 

survivorship and subsequent breeding (Newton, 1989). Although conducting LRS studies 

overcomes many of the limitations in short-term cross-sectional studies (Clutton-Brock 

& Sheldon, 2010), the logistical and budgetary constraints seldom align with the 

timeframes for undertaking such research (Lindenmayer et al., 2012). The challenges 

associated with establishing and maintaining long-term research have led to a distinct 

bias, particularly in the southern hemisphere, toward intensive research on birds that 
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breed colonially or co-operatively compared with non-passerines such as raptors (Clarke, 

1997). This is, no doubt, partly because of raptor’s tendency to live longer and breed at 

lower densities than do lower-order consumers (Newton, 2003; Korpimäki et al., 2005) 

and often breed in difficult-to-access nests in remote locations (Bednarz, 2007). To 

overcome these challenges, techniques for improving efficiencies in the planning and 

conduct of fieldwork are essential to ensure that long-term raptor-research projects 

remain viable. 

 

There is a variety of CMR techniques available for collecting LRS data (Silvy et al., 

2012). For the purpose of the present paper, CMR is defined as follows: animals are 

marked as nestlings (i.e. still in the nest) and re-identified later in life without physically 

re-trapping. Animals re-encountered are therefore of known age and origin. In CMR 

studies where molecular techniques are not being employed, and individuals are difficult 

to distinguish, it is vital that the study animals and their offspring are marked for future 

identification. When animals are marked, it is critical that the markers remain attached 

and readable for the lifespan of the animal, and have no impact on their behaviour 

(Newton, 2001). Selecting the most appropriate method for a large-scale and long-term 

CMR study involves balancing competing financial, technical (Thomas et al., 2011), 

operational (Silvy et al., 2012) and ethical and or legal (Boal et al., 2010) constraints. In 

addition, consideration must also be given to public concerns that can lead to political 

pressure influencing whether government agencies will allow the use of certain marking 

techniques (Varland et al., 2007; Boal et al., 2010). 

 

Taking into account these requirements, there is a diverse array of marking techniques 

available (Silvy et al., 2012), ranging from passive integrated transponder (PIT) tags 
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(Smith & McGrady, 2009), and non-invasive DNA sampling (Waits & Paetkau, 2005; 

Hogan et al., 2008), to the more traditional methods such as leg bands (Varland et al., 

2007). Given the range of markers available, careful planning is essential to ensure that 

the CMR protocol selected is the most appropriate and efficient for the species and 

questions being investigated (Garton et al., 2012; Lindenmayer et al., 2012). 

 

After selecting a CMR protocol, the next challenge is obtaining sufficient sample sizes to 

ensure that they are representative of the study population (Bednarz, 2007). In LRS 

studies, it is vital to collect full sets of LRS data (i.e. marking all young produced from 

marked individuals) without any gaps in the data (Newton, 1989). When investigating 

birds, this is most efficiently undertaken on nestlings old enough to carry the marker but 

not yet fledged from the nest (Silvy et al., 2005; Garton et al., 2012). This presents a very 

small window of opportunity at each nest (Bednarz, 2007) and, in seasonal breeding 

species, this window will overlap for many pairs. Consequently, the timing of field 

surveys to mark all nestlings at every nest, over several years, can be extremely 

challenging, especially when breeding pairs are spread over large geographic areas. In 

these situations, field methods that require multiple site visits are rarely sustainable and 

ideally a system is required whereby predictions can be made as to the most appropriate 

time to mark nestlings at each site.  

 

Peregrine Falcons (Falco peregrinus) possess life-history traits suitable for longitudinal 

studies, including occupancy of traditional nest sites over many generations (Mooney & 

Brothers, 1993; Ratcliffe, 1993), high levels of mate fidelity (Mooney & Brothers, 1993; 

Olsen, 1995), nest-site fidelity (Mearns & Newton, 1984, 1988; Newton, 1989; Frank, 

1994), vocal territorial defense (which assists in locating an active nest site) and a 
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predictable annual breeding season (Mooney & Brothers, 1993; Ratcliffe, 1993; Olsen, 

1995). They are, however, a relatively long-lived species (15.3 years in Australia; 

(Environment Australia, 2012)), rendering the collection of complete LRS datasets more 

challenging. Also, in Victoria, Peregrine Falcons breed at low densities (mean distance 

between nests 16 km, range 5–36 km; (White et al., 1981)) and the breeding season is 

reasonably short (Pruett-Jones et al., 1981b), with 91% of clutches initiated between 17 

August and 14 September, a span of 29 days (n = 779 breeding events between 1991 and 

2010; V. G. Hurley, unpubl. data). 

 

Few CMR raptor studies have reported on the approaches taken to increase the 

proportion of nestlings banded across large study areas (Mooney & Brothers, 1993; 

Tordoff & Redig, 1997; Restani & Mattox, 2000). This represents a significant 

knowledge gap for researchers establishing new long-term programmes. As part of a 20-

year LRS study on Australian Peregrine Falcons (referred to as the Victorian Peregrine 

Project (VPP) in the present paper), methods to improve the efficiencies of undertaking a 

CMR study on a large number of active eyries were evaluated. Three key areas of the 

VPP planning and operations were examined and improvements implemented. These key 

areas, in the order in which they occur in the development and implementation of any 

CMR study, were as follows: (1) development of selection criteria whereby the most 

appropriate marking technique for large-scale, long-term mark–re-encounter research 

could be determined, (2) development of techniques to increase the number of breeding 

events where all nestlings are marked and (3) measuring the efficiency (time taken) to 

collect re-sight data.  
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The present study was privy to the original field notes of an earlier long-term banding 

study (Emison & Bren, 1981) of Peregrine Falcons in Victoria (W. B. Emison, 

deceased.). From these notes, the overall success rate of banding complete broods of 

nestlings was 67.4% (n = 253 monitored breeding attempts between 1975 and 1985). 

This figure was used as a benchmark for what we termed a ‘traditional’ approach to the 

timing of banding nestlings. Our aim was to determine the best method for improving on 

this benchmark figure for banding complete broods of Peregrine Falcons at a large 

number of eyries across a large geographic area in a long-term study. 

3.3. Methods 

3.3.1.   Study Area 

The present study was undertaken in Victoria, south-eastern Australia, and covered an 

area of ~226, 923 km2. The geographic range of the study area included a latitudinal span 

of four degrees north to south (from 34°30′S to 38°45′S) and seven degrees of longitude 

west to east (from 141°E to 148°E). In total, 188 eyries were monitored across Victoria 

(Figure 3.1) with maximum distances between monitored eyries being 589 km west to 

east and 521 km north to south. 
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Figure 3.1  Map of Victoria showing the locations of Peregrine Falcon nests ( ).  Each 

nest was monitored at least once during this study between 1991 and 2010 (n = 188 

sites).  

3.3.2.   Determining the most appropriate CMR technique 

The six most commonly used marking techniques for raptors (Bednarz, 2007) were 

assessed against each of the 10 selection criteria and scored either one or zero, with one 

being suitable and zero unsuitable (Table 3.1). Marking techniques that failed any of the 

selection criteria were deemed unsuitable, with the exception of ‘mark redundancies’ 

(Criterion 3), which was not possible for all marking techniques. A graded score for each 

selection criterion was not implemented because it added a level of complexity that did 

not improve the robustness of the selection process. No radio-transmitter or satellite 

locator systems were assessed because these techniques were excluded because of the 

cost and the requirement for physical recapture of the animal for removal of the tracking 

device. 
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Half of the six CMR marking techniques failed three or more of the selection criteria. 

Metal VID bands ranked highest, fulfilling all 10 of the selection criteria. The second-

highest ranked technique was coloured plastic bands. The durability and colourfastness 

of plastic bands has, however, been found to be inadequate from reports on other studies 

of this species (Emison & Bren, 1981; Mooney & Brothers, 1993) and many other bird 

species, including bald eagles, Haliaeetus leucocephalus (McCulloch, 1990), fulmars, 

Fulmarus g. glacialis (Anderson, 1980), welcome swallows, Hirundo neoxena (Park, 

1981), and a range of 60 passerine species in Hawaii (Lindsey et al., 1995). 
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Table 3.1 These 10 selection criteria were used to assess six capture–mark–recapture (CMR) techniques listed as follows: VID = visual-identification 

metal band; plastic = coloured plastic band (may include alpha and or numeric characters); metal = national banding-scheme metal band; PIT = passive 

integrated transponder (tag); wing = patagial (wing) tag; and DNA = molecular analysis using DNA from caste feathers from adults to be compared with 

whole blood samples taken from nestlings. Each marking technique was assessed and scored against each selection criterion, with 1 = yes, 0 = no. The total 

selection score was used to rank the CMR protocols 

Selection Criteria Parameters VID Plastic PIT Metal Wing DNA 

1   Longevity Durability of mark and VID features (up to 15 years) 1 0 1 1 0 1 

2   Individual recognition Individual recognition per mark (for 2,000+ individuals) 1 1 1 1 1 1 

3   Mark redundancies Partial colour and or code provides useable data 1 1 1 0 1 1 

4   Remote readability Individual identification in the field without the need for re-trapping 1 1 1 0 1 1 

5   Expense Cost per mark (for 1,000s of marks) 1 1 1 1 1 0 

6   Application Ease of application in the field 1 1 1 1 0 0 

7   Animal welfare No negative impact on the animal 1 1 1 1 0 1 

8   Politics Acceptable to ethics committee 1 1 1 1 0 1 

9   Monitoring - cost Cost per datum 1 1 0 1 1 0 

10 Monitoring - time Collection time per datum 1 1 0 0 1 0 

Selection score:  10 9 8 7 6 6 
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3.3.3.   Preferred marking technique 

Peregrine Falcons were banded as nestlings, using two different types of metal leg bands 

(cohort bands and VID bands) attached to the tarsus, one on each leg (Figure 3.2).  

Cohort bands are conventional open- or split-ring (Bird & Bildstein, 2007) stainless-steel 

bands issued by the Australian Bird and Bat Banding Schemes office (ABBBS) (Lowe, 

1989) (Figure 3.2A).  These bands have a unique, eight-digit identifier code which is 

extremely difficult to read on birds in the field at distances greater than 20 m.  To make 

these bands more effective for use on Peregrine Falcons, we powder-coated each band 

with a single colour to represent the year of banding, which for nestlings equals the year 

of hatching and fledging (or the cohort year).  Eight distinguishable colours were used 

(singularly) on these bands.  In order of preference for readability these colours were 

blue, black, white, red, dark green, light green, pink and orange.  Powder coating of these 

coloured bands to identify cohorts commenced in 1991, and to the best of our knowledge, 

this is the first time powder coating has been used on stainless-steel bands for use on wild 

birds.  This is in essence a modification of the metal-marking technique listed in (Table 

3.1).  The colouring allows these bands to be used for visual identification. 

 

VID bands are open aluminium bands made by Acraft Sign and Nameplates, Edmonton, 

Alberta, Canada (Figure 3.2B).  Up to two colours anodised per band were used and the 

colours were a combination of black, dark blue, dark green, red, orange and mauve 

(purple).  This style of band has been made to order for use on Peregrine Falcons in 

Australia and variations have been used on a wide range of species from the small (45 g) 

orange-bellied parrot, Neophema chrysogaster, in Australia (Holdsworth et al., 2011) to 

the large ( 6.8 kg) harpy eagle, Harpia harpyja, in Panama and Belise (Campbell-
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Thompson et al., 2012). Each VID band had two alpha and or numeric characters routed 

into the metal surface, one above the other three times around the band.  The characters 

appeared silver or white against the darker anodised colours when viewed with a spotting 

scope.  Each VID-band colour combination provided for 2,983 unique dual alpha and or 

numeric codes.  In Sweden, it has been reported that VID-band colours can be 

distinguished on Peregrine Falcons at a distance up to 300 m and the VID characters read 

up to 200 m (Lindberg, 2009). 

 

 

Figure 3.2  Two coloured metal band types used on Peregrine Falcons. A = cohort band 

issued by the national banding authority (ABBBS) and is made from stainless steel and 

was commercially powder-coated red. B = the VID band purchased from Acraft©, 

Canada. 

 

Placing a metal band on each leg ensured that only one leg had to be seen to determine 

whether the adult was banded (Howitz, 1981). VID bands were placed on the left leg of 

females and the right leg of males, allowing sex and age to be determined even if the 

A B 
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individual could not be identified via the VID-readable characters.  The trouser feathers 

of Peregrine Falcons hang down and can obscure the top portion of the VID bands. This 

makes the lower character more likely to be read first.  By keeping the top character 

constant as the lower characters changed between bands in alpha and or numeric 

sequence reduced the range of characters to identify for each cohort of banded Peregrine 

Falcons.  These are the redundancies referred to in Criterion 3 (table 3.1). 

3.3.4.   Efficient broad scale marking 

Having selected the CMR technique, the next step was to determine how to mark the 

maximum number of nestlings at as many sites per year as possible.  This became critical 

as banded birds entered the breeding population over time, as it was imperative to the 

success of the LRS study that all nestlings produced throughout each individual 

breeding-adult’s lifetime were banded (Newton, 1989; Clutton-Brock & Sheldon, 2010). 

 

Banding was targeted at nestlings of ~25 days post-hatching because the reversed sexual 

dimorphism is well developed in this species by this age and allows accurate 

determination of sex (Hurley et al., 2007).  Morphometric measurements of nestlings 

were 98.6% accurate in sex determination of nestlings from as young as 15 days post-

hatching (Hurley et al., 2007).  Additionally, wing chord length (measured to ±1 mm 

with a flat rule) allows age estimation as it is directly proportional to the age of the 

nestling (Olsen & Olsen, 1987b).  

3.3.5.   Predicting banding dates within the safe banding period 

When attempting to band nestlings, they must be large enough to retain a leg band but 

not so large that they are already flying or at risk of prematurely fledging (Bednarz, 

2007).  Timing banding trips to coincide with the window of opportunity between these 
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situations is critical to the success of large-scale banding for CMR studies.  The first task 

was determining how many days this window of opportunity was for Peregrine Falcons.  

As mentioned above, nestlings could be sexed and banded from as young as 15 days 

post-hatching and are known to fledge at ~35 days (for males) and 42 days (for females) 

(Olsen & Olsen, 1987b).  Although it is technically possible to band nestlings just before 

fledging, because of the risk of premature fledging causing death or injury to the 

nestlings, we recommend not banding males older than 30 days or females older than 37 

days.  By subtracting the minimum banding age (15 days) from each of these maxima 

ages provided a banding window of 15 days for males and 22 days for females.  Because 

Peregrine Falcon clutches have asynchronous hatching, which leads to differences in the 

age of the nestlings in each brood (Olsen, 1982), some caution must be used when 

scheduling banding so that all nestlings can be banded.  We investigated the age 

difference of 39 broods containing four nestlings (maximum clutch size) by using wing 

length as per Olsen and Olsen (1987b) and found that the modal age difference between 

the first and last hatched nestlings was 4 days (28% of n = 39 clutches, range 2–12 days, 

mean = 5.2, median = 5, s.d. ±2.19).  Taking the median of a 5 day age difference within 

broods of four nestlings, the banding window of opportunity is only 10 days in an all-

male brood and 17 days in an all-female brood.  The operational focus of the field work 

was to band complete broods of nestlings at as many eyries as possible.  To maximise 

these banding outputs, within the above constraints, we allowed no more than a 10 day 

window of opportunity for banding at each eyrie. 

3.3.5.1. Method A – traditional 

A traditional approach to banding (Emison & Bren, 1981) involved multiple ad hoc visits 

to active eyries to observe the size and feather development of nestlings and band at or 

post-asymptotic development ( 30 days (Boulet et al., 2001)) to aid in gender 



Ch. 3  CMR – efficient techniques 

Victor G. Hurley  55 

determination. Another study of this species (Restani & Mattox, 2000) used a 

photographic guide for ageing nestling prairie falcons, Falco mexicanus (Moritsch, 

1983), to assist in scheduling banding of nestling Peregrine Falcons at 15–20 days post-

hatching in Greenland. Neither study reported using a priori knowledge to predict the 

date of the first monitoring visit to each site.  In contrast to the traditional approach to 

banding, accurately predicting the phenology (e.g. timing; Moussus et al. (2009) of egg 

laying or hatching dates provides the opportunity to select the optimal date for banding 

nestlings.  The following two methods provided such opportunities. 

3.3.5.2. Method B – a priori aging eggs  

An a priori approach to predicting banding dates was developed by ageing eggs to 

calculate hatch dates and, from these, preferred banding dates later in the same season.  

This is possible because bird eggs lose weight at a constant rate throughout the 

incubation period (Hoyt, 1976, 1979).  This weight loss is primarily via water 

evaporation through the egg shell.  The rate of weight loss and the total percentage 

weight loss varies among species, but is constant within a species (Saunders & Smith, 

1981; Burnham, 1983; Olsen, 1997).  For Peregrine Falcons the net egg-weight loss from 

laying to hatching has been calculated as 18% (Burnham et al., 1988) for the incubation 

period of 33 days (Saunders et al., 1984; Burnham et al., 1988).  Because the 

recommended age for banding nestling Peregrine Falcons is 25 days after hatching 

(Olsen & Olsen, 1987b).  It was possible to measure eggs to calculate hatch dates and 

add 25 days to predict preferred banding dates for that site later in the same breeding 

season (Figure 3.3). 

 

There were three key formulae to age eggs (Formulae 1–3, Figure 3.3), derived from 

other studies,  and two additional formulae developed in the present study to calculate 
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preferred banding dates (Formulae 4, 5, Figure 3.3).  Results from these formulae also 

provide clutch-initiation dates, the spread of egg laying dates and hatch order across the 

clutch.  The process of predicting banding dates through egg measurements required a 

minimum of two site visits for the banding at each site, including one visit to weigh and 

measure the eggs and a second, some weeks later, to band the nestlings.  During the first 

visit, we recorded the site name and date, and measured egg length and maximum width 

to the nearest 0.01 mm with digital Vernier callipers (Model CD-6’, Mitutoyo Digimatic, 

Kawasaki, Kanagawa, Japan) and weighed eggs with a small battery-powered digital 

scales (accuracy 0.1 g).  

 

Figure 3.3 Formulae for calculating the age of Peregrine Falcon eggs and then the 

preferred banding date when the nestling is 25 days post-hatching. Wlay = egg weight at 

laying, L = egg length, B = maximum egg width, Kw = 0.0005474, WMeasure = egg weight 

on date of measurements, WHatch = egg hatch weight, AgeMeasure = egg age on date of 

measurements, DateHatch = egg hatch date, DateMeasure = date of egg measurements, 

DateBand = preferred banding date. 

1.   WLay = (LxB2) x KW      (Hoyt, 1979) 

2.   WHatch = WLay x 0.82      (Burnham, 1983) 

3.   33
(

Age x
WW

WW

HatchLay

MeasureLay
Measure

   (Saunders et al., 1984) 

4.   DateHatch = (DateMeasure – AgeMeasure) + 33 

5.   DateBand = DateHatch + 25 
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3.3.5.3. Method C – a posteriori breeding Phenology 

Although Australian Peregrine Falcons have a restricted breeding season (Pruett-Jones et 

al., 1981b), clutch-initiation dates are known to vary by latitude and mean September 

temperatures (Olsen, 1982).  These variances may lead to local patterns in clutch-

initiation dates that could assist in predicting site-based banding dates using a posteriori 

knowledge gained from the age of nestlings at banding in previous years.  If successful, 

this process could remove the need for two site visits as required by the egg-

measurement method (Method B), further optimising fieldwork effort. 

Three years of nestling wing-chord measurements with banding dates were collated for 

several sites (Figure 3.4).  These were converted to give an age for each nestling at 

banding, using the formula: 

69.0
84.0)(Age WLdaysin ,  

where WL = wing-chord length (Olsen & Olsen, 1987b).  Nestling age was subtracted 

from the date at banding, to give the date of hatching and, to this, 25 was added to give 

the preferred date of banding for each nestling.  For each breeding event, the median 

preferred banding date was calculated for the brood and assigned to the eyrie for that 

breeding event (year).  Preferred banding dates from the previous 3 years were collated 

and a single preferred banding date was assigned to the eyrie for the next season.  

Banding sites were then grouped by dates and geographic area to aid in field efficiency.  

If nestlings were successfully banded (and wing chord measured), these data were 

incorporated into the assessment process of the following year and the data from the 

oldest year were removed, to give a rolling 3 year sample for each future year (Figure 

3.4). 
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Figure 3.4  Schematic of predicting preferred banding dates at Peregrine Falcon nests. 

WL = wing-chord length of the nestling.  *Preferred band date for the nestling, at 25 days 

post-hatching. 
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3.3.6.   ‘Re-sight’ data collection efficiency 

Published quantitative data on the efficiency of collecting re-sighting data (i.e. time per 

successful re-trap or re-sight) are very limited, with some notable exceptions (Wiersma et 

al., 2001; Bierregaard Jr. & Harrold, 2008).  Therefore, the third aim of the present study 

was to quantify the time required to collect re-sighting data from VID bands as a 

benchmark for comparison with other CMR techniques. The total time taken to survey 

both adults at an active eyrie was recorded.  The start time for each site survey was taken 

as the time the observer was in position and immediately before setting up the spotting 

scope.  The completion of the survey was the time at which the observer had identified 

and recorded the details of both adults. 

 

All re-sightings of breeding adult Peregrine Falcons at active eyries were made using a 

tripod mounted Leica Televid 77 spotting scope Vertrieb, Solms, Germany with a 1000-

mm apochromatic lens and fitted with a ×20–60 zoom eye piece.  Telescopes used had 

the eyepiece factory set at 45° to the plain of the objective lens.  The adult birds were 

first viewed with a telescope or binoculars for the presence of bands.  When bands were 

detected on either adult, the observations continued until all band colours on both legs 

and VID characters were identified. 

