Supporting Information for:

β - $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)$-H Arylation of $\boldsymbol{\alpha}$-Hydroxy Acid Derivatives Utilizing Amino Acid as a Directing Group Tetsuya Toba, Yi Hu, Anh T. Tran, Jin-Quan Yu*
Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States

Table of Content ... S1

General Information... S1
Experimental Procedures and Characterization of Compounds ... S2
Preparation of Substrates ... S2
Optimization of the Reaction Conditions ... S4
$\mathrm{Pd}(\mathrm{OAc})_{2}$-Catalyzed C-H Arylation of O-Benzyl-Lactic Acid using L-Val-OH as a Directing
Group...S6
Gram-scale Synthesis of 2a ... S10
Removal of Amino Acid Auxiliary from 2a ... S10
HPLC Spectra ... S12
NMR Spectra ... S14

General Information

Solvents were obtained from Sigma-Aldrich, Alfa-Aesar and Acros and used directly without further purification. Amino acids and derivatives were obtained from commercial sources. EDCI (N-(3-Dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride), silver acetate, HFIP (hexafluoro-2-propanol) and aryl iodides were commercially available and used without any purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel $60-\mathrm{F} 254$. ${ }^{1} \mathrm{H}$ spectra were recorded on Bruker AMX-400 instrument (400 MHz), and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker DRX-600 instrument (150 MHz) and were fully decoupled by broadband proton decoupling. Chemical shifts were reported in ppm referenced to tetramethylsilane. The following abbreviations (or combinations thereof) were used to describe multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Coupling constants, J, were reported in Hertz unit (Hz). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). HPLC profiles were obtained on a Hitachi LaChrom Elite HPLC system using commercially available chiral columns.

Experimental Procedures and Characterization of Compounds

General Procedure for the Preparation of Substrates

To a solution of O-benzyl-lactic acid (1.0 equiv), amino acid ester hydrochloride (1.4 equiv), 1-hydroxybenzotriazole hydrate (1.05 equiv) and 4-methylmorpholine (1.8 equiv) in DMF (0.3 M) was added 1-ethyl-3-[3-(dimethylamino)- propyl]carbodiimide hydrochloride (1.2 equiv) at $0{ }^{\circ} \mathrm{C}$. After 1 h at $0{ }^{\circ} \mathrm{C}$ and 3 h at room temperature, the mixture was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The EtOAc extract was washed successively with $\mathrm{H}_{2} \mathrm{O}, 0.5 \mathrm{~N} \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, saturated aqueous NaHCO_{3}, and brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the corresponding esters as oil. To a solution of the intermediate ester in methanol ($4 \mathrm{~mL} / \mathrm{mmol}$), lithium hydroxide monohydrate (4.0 equiv) was added. After 4 h at room temperature, methanol was removed under reduced pressure. $\mathrm{H}_{2} \mathrm{O}$ was added to the crude residue and was subsequently neutralized by the addition of 0.5 N HCl . The aqueous solution was then extracted three times with EtOAc, and the combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated in vacuo to give the crude product which was recrystallized from EtOAc/hexane to give the desired substrates ($\mathbf{1 a - 1} \mathbf{g}$).

1a

1b

1c

1d

$1 f$

1g
$N-[(R)$-2-(benzyloxy)propionyl]-L-valine (1a)
White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.42-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.24(\mathrm{~m}$, $1 \mathrm{H}), 1.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}): $\delta 174.9,173.9,137.2,128.6,128.1,127.6,75.9,72.0,56.7,30.6,19.2,18.4,17.6$; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$280.1543, found 280.1558 .
N-[(R)-2-(benzyloxy)propionyl]-D-valine (1b)
Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=9.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.35-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta 175.4,174.1,137.1,128.6,128.1,128.0,76.2,72.3,56.4,30.9,19.1,19.1,17.5 ;$

