Supporting Information

Global kinetic study of NO reduction by NH₃ over V₂O₅-WO₃/TiO₂: Relationship between the SCR performance and the key factors

Shangchao Xiong, Xin Xiao, Yong Liao, Hao dang, Wenpo Shan, Shijian Yang *

School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China

^{*} Corresponding author phone: 86-18-066068302; E-mail: yangshijiangsq@163.com (S. J. Yang).

The ratios of NO_x and NH_3 conversion, the amount of N_2 formed, and N_2O selectivity were calculated using the following equations:

$$NO_{x} \text{ conversion} = \frac{[NO_{x}]_{in} - [NO_{x}]_{out}}{[NO_{x}]_{in}}$$
(S1)

$$NH_{3} \text{ conversion} = \frac{[NH_{3}]_{in} - [NH_{3}]_{out}}{[NH_{3}]_{in}}$$
(S2)

$$N_{2} \text{ formed} = \frac{[NO_{x}]_{in} + [NH_{3}]_{in} - [NO_{x}]_{out} - [NH_{3}]_{out} - 2[N_{2}O]_{out}}{2}$$
(S3)

$$N_{2}O \text{ selectivity} = \frac{2[N_{2}O]_{out}}{[NH_{3}]_{in} + [NO_{x}]_{in} - [NH_{3}]_{out} - [NO_{x}]_{out}}$$
(S4)

Where, $[NH_3]_{in}$, $[NO_x]_{in}$, $[NH_3]_{out}$, $[NO_x]_{out}$ and $[N_2O]_{out}$ were the concentrations of NH₃ and NO_x (including NO and NO₂) in the inlet, and the concentrations of NH₃, NO_x and N₂O in the outlet, respectively.

Meanwhile, the rates of NO_x conversion, NH_3 conversion, the SCR reaction, the NSCR reaction and the C-O reaction can be described as follows:

$$\delta_{\mathrm{NO}_{x}} = ([\mathrm{NO}_{x}]_{\mathrm{in}} - [\mathrm{NO}_{x}]_{\mathrm{out}}) \mathrm{GHSV}$$
(S5)

$$\delta_{\mathrm{NH}_3} = ([\mathrm{NH}_3]_{\mathrm{in}} - [\mathrm{NH}_3]_{\mathrm{out}}) \mathrm{GHSV}$$
(S6)

$$\delta_{\rm SCR} = \frac{([\rm NO_x]_{in} + [\rm NH_3]_{in} - [\rm NO_x]_{out} - [\rm NH_3]_{out} - 2[\rm N_2O]_{out})GHSV}{2}$$
(S7)

$$\delta_{\rm NSCR} = [N_2 O]_{\rm out} GHSV \tag{S8}$$

$$\delta_{\text{C-O}} = \frac{\delta_{\text{NH}_3} - \delta_{\text{NO}_x}}{2} \tag{S9}$$

The variation of NH_2 on V_2O_5 - WO_3 /TiO₂ (hinted by Equations 18-20) can be described as:

$$-\frac{d[NH_2]}{dt} = k_4[NH_2][V^{5+}=O] + k_1[NH_2][NO_{(g)}] - k_3[NH_{3(ad)}][V^{5+}=O]$$
(S10)

As the reaction reached the steady-state, NH_2 concentration on V_2O_5 - WO_3 /TiO₂ would not vary. Thus,

$$[NH_{2}] = \frac{k_{3}[NH_{3(ad)}][V^{5+}=O]}{k_{4}[V^{5+}=O] + k_{1}[NO_{(g)}]}$$
(S11)

Then, Equation 18 can be transformed as:

$$\frac{d[N_2]}{dt}\Big|_{E-R} = k_1[NH_2][NO_{(g)}] = k_1[NO_{(g)}]\frac{k_3[NH_{3(ad)}][V^{5+}=O]}{k_4[V^{5+}=O]+k_1[NO_{(g)}]}$$
(S12)

If little N₂O formed over V₂O₅-WO₃/TiO₂ (for example at 300 °C), the value of $k_4[V^{5+}=O][NH_2]$ can be regarded as nearly 0 (hinted by Equation 25). Hinted by Equation S12, N₂ formation through the Eley-Rideal mechanism would be approximately independent of gaseous NO concentration at 300 °C. Meanwhile, N₂ formation through the Langmuir-Hinshelwood mechanism was not related to gaseous NO concentration (hinted by Equation 27). They suggest that N₂ formation would not vary with the increase of gaseous NO concentration. However, Figure 7c shows that N₂ formation was promoted remarkably at 300 °C as gaseous NO concentration increased. It suggests that the rate of NH₂ formation (i.e. Equation 20) was much higher than that of NH₂ reduction (i.e. Equations 18 and 21) and V₂O₅-WO₃/TiO₂ was approximately saturated with the adsorption of NH₂ at the steady state. ^{1, 2} Therefore, NH₂ concentration on V₂O₅-WO₃/TiO₂ at the steady state can be approximately regarded as a constant.