3.3.7.   Statistical analyses 

All data were log (natural base) transformed to satisfy assumptions of normality and 

homogeneity of variances before analyses. Analyses were carried out using IBM SPSS 

Statistics 21 (IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 

21.0. Armonk, NY: IBM Corp).  All data presented are untransformed for ease of 

interpretation. 
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3.4. Results 

3.4.1.   CMR – selection criteria 

Assessing the six CMR techniques against the 10 selection criteria provided a robust and 

transparent method for selecting the most appropriate marking technique, which, in this 

case, was VID metal bands (Table 3.1). When assessing how the two different bands 

(VID and cohort) performed in terms of longevity, they ranked extremely well, with no 

band loss over the 20 year study period (n = 570 re-encounters of 277 individuals, ♂ 140, 

♀ 137). More importantly, the bands appeared to cause no discernible injuries to any 

bird. The oldest bird re-encountered was 13 years and 9 months post-banding. This bird 

was recovered alive with a mild concussion and released the following day at the same 

coastal site at which it was encountered. The powder-coated dark green (mistletoe by 

Dulux© (www.Dulux.com.au)) on the cohort band was clearly identifiable. However, the 

VID-band colours (green over purple) had faded to such an extent that there was no 

evidence of either colour when inspecting the bands in the hand. The saline moist coastal 

air is very corrosive to aluminium and the thin anodised colour dye also breaks down 

under UV light. In contrast to this, four individuals (2 ♂, 2 ♀) were re-sighted at 11 years 

old (at non-coastal sites) as breeding adults and the colour on their VID bands, although 

faded, was still identifiable via telescope from a distance of ~100 m. Two adult females 

(8 years old and 12 years old) re-encountered had VID bands showing considerable 

fading, although still discernible. The most faded colours appeared to be purple, orange 

and green, whereas red, dark blue and black appeared to retain colour for longer. In 

summary, powder coating appeared to be more durable 14 years, whereas the durability 

of the anodising appeared to be less reliable, approaching 10 years in the field in 

Australian conditions. 
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The use of metal VID bands for a long-term CMR study was highly appropriate for 

Peregrine Falcons because of the relative ease of re-sighting and reading bands on their 

unfeathered tarsi. However, an alternative CMR technique may be required for other 

species where tarsus bands are not so visible, such as for eagles (i.e. Aquila spp., many 

owl species (i.e. Bubo spp. and Ninox spp.) and vultures (i.e. who defecate over their legs 

for thermo-regulation and so readily obscure bands). The accumulation of faeces between 

the band and tarsus has been shown to interfere with the health of the bird, making any 

tarsus bands an unacceptable marking method (Varland et al., 2007). Species that 

periodically move to a new nest site will require additional early season survey time to be 

factored into each field season just to confirm the nest location each year. 

3.4.2.   Broad-scale marking 

At 188 Peregrine Falcon eyries, a total of 1,444 potential breeding events was monitored 

during the 20-year study period (Table 3.2), which equated to an average of 72 eyries 

monitored per year.  In total, 2,325 nestlings were banded from 1991 to 2010, averaging 

116.5 nestlings per year.  Banding of nestlings was successfully completed at an average 

of 48 breeding events per year.  The targeted nestling age for banding was 25 days post-

hatching and the median age of nestlings banded was 26.0 days (s.d. ± 6.6 days).  Also of 

2,325 nestlings banded over 968 breeding events, a total of 44 (1.9%) nestlings were 

found dead in the nest after banding and before fledging in 32 (3.3%) of breeding events.  

Although not critical to the present study, the causes of death before fledging were 

known in 63.4% of cases. In descending order they were infection from Trichamoniasis 

(38.5%), being illegally shot (26.9%), predation (predator unknown; 7.7%) and 

unintentional poisoning (3.8%).  With such a low mortality rate between banding and 

fledging, the number banded was generally taken as the number fledged for the LRS 

study, except in cases where nestling mortality was detected in subsequent visits. 
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3.4.3.   Predicting banding dates 

Using the traditional method (Method A), 67.4% of complete broods were successfully 

banded during previous Victorian studies (Emison & Bren, 1981).  Of the two methods 

developed in the present study to predict preferred banding dates, Method B, using a 

priori knowledge, resulted in 97.4% (75 of 77) complete broods being banded (Table 

3.2).  However, this method had a built-in disadvantage in that it required two eyrie visits 

for each breeding season (one to measure eggs and one to band nestlings).  The second 

method (Method C), based on a posteriori knowledge, required only one site visit (to 

band) after collecting 3 years of breeding data and proved to be very successful, with 

complete broods being banded in 94.3% (893 of 947) of breeding events (Table 3.2).  

The combined result using both Methods B and C was a 94.5% success rate in banding 

complete broods.  The application of these methods became critical to the successful 

broad-scale banding of an average of 116 Peregrine Falcon nestlings per year at an 

average of 51 eyries per year over 20 years by a single banding team. 

 

3.4.4.   Cost-benefit comparison 

An average cost for a single nest site visit (AU$130) was determined by taking the 

annual project budget for a single year (2009) and subtracting one-off costs such as 

spotting scopes, long-lasting climbing equipment and bands. Retained in the budget 

figure were vehicle costs, annual replacement of essential climbing gear, field 

accommodation and meals. Because volunteers conducted all field work there were no 

salary components to the project. On average, banding was completed at 2.43 sites per 

day (median 2.0, s.e. ± 0.23, range 1–6,). The multiplier effect of extra site visits over a 

field season is easily determined (Table 3.2). 
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Table 3.2 Summary of the outcomes of monitoring potential breeding events at 

Peregrine Falcon eyries in Victoria.  These events are sub-grouped by the method 

employed to determine the date of banding for each breeding event.  Method A = 

traditional ad hoc visitation, Method B = same season eggs aged to predict the preferred 

banding date, and Method C = breeding history based on preferred banding dates in 

previous years.  Method A was used between 1975 and 1984, Method B from 1991 to 

2010 and Method C from 1995 to 2010.  The numbers are counts and the numbers in 

parentheses are percentages of complete broods banded from successful breeding events 

where banding was attempted. 

Monitoring outcome Method A Method B Method C Sub-totals 
(method B + C) 

Potential breeding events monitored 253 112 1332 1444 

Site not occupied 32 0 96 96 

Eggs only 5 0 0 0 

Breeding not successful 53 30 202 232 

Breeding successful 163 82 1034 1116 

Banding not attempted 28 5 87 92 

Breeding successful & banding attempted 135 77 947 1024 

Percentage of successful breeding 
events where banding was attempted (82.8%) (93.9%) (91.6%) (91.8%) 

Banding mis-timedA 44 2 54 56 

Complete brood banded 91 75 893 968 

Percentage of complete broods banded (67.4%) (97.4%) (94.3%) (94.5%) 

Monitoring visits required 2.47 2 1.05 n.a. 

Range of monitoring visits 1 - 7 2 1 - 2 n.a. 

Cost benefit comparison 

Cost per field visitB $130 $130 $130 n.a. 

Average cost per site to complete 
banding $321.10 $260.00 $136.50 n.a. 

Range of costs per site per season $130 - $910 $260 $130 - $260 n.a. 
A One or more nestlings already flying or too young to band    BNote: these figures do not include salaries. 
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3.4.5.   Re-encounter rates 

In total, 277 individual Peregrine Falcons (140♂, 137♀) wearing bands were re-

encountered, totalling 570 re-encounters comprising the following re-encounter 

categories: breeding 335, dead 156, sick or injured 66, and alive not breeding 13. In all 

cases, no loss of bands was detected and no injuries as a result of the bands could be 

detected (Table 3.3). 

 

Table 3.3 The number of Peregrine Falcon nestlings banded between 1991 and 2010 is 

presented by sex, re-encounter status and totals.  Listed is the number banded, status (or 

type) of re-encounter, the number of individuals identified of each sex and status, the 

percentage of these and the number of re-encounters. 

Sex Number 
banded 

Re-encounter 
Status 

Individuals - 
identified Percent  Number of re-

encounters 

Male   1,049A Breeding   59   5.6% 191 

Female      990 A Breeding   47   4.8% 144 

Totals   2,039 A  106   5.2% 335 

Male 1,186 Other   81   6.8% 109 

Female 1,139 Other   90   7.9% 126 

Totals 2,325  171   7.4% 235 
A = number of nestlings banded minus those banded up to and including 2008.  Young 

banded after 2008 were not sexually mature by the end of this study in 2010.   

3.4.6.   Re-sight data collection 

Early in the CMR study, the maximum distance published for reading VID bands by 

using the same telescope make and model was 245 m in ideal conditions in the United 

States (Tordoff & Redig, 1997).  More recently in Sweden, VID bands have been 

reported to be read at distances of ~200 m with the same equipment as used in the present 

study, and at greater distances if a digi-scope video recorder was attached (Lindberg, 



Ch. 3  CMR – efficient techniques 

Victor G. Hurley  65 

2009).  During the present study, in ideal weather conditions (i.e. cloudy day with little or 

no wind), the maximum effective range for reading VID bands was 280 m. 

 

The time to observe and identify both adult Peregrine Falcons at an active eyrie was 

recorded for 240 breeding events at 107 active eyries.  These surveys were timed at 

active eyries on cliffs, buildings and in tree nests (both stick nests and tree hollows) and 

during the site visit to band nestlings (before banding was attempted) (Table 3.4).  The 

average time to complete these surveys was 30.3 min (±1.69 s.e., range 2–120), 

regardless of whether either adult was wearing bands or not (Table 3.4). In the majority 

(72.4%) of surveys, the female was identified before the male of a breeding pair.  

Variation in diurnal activity of some species during breeding has been found to influence 

survey results (Bibby et al., 2000; Hoodless et al., 2006; Calladine et al., 2010).  To test 

for this, an independent-samples t-test was conducted after grouping times into morning 

and afternoon samples and natural log-transforming the time to survey, to satisfy 

assumptions of normality and homogeneity of variances.  Adult band survey times did 

not differ between morning and afternoon site visits (t = –0.863, d.f. = 238, P = 0.389). 

 

Further to this, we assessed whether eyrie type (i.e. building, cliff, tree hollow or stick 

nest) had an influence on the time required to survey both adults. Survey time did not 

differ on the basis of eyrie type (F = 1.649, d.f. = 3, 236, P = 0.179), ultimately 

suggesting that time of visit and eyrie type do not influence the efficiency of site visits. 
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Table 3.4 Descriptive statistics of the total time (decimal minutes) to survey both adults 

of a breeding pair at an active Peregrine Falcon eyrie under different scenarios of band 

status referred to as survey results.  Listed are the following statistics: n = number of 

timed surveys, mean, standard error of the mean, standard deviations, Min. = minimum, 

Max. = maximum. 

Survey results n Mean Std. 
error Min. Max. Median Std. 

deviation Variance 

Both adults 
banded 22 29.55 6.19 4 100 21.0 28.93 836.93 

Neither adult 
banded 122 30.61 2.43 2 120 20.0 26.89 722.88 

Male only banded 50 29.82 3.82 4 111 21.0 27.01 729.50 

Female only 
banded 46 30.15 3.37 2 93 30.0 22.84 521.69 

All surveys 
combined 240 30.26 1.69 2 120 21.5 26.22 687.46 

 

3.5. Discussion 

The present study is in support of longitudinal CMR studies by addressing the increasing 

demand for better-designed monitoring studies (Nichols & Williams, 2006; Lindenmayer 

et al., 2012).  This was achieved by investigating and testing improvements in three key 

aspects of the planning and conduct of a longitudinal study of a raptor by using CMR 

techniques.  These were (1) development of robust selection criteria with project-specific 

parameters and an assessment of the efficacy of the CMR technique selected, (2) testing 

of two methods for increasing the number of whole broods banded and (3) quantifying 

the cost (in time) per re-sight datum collected.  The efficiencies gained and quantified 

here with suitable species-specific modifications have application to any long-term, 

large-scale CMR bird study collecting LRS data. 
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Some of the CMR selection criteria presented have been listed in other studies (Newton, 

2001; Thomas et al., 2011) and wildlife manuals (Varland et al., 2007; Silvy et al., 

2012).  However, the present study is the first to present a comprehensive list explicitly 

applied to a range of commonly used CMR techniques. For the successful application of 

these criteria when designing a CMR study, it is critical to prepare project-specific 

parameters for each selection criterion.  These parameters inform the whole selection 

process so that it addresses the requirements of the study and the species under 

investigation in an unambiguous and transparent manner.  The CMR technique selected 

(metal VID bands) fulfilled all of the selection criteria during the 20 years of the present 

study.  The use of metal VID bands for a long-term CMR study was highly appropriate 

for Peregrine Falcons because of the relative ease of re-sighting and reading bands on 

their unfeathered tarsi.  However, an alternative CMR technique is required for species 

with fully feathered tarsi (i.e. members of the eight genera of ‘booted’ eagles, notably the 

Aquila spp. and Hieraaetus spp. in Australia and many owl species globally (i.e. Bubo 

spp. and Ninox spp.).  Also, individuals of the cathartid (New World) vultures must not 

be banded because they excrete faeces on their legs, which can become affected between 

band and tarsus, potentially leading blocked circulation to the feet and necrosis (del 

Hoyo, Elliot et al. 1994; Varland, Smallwood et al. 2007).  These few examples illustrate 

how vital it is that the anatomy and biology of each species is taken into account when 

writing the parameters for each selection criterion.  The selection criteria (with well 

written parameters) tested in the present study have application for the planning phase of 

any avian study using CMR techniques. 

 

Overcoming annual and regional variances in the phenology (Moussus et al., 2009) of 

clutch-initiation dates (by accurately predicting banding dates) was one of the significant 



Ch. 3  CMR – efficient techniques 

68  Victor G. Hurley 

outcomes of the present study.  The Peregrine Falcon was an ideal model species because 

of its long-term nest-site fidelity, reliable seasonal breeding patterns and relatively stable 

breeding phenology.  It is important to note that not all species will be as consistent in 

these attributes. Species that breed in less predictable environments or relocate nests 

more regularly will require greater pre- or early season survey effort to predict breeding 

phenology.  It is expected that long-term phenology data will not necessarily be able to 

account for the effects of significant weather events (i.e. severe storms, floods or 

wildfires) or recent turn-over of adults will tend to delay or prevent egg laying or the loss 

of a first clutch because of predation or egg collecting.  The replacement of adults and 

significant weather events such as the drought of 2000–2009, the Black Saturday 

bushfires (February 2009) and the 2010 La Niña rainfall event certainly did occur in 

Victoria during the present study (1991–2010) and may have affected the phenology of 

nearly all sites.  However, the overall 20-year average of complete brood-banding rate of 

94.5% in the present study suggests that the quantitative approach to predicting 

phenology is quite robust, despite fluctuations in phenology at least for this species.  In 

those regions and years where extreme weather events occur, there is merit in 

undertaking some early season sampling (Method B) at a subset of sites to calibrate the 

timing of seasons against recent phenological trends.  One of the strengths of using a 

quantitative approach (Methods B or C) to track phenology is that it is sensitive to 

gradual temporal changes (such as shifts as a result of climate change) and so can inform 

the scheduling of field work over time, without multiple site visits per year just for the 

banding component of the study. 

 

Breeding phenology can also be affected by the loss and replacement (turn-over) of 

adults; however, again, this would tend to have a delaying effect, so that, generally, 
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nestlings would be too young for banding on the basis of previous-season phenologies, 

requiring a second site visit to band.  This has, in part, been overcome by the accuracy of 

sex determination for banding of nestlings as young as 15 days post-hatching, developed 

earlier in the broader study (Hurley et al., 2007).  In cases in which a new adult (or pair) 

is breeding, the delayed breeding phenology of their first year together may be reversed 

so that breeding will be significantly earlier in their second breeding season.  Where turn-

over rates of adults is high at a nest, we recommend early season surveys and adopting 

Method B, to determine the most appropriate banding date each year. 

 

Considerable time and effort can be expended if sites need to be visited multiple times to 

successfully band animals.  Methods that optimise the number of visits have the potential 

to significantly reduce cost and fatigue.  The a priori approach (i.e. ageing eggs) to 

predict the optimal date for banding the nestling proved to be highly accurate.  However, 

we caution that the method of egg measurements should be used sparingly because it can 

involve significant disturbance (Fyfe & Olendorff, 1976; Rosenfield et al., 2007) at the 

nest during a delicate stage of the breeding cycle (Steenhof & Kochert, 1982; Buehler, 

2000) and increases the risk of predation on eggs (Emison & Bren, 1981).  Care should 

always be taken to reduce the impacts of researcher disturbance wherever possible (Olsen 

& Olsen, 1978; Götmark, 1992).  Peregrine Falcons are, however, considered more 

robust to nest-site disturbances than are other raptor species, most notably white-bellied 

sea-eagles, Haliaeetus leucogaster (Wiersma et al., 2001), Swainson’s hawk, Buteo 

swainsoni (England et al., 1997), and ferruginous hawks, Buteo regalis (White & 

Thurow, 1985).  The egg-measurement method is particularly useful when new sites are 

found during the incubation period and breeding phenology is unknown. Phenological 

data can also be accumulated using the a priori approach (Method B).  Despite the 
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compulsory two visits of this method, one clear advantage lies in this method providing 

clutch size, and so giving hatch rates as a natural consequence from the two site visits.  

 

The a posteriori approach based on creating a history of breeding phenology from ageing 

nestlings (in previous years) also requires detailed growth curves of the study species 

(Bortolotti, 1984b; Olsen & Olsen, 1987b; Arroyo et al., 2000; McDonald, 2003; 

Penteriani et al., 2005).  Once nestlings can be accurately aged, 2–3 years of breeding 

data can be used to accurately predict the next year’s preferred banding date for the site.  

Limitations of this method are that it does not automatically provide clutch size, it will 

not necessarily give fledging rates and it is not sensitive to large, rapid changes in 

phenology.  Although backing this method up with Method B at a representative sample 

of sites in years of extreme weather events will maintain banding rates.  To collect a full 

set of reproduction data, additional site visits are required to determine clutch size (via 

egg counts) and a later visit to determine fledging rates.  A history of breeding phenology 

will also assist in the timing of these site visits each year.  

 

The present study has represented a novel and practical application of a range of 

techniques to greatly improve the efficiency of planning and conducting a long-term 

CMR study at a large spatial scale.  We demonstrated how significant efficiencies can be 

gained by using quantitative methods for predictions of breeding phenology, to band 

large numbers of nestlings across widely dispersed nest sites.  The time it takes to collect 

re-sighting data was measured as a benchmark that demonstrated the efficiency of using 

VID bands as a CMR technique for this species.  It is hoped that other researchers will 

publish the efficiencies and costs involved in other projects, so that future researchers can 
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make evidence-based comparisons of the various CMR techniques available.  Having 

techniques for accurate age and sex determination of nestlings in the field provided a 

larger window of opportunity for banding at each eyrie.  Any long-term CMR study will 

benefit from the publication of such species-specific methods. 

 

 



 

72  Victor G. Hurley 

 

 



 

Victor G. Hurley   73 

4.  
Peregrinations: Less dispersive Peregrine Falcons (Falco 
peregrinus macropus) are more likely to adopt atypical 
nests. 
 

 
Stick nesting ♀ Peregrine Falcon fledged from a cliff, west of Geelong, 2004. 

 

 

Revered by falconers, detested by pigeon fanciers, and an icon to conservation biologists. 

Few species evoke such curiously strong responses to something, 

that after all, is just a bird. 

 

Helen MacDonald 
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4.1. Abstract 

Nest site selection is a critical decision for birds, especially those with strong fidelity to a 

single nest territory for life.  Overcoming nest type imprinting allows more adaptive 

behaviours in nest site selection, leading to potentially improved breeding performance 

through higher quality nest selection.  Peregrine Falcons are considered to be cliff nesting 

specialists, however, in Victoria, Australia they also use stick nests of other birds 

(13.9%), tree cavities (15.2%) and buildings (10.5%).  This study used capture-mark-re-

sight techniques to determine both nest site origin and eventual nest site adoption.  In 

addition to nest selection choices, the effect of search effort (dispersal distance) and 

search time (age at first breeding) on lifespan and lifetime reproductive output were 

examined.  Females dispersed further than males (t = -4.983, df = 100, P <0.001; ♀ 61.2 

km ± 6.4 km; ♂ 24.4 km ± 5.8 km; mean ± s.e.).  No bias in dispersal direction was 

recorded.  Novel dispersals (i.e. natal dispersals from one nest type to another) accounted 

for 30.4% of dispersals with no sex bias.  Novel dispersers were less dispersive with no 

sex bias (F(1,98) = 26.0, P<0.001).  Breeding success measured through clutch success 

rates was lowest on building ledges and greatest in tree stick nests or cavities.   

 

The level of novel dispersals recorded strongly suggests that once traditional nest sites 

(i.e. cliffs) are saturated, Peregrine Falcons will spontaneously adopt atypical (non-cliff) 

nest sites.  This is occurs among individuals that disperse significantly shorter distances. 
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4.2. Introduction 

Natal dispersal and nest site selection strategies bring differing costs and benefits (Bonte 

et al., 2012) to both the philopatric and the dispersive individuals of a species (Baker & 

Rao, 2004; Serrano & Tella, 2012).  Sex biased natal dispersal has been well described 

amongst vertebrate species (Greenwood, 1980; Pusey, 1987) and is generally explained 

by either the resource defense or mate defense patterns of dispersal across taxa 

(Sutherland et al., 2000) with few variations on these themes (Clarke et al., 1997; Perrin 

& Mazalov, 2000).  Natal dispersal, in part, serves to reduce incidents of inbreeding 

(Hardouin et al., 2012) and contributes to a specie’s ability to maintain and expand their 

range (Lowe, 2010; Serrano & Tella, 2012).   

 

Natal dispersal involves leaving the territory within which they were raised and moving 

into a new area, searching for and selecting nests from available sites (Martin et al., 

2004).  Nest site choice is a critical decision for an individual, particularly in species 

where they maintain long-term nest site fidelity (Mooney & Brothers, 1993). Choice of a 

poor quality nest can impact significantly on breeding success (Olsen & Olsen, 1989b; 

Quader, 2006) and survival of young (Kolbe & Janzen, 2002).  Nest predation is 

considered the major cause of nest failure (up to 80%) in most bird species (both 

passerine and non-passerine; Martin et al. (2004); Remeš et al. (2012)).  As such, nest 

quality tends to be assessed in the context of, and is considered inversely proportional to, 

the risk of predation (Martin, 1993; Badyaev, 1995).  To avoid predation, nest selection 

has led to cases of trade-offs in the thermal quality of nests (Amat & Masero, 2004) or 

increased risks of flooding to nest sites (Espie et al., 1996).   
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It is worth noting here that even raptors are susceptible to predation in the nest.  Various 

predators in different ecosystems have been recorded to take eggs, young and adults.  

Breeding adults and young have been recorded killed by Eurasian Eagle Owls (Bubo 

bubo) in France (Juillard & Rebetez, 1991), the Alps in Switzerland and Italy (Brambilla 

et al., 2006), Pieniny Mountains, Poland (Bonczar & Kozik, 2009) and or Northern 

Goshawks (Accipiter gentilis) in Sweden (Lindberg, 2009).  The Golden Eagle (Aquila 

chrysaetos) can act as a nestling and adult predator of Peregrine Falcons in Europe 

(Sergio et al., 2004).  Great Horned Owls (Bubo virginianus) have similarly been 

recorded predating upon adult Peregrine Falcons and nestlings for several locations in 

North America (Redig & Tordoff, 1988; Cade et al., 1989).  A Gyrfalcon (Falco 

rusticolus) has been recorded killing a Peregrine Falcon nestling in Yamal Peninsula, 

Russia (Pokrovsky et al., 2010).  Eggs of Peregrine Falcons have been recorded being 

taken by Pine Martens (Martes martes) in France (Monneret, 1983) and Poland (Bonczar 

& Kozik, 2009).  Young have been killed in the nest by a Black Mamba snake 

(Dendroaspis polylepis) in South Africa (Jenkins, 1994).  Peregrine Falcon remains have 

been found in regurgitated pellets from Wedge-tailed Eagles (Aquila audax) Canberra, 

Australia (Olsen et al., 2010).  Peregrine Falcon eggs have been recorded taken by the 

Tasmanian Devil (Sarcophilus harrisii) and Spot-tailed Quoll (Dasyurus maculatus 

maculatus) and young from cliff nests taken by the Forest Raven (Corvus tasmanicus) 

and the Tasmanian Devil and free flying young taken by White-bellied Sea Eagle 

(Haliaeetus leucogaster) in Tasmania, Australia (Olsen & Olsen, 1988b; Mooney, 2013).  

