Supporting Information for Two-Phase Flow Oxidation of Valeraldehyde with O_2 in a Microstructured Reactor

Tobias Baumeister[†], Hannes Kitzler[‡], Klemens Obermaier[‡], Stefan Zikeli[‡], Thorsten Röder^{*†}

†Institute of Chemical Process Engineering, Mannheim University of Applied Sciences, Paul-

Wittsack-Str. 10, 68163 Mannheim, Germany

‡one-A Engineering Austria, See-Str. 11, 4844 Regau, Austria

Corresponding Author

* E-Mail: t.roeder@hs-mannheim.de, Telephone: +49 621 292 6800

S1 Assumption of the flow behavior of the two-phase flow oxidation

To make an assumption of the flow behavior inside the microreactor the superficial liquid velocity and the superficial gas velocity were calculated and analyzed in a flow regime map of a model system of Isopropanol and Nitrogen.¹

Liquid phase:

				ID: 1 mm	
flow rate [mL/Min]	density [g/cm^3]	mass flow rate [g/Min]	flow rate [m ³ /s]	cross-sectional area [m ²]	Superficial liquid velocity [m/s]
0,24	0,81	0,19	4,00E-09	7,85E-07	5,09E-03
0,6	0,81	0,49	1,00E-08	7,85E-07	1,27E-02
1,13	0,81	0,92	1,88E-08	7,85E-07	2,40E-02
1,94	0,81	1,57	3,23E-08	7,85E-07	4,12E-02
3,29	0,81	2,66	5,48E-08	7,85E-07	6,98E-02
0,22	0,81	0,18	3,67E-09	7,85E-07	4,67E-03
0,56	0,81	0,45	9,33E-09	7,85E-07	1,19E-02
1,05	0,81	0,85	1,75E-08	7,85E-07	2,23E-02
1,81	0,81	1,47	3,02E-08	7,85E-07	3,84E-02
3,06	0,81	2,48	5,10E-08	7,85E-07	6,49E-02
0,21	0,81	0,17	3,50E-09	7,85E-07	4,46E-03
0,52	0,81	0,42	8,67E-09	7,85E-07	1,10E-02
0,99	0,81	0,80	1,65E-08	7,85E-07	2,10E-02
1,7	0,81	1,38	2,83E-08	7,85E-07	3,61E-02
2,87	0,81	2,32	4,78E-08	7,85E-07	6,09E-02

Gas phase:

			ID: 1 mm	
flow rate [mL/Min]	flow rate [L/Min]	flow rate [m^3/s]	cross-sectional area [m ²]	Superficial gas velocity [m/s]
100	0,1	1,67E-06	7,85E-07	2,12
200	0,2	3,33E-06	7,85E-07	4,24
300	0,3	5,00E-06	7,85E-07	6,37
400	0,4	6,67E-06	7,85E-07	8,49
500	0,5	8,33E-06	7,85E-07	10,61
100	0,1	1,67E-06	7,85E-07	2,12
200	0,2	3,33E-06	7,85E-07	4,24
300	0,3	5,00E-06	7,85E-07	6,37
400	0,4	6,67E-06	7,85E-07	8,49
500	0,5	8,33E-06	7,85E-07	10,61
100	0,1	1,67E-06	7,85E-07	2,12
200	0,2	3,33E-06	7,85E-07	4,24
300	0,3	5,00E-06	7,85E-07	6,37
400	0,4	6,67E-06	7,85E-07	8,49
500	0,5	8,33E-06	7,85E-07	10,61

Due to the results we assumed annular flow inside the microreactor channels. The calculation shows that the flow regime is far away from slug-flow.

(1) Wälchli, S.; Two-Phase Flow Characteristics in Gas-Liquid Microreactors, Swiss Federal Institute of Technology, Zürich (2005)

S2 Calculation of the liquid hold-up (Lockhart-Martinelli)

The liquid and the gas hold-up are approached by Lockhart-Martinelli.¹ The correlation between the Lockhart-Martinelli parameter and the liquid hold-up is according to the calculations of Abduul-Majeed.²

The calculation were carried out for the lowest and the highest mass flow rate for the liquid solution.