HRMS (ESI) m/z: calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$280.1543, found 280.1537.
$N-[(R)$-2-(benzyloxy)propionyl]-L-alanine (1c)
White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.59-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,173.9,137.1,128.7,128.2,127.9,75.8,72.1,47.7,18.4,17.8 ;$ HRMS (ESI) m/z: calcd. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$252.1230, found 252.1244.
$N-[(R)$-2-(benzyloxy)propionyl]-L-isoleucine (1d)
White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.90(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.3,173.7,137.2$, 128.6, 128.1, 127.7, 75.9, 72.0, 56.1, 37.3, 25.0, 18.4, 15.7, 11.6; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 294.1700$, found 294.1702.
$N-[(R)$-2-(benzyloxy)propionyl]-L-phenylalanine (1e)
White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 4 \mathrm{H})$, $7.03(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dt}, J=7.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=14.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.4,174.1,137.0,135.6,129.2,128.8,128.5,128.0$, 127.6, 127.3, 75.6, 71.7, 52.7, 37.0, 18.4; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 328.1543$, found 328.1551 .
(R)-2-[2-(benzyloxy)propanamido]-2-methylpropanoic acid (1f)

White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.55(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.6,174.4,137.1,128.7,128.3,128.0,76.1,72.3,56.6,25.0,24.8$, 18.4; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$266.1387, found 266.1393.
$N-[(R)$-2-(benzyloxy)propionyl]-glycine (1g)
Pale brown oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, $4.15(\mathrm{dd}, J=18.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.97(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , CDCl_{3}): $\delta 174.4,173.0,137.1,128.6,128.2,127.9,75.8,72.1,40.8,18.5 ; \mathrm{HRMS}$ (ESI) m/z: calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$238.1074, found 238.1084.

General Procedure for the Optimization of the Amino Acid Auxiliary and the Reaction Conditions

 for the Pd-Catalyzed \mathbf{C}-H Arylation of the \boldsymbol{O}-benzyl-lactic acid with Amino Acid derivativesA mixture of $1(0.1 \mathrm{mmol})$ and designated amounts of 4-iodotoluene, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{AgOAc}, \mathrm{KF}$ in HFIP $(1.0 \mathrm{~mL})$ in a sealed vial was stirred at $100^{\circ} \mathrm{C}$ for 24 h . After cooling down to room temperature, EtOAc $(1.5 \mathrm{~mL})$ and acetic acid $(0.3 \mathrm{~mL})$ were added and the reaction mixture was filtered through a short pad of Celite ${ }^{\circledR}$. The Celite ${ }^{\circledR}$ was washed thoroughly with EtOAc $(4 \times 1.5 \mathrm{~mL})$, and the filtrate was concentrated to dryness.

Table S1. Optimization of solvent

		$\xrightarrow[\substack{\mathrm{AgOAc}(2 \text { equiv }) \\ \mathrm{KF}(3 \text { equiv }) \\ \text { Solvent, } 100^{\circ} \mathrm{C}, 24 \mathrm{~h}}]{\substack{4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(2 \text { equiv }) \\ \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)}}$			
entry	solvent	yield (\%) ${ }^{\text {a }}$	entry	solvent	yield (\%) ${ }^{\text {a }}$
1	Hexane	18	8	$i-\mathrm{PrOH}$	2
2	Toluene	13	9	t-BuOH	44
3	PhCF_{3}	15	10	t-AmylOH	31
4	1,2-Dichloroethane	- 16	11	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	64
5	1,4-Dioxane	17	12	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	17
6	MeCN	38	13	$\mathrm{CF}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}$	43
7	DMF	71	14	HFIP	79

${ }^{\text {a }}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude products using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard.