Eggs and young have been recorded in four separate breeding attempts taken by rodents 

(Rattus sp.) at a cliff nest in north east Victoria, Australia (unpublished data from this 

study).  Although it is unclear if the maggots or the rodents would be the ultimate cause 

of death amongst the nestlings.  At the time the nestlings were discovered they had been 
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partially eaten by both and were still alive (Figure 4.1).  The Red Fox (Vulpes vulpes) 

and the feral Domestic Cat (Felis catus) have also been recorded taking young 

(unpublished data from this study).  The introduced Hedgehog (Erinaceus europaceus) 

have been recorded taking eggs of the ground nesting New Zealand Falcon (Falco 

novaeseelandiae) (Kross et al., 2013).  The introduced Stoat (Mustela erminea) has been 

recorded taking eggs and young of the New Zealand Falcon and a feral Domestic Cat has 

also been video recorded taking well developed nestlings (Kross et al., 2013). 

 

 

Figure 4.1 Nestling Peregrine Falcon dying with flow blown open chest cavity wound 

and partially eaten right wing.  Primary injuries caused by rodents (Rattus sp.), 2008. 

 

However, among species more capable of defending their nest, nest site selection is still 

considered a trade-off between nest defense and foraging commitments (Martindale, 
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1982).  Sexual dimorphism among monogamous species may in part be due to 

specialisation for these two roles (Martindale, 1982).  Among raptor species, where 

reversed sexual dimorphism is highly developed and these roles are well defined (i.e. 

Accipiter and Falco species), nest quality may be assessed by predation risk (Warkentin 

& James, 1988), levels of human disturbance (Strasser & Heath, 2013 in press) and by 

other criteria such as susceptibility to inundation from rainfall in nests on cliff ledges 

(Olsen & Olsen, 1989b; Emison et al., 1993).  For cliff nesting or secondary nest 

occupier raptor species, that exhibit high nest territory fidelity over their lifetime, the 

choice of nest can significantly impact on their lifetime reproductive success (Mearns & 

Newton, 1988).   

 

The search effort (time spent and area covered) invested during nest site selection has 

been demonstrated to be positively correlated with breeding success of the ground 

nesting Wild Turkey (Meleagris gallopavo) in Arkansas, USA (Badyaev et al., 1996).  In 

the absence of tracking studies, search effort is difficult to quantify.  The factors effecting 

nest site selection are particularly challenging to measure in species that are slow to reach 

sexual maturity and disperse long distances to settle at a nest site that will be used over 

their life time.  In such species, age at first breeding may be seen as an indication of time 

spent selecting a nest site, and dispersal distance an indication of the area searched or 

search effort, correlations between each of these two factors, and subsequent nest quality 

can be assessed.  These two assumptions equating; a) age at first breeding to search time, 

and b) dispersal distance to search area are derived from two studies in particular.  First 

in southern Scotland, on the Sparrowhawk (Accipiter nisus) that undertook breeding 

dispersals to a higher quality territory were rewarded with improved breeding (Newton, 

1991, 1993) and second, where costs and benefits of dispersal were correlated as a 
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function of dispersal time spent searching and distance moved by the Desert Isopod 

(Hemilepistus reaumuri) (Baker & Rao, 2004).   

 

Highly adaptable species that adopt a variety of nest types are presented with many 

choices in quality within and between different nests.  The Peregrine Falcon (Falco 

peregrinus) is one such species, preferring to nest on rocky or gravel cliff ledges (Cade, 

1982), but is also known to nest on the ground in Finnish bogs (Ollila, 2009), on 

buildings (Frank, 1994; Bird et al., 1996) and in trees (Emison et al., 1997; Kleinstäuber 

& Kirmse, 2009) where large tree hollows (cavities) or the stick nests of other birds 

maybe used (Marchant & Higgins, 1993).  Tree cavity use by Peregrine Falcons is  

currently unique to Australia (Emison et al., 1997) and the adoption of stick nests still 

occurs in Australia despite population declines during the DDT era (1946-1987) (White 

et al., 1981).  The use of stick nests and tree cavities in north America, whilst never 

common, was widely distributed across the Mississippi drainage system and beyond in 

Louisiana (Lowery, 1974), Indiana and Illinois (Ridgway, 1895), Iowa (Bailey, 1918), 

Tennessee (Spofford, 1947) and Kansas (Goss, 1878) but has not been reported since 

1974 (Lowery, 1974).  In Europe, from the Netherlands to western Siberia the lowland 

breeding Peregrine Falcon bred in stick nests in trees (Mizera & Sielicki, 1995).  Before 

1946 the tree nesting population was estimated at 1,300 pairs in Germany and Poland 

alone (Kirmse, 2004). The breeding population in Poland was considered to be 

functionally extinct by the 1960s (Mizera & Sielicki, 2009) and also went extinct in east 

Germany by 1973 (Kirmse, 2004).  Regular breeding in these countries/regions did not 

re-occur until the 1990s (Kleinstäuber & Kirmse, 2009; Mizera & Sielicki, 2009).  It is 

worth noting that a single breeding event was recorded in 1980 in the Tatra Mountains, 

Poland where there is an abundance of vacant traditional cliff breeding sites (Kirmse 
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(1991) in German cited in Mizera and Sielicki (2009)).  Considerable effort is being 

expended to re-establish this nesting trait by transferring nestlings from urban buildings 

to artificial stick nests in distant forest locations and providing food to the nestlings until 

they fledge (Kleinstäuber & Kirmse, 2009).  This process is referred to as a hack release 

or hacking (Sherrod et al., 1982). 

 

It has been assumed that natal experience influences the type of nest site selected by 

Peregrine Falcons (Kirmse, 1994, 2004; Mizera & Sielicki, 2009).  The only other study 

on Peregrine Falcon natal dispersal choices, in the mid-west USA, investigated dispersals 

between cliffs and three types of built structures (i.e. buildings, smokestacks at power 

plants and bridges Tordoff et al. (1998)).  Within the mid-west population 7.3% of 

Peregrine Falcons undertook natal dispersals from cliffs to built structures.  This 

indicates that natal experience leading to a form of nest type imprinting may not be as 

significant a driver of nest selection, for the Peregrine Falcon, as has been claimed 

(Kirmse, 2004; Kleinstäuber & Kirmse, 2009).  

 

The Victorian Peregrine Falcon (Falco peregrinus macropus) population in south-eastern 

Australia has been the subject of long-term nest surveys (White et al., 1981; Emison & 

Hurley, 1995; Emison et al., 1997) and banding studies (Emison & Bren, 1981; Emison 

et al., 1998; Hurley et al., 2013).  These studies, coupled with the diversity of nesting 

habits displayed by this population, provide a unique opportunity to test hypotheses 

concerning the levels of flexibility in, and the consequences of, nest site selection.  Data 

to test this from a healthy, non-migratory population, without a history of captive bred 

and released birds (Olsen & Olsen, 1988b), has not been previously available.   

 



Ch. 4  Natal dispersal & consequences 

Victor G. Hurley   81 

This study investigates a number of aspects associated with dispersal and nest site 

selection by the Peregrine Falcon in south-eastern Australia.  Specifically this study aims 

to determine whether: 

1. Natal experience of a nest type influences nest site selection during dispersal; 

2. Nest site search effort (measured as dispersal distance) influences the 

reproductive output and lifespan of breeding individuals; 

3. The time spent searching for a nest (measured as age at first breeding) influences 

the reproductive output and lifespan of breeding individuals; 

4. Natal nest experience (based on natal nest experience of nest type) influences 

dispersal distance, age at first breeding, lifetime reproductive output or lifespan of 

breeding adults. 

 

4.3. Methods 

4.3.1. Study Area 

This study was undertaken in Victoria, south-eastern Australia and covered an area of 

approximately 227,000 km2.  The geographic range of the study area included a 

latitudinal span of four degrees (34º 30’ to 38º 45’ S) north to south and seven degrees 

(141º to 148º E) of longitude west to east.  The type of nest was determined for 237 sites 

across Victoria with maximum distances between monitored nests being 589 km (west to 

east) and 521 km north to south (Figure 4.2).  The location of sites and altitude (meters 

above sea level (asl)) were recorded using a hand held Garmin Mark II plus GPS and this 

data was mapped in Arc GIS 10 Esri©.  The nests were classified into four main groups, 

cliff (combining natural and quarry), building, tree cavity and stick nest (built by other 

bird species).   
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Figure 4.2  Location of Peregrine Falcon nests presented on a digital elevation map of 

Victoria (n = 237).   = cliff,  = building, ▼ = stick nest,  = tree hollow. 

 

4.3.2. Terminology 

For the purpose of this study the following definitions have been adopted.  Natal 

dispersal is the movement from hatch site to breeding site which is referred to from now 

on as dispersal (James et al., 1989; Morrison & Wood, 2009).  Dispersals were further 

categorised based on movements to a nest type similar to or different from their natal nest 

site: 1) traditional dispersal is where a bird dispersed and adopted the same nest type for 

breeding as that from which it fledged and 2) novel dispersal is where an individual 

fledged from one nest type and dispersed and settled at a different nest type (e.g. 

dispersing from a cliff to a stick nest).  The term ‘breeding event’ is used to refer to one 

year’s breeding in a single territory.   
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4.3.3. Field procedures 

Each nest was classified according to the level of protection from extremes in weather 

and was assessed in terms of angles of exposure.  Exposures were measured by placing a 

compass in the centre of the nest scrape and taking bearings to obstacles on either side, 

the difference in degrees between the bearings being the horizontal exposure.  Using a 

digital long arm protractor (Winkelfix, Festool Art. No.: 450121-267), vertical exposure 

was measured from the centre of the nest scrape as the difference in degrees between the 

horizontal floor and the first obstacle above the nest (Pruett-Jones et al., 1981b).  Due to 

variations in techniques for measuring the levels of nest site exposure the data was 

arranged in to three broad classes.  The three exposure categories used in this study were: 

low = open site with no over-head protection (includes all stick nests), medium = vertical 

exposure > 80º and horizontal > 160º, high = vertical exposure < 81º and horizontal 

exposure < 161º. 

 

Nests were visited and fledglings banded on an annual basis from 1991 to 2010. Where 

successful breeding occurred nestlings were banded with metal visual identification 

(VID) coloured bands with a two digit alpha-numeric code that could be read with a 

spotting scope (Hurley et al., 2013).  Monitoring of adults at nests for the presence of 

bands was undertaken during the spring breeding season each year.  The natal dispersal 

distance was recorded as the straight-line distance between their fledge nest and their first 

recorded breeding site using measuring tools in ArcGIS 10 Esri©.  The type of dispersal 

was assigned to each individual depending on whether it was a traditional or novel 

dispersal.   
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The number of years between banding (as a nestling) and the year it was first identified 

breeding was calculated to give the age at first breeding.  Age at first breeding was only 

assigned to individuals where monitoring data confirmed a different adult (of the same 

sex) had been identified breeding at the same site the year before.  Similarly, the age at 

last breeding was only assigned to an individual once monitoring confirmed it had been 

replaced as the resident at a nest site.  The difference between these two ages then 

provided the total number of years breeding for an individual, and the age at last breeding 

indicates life span.   

 

Further to this, breeding data was collected where practicable at each site during the 

breeding season.  The total number of eggs laid (clutch size) was used as a measure of 

reproductive effort.  Clutch success rate was determined by the number of clutches which 

hatched one or more eggs.  The number of nestlings surviving to banding (~26 days post 

hatching) was used to indicate reproductive output.  This was used as a surrogate for 

reproductive success which is normally measured by the number of nestling surviving to 

first flight (fledging).  Where the cause of egg failure or nestling deaths (prior to banding) 

could be determined this was also recorded.   

 

The type of nest was classified for 237 nests by; cliff, building, stick nest or tree hollow.  

Banding and monitoring was conducted at 188 (study sites).  An independent samples t-

test was used to determine whether there was an effect of sex on dispersal distance and 

longer dispersing females and their lifetime reproductive output to the less dispersive 

individuals.  Chi square tests were used to determine whether the study sites (n = 188) 

were representative of the broader state-wide population (n = 237) and whether there was 
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an effect of sex on type of dispersal (traditional versus novel) and nest type and breeding 

success. 

4.3.4. Statistical analyses 

The type of nest was classified for 237 nests into cliff, building, stick nest or tree hollow.  

Banding and monitoring was conducted at 188 study sites.  An independent samples t-test 

was used to determine whether there was an effect of sex on dispersal distance and longer 

dispersing females and their lifetime reproductive output to the less dispersive 

individuals.  Chi square tests were used to determine whether the study sites (n = 188) 

were representative of the broader state-wide population (n = 237) and whether there was 

an effect of sex on type of dispersal (traditional versus novel) and nest type and breeding 

success.   

 

Two-way ANOVAs were used to test the following interactions: sex, dispersal type and 

dispersal direction; sex, dispersal type and distance; sex, dispersal distance and nest 

quality used; sex, age at first breeding and quality of nest used; sex, dispersal type and 

lifespan; sex, dispersal type and lifetime reproductive output (LRO); sex, dispersal 

distance and LRO.  

 

All data was log (natural base) transformed to satisfy assumptions of normality and 

homogeneity of variances before analyses.  Analyses were carried out using IBM SPSS 

Statistics 21.  All data is presented untransformed for ease of interpretation except in 

graphs where axes have been labelled accordingly.   
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4.4. Results 

4.4.1. Survey locations 

The location and site details of 237 active Peregrine Falcon nests were recorded across 

Victoria between 1991 and the austral spring of 2010.  Within Victoria cliff nests 

accounted for 143 (60.3%) sites and the remaining 39.7% comprised buildings (10.5%), 

stick nests of other bird species (13.9%) and tree cavities (15.2%) (Table 4.1).  In the 

present study, a subset of 188 sites were surveyed for a minimum of five years 

(maximum 20 years) for the presence of banded adults and breeding data collected from 

1991 to 2010.  Non-cliff sites accounted for 73 (38.8%) of this subset of sites.  The ratio 

of nest types (i.e. cliff, building, stick nest and tree cavity), surveyed in this study is 

representative of the broader statewide population in Victoria (X2 = 2.269, df = 3, P = 

0.158) (Table 4.1).   

 

Table 4.1 Nest sites used by Peregrine Falcons listed by nest type, number of Victorian 

sites and number of study sites surveyed between 1991 and 2010.  Numbers in 

parentheses are percentages of each nest type derived from the (totals) of each group of 

nests. 

Nest Type Victorian Study sites 

Cliff 143  (60.4) 115  (61.2) 

Building 25  (10.5) 24  (12.8) 

Stick nest 33  (13.9) 29  (15.4) 

Tree hollow 36  (15.2) 20  (10.6) 

Totals        237  188 

 

4.4.2. Dispersal distances 

In this population there was a strong sex bias in natal dispersal distances (Figure 4.3), 

with females dispersing further than males (t = -4.983, df = 100, P <0.001; ♀ 61.2 km ± 
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6.4 km; ♂ 24.4 km ± 5.8 km; mean ± s.e.).  All males dispersed less than 100 km and 

81.8% of females dispersed less than 100 km.   

 

Dispersal direction was grouped into four equal 90 degree compass bearing groups 

centered on North, South, East, or West.  There was no relationship between dispersal 

distance and dispersal direction (F(3, 94) = 0.576, P = 0.633).  There was a significant 

relationship between sex and dispersal distance (F(1,101) = 28.751, P <0.001).  The 

interaction effect between sex and dispersal direction was not significant, (F(1, 3) = 0.488, 

P = 0.692).   
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Figure 4.3  Frequency distribution of natal dispersal distances (km) of Peregrine Falcon, 

males (grey; n = 58) and females (black; n = 44) in Victoria, 1991-2010. 

4.4.3. Dispersal type 

Of the 102 dispersal events that were recorded in this study 31 (30.4%) were novel 

dispersals (Figure 4.4).  While some novel dispersals were not observed (i.e. building to 

stick nest) there is no logical reason for these not to occur.  At a population level similar 
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proportions of each sex undertook novel dispersals (♂ 31%, ♀ 34%), therefore, sex does 

not appear to play a role in determining whether birds will make novel dispersals.   
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Figure 4.4  Different nest types used and observed patterns of dispersal by Peregrine 

Falcons in Victoria, Australia between 1991 and 2010.  Nest types are represented by 

shapes and are labeled:  = cliff,  = building,  = stick nest and  = tree cavity.  

Numbers represent percentages of 102 natal dispersals.  Numbers within each shape are 

traditional dispersals to this nest type.  Arrows represent direction of novel dispersals 

with associated numbers. 

4.4.4. Dispersal distance and type 

The type of dispersal undertaken (i.e. novel versus traditional) had an influence on the 

dispersal distance, with individuals undertaking traditional dispersals averaging greater 

dispersal distances than those undertaking novel dispersals (F(1,98)=13.818, P < 0.001; 

Traditional 69.0 km ± 4.9 km; Novel 26.6 km ± 7.1 km; mean±s.e.).  There was also a 

significant relationship between sex and dispersal distance (F(1,98) = 25.991, P < 0.001; ♀ 

61.2 km ±6.4 km; ♂ 24.4 km ±5.8 km; mean±s.e.).  There was no interaction between 

dispersal type and sex (F(1,1)=1.920, P = 0.169) (Figure 4.5).   
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Figure 4.5  The dispersal distances (mean ± 1 s.e.) of individuals of different sexes using 

the two differing dispersal strategies.   = Traditional dispersal events,  = Novel 

dispersal events. 

4.4.5. Nest type Vs clutch success 

Atypical (i.e. non-cliff) nest sites accounted for 38.8% of surveyed sites.  This raised the 

question as to whether there were costs or benefits in making dispersal to a nest type 

other than a cliff.  Clutch success for 1,113 breeding events in which the clutch outcomes 

were known was investigated between nest types.  Each breeding event was classified as 

either a success or failure based on whether at least one egg hatched.  These breeding 

events comprised of 844 on cliffs, 74 on buildings, 90 in stick nests and 105 in tree 

cavities.  The proportion of successful clutches at each nest type were; cliff = 0.82, 

building = 0.54, stick nest = 0.92, and tree cavity = 0.90.  The proportion of successful 

clutches by Peregrine Falcons is associated with the type of nest site (X2=47.712, df = 3, 
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P <0.001).  Egg hatch rates were lower on building ledges than cliff ledges (adjusted 

residual = -6.4), and to a lesser extent, higher for stick nests and tree cavities (adjusted 

residual = -2.4 and -2.2 respectively) (Figure 4.6). 

 

Figure 4.6  Numbers of successful and failed clutches at four different Peregrine Falcon 

nest types used across Victoria from 1991 to 2010 (n = 1,113 breeding events).  Numbers 

above bars = sample sizes (number of clutches).  White bars = successful clutches with 

1 eggs hatching, black bars = failed clutches with no eggs hatched. 

4.4.6. Dispersal distance and quality of nest obtained 

To determine whether the search effort (in the form of net dispersal distance) was 

rewarded by the quality (i.e. level of protection from rainfall) of the nest adopted by the 

individual, the impact of sex and dispersal distance on protection was investigated.  Sex 

does have an effect on distance dispersed but there is no relationship between dispersal 

distance and the level of protection afforded by nest sites that were selected (Sex F(1,96) = 

21.361, P = 0.001; Protection F(2,96) = 1.440, P = 0.242; and Interaction F(2,96) = 0.814, P 

= 0.446).  This suggests that search effort does not influence the level of protection of the 

nest site chosen.   
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4.4.7. Dispersal type and age at first breeding 

The age at first breeding can be used as an indication of the search effort (in years) to 

find and occupy a nest.  The age at first breeding was recorded for 88 breeding adults (54 

♂ 3.11±1.298, 34 ♀, 2.74±0.898; mean±s.d.).  The role of sex and dispersal type on the 

time taken to find a nest site (i.e. age at first breeding) was examined and neither sex or 

dispersal type had an influence on the age at the first breeding event of an individual (Sex 

F(1,84) = 1.579, P = 0.212; Dispersal type F(1,84) = 0.136, P = 0.713).  There was also no 

interaction between sex and dispersal type (F(1,1) = 0.037, P = 0.849).  This suggests that 

the type of dispersal event conducted by an individual does not have an influence on the 

age at first breeding. 

 

4.4.8. Dispersal type and lifespan of breeding adults 

The role of sex and dispersal type (i.e. traditional vs novel) on lifespan of individuals 

surviving to breed was examined.  There was no influence of sex or dispersal type on the 

lifespan of breeding adults (F(sex) = 0.068, df = 1,73, P = 0.795); (F(disp. type) = 0.698, df = 

1,73, P = 0.406); and (F(interaction) = 0.212, df = 1,73, P = 0.647).   

 

4.4.9. Dispersal type and reproductive output 

To determine whether the type of dispersal an individual makes confers an advantage or 

disadvantage to the individual we examined the impact of dispersal type and sex on 

reproductive output.  To conduct this analysis a sub-set of the 102 breeding adults data 

set was used, where only individuals who had been monitored their whole breeding life 

and the total number of nestlings produced (LRO) was known were included.  This data 

sub-set (n = 70 individuals) included 42 ♂s and 28 ♀s, and 46 traditional dispersal events 

(28 ♂, 18 ♀) and 24 novel dispersal events (14 ♂, 10 ♀). 
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The sex of the individual and the type of dispersal undertaken had no influence on LRO 

of individuals (Sex F(1,69) = 0.073, P = 0.788; Dispersal type F(1,69) = 1.329, P = 0.253).  

There was also no interaction between sex and dispersal type (F(1,1) = 0.005, P = 0.945).  

This suggests that, from a LRO perspective, the type of dispersal event undertaken by an 

individual does not confer an advantage or disadvantage to the individual. 