According to Reaction 17, the kinetic equation of NH_4NO_2 formation on V_2O_5 - WO_3/TiO_2 can be described as:

$$\frac{d[V^{4+}-O-NO-NH_3]}{dt} = k_7 [V^{4+}-O-NO][NH_{3(ad)}]$$
(S13)

Where, k_7 and [V⁴⁺-O-NO] were the rate constant of Reaction 17 and the concentration of NO₂⁻ on V₂O₅-WO₃/TiO₂, respectively.

According to Reaction 16, the kinetic equation of NO_2^- formation on V_2O_5 - WO_3/TiO_2 can be described as:

$$\frac{d[V^{4+}-O-NO]}{dt} = k_8[V^{5+}=O][NO_{(ad)}]$$
(S14)

Where, k_8 and [NO_(ad)] were the rate constant of Reaction 16 and the concentration of physically adsorbed NO on V₂O₅-WO₃/TiO₂, respectively.

Equations 27, S13 and S14 suggest that the SCR reaction (i.e. N_2 formation) over V_2O_5 -WO₃/TiO₂ through the Langmuir-Hinshelwood mechanism was mainly related to the concentrations of NH₃ adsorbed, NO adsorbed and V⁵⁺ on V₂O₅-WO₃/TiO₂. As there were large

amounts of gaseous NO and NH₃ in the outlet during the steady state kinetic study (the conversions of NH₃ and NO were generally less than 15%), V_2O_5 -WO₃/TiO₂ was almost saturated with the adsorption of NO and NH₃. It suggests that the concentrations of NO and NH₃ adsorbed on V_2O_5 -WO₃/TiO₂ can be approximately regarded as constants at the steady state, and they were independent of the concentrations of gaseous NO and NH₃. ³ As V⁵⁺ on V₂O₅-WO₃/TiO₂ can be rapidly replenished through Reaction 14, V⁵⁺ concentration on the surface can be regarded as a constant during NO reduction over V_2O_5 -WO₃/TiO₂. As a result, the SCR reaction over V_2O_5 -WO₃/TiO₂ through the Langmuir-Hinshelwood mechanism was nearly independent of gaseous NO and NH₃ concentrations.

According to Equations 25, 26 and 28, the rates of NH₃ conversion and NO conversion (i.e. δ_{NH3} and δ_{NO}) can be described as:

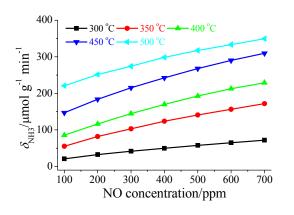
$$\delta_{\rm NH_3} = \delta_{\rm N_2} + \delta_{\rm N_2O} + \delta_{\rm C-O}$$

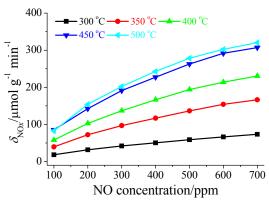
$$= k_6 [V^{3+} - O - \rm NO - \rm NH_3] + k_1 [\rm NH_2] [\rm NO_{(g)}] + \frac{k_4 [\rm NH_2] [\rm V^{5+} = O]}{k_2 + \frac{k_5}{[\rm NO_{(g)}]}} + \frac{k_4 [\rm NH_2] [\rm V^{5+} = O]}{k_5} + \frac{k_2 [\rm NO_{(g)}]}{k_5} + 1$$

$$\approx k_{\rm SCR-LH} + k_{\rm SCR-ER} [\rm NO_{(g)}] + k_{\rm NSCR} + \frac{k_4 [\rm NH_2] [\rm V^{5+} = O]}{\frac{k_2 [\rm NO_{(g)}]}{k_5}} + 1$$
(S15)

$$\delta_{NO} = \delta_{N_2} + \delta_{N_2O} - \delta_{C-O}$$

$$= k_6 [V^{3+} - O-NO-NH_3] + k_1 [NH_2] [NO_{(g)}] + \frac{k_4 [NH_2] [V^{5+} = O]}{k_2 + \frac{k_5}{[NO_{(g)}]}} - \frac{k_4 [NH_2] [V^{5+} = O]}{\frac{k_2 [NO_{(g)}]}{k_5}} + 1$$


$$\approx k_{SCR-LH} + k_{SCR-ER} [NO_{(g)}] + k_{NSCR} - \frac{k_4 [NH_2] [V^{5+} = O]}{\frac{k_2 [NO_{(g)}]}{k_5}} + 1$$
(S16)


References:

(1) Yang, S.; Liao, Y.; Xiong, S.; Qi, F.; Dang, H.; Xiao, X.; Li, J. N₂ selectivity of NO reduction by NH₃ over MnO_x-CeO₂: Mechanism and key factors. *J. Phys. Chem. C* **2014**, *118*, 21500.