Table S2. Optimization of Pd/Ag/Base

		$\xrightarrow[{\substack{[\mathrm{Ag}](2 \text { equiv }) \\[\mathrm{Base}](\text { equiv }) \\ \text { HFIP, } 100{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}}}]{\substack{\text { h-Me- } \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{I}(2 \text { equiv) } \\[\mathrm{Pd}](10 \mathrm{~mol} \%)}}$		
entry	[Pd]	[Ag]	[base]	yield (\%) ${ }^{\text {a }}$
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	KF	79
2	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	$\mathrm{KF}^{\text {b }}$	71
3	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	KOAc	48
4	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	KHCO_{3}	70
5	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	$\mathrm{K}_{2} \mathrm{CO}_{3}$	76
6	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	$\mathrm{KH}_{2} \mathrm{PO}_{4}$	56
7	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	tBuOK	60
8	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	$\mathrm{K}_{2} \mathrm{HPO}_{4}$	21
9	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	LiF	58
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	$\mathrm{Li}_{2} \mathrm{CO}_{3}$	51
11	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	NaHCO_{3}	51
12	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	12
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	CsF	75
14	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	CsOAc	60
15	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	(None)	59
16	$\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\text {c }}$	AgOAc	KF	77
17	$\mathrm{Pd}\left(\mathrm{OCOCF}_{3}\right)_{2}$	AgOAc	KF	72
18	PdCl_{2}	AgOAc	KF	58
19	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{AgOAc}^{\text {d }}$	KF	69
20	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{AgOAc}^{\text {e }}$	KF	69
21	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	KF	68
22	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ag}_{2} \mathrm{O}$	KF	31
23	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgF	KF	76
24	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ag}_{3} \mathrm{PO}_{4}$	KF	7
25	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOTf	KF	66
26	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Cu}(\mathrm{OAc})_{2}$	KF	0
27^{f}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	KF	66
28^{9}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	KF	76
$29^{\text {h }}$	$\mathrm{Pd}(\mathrm{OAc})_{2}$	AgOAc	KF	78
30^{h}	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{AgOAc}^{\text {e }}$	KF	85
$31^{\text {h }}$	$\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{\text {c }}$	AgOAc^{e}	KF	81

[^0]
General Procedure for $\operatorname{Pd}(\mathbf{O A c})_{2}$-Catalyzed $\mathbf{C}-H$ Arylation of \boldsymbol{O}-Benzyl Acid Substrates Using Valine as a Directing Group

A mixture of substrate $(55.9 \mathrm{mg}, 0.2 \mathrm{mmol})$, aryl iodide $(0.6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol})$, $\mathrm{AgOAc}(100 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{KF}(34.9 \mathrm{mg}, 0.6 \mathrm{mmol})$ and HFIP $(2.0 \mathrm{~mL})$ in a sealed vial was stirred at $100^{\circ} \mathrm{C}$ for 24 h . After cooling down to room temperature, EtOAc (3 mL) and acetic acid (0.6 ml) were added and the reaction mixture was filtered through a short pad of Celite ${ }^{\circledR}$. The Celite was washed thoroughly with EtOAc $(4 \times 1.5 \mathrm{~mL})$. To the combined filtrate was added $2 \mathrm{~N} \mathrm{HCl}(4.5 \mathrm{~mL})$, the layers were separated, and the aqueous layer was extracted with EtOAc ($3 \times 1.5 \mathrm{~mL}$). Combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by silica gel column chromatography using mixture of hexane, EtOAc and AcOH as eluents (ratios of solvents were varied for different substrates, typically hexane:EtOAc: $\mathrm{AcOH}=100: 100: 0.2$ to 100:100:1).