 

4.4.10. Dispersal distance versus lifetime reproductive output 

Dispersal distance was used as an indicator of the area searched or ‘search effort’ for a 

nest site (Badyaev et al., 1996).  Firstly we tested whether there was a difference between 

lifetime reproductive outputs (LRO) for each sex.  There was no significant difference in 

LRO based on sex (♂ 7.3±0.88 nestlings, n = 42; ♀ 7.0±.083 nestlings, n = 28; 

mean±s.e.; t(1,68) = 0.234, P = 0.816, CI95% -2.244 to 2.839).   

 

No males dispersed > 100 km and 81.3% of females dispersed < 100km.  Females were 

partitioned into two groups based on dispersals of  or > 100 km and we tested whether 

these longer dispersed individuals incurred any lifetime costs or benefits (Plissner & 

Gowaty, 1996; Baker & Rao, 2004).  The effect of these dispersal classes was tested 

against lifetime reproductive output (the total number of nestlings produced to banding 

age ~26 days post hatching) for a relationship between longer distance dispersers 

>100km (n = 5) and those females dispersing 100 km (n = 23).  Whilst not statistically 

significant there is a trend in the cost to lifetime reproductive output for the longer 

dispersing females suggesting that those few females who make long distance dispersals 

may not produce as many offspring in their lifetime (t=1.732, df = 26, P = 0.095, 95%CI 

-0.674 to 7.891, MeanLRO >100km = 4.00, MeanLRO<100km = 7.89; Tukey (1991)).   
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4.5. Discussion 

Consistent with most bird species (Greenwood, 1980; Pusey, 1987) and other Peregrine 

Falcon populations studied (Restani & Mattox, 2000; Craig et al., 2004; Lindberg, 2009; 

Zuberogoitia et al., 2009), natal dispersal of Peregrine Falcons in Victoria was female 

biased.  This dispersal bias is due to Peregrine Falcons having a resource-defense 

breeding system whereby males obtain territories to attract females who compete for the 

rare resource of a high quality male with a high quality nest close to a reliable food 

resource (Olsen & Olsen, 1987a; Wightman & Fuller, 2006).  Theory suggests this 

mating system should exert a cost on females who disperse farthest (Greenwood, 1980).  

Females that dispersed further than males (i.e. >100 km) adopted high quality nests (i.e. 

well protected from the effects of weather) but they may also incur a slight reduction in 

LRO.  This finding is not unique as results from other studies of increased dispersal 

distance have been equivocal, recording an increase (Spear et al., 1998), a decrease (Pärt, 

1990) and no effect (Plissner & Gowaty, 1996) on female lifetime reproductive output in 

other bird species.  Negative relationships between dispersal distance and productivity 

and survivorship have been attributed to benefits gained from familiarity with the natal 

region (Pärt, 1995; Brown et al., 2008). 

 

Apart from the distance travelled, dispersal also involves the choice of a nest site.  The 

near global breeding distribution of the Peregrine Falcon attests to the adaptability of this 

species (Santana et al., 2006).  The high level of novel dispersals (30.4%) and plasticity 

in nest site selection has not been reported previously for this species (Tordoff et al., 

1998; Kleinstäuber & Kirmse, 2009; Wegner et al., 2009).  This is despite the numerous 

investigations, long-term mark-recapture studies and targeted surveys of this species 

across many countries for more than 50 years (Hickey, 1969; Porter et al., 1987; Cade et 
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al., 1988; Sielicki & Mizera, 2009).  Although cliff sites remained the preferred nest type 

for this study,  the behavioural plasticity in nest site selection displayed in this study 

challenges the concept of behavioural imprinting from natal habitat preference induction 

would suggest (Davis, 2008; Kleinstäuber & Kirmse, 2009; Mizera & Sielicki, 2009).   

 

The adoption of atypical (i.e. non-cliff) nest sites can be partly explained by the low lying 

topography of Victoria, with extensive areas devoid of cliffs, leaving Peregrine Falcons 

with little choice but to breed in trees or on buildings (Emison et al., 1997).  However, 

the adoption of atypical nests (such as tree cavities or stick nests) within areas of cliff 

nesting territories, as exhibited by the shorter distances of novel dispersals, challenges 

the imprinting concept that atypical (i.e. non-cliff) nests will only be adopted in areas 

lacking cliffs (Stamps & Swaisgood, 2007; Brown & Collopy, 2013).  The significantly 

shorter dispersal distances of novel dispersals among regions with cliff nests explain the 

process by which these atypical nest sites were first adopted.  That is, novel dispersals 

and the use of atypical nest sites may be a consequence of saturation of cliff sites by this 

territorial species.  However, a single recorded Peregrine Falcon breeding event in 

Poland in 1980 was in a stick nest in a Spruce (Picea abies) (reported in Mizera and 

Sielicki (1995) from Chichocki (1986) in Polish).  This was a very rare breeding event 

for the time and is additionally unusual in that it occurred in the Tatra Mountains where 

there was an abundance of vacant cliff breeding sites available (Kirmse, 1991).  Optimal 

foraging theory would suggest the nest territory was selected because of its proximity to 

an available prey resource (Arditi & Dacorogna, 1988). 

 

The population in Victoria appears to have increased naturally in the number of atypical 

nests being used following the banning of the use of DDT and Deildrin and may have 
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saturated the available cliff sites (Ford, 1987).  This suggests that in the Victorian 

population of Peregrine Falcons the use of atypical nest sites may not be as novel as we 

think.  I hypothesize that in other parts of the world where Peregrine Falcon populations 

are still recovering we could also see the spontaneous use of atypical nest sites as cliff 

and building locations become saturated.  This is supported by several records of the 

natural adoption of stick nests in trees by Peregrine Falcons bred from cliffs or buildings 

(Turner, 2005; Olsen et al., 2006; Whitman & Caikoski, 2008; Wegner et al., 2009).   

 

The adoption of stick nests by Peregrine Falcons in the forests of eastern Germany and 

Poland may well be enhanced more naturally by first allowing the building and cliff 

nesting habitats to reach saturation levels.  Then where stick nests are lacking establish 

suitable artificial stick nests in forests within the average male dispersal distance (~26 

km) of active cliff or building territories (Kleinstäuber & Kirmse, 2009).  As the 

cliff/building populations grow they will naturally expand into these habitats and adopt 

novel nests in the process.  A key reason why this may not have occurred naturally to 

date in eastern Germany and Poland is that the cliff and building populations have not 

reached saturation levels and the published practice of removing nestlings from building 

nest sites wherever possible is actually slowing down the rate at which they will reach 

saturation levels (Kirmse, 2001).  

 

While novel dispersals tended to be undertaken by the less dispersive individuals of each 

sex, there was not a consequent reduction in dispersal times to adopt breeding territories 

and nest sites in Victoria.  The average age at first breeding (♂ 3.1 yrs, ♀ 2.7 yrs) for the 

highly mobile Peregrine Falcon provides ample opportunity to make these selections 

without the time constraints of short lived species (Mänd et al., 2005). 



Ch. 4  Natal dispersal & consequences 

96  Victor G. Hurley 

 

The strategy of adopting atypical nest types by the less dispersive males and females is 

both adaptive and maladaptive depending on the nest type selected.  This is due to higher 

rates of clutch success in trees (both stick nests and cavities) than on cliffs and lower on 

building ledges than on cliffs.  The recorded use of trees for nesting (29.1%) is a highly 

adaptive behaviour with 91% of clutches hatching at least one egg.  While adopting 

buildings as nest sites comprises only 10.5% of the population this proportion of the 

population is rapidly on the increase.  Because of the low clutch success rate (54%) on 

buildings this is a relatively a maladaptive behaviour.  A short caveat must be applied 

here in that although there is a significant price to be paid for nesting on buildings even 

poor hatch rates and nestling survival is better than not breeding at all.  Having said that 

these mixed results both support and diverge from the more general rule that longer 

search effort should be rewarded with higher quality habitats than dispersers with shorter 

search effort in both vertebrates and invertebrates (Badyaev et al., 1996; Stamps et al., 

2005).  A rapid rise in the number and proportion of nest sites on buildings would 

warrant further investigation as how best to improve egg hatch rates and clutch success at 

these sites. 
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5.  
Longevity legacy: lifetime reproductive output by the 
Peregrine Falcon (Falco peregrinus macropus) is enhanced 
by lifespan and nest choice rather than landscape level 
influences. 
 

 
A mixed brood (2♂, 1♀) of Peregrine Falcons in a decaying River Red Gum tree, Ovens River, 2006. 

  

 

 

“Look deep in nature, and then you will understand everything better.” 

 
Albert Einstein 
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5.1. Abstract 

Context. Landscape features and nest quality influences on lifetime parameters of 

breeding Peregrine Falcons. 

Aims. 1) document lifetime reproductive output (LRO) and lifespan of breeding and non-

breeding Peregrine Falcons, 2) investigate the factors influencing LRO measured as the 

total number of nestlings produced over the lifetime of an adult. 

Methods. Capture-mark-re-sight techniques of breeding adults using metal visual 

identification bands placed on them as nestlings allowed recording of age at first 

breeding, lifespan and years spent breeding of 66 Peregrine Falcons.  The total number of 

nestlings produced in a lifetime was recorded by annual breeding season nest surveys.  

The location and altitude were recorded at nest sites and landscape features recorded in 5 

km buffers around each nest using geospatial techniques. 

Key results. There is no difference in lifespan between the sexes of breeding Peregrine 

Falcons (t=-0.768, df=64, P = 0.446).  Years spent breeding and lifetime production of 

nestlings were all positively correlated.  Landscape features did not influence LRO, 

however, the level of protection of a nest site did.   

Conclusions. Peregrine Falcons mate for life and display strong nest site fidelity.  

Moving to a higher quality and occupied territory involves mortal combat with the 

resident pair.  A safer strategy to overcome poor site quality (highly exposed to the 

weather) is adopt a more protected nest and longevity to increase LRO. 

Implications. For healthy recovering populations of the Peregrine Falcon the most 

important conservation action is the management of nest quality to facilitate successful 

breeding. 
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5.2. Introduction 

Lifetime reproductive output (LRO) is accepted as a measureable estimate of 

evolutionary fitness in studies of natural populations (Brommer et al., 2004).  There are 

two main drivers of LRO, these being the breeding lifespan of the individual and the 

number of young raised per breeding event (Herényi et al., 2012).  The role of breeding 

longevity as one of the most important factors determining LRO is supported in studies 

of both birds (Newton, 1985; Gustafsson, 1989; Merilä & Sheldon, 2000) and mammals 

(Clutton-Brock, 1988; Bérubé et al., 1999; Robbins et al., 2011).  Longevity, however, 

does not guarantee enhanced LRO.  Factors such as habitat and nest quality, 

anthropogenic disturbance and seasonal and regional weather conditions can influence 

both annual and or lifetime productivity (Newton, 1989; Blums & Clark, 2004; Smart et 

al., 2010; Amar et al., 2012).  

 

Investigating factors affecting LRO may inform us as to the strategies species adopt to 

deal with these impacts (Stearns, 1976; Brommer et al., 2004).  The maintenance of a 

territory and occupancy of a nest-site by a territorial animal is a critical life-history tactic 

used to enhance LRO (Martínez et al., 2006).  Territorial behaviour amongst predatory 

species implies a trade-off between the potentially risky strategy of searching and 

fighting for a higher quality territory and the potential costs and benefits of maintaining a 

territory (Newton, 1992; Gordon, 1997; Adams, 2001; Ferrer & Bisson, 2003).  Among 

some bird of prey (raptor) species, however, trading up to a higher quality territory can 

be a successful strategy to enhance reproduction (i.e. the Northern Goshawk (Accipiter 

gentilis) (Newton, 1993; Ferrer & Bisson, 2003; Squires & Kennedy, 2006)).  Some 

raptors such as the Peregrine Falcon however, maintain extremely high territory and nest 
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site fidelity throughout their life (Mooney & Brothers, 1993; Hurley et al., 2013).  

Consequently, territory and nest selection may have life-long implications. 

Factors influencing the annual reproductive outputs of individuals have been studied in a 

wide variety of diurnal and nocturnal raptor species (Krüger, 2004; Macias-Duarte et al., 

2004; Solonen & Ursin, 2008; Dykstra et al., 2009).  Fewer studies have investigated the 

influence of site and landscape scale factors on the lifetime reproductive output of 

individuals (Newton, 1985; Brommer et al., 1998; Krüger & Lindström, 2001; Krüger, 

2002; Linkhart & Reynolds, 2006).  Modeling the relative impact of nest level and 

landscape scale habitat features on lifetime reproductive parameters, however, has not 

been well studied for healthy populations of most raptor species.  Although the value of 

lifetime reproductive studies is clearly recognised (Clutton-Brock, 1988; Newton, 1989; 

Brommer et al., 2004), logistical and financial constraints have limited such studies in 

long-lived groups such as raptors (Clarke, 1997; Bednarz, 2007).  For species that occupy 

a diverse range of landscapes, but exhibit a strong lifetime fidelity to a single breeding 

territory and often the same nest site, understanding the differing effects of key habitat 

features on lifetime parameters can assist in identifying those features that are most 

favourable to the conservation of the species.  Results from such studies can provide 

useful benchmarks of lifetime and reproductive attributes of a species for use in recovery 

planning (Hoekstra et al., 2002; Wakamiya & Roy, 2009). 

 

This study uses the Peregrine Falcon (Falco peregrinus macropus) as a model species to 

investigate the role of landscape scale and nest site level influences on LRO.  The 

Peregrine Falcon is a long-lived species (maximum age 15 years 4 months in Australia 

(ABBBS, 2013)) which has extremely high breeding territory fidelity throughout their 

life, and as such territory and nest site selection are critical decisions for the individual 
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(Olsen & Olsen, 1989b; Mooney & Brothers, 1993).  This species also inhabits an 

extremely high diversity of differing landscapes from coastal plains, to semi-arid Mallee, 

to tall forests up to the snowline through to cities (Emison et al., 1997).   

 

Previous research has demonstrated that seasons with heavy rainfall have a negative 

impact the breeding success of some raptors including the Peregrine Falcon (Mearns & 

Newton, 1988; Olsen & Olsen, 1989b; Emison et al., 1993) and has been shown to 

impact the survival of breeding adult Brown Falcons (Falco berigora) (McDonald et al., 

2004).  Heavy snowfalls have been linked with poor egg hatch rates leading to breeding 

failure at exposed nest sites in arctic Rankin Inlet, Canada (Bradley et al., 1997).  The 

impact on breeding performance of excessive rain/snowfall on Peregrine Falcons is not 

the result of reduced hunting performance but rather a reduction in the hatch rate of eggs 

due to the inundation of exposed nests (Olsen & Olsen, 1992; Bradley et al., 1997; 

Jenkins, 2000a).  Whilst significant rainfall events influence annual reproductive 

performance, it is unknown what effects these annual events have on the reproductive 

output of Peregrine Falcons over their lifetime. 

 

Urbanisation and other anthropogenic disturbances can affect the breeding performance 

and ultimately LRO of raptors (Boal & Mannan, 1999; Newsome et al., 2010; Strasser & 

Heath, 2013 in press).  Urban breeding Peregrine Falcons in California have recorded 

Polybrominated diphenyl ether (PBDE) toxins at significantly higher concentration levels 

than in non-urban birds and higher than any other vertebrate species sampled anywhere 

on earth (Cone, 2008; Newsome et al., 2010).  Peregrine Falcons have been recorded 

adopting anthropogenic structures in urban habitats across much of their range including 
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Italy (Taranto, 2009), Germany and Poland (Kleinstäuber & Kirmse, 2009; Wegner et al., 

2009), Canada and the US (Cade & Bird, 1990; Cade et al., 1996), the UK (Drewitt & 

Dixon, 2008) and Australia (Emison et al., 1997).  With this increasing growth in urban 

populations it is important to determine the effect of landscape features on the LRO of 

Peregrine Falcons.   

 

The data in this chapter is based on an extensive 22 year (1991-2012) capture-mark-re-

sight (CMR) study across Victoria, Australia.  During this time the reproductive output of 

known age animals (banded as nestlings and re-sighted as breeding adults) has been 

followed.  In many cases we have been able to establish the lifetime reproductive output 

of individuals, and as such can investigate drivers of LRO.  Broadly, this study aims to 

determine breeding lifespan and LRO parameters and what influences the LRO of 

Peregrine Falcons.  Specifically, the study will investigate the relative role of nest site 

factors and landscape level factors on the LRO of Peregrine Falcons.    

5.3. Methods 

5.3.1. Study area 

This study was undertaken in Victoria, south-eastern Australia across an area of 

approximately 227,000 km2.  The geographic range of the study area included a 

latitudinal span of four degrees (34º 30’ to 38º 45’ S) from north to south and seven 

degrees of longitude (141º to 148º E) from west to east.  In total, 194 nests were 

monitored across Victoria (Figure 5.1) with the maximum distance between monitored 

nests being 589 km (west to east) and 521 km (north to south).   
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Figure 5.1  Location of Peregrine Falcon nests presented on a digital elevation map of 

Victoria (n = 250 known breeding sites).   = sites where the complete breeding history 

(LRO) of an adult has been established (n = 66),  = Sites where breeding has been 

monitored but the LRO of adults is unknown (n = 128), and  = Known sites that were 

not monitored for breeding (n = 56). 

 

5.3.2. Terminology 

A few terms are used throughout this paper for brevity and are explained here for ease of 

reading.  Lifetime reproductive output (LRO) is the total number of nestlings an 

individual produces in their lifetime.  We distinguish this parameter from lifetime 

reproductive success (LRS) which was originally coined to describe the total number of 

nestlings produced over a lifetime that survive to become breeders (Clutton-Brock, 

1988).  The same term (LRS) has also been used to describe the total number of 

fledglings produced over a lifetime (Newton, 1989).  A ‘breeding event’ refers to a single 
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nest site’s breeding activity and related data for one year’s (Austral spring) breeding 

season.  ‘Available land’ is the terrestrial or dry land that does not include the surface of 

lakes, reservoirs or oceans below the high tide line.  ‘Ecotone’ in this study refers 

specifically to the environmental boundary between aquatic and terrestrial environments 

and includes the length of rivers and the shoreline of lakes, reservoirs and marine 

environments.   

 

5.3.3. Data collection methods 

Monitoring visits were made to as many nests as possible during each breeding season to 

collect data on the identity of adults (by observing metal Visual Identification (VID) 

tarsus bands), record clutch size and/or brood size, and band nestlings.  Breeding adult 

Peregrine Falcons were individually identified by VID bands which had been applied to 

them as nestlings (Hurley et al., 2007; Hurley et al., 2013).   

 

This study is based on a 22 year dataset (1991-2012) from monitoring breeding at 194 

nest sites across Victoria.  An average of 7.8 (±0.4 s.e.) breeding events per nest site have 

been monitored (range 1-22) and a total of 1,504 breeding events are documented 

(68.3±5.8 breeding events per year (mean±s.e.), range 10-111,).  A total of 2,445 

nestlings were colour banded (111.1±9.5 per year (mean±s.e), range 14-179).  A total of 

122 of these banded nestlings have been recorded as breeding adults.  Complete lifetime 

datasets including the age at first breeding, the number of years breeding and the total 

number of nestlings produced have been established for 66 of these individuals.  

 



Ch. 5  LRO, Lifespan & nest quality 

Victor G. Hurley   105 

5.3.4. Lifespan and lifetime reproductive output 

Long-term monitoring of adults at nest sites provided the age at first breeding (i.e. the 

year a banded bird replaced the previous adult), the number of years where breeding was 

attempted and the life-span (i.e. year and age of last confirmed breeding event) of banded 

individuals.  Breeding adults were considered dead once they were found replaced at a 

nest site.  Given the very high nest site fidelity in Peregrine Falcons (Mooney & 

Brothers, 1993; Zuberogoitia et al., 2009) variation in lifespan most likely reflects 

variation in mortality rather than any dispersal effects.  Over the lifetime of each of the 

breeding adults, all of the nestlings they produced were recorded to provide the lifetime 

reproductive output of individual adults.  Where practicable all of these nestlings were 

also banded with VID bands. 

 

5.3.5. Landscape level features of breeding territories 

The location and altitude (recorded in meters above sea level (asl)) of active Peregrine 

Falcon nest sites was recorded using a hand held GPS unit (Garmin© II Plus).  A set of 

landscape habitat features were measured using GIS layers from the Victorian 

government’s corporate geo-spatial data library, accessed on 14 February 2013.   

 

Landscape features were assessed within a radius of 5 km from each nest using GIS 

buffer and clip tools in ArcGIS 10.1 (ESRI®).  This distance is considered to be reflective 

of the average distance of hunting trips from the nest, based on a radio tracking study of 

breeding Peregrine Falcons, undertaken in California (Enderson & Kirven, 1983).  A 

further radio tracking study of breeding adults recorded an average hunting distance of 

6.5 km from the nest on the Cape Peninsula in South Africa (Jenkins & Benn, 1998).  

Central place foraging also suggests, when not actively hunting, adults will spend 
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significantly more time in close proximity to the nest involved in activities such as mate 

and nest defense (Jenkins & Benn, 1998; Brambilla & Ficetola, 2012).  The average 

distance between nest sites in Victoria was 11.3 ±0.6 km; mean±s.e.; (n = 194 nests), 

which is further indicative of a defended core breeding territory being approximately 

5km in radius from the nest site.   

 

A series of habitat features were selected to represent measures of land use, the potential 

productivity and the potential availability of food within each breeding territory.  The 

length of riparian zones, lake and ocean shores were measured (km) within 5 km of the 

nest to create a cumulative figure of total water ecotone length (km).  These ecotones are 

considered potentially important foraging areas where prey diversity and abundance 

tends to be greater than in the surrounding landscape (Kark et al., 2007; Ambasht & 

Ambasht, 2008).  This is due to these areas supporting a group of specialist species of the 

ecotone in addition to the species from either the terrestrial or aquatic environments, 

(Hofgaard et al., 2012).   

 

The number of land titles (i.e. addresses) within a 5 km radius from each nest was used to 

provide an index of the degree of urbanisation occurring within the breeding territory.  

An index of urbanisation was included for two broad reasons; first, areas with elevated 

degrees of  urbanisation have been reported as having an elevated and more stable avian 

prey base (Chace & Walsh, 2006), and second, urban areas present increased threats such 

as the risk of collisions with overhead wires and windows, electrocutions, direct human 

persecution (Hager, 2009) and an elevated risk of infection from diseased prey (Boal & 

Mannan, 1999) or ingestion of and bioaccumulation of anthropogenic poisons or 
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pollutants (DeMent et al., 1986; Chandler et al., 2004; Hofer et al., 2010; Park et al., 

2011).   

 

A further measure of urbanisation was also developed associated with the number of 

addresses within a 1 km radius of each nest.  This second measure was included because 

in Australia, Peregrine Falcons disperse at approximately 5 months of age (Sherrod, 

1983) and 74.6% of recoveries of dead or seriously injured birds < 6 months of age are 

found within 1 km of the nest (unpublished data).  Adults are likely to contend with the 

same anthropogenic hazards in urban environments as dispersing young (Hager, 2009) 

with the figures suggesting that many of these anthropogenic induced mortalities will 

occur within 1 km of the nest.   