Gas:		
flow rate [mL/Min]	density [g/cm^3]	mass flow rate [g/Min]
100	0,00143	0,14
500	0,00143	0,71
Liquid:		
flow rate [mL/Min]	density [g/cm^3]	mass flow rate [g/Min]
0,21	0,81	0,17
3,29	0,81	2,66

$$\chi = m_l / m_g * \sqrt{(\rho_g / \rho_l)}$$

where:

 χ : Lockhart-Martinelli parameter

m_i: liquid phase mass flow rate

mg: gas phase mass flow rate

 ρ_g : gas density

 ρ_1 : liquid density

Lockhart–Martinelli						
parameter ¹	Liquid-Holdup [-] ²	Liquid-Volume [mL]	Liquid-Volume [%]	Gas-Holdup [-]	Gas-Volume [mL]	Gas-Volume [%]
0,050	0,023	0,11	2,3	0,98	4,56	97,7
0,157	0,05	0,23	5,0	0,95	4,44	95,0

Calculation of the film thickness by assuming a cylinder geometry:

 $V = \pi * r^{2} * h$ 0.23 mL = $\pi * r^{2} * (8 * 750 \text{ mm})$ // capillary length: (8 * 750 mm) 230 mm³ = $\pi * r^{2} * (6000 \text{ mm})$ 0,0122 mm² = r^{2} <u>r = 0,11 mm \triangleq 110 μ m</u>

Calculation of the specific interface:

 $S_{v} = (\pi * 2 * (r - \text{film thickness})) / \pi * r^{2}$ $S_{v} = (2 * (0.5 - 0.11)) / 0.5^{2}$ $S_{v} = 0.78 / 0.25$ $\underline{S_{v}} = 3.12 \text{ mm}^{2} / \text{mm}^{3} \triangleq 3120 \text{ m}^{2} / \text{m}^{3}$

S3 Calculation of the heat transfer time

The heat transfer time is calculated for two different scenarios.

1. Calculation for homogenous filled capillary with valeraldehyde

Calculation of I	leat transfe	r time τ										
τ = L^2 / (α * N	r)		Roberge, D. M	; Kockmann, N	l.; Scale-up coi	ncept for modu	lar microstruc	tured reactors	based on mixir	g,		
			heat transfer,	and reactor sa	afety, Chemica	l Engineering a	nd Processing,	Vol. 50 (2011)	, 1017-1026			
L=	0,1	cm	// capillary d	iameter								
Nu =	3,66	-	// laminar flow through capillary (assumption)									
with												
α = k / (ρ *c _p)			// thermal d	ffusivity								
k =	134	W/(m * K)	// thermal co	onductivity	Natan, B.; Va	argaftik, Lev. P.;	Handbook of 1	Thermal Condu	ctivity of Liquid	ls and Gases, C	CRC Press, Inc (L994), p. 172
ρ =	810	kg / m^3	// density		Material Sa	ftey Data Sheet,	Sigma Aldrich	(12.03.2015)				
Cp =	2020	J / (kg * K)	// heat capa	city	Korkhov, A.D.; Dyakova, G.N.; Vasilev, I.A., Heat capacity of pivalaldehyde and valeraldehyde, (1983)							
α =	0,82	cm^2 / s										
τ =	0,003332	s										