(2) Yang, S.; Xiong, S.; Liao, Y.; Xiao, X.; Qi, F.; Peng, Y.; Fu, Y.; Shan, W.; Li, J. Mechanism of N₂O formation during the low temperature selective catalytic reduction of NO with NH₃ over Mn-Fe spinel. *Environ. Sci. Technol.* **2014**, *48*, 10354.

(3) Yang, S.; Wang, C.; Li, J.; Yan, N.; Ma, L.; Chang, H. Low temperature selective catalytic reduction of NO with NH₃ over Mn-Fe spinel: Performance, mechanism and kinetic study. *Appl. Catal. B-environ* **2011**, *110*, 71.

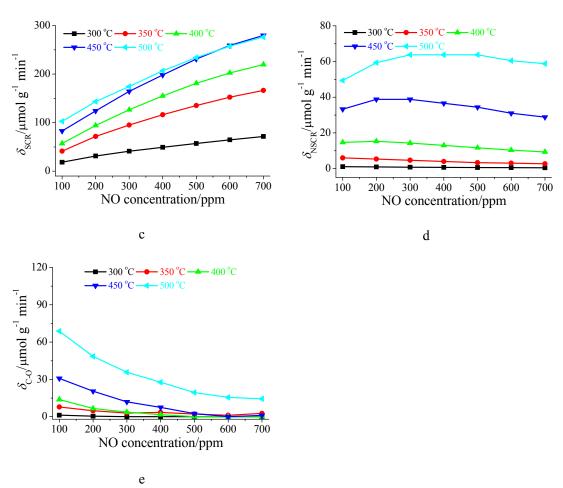


Figure S1 Dependences of δ_{NH3} (a), δ_{NOx} (b), δ_{SCR} (c), δ_{NSCR} (d), and $\delta_{\text{C-O}}$ (e) on gaseous NO concentration during NO reduction over 1% V₂O₅-WO₃/TiO₂. Reaction conditions: [NH₃]=500 ppm, [NO]=100-700 ppm, [O₂]=2%, catalyst mass=3-20 mg, total flow rate=400 mL min⁻¹ and GHSV=1.2×10⁶-8.0×10⁶ cm³ g⁻¹ h⁻¹.

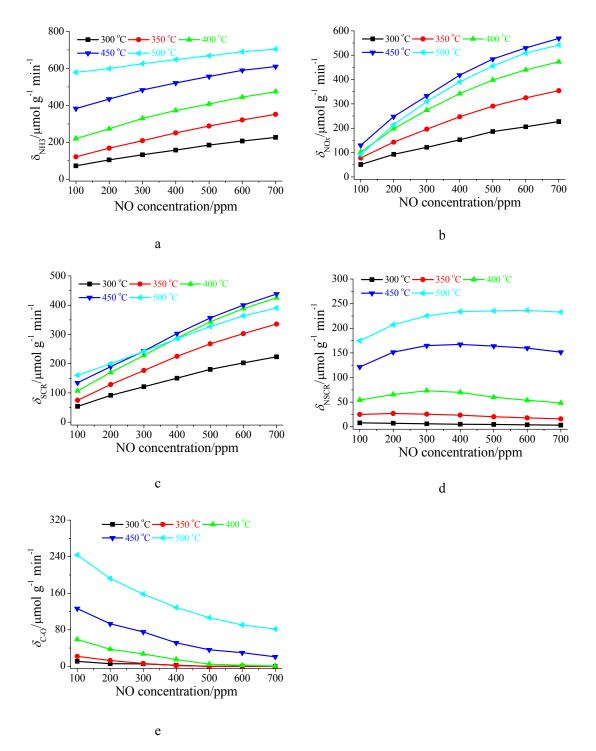


Figure S2 Dependences of δ_{NH3} (a), δ_{NOx} (b), δ_{SCR} (c), δ_{NSCR} (d), and $\delta_{\text{C-O}}$ (e) on gaseous NO concentration during NO reduction over 3% V₂O₅-WO₃/TiO₂. Reaction conditions: [NH₃]=500 ppm, [NO]=100-700 ppm, [O₂]=2%, catalyst mass=2-5 mg, total flow rate=400 mL min⁻¹ and GHSV=4.8×10⁶-1.2×10⁷ cm³ g⁻¹ h⁻¹.

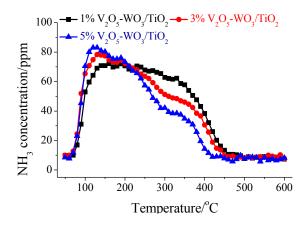


Figure S3 NH₃-TPD profiles of V_2O_5 -WO₃/TiO₂