 

The validity of applying the 1 km urban buffer to the lifespan of breeding adults will be 

tested by applying Spearman Rank Order Correlation to the proportion of individuals 

effected by each major cause of injury or death in each age class.  Individuals that had 

successfully fledged but were found dead or injured  6 months old were classified as 

juveniles and those ≥ 2 years old classified as adults. 

 

The extent and density of over story tree cover can provide an indication of how 

modified an environment has become.  Native tree cover also provides an indication of 

the resources available to support hollow dependent prey species such as parrots 

(especially the Galah (Eolophus roseicapillus) which have been found to be a significant 

component of the Peregrine Falcon diet in Victoria (Pruett-Jones et al., 1981b; Olsen et 

al., 1993; Cogley, 1995; MacKinnon, 2011).  However, the Peregrine Falcon is 

predominantly an open country hunting specialist and requires large areas with no or low 
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density tree cover to access prey (Ratcliffe, 1993; Jenkins, 2000b; Jenkins & Hockey, 

2001).  Metrics were therefore required which could provide an indication of both tree 

cover and no-tree cover in the landscape within the core area of the nesting territory. 

 

A tree density layer was used in this study to generate metrics associated with differing 

tree densities.  The tree density layer was created from satellite imagery with a pixel 

resolution of 10 metres and the tree density is based on projected canopy cover (for 

product description see DSE (2013)).  The tree density layer maps three different 

densities of tree cover, these being dense, medium and scattered, with the unmapped 

component representing no tree cover.  Dense tree cover includes areas with >80% 

canopy cover and a minimum block size of 5 ha.  Canopy gaps within treed blocks less 

than 0.1ha were not mapped.  Medium tree cover includes areas with 50-80% canopy 

cover and a minimum block size of 1 ha.  Canopy gaps of less than 0.25 ha were not 

mapped.  Scattered tree cover represents areas with 10-50% canopy cover and a 

minimum block size of 1 ha.  Canopy gaps of less than 1ha were not mapped.  Areas with 

<10% canopy cover, with a minimum block size if 1 ha, were not mapped, and represent 

no tree cover. 

 

Within a 5 km buffer radius out from each nest the amount of tree cover was estimated, 

based on the three cover classes (high, medium and scattered). Tree cover was expressed 

as the percentage of the available land within the buffer zone; that is, excluding areas of 

ocean, lakes and rivers.  There is a high degree of co-linearity between the different tree 

density classes, and as such two measures are used in the modeling conducted as part of 

this study.  Dense tree cover and no tree cover are highly correlated, and as such we 

chose to use the no tree cover estimates as Peregrine Falcons require open areas in which 
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to hunt successfully (Emison et al., 1997; Jenkins & Hockey, 2001).  As a further 

measure, we used medium tree cover as it was not correlated with either tree cover 

metric.  

 

5.3.6. Nest site level metrics 

Nest site physical features such as nest size and the level of protection from weather and 

predators are known to significantly influence clutch size, hatch rates, and nestling 

mortality (Korpimäki, 1987; Olsen & Olsen, 1988a, 1989a, b; Emison et al., 1993).  Each 

nest was classified according to the level of protection from extremes in weather and was 

assessed in terms of angles of exposure.  Exposures were measured by placing a compass 

in the center of the nest scrape and taking bearings to obstacles on either side, the 

difference in degrees between the bearings being the horizontal exposure (Pruett-Jones et 

al., 1981b).  Using a digital long arm protractor (Winkelfix, Festool Art. No.: 450121-

267), vertical exposure was measured from the centre of the nest scrape as the difference 

in degrees between the horizontal floor and the first obstacle above the nest.  Due to 

variability in the accuracy of some of these measurements three nest protection 

categories were used in this study: low = open site with no overhead protection (includes 

all stick nests), medium = vertical exposure > 80º and horizontal > 160º, high = vertical 

exposure < 81º and horizontal exposure < 161º.   

 

Peregrine Falcons in Victoria use a number of different types of nest site.  In this study 

data was recorded on lifespan and LRO from individuals (n = 66) breeding on cliffs (n = 

50), building ledges (n = 11) and in tree hollows (n = 5).   
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5.3.7. Statistical analysis 

5.3.7.1. Life history attributes of the Peregrine Falcon 

The relationship between lifespan, the total number of years spent breeding and lifetime 

reproductive success was investigated using the Pearson product moment correlation 

coefficient.  An independent samples t-test was used to compare between the sexes; the 

mean lifespan of breeding adults.  As a result data for both sexes was pooled.  These 

analyses were conducted in IBM SPSS Statistics 21.0. 

 

5.3.7.2. Factors affecting lifetime reproductive output 

To determine what factors influence the life time reproductive output (LRO) of Peregrine 

Falcons in Victoria, an information-theoretic approach was taken, as described by 

Burnham and Anderson (2002).  As this study had a small sample size and the data were 

not over-dispersed, the second order Akaike information criterion corrected for small 

sample sizes (AICc) was utilised.  Preliminary analyses were performed to ensure no 

violation of the assumptions of normality, linearity and homoscedasticity.  Linear models 

were used to investigate the relationship between the LRO (Log 10 transformed) of 

Peregrine Falcons and a series of pre-determined models which we considered may 

explain the LRO of Peregrine Falcons.  These models were developed to investigate the 

relative influence of nest site level and landscape level factors on the LRO of Peregrine 

Falcons.  It should be noted here all breeding adults in this study remained within the one 

nest territory.  However, where more than one nest ledge was used in a territory during 

the study, the level of protection of the most commonly used nest was assigned to the 

territory and used for these analyses.  
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The variables used in the models included the number of years which a falcon attempted 

to breed, the degree of protection afforded to the nest site, the type of nest site (i.e. cliff, 

building or tree cavity), the degree of urbanisation (the number of properties) at two 

different scales (i.e. within 1 km of the nest, and within 5 km of the nest (both Log 10 

transformed)), the length (km) of water ecotone habitats (log 10 transformed), and the 

two tree cover parameters (i.e. the proportion of the landscape with no tree cover, and the 

proportion with medium tree cover (both arc sine transformed)).  We chose to test five 

different models that could potentially explain trends in LRO at both the local scale (i.e. 

nest site), and the broader landscape scale (Table 5.1).  As LRO is known to be correlated 

with the number of years over which an animal attempts to breed, we included the 

number of years breeding in all models.  This was done to determine if there are any 

local level and landscape scale factors that contribute to LRO over and above the number 

of years of breeding.  Table 5.1 provides details of each competing model and the 

justification for why each model was selected.  A null model was also used within the 

modeling approach. 

 
Models were developed using the R statistical package (Ihaka & Gentleman, 1996) 

version 2.15.  All modeling was conducted using the MuMIN package, version 1.9.0 

(Barton, 2013).  Akaike differences (∆i) were used to determine the level of support for 

each model in the candidate set.  Burnham and Anderson (2002) suggest that candidate 

models with Akaike differences less than 2.0 have substantial support.  Akaike weights 

were produced to establish if one model had substantial support as the best model.  

Anderson et al. (2001) suggest an individual model needs an Akaike weight of greater 

than 0.9, before it can be considered the clearly best model.  Multiple R2 values were 

generated to establish how well the individual models were able to account for variation 

in the data.   
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Table 5.1 Models proposed to explain potential trends in the lifetime reproductive output (LRO) of Peregrine Falcons in Victoria (n = 66).  The response 

variable for all models is LRO (the total number of nestlings produced over a Peregrine Falcon’s lifetime (Log10 transformed)). 

Model Variables included Justification for model 

Breeding years model Years of breeding A clear trend exists between the number of years over which an animal breeds and its potential life 
time reproductive output a,b,c,d.  This model is included to establish the base point, from which the 
other models are ultimately compared to establish if local and landscape factors further influence 
LRO.  

Nest protection and nest 
type model 

Years of breeding 
Nest protection 
Nest type 

Previous studies have demonstrated that the type and quality of a nest site can have a significant 
influence on reproductive success e,f,g,h.  Across the breeding life of an individual it would be 
expected that more protected nests sites may produce more offspring. 

Landscape level resource 
model 

Years of breeding 
Amount of water ecotone (Log10) 
Amount of land with moderate tree 
cover (ArcSin) 
Amount of cleared land (ArcSin) 
Altitude 

Habitat features have been found to influence reproductive success i with individuals able to improve 
their reproduction by moving to higher quality habitatsj.  Water ecotones and tree covered areas 
provide productive habitat for Peregrine Falcon avian prey species.  However, Peregrine Falcons 
are an open country hunterk,l and some level of open country is essential for them to access preym.  
Altitude will provide access to different prey speciesn and at the higher levels remoteness from 
urban centreso.  Combined these landscape features present a diverse range in quality of breeding 
territories that may produce differences in productivity. 

Impact of urbanisation 
model 

Years of breeding 
Urbanisation within 1km (Log10) 
Urbanisation within 5km (Log10) 

Urbanisation levels have been shown to influence raptor reproduction both positivelyp,q,r and 
negativelys,t.  Two urbanisation metrics were used to investigate local and landscape scale 
influences of urbanisation.  It was unclear if urbanisation would have a positive or negative influence 
on LRO. 

Global model All variables included This model is included to determine if the combined effect of all the different factors has an overall 
impact on LRO. 

Null model N/A A null model was selected to rank all other models. 
a=Robbins et al. (2011); b=Herényi et al. (2012); c=Linkhart and Reynolds (2006); d=Blums and Clark (2004); e=Olsen and Olsen (1989b); f=Emison et 

al. (1993); g=Mearns and Newton (1988); h=Hurley et al. (2013); i=Zhu et al. (2012); j=Newton (1991); k=Ratcliffe (1993); l=Jenkins (2000b); m=Jenkins 

and Hockey (2001); n=Barrett et al. (2003); o=Emison et al. (1997); p=Wegner et al. (2009); q=Kauffman et al. (2003); r=Charter et al. (2007) 

s=Newsome et al. (2010); t=Boal and Mannan (1999) 
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5.4. Results 

5.4.1. Lifespan 

The total number of years spent breeding was recorded for 66 individuals (37 ♂, 29 ♀) 

(3.7±0.3; mean±s.e., range 1-9).  Data for the number of years spent breeding was pooled 

for this study as there was no difference between the sexes (♂ 3.5±0.4; mean±s.e., range 

1-9; ♀ 4.0±0.5; mean±s.e., range 1-9; t=-0.768, df=64, P = 0.446).   

 

5.4.2. Causes of injury Vs age class 

Based on banding recoveries of dead or injured Peregrine Falcons, individuals were aged 

and injuries classified into one of ten distinguishable injury causes.  Ten distinguishable 

causes of injury were identified from a total of 92 individuals banded as nestlings found 

dead or seriously injured.  These were in increasing frequency order: trapped in man 

made structure, taken by introduced mammal, electrocuted, drowned, poisoned, attacked 

by other raptor species, shot, hit window, hit overhead wires or fence, and hit by car.  

Each individual was classified as either successfully fledged and < 6 month old = 

juvenile (n = 66) or ≥ 2 years old = adult (n = 26).  The relationship between injury class 

and age class was investigated using Spearman Rank Correlation.  Preliminary analyses 

were performed to ensure no violation of the assumptions of normality, linearity and 

homoscedasticity.  There was a strong, positive correlation between the two variables 

(Spearman rho = 0.70, n = 10, P < 0.05, CI95%).  That is the likelihood of being 

impacted by any injury cause is just as likely independent of age class.   
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5.4.3. Lifetime Reproductive Output 

The complete lifetime reproductive output (LRO), which is the total number of nestlings 

surviving to banding, was recorded for the same 66 individuals (7.3±0.7; mean±s.e., 

range 0-20).  LRO data was pooled for this study due to there being no difference in LRO 

between the sexes (♂7.1±0.9; mean±s.e., range 0-20, n = 37; ♀7.6±0.9; mean±s.e., range 

0-20, n = 29, (t=-0.377, df=64, P = 0.707). 

 

5.4.4. Drivers of lifetime reproductive output in Peregrine Falcons 

The six different proposed models to explain the lifetime reproductive output of Peregrine 

Falcons in Victoria (Table 5.1) were tested in a series of linear models.  Two of these 

models had support as being able to explain trends in LRO, these being the breeding years 

model and the nest protection and nest type model (i.e. ΔAIC <2 Table 5.2).  Neither 

model had support as the best model (i.e. AIC weight >0.9), but the AIC weight of 0.678 

for the nest protection and nest type model suggests it is a better model than the breeding 

years only model (AIC weight = 0.253, Table 5.2).  Further, the delta AIC score of 1.97 

for the breeding years only model is relatively low, and as such we considered that the 

nest protection and nest type model best explains trends in LRO.  The high R2 values for 

this model (i.e 0.7) suggest the model describes a considerable amount of the variation in 

LRO.  From the nest protection and nest type model, LRO was clearly influenced by two 

of the variables included, these being years of breeding (t=0.092, P<0.001) and nest 

protection (t=2.729, P=0.008).  LRO was positively associated with both years of 

breeding (0.109±0.009; coefficient ±s.e.) and the protection afforded by the nest site 

(0.130±0.048; coefficient ±s.e., Figure 5.2). 
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The modeling suggests that whilst LRO is heavily influenced by the number of years in 

which an individual attempts to breed, there is also a nest site level influence associated 

with the protection afforded by the nest location.  More importantly, there was no support 

for models which incorporated landscape scale influences on LRO.  Ultimately, this 

suggests that Peregrine Falcons may be largely unaffected by the surrounding landscape 

when it comes to their lifetime reproductive output. 

 

Table 5.2 AICc model selection results for the six competing models used to explain 

the life time reproductive output (LRO) of Peregrine Falcons in Victoria.  Listed are; the 

model description, the number of parameters (K), the log likelihood of the model 

(logLik), Akaike’s Information Criterion for small samples (AICc), the differences in 

Akaike values ( AIC), and the goodness of fit of the model (Multiple R2). 

Model K logLik AICc ΔAIC AIC weight Multiple R2 

Nest protection and nest type 
model 5 17.578 -21.7 0 0.678 0.696 

Breeding years model 2 13.073 -19.8 1.97 0.253 0.652 

Impact of urbanisation model 4 13.731 -16.5 5.27 0.049 0.659 

Landscape level resource model 6 15.073 -14.2 7.52 0.016 0.672 

Global model 11 20.838 -11.8 9.94 0.005 0.725 

Null model 1 -21.722 47.6 69.37 0 0 

 

The question then arises, “are the number of years of breeding influenced by the site and 

landscape level variables used in the models?”.  We conducted correlations between the 

number of years breeding and all the site and landscape scale variables used in the models 

and found no trends (P>0.05).  This further adds support to the concept that Peregrine 

Falcons are largely resilient to the different landscapes in which they inhabit, and if they 

are able to survive and breed over a number of years they will have reasonable LRO.  
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However, LRO, is further enhanced if the individuals nest site choice was good with a 

high degree of protection of the nest. 

 

 

Figure 5.2 The relationship between the number of years of breeding and the lifetime 

reproductive output (LRO) of Peregrine Falcons in Victoria. The solid line and ▲ = nest 

sites with high protection, the dotted line and  = nest sites with moderate protection, 

and the dashed line and  = nest sites with low protection. 

 

5.5. Discussion 

In this study we found that the LRO of Peregrine Falcons is mainly associated with the 

number of years over which an individual attempts to breed.  LRO was further enhanced 

for individuals breeding at nest sites with higher degrees of protection from the elements.  

This suggests that, whilst successful breeding can occur at nest sites with lower 

protection, the initial decision of choosing a highly protected nest site potentially confers 
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increased fitness on the individual.  The landscape features we considered (amount of 

urbanisation, proportion of cleared land, moderate tree cover, and land to water ecotones) 

were not shown to enhance LRO when compared to the breeding years and nest 

protection model or the breeding years only model.   

 

Land use and habitat quality has been linked to breeding success in Lesser Kestrels 

(Falco naumanni) in Portugal (Catry et al., 2013), Northern Goshawk (Accipiter gentilis) 

in Finland (Byholm et al., 2007), Tengmalm’s Owl (Aegolius funereus) in Finland 

(Korpimäki, 1988) and Sparrowhawks (Accipiter nisus) in Scotland (Newton, 1991). So 

why are landscape variables not good at predicting lifetime reproductive output for 

Peregrine Falcons in Victoria?  At least in terms of this study, there appears to be two 

key drivers of LRO, nest quality and breeding lifespan.  Nest quality (in the form of 

exposure to the elements) has already been demonstrated to influence annual breeding 

success in this species (Mearns & Newton, 1988; Olsen & Olsen, 1989b; Emison et al., 

1993).  So what is the advantage to individuals to remain at a lower quality nest site?  

Two key factors are most apparent; firstly, Peregrine Falcons have the weapons (talons 

and avian killing experience) coupled with aggressive territorial willingness to kill 

interlopers (Zuberogoitia et al., 2002), meaning breeding dispersal to a new territory is a 

high risk strategy for this species.  Secondly, complete clutch failure at poorly protected 

sites tends to occur only in years of exceptional rain (Olsen & Olsen, 1989b) or snowfall 

(Mearns & Newton, 1988; Bradley et al., 1997).  Increased lifespan leads to increased 

LRO, even at poorly protected sites.  One feature of this phenomenon is high mate and 

breeding territory fidelity (Mooney & Brothers, 1993). 
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Nest defense may therefore be an important factor in nest site fidelity even if the nest is 

of lower quality.  Also of the 66 adults monitored in this study none were recorded 

moving to another territory.  This level of nest fidelity and territorial defense is consistent 

with the resource or mate defense breeding strategy used by the Peregrine Falcon 

(Wightman & Fuller, 2006).  Expanding on the nest defense theory of site fidelity, we 

have four records of an adult Peregrine Falcon being killed at a nest site during the 

breeding season.  In each case it was a female that died.  In one case the resident was 

killed and in the other cases the intruder was killed.  Whilst seldom recorded (Ratcliffe, 

1993; Zuberogoitia et al., 2002) the cases in this study attest to the risks involved in co-

opting an occupied territory by this species.   

 

Peregrine Falcons are extremely flexible in the environments they will occupy, and have 

been shown to be quite flexible in their diet.  Such adaptability in these two aspects of the 

ecology of a highly mobile species would have assisted in the dispersal of the Peregrine 

Falcon across the globe (Santana et al., 2006; White et al., 2013).  Flexibility in hunting 

strategies; switching from day to night hunting in urban New York (DeCandido & Allen, 

2006); changing the composition of the diet at a nest site over time to improve hunting 

efficiency and to exploit a new prey species (Dekker & Taylor, 2005); switching from 

birds to mammals in years of high microtine rodent abundances in arctic Canada 

(Bradley & Oliphant, 1991); young preying upon micro bats (Silver-haired (Lasionycteris 

noctivagans), Big Brown (Eptsicus fuscus), and Red (L. borealis)) Lake Michigan, USA; 

raising young on fish, Alaska (Hetzler, 2013); opportunistically hawking for insects in 

urban Melbourne at night (unpublished data from this study); taking locusts during 

tropical grassland fires in Fiji and avoiding starvation by feeding on migrating 

dragonflies (Lesser Emperor (Anax parthenope) and Globe Skimmer (Pantala 



Ch. 5  LRO, Lifespan & nest quality 

Victor G. Hurley  119 

flavescens)) on an Hongdo island off South Korea (Byre, 1990; White & Brimm, 1990; 

Cogley, 1995; Choi & Nam, 2012) all attest to a high degree of dietary flexibility.   

 

Selecting a nest site and attempting to breed is likely to be a second order decision 

compared to the establishment and maintenance of a territory.  An individual will only 

reside in and establish a territory in an area that provides the base resources required for 

survival.  Once a territory has been established, it is likely that the individual will then 

look towards attempting to breed.  This may involve choosing a highly protected nest site 

and as such maximizing their chance of high LRO, or accepting a lower quality nest site 

and suffering a reduction in LRO due to failures in those years of high rain/snowfall. 

 

How can these findings be applied to maximize the reproductive output of this and other 

recovering populations?  This is a critical question as Peregrine Falcons have suffered 

dramatic global declines due to the effects of DDT (Cade et al., 1988; Ratcliffe, 1993).  

The banning of this class of chemical across much of the Peregrine Falcons’ range has 

removed the major threatening process causing these declines.  Considerable global 

efforts have been invested in recovering populations of Peregrine Falcons (Cade et al., 

1988; Cade et al., 2009; Sielicki & Mizera, 2009).  This current research has established 

that reduced protection of the nest site will have a dampening influence on the LRO of 

individuals.  If the level of protection afforded by a nest site can be corrected through 

intervention approaches such as the use of nest boxes or improving the drainage of a nest 

ledge, it should be possible to allow individuals to maximise their LRO.  If all poorly 

protected nest sites can be enhanced to correct for this, I propose that the growth rate of 

recovering Peregrine Falcon populations should increase. 
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6.  
Interventions for improving the breeding success of the 
Peregrine Falcon (Falco peregrinus macropus) at 
anthropogenic nest sites: plugging an attractive sink. 
 

 
The author on the 33rd level of 367 Collins St Melbourne 

 

 

I have run,  

I have crawled. 

I have climbed highest mountains. 

I have scaled these city walls,  

these city walls. 

Only to be with you. 

Now I know,  

I have found,  

what I was looking for. 

With apologies to Bono and U2 



Ch. 6  Plugging an attractive sink 

122  Victor G. Hurley 

6.1. Abstract 

Peregrine Falcons in Victoria, south eastern Australia have been recorded nesting on a 

wide variety of anthropogenic structures, from cliffs in stone quarries to city buildings 

and even adopting the stick nests of other bird species on high voltage transmission 

towers.  The use of anthropogenic sites for nesting by Peregrine Falcons has grown 

naturally in Victoria from 7.5% in 1987 to 36.4% by 2012.  During this study breeding 

performance was monitored at 127 nests, for at least five years each, from 1991 to 2012 

and anthropogenic sites tended to have lower breeding success than natural sites (72.4% 

and 88.0% respectively).  We tested if this lower breeding success was the result of 

unsuitable physical features of the nests, exposing the eggs to the effects of temperature 

or rainfall.  Nest boxes were installed at 18 poorly performing anthropogenic sites (8 

quarry cliffs, 10 buildings) where egg hatch rates averaged 25.6% (±5.63 s.e.) compared 

to 63.25% (±3.65 s.e.) for 18 reference cliff sites.  At the 18 treatment sites, where nest 

boxes were installed, egg hatch rates increased significantly (Tukey, P < 0.001) to 

76.64% (± 2.74 s.e.).   