2. Calculation for a film thickness of 0,11 mm (calculated from the liquid hold up (S2)

Calculation of	f Heat transfe	r time τ										
τ = L^2 / (α * M	Nu)		Roberge, D. M	.; Kockmann, N	I.; Scale-up co	ncept for modu	lar microstruct	tured reactors	based on mixir	ng,		
			heat transfer,	and reactor sa	afety, Chemica	l Engineering a	nd Processing,	Vol. 50 (2011)	, 1017-1026			
L =	0,011	cm	// capillary c	liameter								
Nu =	3,66	-	// laminar fl	// laminar flow through capillary (assumption)								
with												
$\alpha = k / (\rho * c_p)$			// thermal d	iffusivity								
k =	134	W/(m * K)	// thermal c	onductivity	Natan, B.; Va	argaftik, Lev. P.;	Handbook of 1	Fhermal Condu	ctivity of Liquid	ds and Gases, O	CRC Press, Inc (1994), p. 172
ρ =	810	kg / m^3	// density		Material Sa	ftey Data Sheet,	Sigma Aldrich	(12.03.2015)				
Cp =	2020	J / (kg * K)	// heat capa	city	Korkhov, A.I).; Dyakova, G.	N.; Vasilev, I.A.,	, Heat capacity	of pivalaldehy	de and valeral	dehyde, (1983)	
α =	0,82	cm^2 / s										
τ =	4,0317E-05	s										

In both scenarios the heat transfer time is much faster than the reaction time. Therefore we can assume isothermal conditions.

S4 Calculation of the activation energy Ea.

The activation energy Ea is roughly calculated by using the initial reaction rate (primary slope in Figure 3). A zero order reaction rate was assumed.

Figure 3. Valeraldehyde conversion for the catalyzed oxidation reaction with manganese(II) acetate and octanoic acid in a microreactor (one-A Engineering, Austria) at different reaction temperatures (0 °C, 20 °C, and 40 °C).

T [K]	CVAt=0[mol/L]	Cvat=1[mol/L]	Δc	t1 [s]	k [mol/ L *s]	LN (k)	1/T [K ⁻¹]
273,15	4,7	0,7	4,0	71	0,06	-2,88	0,0037
293,15	6,8	1,1	5,7	76	0,08	-2,59	0,0034
313,15	8,0	0,2	7,8	81	0,10	-2,34	0,0032

 $c_{VA} t = 0$ initial concentration of valeraldehyde

 $c_{VA} t = 1$ valeraldehyde concentration at t_1

 $E_A = m * (-R)$

- $E_{\rm A}$ = -1161 K * (- 8.314 J / mol K)
- $E_A = 9652 \text{ J} / \text{mol} \approx \underline{9.5 \text{ kJ} / \text{mol}}$

S5 Results of the scale-up experiment to 3 mm internal diameter capillary

Valeraldehyde conversion for the catalyzed oxidation reaction with manganese(II) acetate in a microreactor (one-A Engineering, Austria) at 60°C.

parameter	range
reactor volume	5.30 mL (reaction volume)
microchannels	2 pre-heating; 1 reaction
internal diameter of the microchannels	3 mm
oxygen flow rate	200 mL min ⁻¹
valeraldehyde flow rate	$0.29 - 1.01 \text{ mL min}^{-1}$
molar valeraldehyde feed rate	0.0027-0.0095 mol min ⁻¹
molar oxygen feed rate	0.0109 mol min ⁻¹
molar oxygen excess	3-0.15 equivalent (compared to valeraldehyde)
manganese(II) acetate catalyst	100 ppm (mol/mol relative to valeraldehyde)
temperature	60 °C
pressure	0.5 bar (reactor inlet)

Set-up parameters f	or the two-phase	e flow oxidation	of valeraldehyde
---------------------	------------------	------------------	------------------

The conversion can be accelerated by the addition of octanoic acid.

Figure 3S. Yield of valeric acid for the catalyzed oxidation reaction of valeraldehyde with manganese(II) acetate and octanoic acid in a microreactor (one-A Engineering, Austria) at different reaction temperatures (0 °C, 20 °C, and 40 °C).

The Yield was calculated from the start concentration of the aldehyde and end concentration of the valeric acid. Both concentrations are obtained by the calibrated GC-Method.