$N-[(R)$-2-(benzyloxy)-3-(p-tolyl)propionyl]-L-valine (2a)
Light yellow oil, 57.9 mg (77% from 56.5 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=8.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (dd, $J=8.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=14.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=14.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{qd}, J=11.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 174.4,172.7,136.9,136.1,134.1,129.5,129.0,128.5,128.1,127.8,81.0,73.2,56.8,38.8$, 30.5, 21.1, 19.2, 17.6; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 370.2013$, found 370.2016.
$N-[(R)$-2-(benzyloxy)-3-(m-tolyl)propionyl]-L-valine (3)
Light yellow oil, 59.6 mg (80% from 56.0 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}): $\delta 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 4 \mathrm{H}), 4.52(\mathrm{dd}, J=$ $8.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=8.6,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.15(\mathrm{dd}, J=14.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=14.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.0,172.7,137.8,137.1$, $136.8,130.4,128.5,128.2,128.1,127.9,127.3,126.6,80.9,73.2,56.8,39.2,30.5,21.3,19.2,17.6$; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 370.2013$, found 370.2016.
$N-[(R)$-2-(benzyloxy)-3-(o-tolyl)propionyl]-L-valine (4)
Light yellow oil 9.4 mg (13% from 56.1 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 5 \mathrm{H}), 4.53(\mathrm{dd}, J=8.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=9.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=14.3,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta 174.1,172.9,136.8,136.7,135.8,130.5,130.3,128.5$, 128.1, 127.8, 126.8, 125.8, 80.5, 73.5, 56.8, 36.9, 30.6, 19.6, 19.2, 17.6; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 370.2013$, found 370.2013.
$N-[(R)$-2-(benzyloxy)-3-phenylpropionyl]-L-valine (5)
Light yellow oil 48.7 mg (68% from 55.9 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=8.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J$ $=8.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=14.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=14.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H})$, $0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.9,172.5,137.2$, $136.8,129.6,128.6,128.3,128.1,127.8,126.6,80.9,73.2,56.8,39.3,30.6,19.2,17.6$; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 356.1856$, found 356.1857.
N-[(R)-2-(benzyloxy)-3-(naphthalen-2-yl)propionyl]-L-valine (6)
Light brown oil 39.4 mg (48% from 56.1 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.82-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H})$, 7.13-7.07 (m, 2H), 7.04 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=8.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=8.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=14.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=$ $14.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.7,172.5,136.7,134.8,133.5,132.3,128.5,128.2,128.1,127.9,127.9,127.8$, 127.6, 127.6, 125.9, 125.4, 80.9, 73.3, 56.7, 39.5, 30.6, 19.2, 17.6; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 406.2013$, found 406.2016.
$N-\{(R)$-2-(benzyloxy)-3-[4-(trifluoromethyl)phenyl]propionyl $\}$-L-valine (7)
Light yellow oil 57.1 mg (y. 67% from 56.1 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H})$, $7.12(\mathrm{dd}, J=6.1,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13 (dd, $J=8.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=14.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.20$ $(\mathrm{m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.9,172.0$, $141.3,136.4,130.0,128.9(\mathrm{~d}, J=33.0 \mathrm{~Hz}), 128.6,128.3,127.9,125.1(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=$ $271.8 \mathrm{~Hz}), 80.2,73.2,56.6,38.9,30.7$ 19.2, 17.6; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 424.1730 , found 424.1739 .
$N-[(R)$-2-(benzyloxy)-3-(4-bromophenyl)propionyl]-L-valine (8)
Light yellow oil 63.6 mg (y. 73% from 55.9 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=8.2$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=14.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=11.8,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.0,172.2$, 136.5, 136.1, 131.4, 131.3, 128.6, 128.2, 127.9, 120.6, 80.5, 73.2, 56.7, 38.5, 30.7, 19.2, 17.6; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrNO}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 434.0961$, found 434.0966.
$N-[(R)$-2-(benzyloxy)-3-(2-bromophenyl)propionyl]-L-valine (9)
Light orange oil 27.7 mg (y. 32% from 55.9 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.53(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H})$, 7.14-7.05 (m, 4H), 4.56 (dd, $J=8.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.27(\mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=14.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=14.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.21$ $(\mathrm{m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 174.9,172.3$, 136.7, 136.7, 132.8, 132.3, 128.5, 128.4, 128.1, 127.9, 127.2, 124.8, 79.0, 73.5, 56.7, 39.7, 30.6, 19.2, 17.6; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{BrNO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 434.0961$, found 434.0970.
$N-[(R)$-2-(benzyloxy)-3-(3-chlorophenyl)propionyll-L-valine (10)
Light yellow oil 58.9 mg (y. 75% from 56.0 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=8.2,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.14(\mathrm{dd}, J=14.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=14.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=11.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.8,172.1,139.2,136.5$, $134.0,129.8,129.5,128.6,128.3,127.9,127.8,126.8,80.4,73.3,56.7,38.8,30.6,19.2,17.6$; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{ClNO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 390.1467$, found 390.1474 .
$N-[(R)$-2-(benzyloxy)-3-(4-fluorophenyl)propionyl]-L-valine (11)
Light yellow oil 56.3 mg (y. 75% from 56.0 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 4 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 3 \mathrm{H}), 4.53-4.45(\mathrm{~m}$, $2 \mathrm{H}), 4.42(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=8.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=14.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J$ $=14.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=11.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.7,172.3,161.8(\mathrm{~d}, J=244.3 \mathrm{~Hz}), 136.7$, $132.7(\mathrm{~d}, J=3.3 \mathrm{~Hz})$, $131.1(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 128.6,128.2,127.8,115.0(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 80.7,73.2,56.7,38.3,30.6,19.2,17.6$; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FNO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 374.1762$, found 374.1771.
$N-[(R)$-2-(benzyloxy)-3-(2-fluorophenyl)propionyl]-L-valine (12)
Light yellow oil 47.3 mg (y. 63% from 56.0 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.10-6.95(\mathrm{~m}, 3 \mathrm{H}), 4.52(\mathrm{dd}, J=$ $8.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=8.0,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.29(\mathrm{dd}, J=14.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=14.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.9,172.3,161.4(\mathrm{~d}, J=246.5 \mathrm{~Hz})$, 136.7, $132.0(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 128.5,128.5(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 128.1,127.8,124.1(\mathrm{~d}, J=15.4 \mathrm{~Hz}), 123.9$ (d, $J=3.3 \mathrm{~Hz}), 115.2(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 79.5,73.1,56.7,32.3,30.6,19.2,17.6$; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{FNO}_{4}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 374.1762$, found 374.1771.
$N-[(R)$-2-(benzyloxy)-3-(4-methoxyphenyl)propionyl]-L-valine (13)
Light yellow oil 45.9 mg (y. 60% from 55.9 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{dd}, J=8.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=8.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{dd}, J=14.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=14.2,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.29-2.19 (m, 1H), $0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : δ $174.6,172.6,158.4,136.9,130.6,129.2,128.6,128.1,127.8,113.7,81.1,73.2,56.8,55.2,38.4,30.6$, 19.2, 17.6; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 386.1962$, found 386.1959.
N - $\{(R)$-2-(benzyloxy)-3-[4-(methoxycarbonyl)phenyl]propionyl $\}$-L-valine (14)
Light brown oil 56.1 mg (y. 68% from 55.9 mg of substrate $\mathbf{1 a}$)
${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl_{3}): $\delta 7.97-7.92(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=9.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J$ $=8.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{dd}, J=14.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=14.0,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.30-2.19 (m, 1H), $0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $174.8,172.1,167.3,142.7,136.5,129.7,129.6,128.6,128.5,128.2,127.9,80.4,73.3,56.7,52.1,39.2$, 30.7, 19.2, 17.6; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 414.1911$, found 414.1911.
$N-[(R)$-2-(benzyloxy)-3-(3-acetylphenyl)propionyl]-L-valine (15)
Light yellow oil 40.7 mg (y. 51% from 56.1 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dd}, J=$ $9.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=7.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=14.0,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): $\delta 198.7,174.6,172.1,137.6,137.1,136.5,134.6,129.7$, 128.6, 128.5, 128.2, 127.9, 126.6, 80.4, 73.2, 56.7, 38.9, 30.7, 26.7, 19.2, 17.6; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NO}_{5}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 398.1962$, found 398.1966.
$N-[(R)$-2-(benzyloxy)-3-(4-nitrophenyl)propionyl]-L-valine (16)
Light yellow oil 30.9 mg (y. 39% from 55.9 mg of substrate 1a)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.12-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=9.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J$ $=7.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=14.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.17(\mathrm{~m}, 1 \mathrm{H})$, $0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.2,171.5,146.9$, 144.7, 136.3, 130.7, 128.7, 128.4, 127.9, 123.3, 79.6, 73.2, 56.5, 38.5, 30.6, 19.2, 17.5; HRMS (ESI) m / z : calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{6}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$401.1707, found 401.1715.