 

Urban growth projections globally suggest that nesting opportunities for Peregrine 

Falcons on anthropogenic structures are likely to continue to increase.  To inform both 

site managers and biologists, a decision matrix was developed outlining the strategies 

available for the management of Peregrine Falcons attempting to breed at anthropogenic 

sites.   
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6.2. Introduction 

Anthropogenic change to natural environments presents significant challenges to species 

globally (Chace & Walsh, 2006).  Conservation biology is increasingly focused on the 

role of anthropogenic disturbance from both the species perspective, and also the 

ecosystems we are seeking to protect (Miller & Hobbs, 2002; Thompson et al., 2003).  

Urbanisation is widely considered one of the most damaging anthropogenic disturbances 

that can be applied to natural and semi-natural ecosystems (Vitousek et al., 1997).  With 

current projections that over 50% of the world’s population will reside in cities within the 

next 30 years (United Nations, 2012), the challenge of managing the impacts of 

anthropogenic disturbance processes will become critical to the field of conservation 

biology.  With the impact of anthropogenic change in the landscape extending well 

beyond the urban footprint of cities (Suárez et al., 2009; Sonne, 2010; Glennon & 

Kretser, 2013), many species will be presented with limited or no potential for population 

expansion (Robertson & Hutto, 2006) and numerous species will decline in response to 

anthropogenic disturbances (Wilcove et al., 1998; Czech et al., 2000; Gowdy et al., 

2010).   

 

Native bird species are affected by anthropogenic change in vastly different ways (Chace 

& Walsh, 2006; Strasser & Heath, 2013 in press), however, raptors are a group 

particularly vulnerable to subtle aspects of these changes (Boal & Mannan, 1999; 

Ratcliffe, 2003).  With a requirement for comparatively large home ranges (Newton, 

1979a; Burnham & Newton, 2011), due to elevated food requirements, and often 

displaying sensitivity to human disturbance near nests (Olsen & Olsen, 1980; Richardson 

& Miller, 1997; Watson, 2004; Dennis et al., 2011) raptors would be expected to suffer 

extensively from urbanisation.  Furthermore, as with all predators, bioaccumulation of 
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persistent organic pollutants remains an ongoing threat (de Wit et al., 2006).  Despite this 

sensitivity to human disturbance, a wide range of raptor species are known to nest in 

urban and other highly modified environments, taking advantage of a variety of 

anthropogenic structures including high voltage transmission towers (Steenhof et al., 

1993; Bunnell et al., 1997; Ledger & Hobbs, 1999; Dell'Omo et al., 2009), hydroelectric 

dam walls (White et al., 1988), power station structures and chimneys (Tordoff et al., 

1998), road and rail bridges (Bell et al., 1996; Septon et al., 1996), large coal mining 

machines (Wegner et al., 2009) and high rise city buildings (Bird et al., 1996; Cade et 

al., 1996; Wegner et al., 2009).  Raptors breeding on anthropogenic structures have often 

been attracted to sites by the prior installation of artificial nesting substrates in the form 

of platforms, nest boxes and artificial burrows (Ewins, 1996; Gottschalk et al., 2011; 

Libois et al., 2012).   

 

The creation of some anthropogenic structures, particularly buildings and quarry cliffs, 

has artificially enhanced the primary nesting cue (i.e. topographic relief) for some cliff-

nesting raptor species (Bird et al., 1996).  In effect, these structures act as supernormal 

releasers for nesting (Robertson & Hutto, 2006).  Cliff-nesting raptors have adopted 

buildings as nest sites in many different ways, including the use of ceiling spaces and 

holes in walls in farm houses by the Lesser Kestrel (Falco naumanni) in Spain (Franco et 

al., 2005; Calabuig et al., 2008); the use of window sills by the Eurasian Kestrel (Falco 

tinnunculus) in Israel (Charter et al., 2007); and increasingly, the adoption of city 

building roof tops or ledges by the Peregrine Falcon (Falco peregrinus) across Europe 

(collated in Sielicki & Mizera, 2009), North America (Frank, 1994; Bird et al., 1996; 

Burnham & Cade, 2003; Banks et al., 2010) and Australia (Emison et al., 1997).  Such 
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sites are considered to offer secure nest locations protected from ground predators and 

are potentially exposed to lower levels of human disturbance.   

 

Unlike most raptor species that construct their own stick nests, cliff nesting Falco species 

require nest sites with protection from rainfall, water run-off and ground water seepage 

(Emison et al., 1993).  The level of protection from adverse weather is thought to 

determine the quality of the nest at the micro level (Olsen & Olsen, 1989b).  The local 

context of the nest location (e.g. a nest on a petrochemical plant compared to one on a 

small quarry cliff in a rural landscape) may be expected to present further nest site-

specific risks to fledglings as they learn to fly.  Given the importance of successful 

breeding to a population, and the apparent global trend towards increased nesting on 

anthropogenic derived structures (Bird et al., 1996), it is critical that research assesses 

whether breeding on such structures presents an advantage or disadvantage to the 

breeding individuals.  

 

An increase in the number of breeding Peregrine Falcons using anthropogenic structures 

in Europe (Wegner et al., 2009) and North America (Bird et al., 1996; Tordoff & Redig, 

1997) has often been initiated and enhanced through the release of captive-bred birds 

from nest boxes installed on buildings (Marks, 1994; Cade et al., 1996).  This has been 

further supported by the installation of nest boxes on many other industrial constructions 

to encourage nesting (Tordoff et al., 1998; Carlton, 2003).  It is not known how 

productive these sites would have been for Peregrine Falcons without such interventions 

(Delibes et al., 2001a).  The breeding performance of raptors at anthropogenic sites pre 

and post nest site intervention has not been well documented.  Given the popularity of 

installing nest boxes (especially for birds) it is important to investigate the efficacy of 
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this approach for each target species, particularly given that the provision of artificial 

nest sites to attract species to breed can be counterproductive to the conservation of 

species (e.g. Mänd et al. (2005); Klein et al. (2007); Björklund et al. (2013)). 

 

In Australia, the Peregrine Falcon has adopted anthropogenic structures for nest sites 

without the aid of release programmes (Olsen & Olsen, 1988b) or the installation of nest 

boxes to attract them to nest on anthropogenic structures (White et al., 1988; Emison et 

al., 1997).  This population therefore, presents an ideal opportunity to investigate how 

these newly adopted anthropogenic nest sites perform relative to natural sites and 

whether they require particular management interventions to promote successful 

breeding.   

 

Nest site quality is critical to the breeding success of the Peregrine Falcon (Olsen & 

Olsen, 1989b; Emison et al., 1993; Wightman & Fuller, 2006).  This is especially 

pertinent within the current context of increasing levels of occupation of anthropogenic 

structures reported in other studies (Bird et al., 1996; Taranto et al., 2008; Wegner et al., 

2009).  This research, therefore, aims to investigate the impact of anthropogenic derived 

nest sites on the breeding performance of the Peregrine Falcon in Australia.  More 

specifically this research aims to:  

1. determine whether the number of anthropogenic sites adopted by Peregrine 

Falcons for breeding (in Victoria) has increased since earlier studies ending in 

1984 (White et al., 1988); 

2. compare the breeding performance of Peregrine Falcons at anthropogenic sites to 

natural sites; 
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3. determine the causes and timing of nest failure at both anthropogenic and natural 

nests; 

4. determine whether nest site interventions could be an effective strategy for aiding 

reproductive output of Peregrine Falcons, and; 

5. consider strategies that can be incorporated in the decision-making process to 

manage Peregrine Falcon nest sites at anthropogenic sites. 

 

6.3. Materials and methods 

6.3.1.   Study area 

This study was undertaken in Victoria, south-eastern Australia, and covered an area of 

approximately 227,000 km2.  The geographic range of the study area included a 

latitudinal span of four degrees (34º 30’ to 38º 45’ S) north to south and seven degrees 

(141º to 148º E) of longitude west to east.  Peregrine Falcon nests were actively searched 

for between 1991 and 2012, to provide information for this research.  Active nests were 

located during this study through a range of methods including detailed area searches, 

on-ground confirmation of historical nests and data collected in earlier surveys from 

1975 to 1984 (White et al., 1981; Emison & White, 1988), the use of government 

wildlife atlas records, responding to reports from the general public and land managers, 

and by opportunistic observation.  In total 250 nest sites were located across Victoria 

where Peregrine Falcons had attempted to breed.  For each of these nests, the type of nest 

(cliff, building, tree cavity or stick nest) and its origin (natural or anthropogenic) was 

determined.  Of these sites, 192 were monitored for breeding success.  A minimum of 

five years of breeding data was collected, from 1991 to 2012, for 127 of these nest sites 
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(Figure 6.1).  The maximum distance between monitored nests was 589 km (west to east) 

and 521 km (north to south). 

 

Figure 6.1  Locations of Peregrine Falcon nests monitored for at least five years between 

1991 and 2012 displayed on a modeled elevation map of Victoria (n = 127).  Natural 

sites are represented by:  = cliff,  = tree hollow,  = stick nest in tree, and 

anthropogenic sites:  = building,  = quarry cliff, and ▼ = stick nest on tower. 

 

6.3.2. Terminology 

Several key terms are used throughout this study and a definition of each is provided as 

follows (adapted from Steenhof and Newton (2007)).  Origin refers to whether the nest is 

on a structure (cliff or building) that is of anthropogenic origin or a naturally occurring 

feature (cliff or tree).  A breeding event combines the site and the year as a single unit 

and is defined as when a nest territory is occupied and the resident pair of Peregrine 

Falcons attempt to lay eggs in a single breeding season (or year).  A successful breeding 
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event is one when one or more eggs hatch.  Clutch size is the total number of eggs laid 

for a single annual breeding event.  Brood size is the total number of nestlings hatched as 

recorded at the time of banding.  This method has been adopted because observing actual 

hatching of all clutches was not possible.  Hatch rate is taken as the number of nestlings 

either known to have hatched (determined during surveys early in the nestling period) as 

a proportion of the eggs laid or where actual hatch rate is not known the number of 

nestlings alive at banding is recorded as the hatch rate of the eggs laid.   

 

6.3.3. Materials and data collection 

Breeding observations were made in two ways.  (1) remote observations were made by 

using a tripod-mounted Leica Televid 77 spotting scope with Apo chromatic lens to 

count the number of eggs laid (clutch size).  (2) at sites where the nest contents could not 

be observed from a distance, the site was climbed to determine clutch size.  Second, nests 

were visited later in the breeding season to band nestlings and a count of all nestlings that 

survived or died prior to banding age (26 days post hatching).  Surviving nestlings were 

banded with metal Visual Identification (VID) tarsus bands (Hurley et al., 2007; Hurley 

et al., 2013).  Monitoring visits to determine fledging rates were conducted on an ad hoc 

basis.  A further monitoring technique included using the spotting scope to observe the 

resident adults at each nest site for the presence of VID leg bands.  These surveys were 

undertaken during either the clutch monitoring visit or the visit to band nestlings. 

 

Where practicable, at sites where breeding by Peregrine Falcons had failed, the cause of 

failure was assessed at each site (Steenhof & Newton, 2007).  At anthropogenic sites, 

information on breeding events including clutch size, brood size and causes of egg or 

nestling mortality were collected from on-site workers and managers in addition to our 
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own assessments.  At natural sites causes of mortalities were based on visual assessment 

of the nest contents and the immediate environment.  These assessments were either 

direct (e.g. observation of predator at the nest or lead shot pellets located via x-ray of 

nestling carcasses) or indirect (e.g. the presence of a full clutch of un-hatched eggs in an 

undisturbed cliff nest and, in one case, evidence of recent removal of stands of invasive 

Monterey pine (Pinus radiate) above the nest).  Removal of the pines (back-dated with 

the land manager) had occurred during the mid-incubation period for the site causing the 

adults to cease incubation for eight hours in cold weather.   

 

At anthropogenic sites where breeding had failed for one or more years and nest quality 

appeared to be the cause of failure (i.e. unsuitable nest substrate or inundation from 

water) a nest box was installed at the site.  On the same day of installation, the old nest 

ledge was destroyed or removed to prevent future breeding attempts there.  Nest boxes 

were constructed of marine grade plywood (19 mm thick and painted with at least four 

coats of outdoor grade acrylic paint).  Boxes were made to two sizes (the smaller one for 

buildings and the larger one for cliffs).  Small boxes had dimensions; 600 mm wide x 600 

mm high x 600 mm deep, and the large boxes were 1,000 mm wide x 600 mm high x 600 

mm deep.  All boxes comprised of a roof, three walls and a base which had a 60-100 mm 

layer of coarse gravel and fly-screen mesh covering four drain holes of 25 mm in 

diameter each.  The boxes were open on the long edge with a wall 100 mm high to retain 

a 90 mm thick layer of gravel which acts as a substrate that the female can form into a 

nest scrape. 

 

Sites where nest boxes were installed are referred to as treatment sites.  Breeding events 

at these sites are referred to as either pre-nest box or nest box used, which was 
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determined in relation to when the nest box (the treatment) was installed and used.  A 

second set of sites (all cliffs) each located within 20 km of a treatment site were selected 

to provide a comparative dataset to the treatment sites and are referred to here as 

reference sites.  The reference sites were selected based on their proximity to the 

treatment site as they were considered to be subject to similar weather conditions and had 

access to similar prey resources. 

 

6.4. Results 

The earliest surveys of Peregrine Falcon nests in Victoria were undertaken between 

1974-79 and identified the nest type for 136 sites (White et al., 1981) with no sites of 

anthropogenic origin recorded.  By 1987, 11 nest sites were recorded of anthropogenic 

origin (White et al., 1988), comprising 7.5% of the described sites for the State.  A 

subsequent census of the origin of Peregrine Falcon nest sites early in the current study 

identified 199 sites of which 11.6% (23 of 199) were anthropogenic in origin (Emison et 

al., 1997).  By 2012 in the current study, 250 Peregrine Falcon nests were identified and 

classified based on their origin (i.e. natural (n = 159) or anthropogenic (n = 91)).  At the 

state-wide level the prevalence of anthropogenic derived nest locations was 36.4%.  This 

is a substantial increase from recent surveys, suggesting that anthropogenic derived nests 

have come to form a significant and rapidly growing proportion of the nest sites utilised 

in this population.   

 

In the current study (1991-2012) each site was further categorised into one of four nest 

types: cliff, building (i.e. grain or cement silos and commercial buildings), stick nest and 

tree hollow.  Stick nests at sites of anthropogenic origin were built by either Australian 

magpies (Cracticus tibicen) or raven species (Corvus sp.) on electricity transmission 
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towers (n = 10), a water storage tower (n = 1), or telecommunication towers (n = 2).  The 

number of stick nests on anthropogenic structures is considered to be less representative 

than any of the other nesting categories because of the transient nature of these nests, the 

lack of targeted surveys of these structures and the difficulty in accessing them.  Most 

anthropogenic cliff sites 68.8% were in actively worked quarries and were subject to 

limited direct human disturbance.  The altitude of the nest was recorded for 219 sites.  

The mean altitude (meters above sea level (m asl)) of nests was compared between 

natural and anthropogenic sites, (natural = 201.5±17.8 m, (n = 130), anthropogenic = 

155.5±13.1 m, (n = 89), (mean±s.e.)) and was significantly different (t=2.08, df=214.6, 

P=0.038).  This altitudinal distribution of Peregrine Falcon nest sites is reflective of more 

extensive anthropogenic developments at lower altitudes. 

 

Of the 250 Peregrine Falcon nest sites identified throughout Victoria, a minimum of five 

years breeding data was collected from 127 sites (9.4 years ± 0.486 years (mean±1 s.e.)) 

from 1991 to 2012 (Table 6.1).  These 127 sites provide the base breeding data used to 

investigate the role of nest origin and type on reproductive output.  The ratio of 

anthropogenic to natural sites differed between the state wide population of known nests 

and those with more than five years of breeding data (X2
(1)=4.884, P < 0.001) had been  

collected.  Nest sites of anthropogenic origin were more prevalent than expected in the 

data where more than five years of breeding data were collected (adjusted residual =2.3).   

 

The dominant type of anthropogenic nest type is cliffs (21.2%) which are largely found 

in quarries, however, buildings also now constitute 10% of the overall nests in Victoria 

(Table 6.1).  The composition of nest types in the data where more than five years of data 

were collected differs to that of the state wide population (X2
(5)=12.479, P = 0.029).  The 
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subset of nests where long-term breeding data is available contains more anthropogenic 

cliffs than expected (adjusted residual=2.7) and less natural stick nests (adjusted residual 

= -2.2).  

 

Table 6.1 Number and percentages (in parentheses) of the four major nest types (cliff, 

building, hollow and stick nest) categorised by their origin for 250 Peregrine Falcon nests 

identified across Victoria from 1991 to 2012.  The values in italics represent the 127 sites 

where more than five years of breeding data was collected. 

Origin 
Nest Type 

Totals 
Cliff Building Hollow Stick nest 

Natural 95 (38.0) - 41 (16.4) 23 (9.2) 159 (63.6) 

 44 (67.7) - 17 (26.2) 4 (6.2) 65 (51.2) 

Anthropogenic 53 (21.2) 25 (10.0) - 13 (5.2) 91 (36.4) 

 43 (69.4) 16 (25.8) - 3 (4.8) 62 (48.8 

Subtotals 148 (52.9) 25 (10.0) 41 (16.4) 36 (14.4) 250 

 87 (68.5) 16 (12.6) 17 (13.4) 7 (5.5) 127 

 

6.4.1. Breeding outcomes associated with nest origin 

Breeding data was collected for a total of 1,168 breeding events across the 127 sites 

where more than five years of breeding data was achieved.  There was a difference in the 

proportion of successful breeding attempts between natural (88%, n = 635) and 

anthropogenic nest sites (72%, n = 533; X2
(1)=44.71, P < 0.001).   

 

Clutch size (count of eggs laid) was recorded for 462 breeding events at 136 sites (59 

natural, 77 anthropogenic).  Overall, there was no significant difference in clutch size 

between natural sites (2.77 ±0.052; mean ± 1 s.e.) and anthropogenic sites (2.86 ±.043; 
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mean ±s.e.; t = -1.332, df = 460, P = 0.183).  This suggests that nest origin does not have 

a significant influence on the egg producing capacity of Peregrine Falcons. 

 

For breeding events where brood size was known, a total of 2,420 nestlings hatched 

successfully.  On average across all sites, there were 1.87 nestlings per breeding event 

and 2.45 per successful breeding event.  There was a significant difference in brood size 

between natural sites (2.18 ± 0.04, mean ± 1 s.e.) and anthropogenic sites (1.85 ± 0.06; 

mean ± 1 s.e.) when the data for both successful and unsuccessful breeding events were 

considered together (t=4.79, df=969.12, P <0.001).  The brood size for successful 

breeding events only, did not differ between natural sites (2.42 ± 0.03; mean ± 1 s.e.) and 

anthropogenic sites (2.45 ± 0.04; mean ± 1 s.e.; t =-0.478, df=950, P = 0.633).  This 

suggests that whilst the overall success rate of anthropogenic nests is lower than natural 

nests, if a clutch is successful in an anthropogenic nest it will be of a comparable size to a 

clutch from a natural nest. 

 

6.4.2. Causes of nest failure 

The failure of a breeding event can occur at any time between the laying of eggs and the 

final fledging stage.  We have collected data for two different stages of the nesting 

period, the egg phase (incubation), and the nestling period between hatching and eventual 

fledging from the nest.  In the following section we present the sources of failure at each 

of these two stages of the breeding cycle. 

 

Egg hatch rates were determined for 488 breeding events.  One or more eggs failed to 

hatch in 267 breeding events.  The cause of egg failure was able to be confidently 

ascertained for 233 (87.3%) of these breeding events.  In each individual failed breeding 
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attempt there was only one identified cause of failure (Table 6.2).  Water damage from 

rainwater run-off or ground water seepage filling nest scrapes was the most common 

cause of incubation failure across all sites (33% for all failures for all sites, Table 6.2).  

The ratio in causes of egg failure differed between natural and anthropogenic nest sites 

(X2
(7)=45.201, P < 0.001).  Nesting on an unsuitable substrate (e.g. bare metal or 

concrete) did not occur in natural sites, but was a significant contributor to the difference 

between natural and anthropogenic sites (adjusted residual=4.7), contributing to 24% of 

the nests that failed at anthropogenic nest sites (Table 6.2).  In natural sites, predation 

occurred more frequently than expected when compared to anthropogenic nest sites 

(adjusted residual=3.9).  This data provides some degree of evidence for the suggestion 

that anthropogenic nests may be afforded some degree of protection from predators, but 

this comes at the expense of exposed or unsuitable nest substrates. 

 

Table 6.2 Causes of Peregrine Falcon egg loss categorised by the origin of the nest site 

(natural or anthropogenic) and combined figures for both.  Listed are the numbers of 

breeding events with egg failures.  Numbers in parentheses are the percentages of 

breeding events for failed eggs from each nest group. 

Cause of egg loss Natural Anthropogenic Combined 

Predation 14 (18.7)   8  (4.2) 22   (8.2) 

Human disturbance   2   (2.7) 17   (8.9) 19   (7.1) 

Unknown 14 (18.7) 20 (10.4) 34 (12.7) 

Death of adult(s) 18 (24.0) 27 (14.1) 45 (16.9) 

Water damage 25 (33.3) 64 (33.3) 89 (33.3) 

Cracked egg(s)   1   (1.3) 10   (5.2) 11   (4.1) 

Thin shelled egg(s)   1   (1.3)   0   1   (0.4) 

Unsuitable substrate   0 46 (24.0) 46 (17.2) 

Total 75 192 267 
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6.4.3. Causes of nestling mortality 

A total of 54 nestlings were recorded dead between hatching and fledging for a total of 

37 breeding events.  Combined, the 54 nestling mortalities accounted for 2.23% of 

hatched nestlings recorded throughout this study.  Nestling mortality was generally low 

across both natural and anthropogenic nest sites which precluded the possibility of 

meaningful statistical comparison.  In general the causes of mortality were similar 

between both natural and anthropogenic nests.  Human disturbance, however, was 

recorded in anthropogenic nests but not in natural nests.  Similar to the causes of egg 

failure, natural nests appeared to have a slightly higher loss of nestlings due to predation 

than was experienced at anthropogenic nests (Table 6.3). 

 

Table 6.3 Causes of nestling mortalities categorised by the origin of the nest (natural or 

anthropogenic) and combined figures for both.  The first numbers listed are the number 

of nestling mortalities.  Numbers in parentheses are the percentages of the total for each 

group of nests.  Numbers in italics are the number of breeding events for each category.  

Data are from Peregrine Falcon nests in Victoria from 1991 to 2012. 

Cause of nestling mortality Natural Anthropogenic Combined 

Destruction of nest 3 (10.3) 2 2   (8.0) 2 5 (9.3) 4 

Disease 3 (10.3) 3 7 (28.0) 7 10 (18.5) 10 

Fell from nest 6 (20.7) 5 5 (20.0) 4 11 (20.4) 9 

Human disturbance 0 -  0 3 (12.0) 1 3 (5.6) 1 

Poisoning 1 (3.4) 1 2   (8.0) 1 3 (5.6) 2 

Predation 16 (55.2) 8 6 (24.0) 3 22 (40.7) 11 

Totals 29 19 25 18 54 37 

 

6.4.4. Treating poor performing anthropogenic nest sites 

Based on the data presented thus far, it was clear that some anthropogenic nest sites 

performed worse than natural nest sites.  While not of major concern in itself, the 
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significant increase in the use of anthropogenic nest sites in Victoria suggests that the 

Peregrine Falcon population growth could be enhanced if breeding performance at these 

nest sites could be improved.  All the data suggested that the main difference between 

natural and anthropogenic nests was associated with egg failure.  If anthropogenic nests 

were able to be augmented in a way that could limit egg failure, the data suggests they 

could produce similar fledgling rates to those of natural nests.   

 

As the main sources of egg failure in anthropogenic nests were associated with an 

unsuitable substrate and water seepage (57% combined), a nest box provision strategy 

appeared appropriate.  Nest boxes were installed in 18 poorly performing anthropogenic 

sites, comprised of stone quarry cliffs (n = 8) and buildings (n = 10).  

 

In all cases the cause of the poor egg hatch rates had been attributed to the quality of the 

nest site.  After at least one year of monitoring breeding performance, a nest box was 

installed at each of these 18 sites (i.e. treatment sites).  The treatment sites represented 

19.8% of all anthropogenic sites and 7.2% of the 250 known breeding sites in Victoria.  

Treatment sites comprised quarry cliffs in exurban (i.e. rural n = 5, or suburban n = 3) 

landscapes and buildings in heavy industrial/urban (n = 6), peri-urban (n = 1) and rural (n 

= 3) landscapes.  Breeding data were also collected over the same period at 18 other cliff 

nests (reference sites), located within 20 km of each of the treatment sites.  The reference 

sites allowed for a spatial and temporal reference dataset from which to test the relative 

performance of the management strategy.   

Breeding events where clutch size was known were grouped by site treatments and the 

average clutch compared between pre-nest box (2.54±0.142; mean ± 1 s.e., n = 67 

breeding events), nest box (2.52±0.10; mean ± 1 s.e., n = 176) and reference sites 
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(2.58±0.10; mean ± 1 s.e., n = 151).  Consistent with our previous data, there was no 

difference in clutch size between the three treatments (F(3, 391)=0.076, P = 0.927, Figure 

6.2).   

 

Breeding events where brood size was known were grouped by site treatments and the 

average brood sizes were pre-nest box (0.95±0.147; mean ± 1 s.e.), n = 77 breeding 

events), nest box (1.99±0.10; mean ± 1 s.e.), n = 198) and reference sites (2.09 ± 0.07; 

mean ± 1 s.e., n = 296).  There was a difference in brood size between the different 

treatment types (F=25.163(2,568), P < 0.001).  There was no difference in brood sizes 

between the nest-box treated sites and the reference sites (Tukey P = 0.680).  The brood 

size for the sites prior to nest box installation was, however, significantly lower than that 

for the post nest box installed sites and the reference sites (Tukey P < 0.001, Figure 6.2). 
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Figure 6.2 Mean number of eggs laid (clutch size) = ● and mean number of nestlings 

surviving to banding (brood size) =▲.  Whiskers show ±1 standard error of the mean for 

three categories of nest site treatment at Peregrine Falcon nests in Victoria.  Treatment 

sites (n = 18) are the same group of sites with means displayed for pre-nest box years and 

years in which a nest box was used.  The reference sites are a different group (n = 18) of 

nest sites where nest boxes were not used.  Solid gray lines (with arrows) illustrate the 

relative proportions of egg failure rates. 

 

6.4.5. Egg hatch rates 

Breeding events where hatch rate was known were grouped by site treatments and the 

average percentage hatch rate compared between pre-nest box (25.64%±5.63 (mean ± 1 

s.e.), n = 53 breeding events), nest box (76.64%±2.74; mean ± 1 s.e., n = 145) and 

reference sites (63.25%±3.65; mean ± 1 s.e., n = 126).  There was a significant difference 

in egg hatch rates between the three treatment types (F(2, 321)=35.728, P < 0.001).  Hatch 
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rates at the nest-box treated sites were significantly higher than the reference sites (Tukey 

P = 0.010).  The hatch rates for the sites prior to nest box installation were, however, 

significantly lower than that for the post nest box installed sites and the reference sites 

(Tukey P < 0.001). 

 

6.4.6. Nest box cost-benefit assessment 

Each nest box was constructed and installed at a cost of ~AU$2,400 (2013 costings) 

including a steel frame which is bolted to a cliff face and upon which the nest box is 

attached.  Nest boxes require replacement every ten years due to weather and rock fall 

damage.  At this rate, the deferred cost per installed nest box is ~AU$240 per year.  For 

all nest boxes an average of 1.99 nestlings year-1 (±0.10 1 s.e.) were hatched.  In terms of 

costs per nestling produced this equates to AU$120.60 nestling-1.  In years of successful 

breeding attempts, nest boxes produced an average of 2.61 nestlings year-1 (±0.07 1s.e.) 

which averages AU$91.95 nestling-1.  By comparison the Midwest Peregrine Project in 

the USA paid US$2,500 nestling-1 captive raised and hack released (Sherrod et al., 1982; 

Midwestern Peregrine Society, 2009).   

 

6.5. Discussion 

 

The proportion of anthropogenic sites used for nesting by Peregrine Falcons has 

increased over the past 30 years.  This study presents a compelling case of an attractive 

sink (Delibes et al., 2001b) that occurs at a significant proportion of anthropogenic nest 

sites.  This sink is due to the physical qualities of the nest leading to significantly reduced 

egg hatch rates.  Nest site interventions (i.e. nest boxes), once used, significantly 
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improved the egg hatch rate and as such mitigated the proximate negative effects of this 

sink.  Subsequently addressing the primary cause of reduced breeding performance at 

anthropogenic sites via nest boxes in situ for this Victorian population was highly cost 

effective.   

 

6.5.1. Attractive sink 

Much of the recent theory developed around ecological traps has focused on their role in 

source-sink population dynamics (Remeš, 2000; Gundersen et al., 2001; Battin, 2004).  

One of the defining criteria of an ecological trap is that it occurs when rapid 

environmental change triggers a maladaptive choice for a lower quality habitat over a 

higher quality habitat (Robertson & Hutto, 2006).  In this study, however, a source-sink 

paradigm is more applicable to individual nests based on their quality and performance as 

breeding platforms, than it is at the population level for this species (Robertson & Hutto, 

2006).  We contend that sites acting as attractive sinks, involve the behavioural choices 

of individuals rather than populations (Battin, 2004).  For this species, in this study, sinks 

are more an individual than a population-level phenomenon (Robertson & Hutto, 2006).  

More specifically, not all anthropogenic nest sites without nest boxes behave as sinks and 

not all natural sites act as sources.   

 

For the Peregrine Falcon, the physical quality of each nest is site-specific and 

independent of, or at least not driven by, broader habitat or landscape attributes (Olsen & 

Olsen, 1989b).  Spatially, there is not an anthropogenic population of Peregrine Falcons 

because anthropogenic sites are scattered across landscapes and levels of urban 

development (Pulliam & Danielson, 1991; Emison et al., 1997).  Within this context it is 
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most useful to assess nest quality on a case by case basis instead of considering 

automatically all anthropogenic sites as attractive sinks for this species. 

 

6.5.2. Ecological trap 

The ecological trap operating at some anthropogenic cliffs and nearly all buildings 

observed in this study can be classified as a severe trap (Robertson & Hutto, 2006).  The 

trap satisfies two criteria simultaneously: a) an increase in the attractiveness of these sites 

for nesting as demonstrated by the large increase in the use of these sites since the 1980s 

to the present, and the consistency with which they are occupied and the tenacity with 

which they are fought over, and b) a decrease in the quality of the habitat via negative 

impacts on breeding success.  The third criteria for identifying an ecological trap 

(Robertson & Hutto, 2006) is a preference for the lower quality trap habitat over higher 

quality habitat.  Many of the anthropogenic sites used in this study were in quarries 

located on flat or low lying areas (<200 m above sea level) that are devoid of natural 

cliffs.  In these breeding territories there are no alternative cliffs to adopt.  It is 

acknowledged that Peregrine Falcons will adopt stick nests of other birds (Emison et al., 

1997) and these provide a higher egg hatch rate than do cliff ledges (unpublished data).  

However, when natal dispersers are presented with cliffs or buildings and stick nests in 

the same area they prefer to adopt cliffs/buildings until these nest types are saturated 

(Kleinstäuber & Kirmse, 2009; Wegner et al., 2009).  Anthropogenic cliffs and buildings 

present an increased nesting stimulus to Peregrine Falcons due to the relative height of 

the visual or actual cliff they present (Bird et al., 1996; Jenkins & Benn, 1998; Wightman 

& Fuller, 2006).   

 

 



Ch. 6  Plugging an attractive sink 

Victor G. Hurley  143 

6.5.3. Net box cost/benefit 

Cost benefit analyses of nest boxes for threatened species is controversial when working 

within the small population paradigm of critically endangered species (Caughley, 1994; 

Spring et al., 2001; Lindenmayer et al., 2002; Harley & Spring, 2003).  The use of nest 

boxes was highly cost effective for this population of Peregrine Falcons (AU$120.60 

nestling-1).  This management strategy, however, must be seen more as one of proactive 

management of a healthy recovering population rather than restorative conservation 

borne out of necessity (Cade et al., 1988; Sielicki & Mizera, 2009).   

 

6.5.4. Managing anthropogenic nest sites 

With 36.3% of Peregrine Falcon nests in Victoria currently on anthropogenic structures, 

and the human population set to increase by 29.3% between 2002 to 2030 (DOI, 2002; 

ABS, 2011) opportunities for nesting on anthropogenic structures will increase into the 

future (Bird et al., 1996; Sielicki & Mizera, 2009).  The installation of nest boxes 

overcame the attractive sink due to poor egg hatch rates at 18 anthropogenic sites and 

addressed the real life application of the scientific method to the conservation 

management of a species (Laurance et al., 2012).  A broader strategic approach is 

required to manage a range of potential impacts at anthropogenic nest sites.  In cases of 

human disturbances interfering with breeding, well managed exclusion zones, both 

temporal (during the breeding season) and spatial (visual), can be effective management 

strategies to support successful breeding (Richardson & Miller, 1997; Rosenfield et al., 

2007).  Applied correctly these measures can allow successful breeding in highly 

urbanised and industrial locations.   
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Following 22 years of working with industry, quarry and building managers, we have 

identified the most common issues that result in poorly performing Peregrine Falcon 

nests on anthropogenic structures.  In response, we have developed three key intervention 

strategies.  These are distilled into a decision matrix to illustrate the options available to 

site managers and biologists alike (Figure 6.3).  If breeding was successful at a site then 

the nest is assessed for risks from water in a wet year or potential human disturbances 

during the normal conduct of business at the location.  Management strategies can then 

be implemented.  Where breeding is not successful due to nest quality factors then 

improvement of the nest through augmentation in situ is the first option.  If the location 

of the nest site is not “acceptable” to site management (i.e. a nest on a quarry cliff that 

needs to be destroyed for stone extraction) then an alternative cliff face with a projected 

“working life” of 10 years is selected and a nest box installed.  In situations where the 

cause of nesting failure is some “other factor”, such as human disturbance or an unusual 

rainfall event, and all other conditions were conducive to successful breeding then a 

management regime of temporal and spatial exclusion buffers is to be applied.  

Ultimately, the installation of a nest box at a secure location acceptable to the site 

manager (and raptor) tends to be the most effective solution.  Advising site managers of 

the biology of the species and its requirements greatly assists in gaining acceptance of 

these requirements and managing a productive nest.   
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Figure 6.3 Decision matrix for known scenarios in managing Peregrine Falcon nests on 

anthropogenic structures.  Grey boxes are management actions and white diamonds are 

decision points.  All scenarios begin and progress from monitoring breeding, at the top of 

the decision matrix. 
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6.6. Conclusion 

Peregrine Falcons are a rare example in human history of a native top order predator that 

has benefitted from some of the anthropogenic changes of the past 200 years in Australia 

(Emison et al., 1997).  Most notably, clearing of low lying areas for pastoral land uses 

has created ideal hunting habitat (Jenkins, 2000b) and the widespread creation of cliffs in 

stone quarries and the construction of various built structures has created artificial 

nesting opportunities where previously these were absent (White et al., 1988; Bird et al., 

1996).   

 

This study has shown that the use of anthropogenic sites for nesting by the Peregrine 

Falcon has become more common in Victoria from 1984 to 2012.  These anthropogenic 

sites do not perform as well as natural sites and can act as attractive sinks, through 

reduced hatch rates due to exposure to water and temperature impacts.  The reduced 

hatch rate leads to smaller brood sizes to cause a lower reproductive output at 

anthropogenic nest sites.  Installation of nest boxes is a successful conservation 

management strategy at anthropogenic sites for this species because they improve the 

protection of the nest from temperature extremes, rainfall and water run-off and in this 

way allow for more successful incubation.  A decision matrix for options to manage nests 

at anthropogenic sites provides a robust and transparent tool for resolving the interests (at 

times competing) of conservation biologists, site managers and raptors alike.   
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7.  
Synthesis and conclusions 
 

 

 
The author, coastal cliff.  (Image by K. Taylor, 2010) 

 

 

 

 

 

“There is no great genius without a mixture of madness.” 

Aristotle 
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7.1. Thesis overview 

Longitudinal monitoring of any species provides a broader understanding of its ecology 

than time-for-space substitution studies (Clutton-Brock & Sheldon, 2010).  In particular, 

long-term monitoring overcomes stochastic events such as drought, floods or wildfires 

and allows for measuring long-term trends (Magurran et al., 2010; Lindenmayer et al., 

2012).  Gathering lifetime data on marked individuals in a healthy population at a broad 

spatial scale also provides ecological benchmarks that are invaluable for species recovery 

planning should a population become threatened at some later stage (Wakamiya & Roy, 

2009; Walsh et al., 2012).  Where a species is in a state of recovery following either 

captive release programmes or removal of the key threatening agent(s), monitoring is still 

critical (Groom, 2010; Finkelstein et al., 2012).  Complacency, even with common 

species, can lead to their rapid decline going unnoticed (Lindenmayer et al., 2011).  Yet 

it is not feasible to monitor every single species on the planet.  Predators tend to be less 

diverse and less abundant than other bird species, but due to their trophic level are highly 

sensitive to disturbances in the food web (Smits & Fernie, 2012).  Thus, of all the 

functional groups that can be monitored on a single species basis, monitoring a predatory 

species can be a strategically efficient decision.  Whilst beneficial, the long term study of 

predators is, however, not without its challenges. 

 
This study investigated a range of ecological attributes of the Peregrine Falcon across 

Victoria, not only as a top-order predator in recovery from past declines (White et al., 

1981; Emison & Hurley, 1995), but also as a species adapting to environmental change in 

the form of land clearance and urbanisation (Bird et al., 1996).  Two distinct themes have 

shaped the structure of the thesis: (1) development of new field techniques; and (2) 

investigating breeding success, the factors affecting it and management techniques to 

enhance it. 
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Prior to this study there was no direct field-based method available to accurately 

determine the sex of nestling Peregrine Falcons at the earliest age for banding (~15 days 

post hatching; Nelson (1988)).  Traditional methods relied upon determining weight 

differences in mixed-sex clutches or delaying banding until nestlings achieved 

asymptotic weights to determine sex in the latter 22.8% of the nestling period (Nelson, 

1988).  A field-based method was developed in Chapter 2 which effectively increased 

the banding “window of opportunity” three fold at each nest site to the last 65.6% of the 

nestling period.  The morphometric technique developed achieved a level of accuracy of 

98.6% to assign the sex of nestlings.  This accurate sexing technique increased the 

window of opportunity for banding so the youngest bandable nestlings could be sexed.  

Following this the development of predictive methods based on recent phenology 

assisted scheduling field work so as to reduce the number of repeat site visits for banding 

was addressed in Chapter 3.  The number of field visits per nest was reduced and more 

importantly the proportion of whole broods successfully banded increased from 67.4% to 

94.5% compared to non-predictive methods.  These innovations combined to 

significantly enhance the conduct of this study with gains in efficiency of conducting 

such a large scale CMR study.   

 

The second theme of this thesis investigated breeding success and the factors affecting it 

in a healthy expanding population (Chapters 4-6).  With all monitored populations of 

this species in various stages of recovery globally (Sielicki & Mizera, 2009), healthy 

naturally growing populations such as those in Victoria can provide insights into 

Peregrine Falcon ecology not necessarily available to researchers working with 

threatened, reproductively impaired, or reintroduced populations.  Chapter 4 explores 

patterns of dispersal and the level of nest site imprinting, attributes that have direct 
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application to efforts to re-establish the tree-nesting habit by this species across northern 

Europe (Kleinstäuber & Kirmse, 2009).  Having selected a territory and nest site, the 

landscape context and nest quality factors that potentially affect the number of nestlings 

produced in a lifetime (lifetime reproductive output LRO) was investigated in Chapter 5.  

LRO appeared unaffected by landscape features but was significantly influenced by the 

number of years an individual bred and by the level of protection of the nest from the 

effects of weather.   

 

With the increased use of anthropogenic structures as nest sites by Peregrine Falcons 

globally (Bird et al., 1996), a detailed investigation as to how well these nests were 

performing was warranted.  Chapter 6 investigated a situation of testing nest site 

interventions at poorly performing sites against pre-intervention and control (reference 

sites).  Installation of nest boxes significantly improved breeding performance by 

increasing the egg hatch rate.  A cost-benefit analysis of this management strategy 

demonstrated it to be very cost effective at improving reproductive outcomes for this 

species in this population. 

 

As the two themes in this thesis are sequential (i.e. successful research outcomes from 

the first provided the necessary framework to undertake the second), they will be 

discussed separately.  The aim of this final chapter is to synthesize the study findings in 

relation to each theme (Table 7.1), and to discuss the associated implications for 

monitoring and managing breeding success of the Peregrine Falcon into the future. 
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Table 7.1 Key findings in relation to the objectives of this study and their implications for the conservation and management of the Peregrine Falcon in 
Victoria. 

Theme Objectives Key findings & applications 

Enhancing field 
techniques 

Develop a field-based method to increase the 
accuracy in determining the sex of nestlings at 
the time of banding 

 Developed and field tested a morphological method that is 94.5% accurate for sexing nestlings in the 
field. 

 This new method increases the banding ‘window’ for nestlings to a period of 20 days for ♂s and 27 days 
for ♀s. 

 Improve efficiencies of conducting long-term 
CMR studies at a large spatial scale. 

 Developed and applied a rigorous process for selecting wildlife marking techniques applicable to any 
CMR study. 

 Increase accuracy of predicting banding 
schedules 

 Developed a priori and a posteriori quantitative methods to predict preferred banding dates.  
 Applied site histories of phenology to track long-term changes. 

 Quantify a time efficiency benchmark for the 
collection of re-sight data 

 Measured survey time of VID banded adults as ~30 minutes per active nest site. 

 Cost/benefit analysis of quantitative methods for 
predicting banding dates 

 Calculated the cost/benefit ratio of quantitative prediction based on phenology. 

Patterns of dispersal Determine natal patterns of dispersal 

 

 Dispersal represents a resource defense model of reproduction – females disperse further. 
 30% of both sexes undertake novel dispersals – the highest level recorded for this species. This 

challenges current theories of natal nest site imprinting. 
 Determine primary influences of dispersal type  Novel dispersals are less dispersive. This further challenges the concept of ‘traditions’ being maintained 

out of necessity (i.e. atypical nests are not only used in regions devoid of cliffs). 
 Costs of dispersal type  As a highly adaptive species there are few costs incurred for distance and novel dispersals. (i.e. age at 

first breeding, lifespan, and reproductive output are not affected). 

Influences on lifetime 
reproductive output 

Determine the influence of landscape features 
surrounding nest sites on LRO 

 The lifetime reproductive output (LRO) is most affected by the number of years breeding. 
 Increased years of breeding increases LRO but LRO is effected by poorer quality nest sites.  

Managing 
anthropogenic sites 

Measure the uptake of anthropogenic nest sites 
over time. 

 Confirmed a 6 x increase in the use of anthropogenic sites for nesting by Peregrine Falcons since 1987 
in Victoria. 

 Evaluate the efficacy of nest site interventions.  Nest boxes increased egg hatch rates by 50% at poorly performing anthropogenic sites. 

 Cost/benefit analysis of nest site interventions in 
species recovery. 

 Calculated nest boxes cost AU$120.60 per nestling produced as compared to US$1,500 for captive bred 
hacked released Peregrine Falcons. 
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7.2. Enhancing field techniques 

The field work to support this thesis, carried out over such a long period and at a large 

spatial scale, required the development of new techniques for it to be conducted as 

efficiently as possible.  While annual field work targets were set for the number of nests 

monitored and a high priority was given to the number of nestlings banded, there 

remained an overall requirement that field work, and banding in particular, was 

undertaken ethically.   

 

Studies of other dimorphic diurnal raptors presumably rely upon a traditional approach to 

assign sex before banding.  This involves using some form of relative size index of 

nestlings post-asymptotic weight based on reversed sexual dimorphism (RSD), to assign 

sex before banding.  I say ‘presumably’, because there are few published studies on 

sexing techniques for nestlings compared with the number of raptor species studied 

globally.  The traditional approach restricts the window of opportunity for banding to the 

latter stages of nestling growth and places the nestlings and the bander at greater risk 

(Olsen & Olsen, 1987b; Nelson, 1988; Silvy et al., 2005).  The nestlings are at risk of 

injury or death due to premature fledging, and they have stronger beaks and talons which 

are more capable of injuring the bander.  A new approach was required to accurately sex 

nestlings and band them as young as possible. 

 

The accurate sexing of nestlings in the field (Chapter 2) addressed any ethical concerns 

with the more traditional approach (i.e. weight differences between brood siblings Nelson 

(1988)) and increased the efficiency of fieldwork.  Publication of methodological studies 

can be problematic because they are not viewed as ‘discovery science’ (Nisbet, 2007) 
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and yet the development or refinement of a more efficient method is in a sense a 

discovery in itself (Freckleton & Iossa, 2010).   

 

The application of molecular techniques to determine the sex of nestling birds is not new 

(Griffiths et al., 1998; Kahn et al., 1998; Fridolsson & Ellegren, 1999), nor is the 

application of a discriminant function based on morphological measurements to 

determine nestling sex of raptors (Sarasola & Negro, 2004; Bavoux et al., 2006).  