Gram-scale Synthesis of 2a

A mixture of $1 \mathrm{a}(1.12 \mathrm{~g}, 4.0 \mathrm{mmol})$, 4-iodotoluene ($2.62 \mathrm{~g}, 12.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(89.6 \mathrm{mg}, 0.41 \mathrm{mmol})$, $\mathrm{AgOAc}(2.01 \mathrm{~g}, 12.0 \mathrm{mmol}), \mathrm{KF}(712.6 \mathrm{mg}, 12.3 \mathrm{mmol})$ and HFIP $(40 \mathrm{~mL})$ in a sealed vial was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . After cooling down to room temperature, EtOAc $(40 \mathrm{~mL})$ and acetic acid (12 ml) were added and the reaction mixture was filtered through a short pad of Celite ${ }^{\circledR}$. The Celite was washed thoroughly with EtOAc $(4 \times 30 \mathrm{~mL})$. To the combined filtrate was added $2 \mathrm{NHCl}(60 \mathrm{~mL})$, the layers were separated, and the aqueous layer was extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. Combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by silica gel column chromatography (hexane:EtOAc: $\mathrm{AcOH}=100: 100: 0.2$ to $100: 100: 0.8$) to give 2a as an off-white solid ($1.04 \mathrm{~g}, 70 \%$).