However, the accuracy of the method developed in Chapter 2 and the relatively young 

age of nestlings at which this can reliably be applied is new for this species.  This 

provides a model approach that can be applied to almost any raptor that displays RSD.  

This method gives certainty in sexing at the youngest age possible.  The increased 

window of opportunity for banding was important due to the number of nests visited per 

spring breeding season in this study (range = 10-111, 68.4±5.8; mean±s.e.) and the 

scheduling of banding across a large area ~227,000 km2 (Bloom et al., 2007). 

 

In the future, a more accurate field-based sex allocation method may be developed and 

could involve some form of portable molecular analysis tool.  A field-portable 

microarray platform is already being developed for the identification of arboviruses and 

species identification of mosquitoes and the species of their bloodmeals (Vora et al., 

2004; Grubaugh et al., 2013).  It is conceivable that advances in this technology may lead 

to portable systems for molecular sex determination in bird species and not just the 

Peregrine Falcon.  Even with a more accurate sexing technique there will always remain 

a size and age limit below which a nestling’s leg and foot will not retain bands (Emison 

& Bren, 1981).  This places a practical constraint on how much larger the window of 
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opportunity for banding nestlings can become for the Peregrine Falcon and other altricial 

species (Olsen & Olsen, 1987b; Lowe, 1989).  

 

Literature available at the beginning of this study in 1991 gave few clear indications of 

how to match the study hypotheses with the most appropriate and affordable capture-

mark-re-sight (CMR) methods.  More recently, there have been some notable exceptions 

investigating CMR techniques (Varland et al., 2007; Thomas et al., 2011; Silvy et al., 

2012).  Furthermore, the efficiency of the chosen technique has seldom been measured, 

and when published focused on the effective range to re-sight and read VID bands 

(Tordoff & Redig, 1997; Lindberg, 2009).  Having the efficiency, or a cost-benefit 

analysis, published for any marking technique would have helped in the selection of a 

CMR technique for this study.  The evolution of CMR techniques that use tarsus bands 

has progressed from metal to plastic to VID metal bands, and more recently, to micro-

chips or PIT tags on tarsus bands (McCulloch, 1990; Baillie, 2001; Smith & McGrady, 

2009; Lutmerding et al., 2012).  These electronic tags may be the future in long-term 

CMR studies, however, this technology is still developing (Eymann et al., 2006) and the 

reported error rates (i.e. PIT tags failing to be read generating false negatives) and the 

costs associated with each tag reader remains a concern (Smith & McGrady, 2009).  No 

doubt, in time, unit costs will diminish and the reliability of these systems will improve.   

 

A further approach to enhance field techniques was to determine the most appropriate 

method for marking and collecting re-sight data because a crucial component of this 

research was to monitor breeding adults of known age and origin.  Several earlier studies 

have examined lifetime breeding parameters but relied primarily on monitoring breeding 

birds banded as adults or by taking photographs of breeding birds to identify individuals 
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through plumage patterns (Ambrose & Riddle, 1988; Enderson & Craig, 1988).  The 

approach used here of marking nestlings, incurs a time lag (mean = 2.7 years age at first 

breeding) until these nestlings appear as breeding adults at nest sites.  The benefit of 

banding nestlings instead of adults led to a thorough knowledge of age at first breeding, 

dispersal distances, longevity and age related breeding which are critical to 

understanding the ecology of this species.   

 

The accurate sexing of nestlings increased the window of opportunity for banding 

nestlings and removed the reliance on banding Peregrine Falcons later in the nestling 

period (i.e. ≥ age 25 days post-hatching; Olsen and Olsen (1987b)).  The date of first egg 

laying, however, varied by as much as 74 days over this study which presented an added 

challenge when scheduling fieldwork for banding.  Most other intensive studies of this 

species based on capture-mark-re-sight involved significantly fewer sites and multiple 

nest site visits (Zuberogoitia et al., 2009), allowing the banding of most nestlings from 

each breeding event.  A less labour-intensive approach, however, was required due to the 

scale of this study.  The use of breeding phenology from past years as a predictive tool 

was therefore developed in Chapter 3 as a method to overcome the need for multiple site 

visits. 

 

Research that aims to mark large numbers of nestlings of this species, or any other 

widely dispersed breeding species, may be able to further increase the proportion of 

clutches banded by basing phenological predictions on egg measurements of the year in 

which banding is intended.  Refinement of both the egg aging formula and the volumetric 

egg measurement methods may improve the predictive power of this approach (Hoyt, 

1979; Burnham, 1983). 
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7.3. Monitoring and managing breeding 

The primary threatening agent that had been impacting on the breeding success of this 

species prior to this study had been addressed in the banning of the importation and use 

of persistent organochloride pesticides by Australian agriculture in 1987 (Ford, 1987).  

Monitoring Victoria’s Peregrine Falcon population from 1991 was intended to record its 

breeding response with the reduction in this threatening process.  The Peregrine Falcon 

population in Victoria, had not declined to the point where it was subject to Caughley’s 

‘small population’ paradigm (Caughley, 1994) and so the monitoring undertaken in this 

study was directed at investigating aspects of the species’ ecology other than population 

size.   

 

7.3.1. Dispersal 

One of the key motivations for initiating the study (in 1991) was to answer a relatively 

simple question raised in a report in 1977 (White & Jones, 1977): namely, do individuals 

raised at tree nest sites ‘imprint’ on these sites and therefore influence their nest site 

selection?  For a species capable of dispersal distances in the hundreds of kilometers, 

establishing a study area of sufficient size to examine patterns of dispersal was a 

challenge (Franzén & Nilsson, 2007).  The efficiencies in CMR techniques developed in 

chapters 2 and 3 catered for an in-depth study of dispersal and its consequences in 

Chapter 4.  

 

The reduced distances of novel dispersals are presumably due to maintaining access to 

available prey resource in a familiar environment (Bilde et al., 2002).  This new insight 

has significance for programmes working on the re-establishment of tree nesting by the 

Peregrine Falcon in northern Europe (Kleinstäuber & Kirmse, 2009).  The tree nesting 
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population of Peregrine Falcons in Germany and Poland went extinct in 1976 due to 

organochloride pesticide contamination and human persecution (Kleinstäuber & Kirmse, 

2001).  In light of the results presented in Chapter 4, it is clear that the active 

discouragement of nesting on buildings to somehow force Peregrine Falcons to adopt 

stick nests in trees is flawed (Kirmse, 2004).  A more enlightened approach would be to 

install artificial stick nests in forest locations within the mean dispersal distance of the 

less dispersive sex (i.e. male Peregrine Falcons).  Strategically placing these stick nest in 

relation to known building or cliff nest sites warrants investigation.  Then, allow urban 

populations to increase such that the excess birds will naturally disperse and adopt stick 

nests in trees.  Once some of these nests have been adopted, gradually adding additional 

stick nests or similar platforms in trees deeper into forests will cater for further expansion 

of this growing population.  The time frame of this approach, however, may not 

accommodate that of humans wishing to see a more rapid return of a self-sustaining 

population.  This alternative, less intensive approach, may in-fact prove to be quicker and 

less costly.  Such an approach could at least supplement (i.e. not replace the existing 

approach), and so provide a useful conservation biology experiment. 

 

7.3.2. Lifetime Reproductive Output 

The temporal and spatial scale of this research project is uncommon amongst raptor 

studies.  The temporal span of this study allowed for lifetime data to be collected from 

breeding adults that had been banded as nestlings.  Several studies of this species have 

investigated the effects of nest quality on annual breeding success (Mearns & Newton, 

1988; Olsen & Olsen, 1989b, 1992; Emison et al., 1993).  Other studies have focused on 

habitat features and quality (Verdejo & López-López, 2008).  The spatial scale provided 

the opportunity to investigate landscape effects on lifetime reproductive outputs of 



Ch. 7  Synthesis & conclusions 
 

158  Victor G. Hurley 

breeding adults.  Lifetime reproductive output was selected because it provides a better 

indication of evolutionary fitness than annualised reproductive measures (Newton, 1989; 

McGraw & Caswell, 1996).  The highly adaptable nature of this species allows it to live 

in a diverse range of habitats (Jenkins & Hockey, 2001; White et al., 2013).  Analyses in 

Chapter 5 found that lifetime reproductive output appears to be limited primarily by the 

quality of an individual’s nest, rather than properties of the surrounding landscape. 

 

Nest quality has been recognized as important for other raptors.  The number of eggs laid 

(clutch size) was highly correlated with the floor area of nest boxes adopted by 

Tengmalm's Owl (Aegolius funereus) in Finland (Korpimäki & Higgins, 1985).  A 

further refinement of the concept of nest quality may be made by measuring the 

dimensions and area of nest ledges among Peregrine Falcon nests in Victoria.  This 

additional data would contribute to a more robust definition of what constitutes a ‘quality 

nest’ for this species. 

 

7.3.3. Managing anthropogenic nest sites 

Ecosystem change, due to native vegetation removal to access natural resources such as 

timber and minerals or for farm or urban development, presents challenges to the survival 

of resident native species.  While the use of anthropogenic structures by Peregrine 

Falcons for nesting in Victoria, however, is partly in response to losses of natural nesting 

sites it is also primarily a response by an expanding population of birds since the banning 

of the use of persistent organochloride pesticides.  Anthropogenic environments present a 

stable prey base that attract a variety of raptor species, including the Peregrine Falcon.  

The challenge to site managers is how best to manage locations where this species 

chooses to breed. 
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Nest boxes, used to provide a secure nesting environment, are a popular management tool 

that has been applied to the conservation of a wide range of birds and mammals (Libois 

et al., 2012; Catry et al., 2013).  As a management action to improve egg hatch rates at 

anthropogenic nests of the Peregrine Falcon in Victoria, nest boxes proved to be highly 

efficient and cost effective (Chapter 6).  The efficacy of nest boxes as a management or 

conservation action for some species is controversial (Mänd et al., 2005; Klein et al., 

2007; Lindenmayer et al., 2009; Björklund et al., 2013).  The case of the endangered 

Leadbeater’s Possum (Gymnobelideus leadbeateri) in old-growth Mountain Ash 

(Eucalyptus regnans) forests of Victoria is illustrative of the difficult issues involved 

with using nest boxes where natural tree cavities are in short supply.   

 

The arboreal Leadbeater’s Possum occupies cavities formed by microbial and fungal 

decay in forests of Mountain Ash trees typically 190 and often 300-400 years old 

(Lindenmayer et al., 2002).  The economics of a long-term nest box programme have 

been proposed (Spring et al., 2001), challenged (Lindenmayer et al., 2002) and further 

defended (Harley & Spring, 2003) on the grounds that loss of suitable cavity-bearing 

trees due to wildfires, natural decay and current logging practices will lead to the collapse 

of this critical resource and then extinction of the species.  Apart from the practical and 

economic feasibility of using nest boxes, there is the philosophical/conservation concern 

that nest boxes will be seen as a panacea to the conservation threats to the Leadbeater’s 

Possum without actually addressing the primary threatening process (Lindenmayer et al., 

2009).  More broadly, nest boxes can be seen as addressing the proximal cause of a 

species’ decline but not the ultimate cause (Caughley, 1994).  Within the context of the 

Peregrine Falcon selecting anthropogenic sites to breed in Victoria, nest boxes are 

supporting the natural recovery of a species by addressing the ultimate cause of current 
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poor reproductive outputs.  That is, the enhancement of nest sites to protect them from 

the negative effects of weather, to allow increased egg hatch rates.   

 

Tangible benefits may be gained in managing nests on anthropogenic structures by 

investigating the design of nest boxes.  Design modifications of nest boxes for Peregrine 

Falcons could be informed by more detailed nest measurements, such as nest dimensions 

and platform area.  A co-operative project with material design engineers may lead to 

longer lasting and less costly nest box construction and installation methods (Root-

Bernstein & Ladle, 2010). 

 

7.3.4. Threats to the Peregrine Falcon in anthropogenic environments 

The research in this thesis has demonstrated nest boxes to be a practical and cost 

effective approach to overcoming the poor quality of nests on some anthropogenic 

structures.  However, other threats at anthropogenic sites remain and are not as 

straightforward to resolve.  These additional threats include; direct persecution, 

disturbance impacting on breeding (both direct and indirect), bioaccumulation of a range 

of toxic chemicals and heavy metals and increased risk of collisions with anthropogenic 

structures while flying.  Top-order predators such as raptors tend to be at higher risk to 

these threats than lower order consumers (Hager, 2009). 

 

7.3.4.1. Direct persecution 

The direct persecution of raptors is a major contributor to their heightened risk profile 

associated with anthropogenic threatening processes.  This was illustrated in Europe, 

where band recovery rates for some raptors from shooting were as high or higher than for 
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many game-bird and waterfowl populations exposed to annual hunting seasons (Newton, 

1979b).  Furthermore, this illegal persecution currently continues in large areas such as 

the moorlands managed for the hunting of Red Grouse (Lagopus l. scoticus) in northern 

England (Amar et al., 2012).  Illegal killing is also the key cause of slow population 

growth of a re-introduced population of the Red Kite (Milvus milvus) in Northern 

Scotland (Smart et al., 2010) and the Golden Eagle (Aquila chrysaetos) in northern Italy 

(Pedrini & Sergio, 2001).  In contrast, this ‘war on raptors’ appears to have lessened in 

southern Europe where relatively recent economic development and the subsequent 

electrocutions and collisions with increasing infrastructure have replaced the shooting of 

raptors as a more common anthropogenic cause of death (Martínez-Abraín et al., 2009).  

The overall anthropogenic impact on raptors has not lessened in southern Europe; rather, 

it is simply less direct now, being caused by the infrastructure associated with a post-

industrial way of life.   

 

In Victoria, band recoveries among first year Peregrine Falcons found dead or brought 

into care between 1991 and 2012, 17.8% (n = 142) had been shot or poisoned 

(unpublished data).  In fact the most recent case was detected during the final stages of 

writing this thesis (Appendix VIII).   In Tasmania and internationally engagement with 

pigeon racing clubs has been encouraged to deter some of this persecution (Mooney, 

1985; Dixon et al., 2009; López-López et al., 2009).   

 

7.3.4.2. Nest site disturbance during the breeding season 

Peregrine Falcons nesting in quarries and in urban environments have to contend with 

various human disturbances including the noise and constant movement of heavy 

machinery not to mention the intermittent blasting of neighbouring cliff faces.  As such 
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they appear to be remarkably tolerant of a range of disturbances.  Studies of the effects of 

rock wall blasting on the breeding of cliff nesting Prairie Falcons (Falco mexicanus) in 

America found large explosions may render nest substrate unstable and can be associated 

with clutch hatch failure (Holthuijen et al., 1990).  However, that study found incubating 

and brooding falcons flushed from their nests in 25/112 (22%) instances in response to 

dynamite blasts.  But returned to their nests within an average of 3.4 minutes.  The 

presence of the Peregrine Falcon breeding in highly urbanized environments also 

suggests a high level of tolerance to noise.  However, the one disturbance that 

consistently causes breeding Peregrine Falcons to flush is human traffic on foot above the 

nest site.  Security guards patrolling on the top of the 36 story building in Melbourne 

where the city’s resident Peregrine Falcon pair breed regularly report being swooped on 

by screaming adults breeding on the 33 level of the building (direct observations and 

unpublished data).  It appears that provided visual disturbances are not above the nest and 

are below and beyond the flushing distance the Peregrine Falcon will breed successfully 

in a diversity of anthropogenic environments (Richardson & Miller, 1997). 

 

7.3.4.3. Bioaccumulation of toxins 

The negative impact on the reproduction of raptors (including the Peregrine Falcon) from 

persistent organochloride pesticides has only been overcome in populations where the 

use of these chemicals has been banned (Grier, 1982).  Bioaccumulation of long-range 

transported anthropogenic contaminants and heavy metals (i.e. DDT, polybrominated 

diphenyl ether (PBDE), perfluorinated compounds (PFCs), lead and mercury) has been 

measured among predators in remote Arctic locations and not just in highly urbanised 

environments.  Peregrine Falcons in Greenland and Polar Bears (Ursus maritimus) in 

Alaska have recorded high levels of the chemicals (de Wit et al., 2006; Wegner & Fürst, 
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2009; Sonne, 2010).  These species can act as chemical ‘sentinels’ for the health of the 

environment(s) in which they live (Smits & Fernie, 2012).  It will take a multi-nation 

approach to effectively diminish the rate of dispersal of these toxic chemicals into the 

environment (Wegner & Fürst, 2009).  Given how the policy development process 

generally operates the onus of proof will remain with scientists to unequivocally 

demonstrate the effect of each chemical on humans and not just the natural environment 

(Juntti et al., 2009; Strydom et al., 2010; Tanner, 2011; Sayre, 2012).  However, until 

these chemicals have a significant impact on human populations it is unlikely that 

legislation to prevent their continued pollution of the environment will occur.  The 

legislative banning of the use of persistent organochloride pesticides and the resulting 

recovery of the Bald Eagle and the Peregrine Falcon in North America is an encouraging 

example of what can be achieved.  

 

7.3.4.4. Infrastructure impacts 

The characteristic high speed dives for which the Peregrine Falcon is most famous 

(Macdonald, 2006) make this species to be particularly susceptible to flying accidents 

associated with anthropogenic structures (Hager, 2009).  Heightened risks to the 

Peregrine Falcon in anthropogenic environments include; collisions with motor vehicles 

(including airplanes), single overhead wires, building windows, drowning in roof top 

cooling towers, electrocution from power utilities and a myriad of other unpredictable 

hazards associated with anthropogenic environments (Lehman, 2001; Tint et al., 2010).  

Mitigation measures can be applied to each of these, and industry tends to be accepting 

of addressing these issues when made aware of their impacts and the options for 

remediation.  Currently, in Victoria the process for addressing these issues is generally 

one of ad hoc reactions on a case by case basis to information arising from the injury or 
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death of a raptor that had been wearing bands.  The responses tend to be tailored to the 

situation and pertaining to the specific location.  A broader, industry-targeted education 

programme may be a more efficient approach to address these threats on an issue by 

issue or industry by industry basis. 

 

7.4. Conclusions 

Despite its global distribution, its adaptability in both diet and nest site selection, and its 

hunting prowess, the Peregrine Falcon is still vulnerable to anthropogenic chemicals and 

heavy metals due to its high trophic level (Ratcliffe, 1993; Park et al., 2011).  

Consequently, it is considered an ideal indicator for monitoring ecosystem health in areas 

of environmental concern or in areas subjected to anthropogenic chemical contaminants 

(Smits & Fernie, 2012).  As such, the results of this study go beyond species-specific 

knowledge but have implications regarding ecosystem health more generally.  The 

relatively straightforward programme of monitoring nest site occupancy and egg hatch 

rates and reproductive success of Peregrine Falcons over 22 years across Victoria proved 

to be an efficient method for determining the health of this population.  Since this study 

began in 1991, four years after the banning of persistent organochloride pesticide use 

(Ford, 1987), results have shown a population no longer demonstrating the effects (i.e. 

egg-shell thinning) of these chemicals.  Although the population has increased and 

adapted to a range of anthropogenic structures for nesting, the quality of these nest 

substrates is a key factor potentially limiting the growth and stability of the population.  

Projections for further urban growth in Melbourne (Victoria’s capital city, population 4.0 

M in 2011 (ABS, 2011)) are trending above the planned increase of 29.3% from 3.4M in 

2002 to 5 M by 2030 (DOI, 2002).  This means that opportunities for the Peregrine 

Falcon to nest on anthropogenic structures are likely to increase.  In this context the 
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management of anthropogenic nest sites for this species will become increasingly 

important (Chapter 6).   

 

The Peregrine Falcon in Victoria is in a healthy state of recovery from long-term 

population decline.  The primary cause of that decline has been removed.  A large 

marked population now exists that is ideally suited to ongoing monitoring to address a 

range of theoretical and practical issues in conservation biology (Table 7.2). 

 

Table 7.2  Suggested themes for future research on the Peregrine Falcon in Victoria. 

Theme Objectives Key aspects 

Patterns of 
dispersal 

Detailed patterns of dispersal  Electronic tracking of movements 
between fledging and breeding sites. 

Home range Quantify home range size   Electronic tracking and with comparison 
between habitat types. 

Resource use Identify key habitat elements and 
relative usage 

 Mapping of resources and hunting 
efficiency compared between habitat 
types. 

Breeding success Record long-term fitness 
consequences of nestling condition 

 The effect of hatch order on the 
likelihood to breed and breeding 
success. 

Lifetime 
reproduction 

Measure age effects on 
reproductive success 

 Profiling reproductive output and 
production of young to breeding status. 

Managing 
anthropogenic 
sites 

Evaluate the efficacy of alternative 
nest box construction materials 

 Engage with material design engineers 
to improve materials, design and 
construction to increase longevity of nest 
boxes. 

Likelihood of 
breeding 

Determine the effects of clutch size 
and hatch order on likelihood to 
breed. 

 Profiling clutch status to ultimate 
breeding success. 

Appropriate study 
size and detection 
probabilities 

Quantify survey effort and rates of 
identifying breeding adults. 

 Correlate detectability and survey effort 
and study area to evaluate biases in 
identifying breeding adults. 

 

The large-scale monitoring reported in this thesis may no longer be necessary and smaller 

sub-samples of Victoria’s Peregrine Falcon population may be monitored to maintain an 

index of breeding success.  Coupled with this, the ‘living with wildlife’ message is a 

critical component of any strategy to conserve this species (Decker & Chase, 1997; 
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Meijaard et al., 2012).  The ‘living with wildlife’ approach is one of adapting human 

behaviours so as to allow native species to survive and thrive in the modified 

environments we have affected.  In response, the Peregrine Falcon will do its best to 

persist and live amongst us despite the ongoing effects of the Anthropocene. 
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Appendices 
 

 
 

 
                                                                                             Humphrey Bogart (Haunted Studios ©) 
 

 

 

 

 

Detective Tom Polhaus (picks up falcon statue): “Heavy.  What is it?” 

Sam Spade: “The, uh, stuff that dreams are made of.” 

(Closing lines of The Maltese Falcon, 1941) 
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Appendix I – 1st Peregrine Falcon band recovery 
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Appendix II – Peregrine persecution 

 
Pigeon club poster from Tasmania, circa 1970, (supplied by N.J. Mooney). 

 

 
Old pigeon bands dating back to 1905 found in an active Peregrine Falcon nest, 2005. 
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Appendix III – Banding data sheet 
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Appendix IV – Adult band monitoring data sheet 
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Appendix V – Egg data sheet 
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Appendix VI – Banding Manual 
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Appendix VIII – Band Recovery (public report) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 1 of band recovery report issued to public 
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Page 2 of band recovery report issued to public 
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