Removal of Amino Acid Auxiliary from 2a

Methyl (S)-2-[(R)-2-(benzyloxy)-3-(p-tolyl)propanamido]-3-methylbutanoate (18)
To a solution of $\mathbf{2 a}(77.4 \mathrm{mg}, 0.21 \mathrm{mmol})$ in toluene $(0.75 \mathrm{~mL})$ and $\mathrm{MeOH}(0.25 \mathrm{~mL})$ was added dropwise a solution of $2 \mathrm{M} \mathrm{TMSCHN}{ }_{2}$ in hexane ($300 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$), and the mixture was stirred at rt for 1 h . Silica gel (ca. 500 mg) was added to quench the reaction, and the mixture was fitered through a cotton plug and the silica gel was washed with EtOAc: $\mathrm{MeOH}=1: 1$ solution (10 mL). The eluent was
concentrated under reduced pressure and purified by silica gel column chromatography (hexane:EtOAc $=4: 1)$ to yield 18 as a yellow oil ($78.2 \mathrm{mg}, 97 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=9.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J$ $=8.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{dd}, J=14.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=14.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.0,171.8,137.0,136.0,134.3,129.5,128.9,128.5,128.0,127.8,81.2,73.2,56.6,52.1,39.0,31.1$, 21.1, 19.1, 17.8; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NO}_{4}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 384.2169$, found 384.2183 .
(R)-2-(benzyloxy)-3-(p-tolyl)propanoic acid (19)

To a solution of above $18(78.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{AcOH}: \mathrm{Ac}_{2} \mathrm{O}(1: 2 \mathrm{v} / \mathrm{v})$ solution $(2.0 \mathrm{~mL})$ was added $\mathrm{NaNO}_{2}(281.0 \mathrm{mg}, 4.1 \mathrm{mmol})$ portionwise at $0^{\circ} \mathrm{C}$. After 1 h of stirring, additional $\mathrm{AcOH}: \mathrm{Ac}_{2} \mathrm{O}(1: 2 \mathrm{v} / \mathrm{v})$ solution $(1.0 \mathrm{~mL})$ was added. The mixture was stirred for another 2 h at $0^{\circ} \mathrm{C}$, then gradually allowed to warm to rt overnight. Most the volatiles were then removed under reduced pressure, and to the residue was added saturated aqueous NaHCO_{3} and 2 N NaOH at $0{ }^{\circ} \mathrm{C}$ to adjust to pH 8 . The mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min . and at rt for 1 h . The mixture was acidified with 2 N HCl , extracted with EtOAc $(3 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel column chromatography (hexane: $\mathrm{EtOAc}: \mathrm{AcOH}=100: 100: 1$) to give 19 as a pale yellow oil (39.6 $\mathrm{mg}, 72 \%$ or 91% based on recovered 18).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{dd}, J=6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 4 \mathrm{H}), 4.58$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=7.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=14.2,4.2 \mathrm{~Hz}$, 1 H), 3.01 (dd, $J=14.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.7,136.5,136.4$, $133.2,129.4,129.1,128.5,128.2,128.0,78.8,73.0,38.2,21.1$; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{-}$ ([M-H] $]^{-}$) 269.1183, found 269.1173; HPLC CHIRALPAK AD-H ($2 \% 2-\mathrm{PrOH}+0.2 \%$ TFA in hexane; $0.5 \mathrm{~mL} / \mathrm{min}$) $\mathrm{t}_{\mathrm{r}}=50.587 \mathrm{~min}$ (major), 46 min (minor): $99.7 \% \mathrm{ee}$.
(R)-2-hydroxy-3-(p-tolyl)propanoic acid (17)

To a solution of $\mathbf{2 a}(37.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ in 1,4-dioxane (1.0 mL) was added conc. $\mathrm{HCl}(1.0 \mathrm{~mL}, \mathrm{ca} .12$ mmol), and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . Water (ca. 4.5 mL) was added, and the reaction was extracted with EtOAc $(5 \times 1.5 \mathrm{~mL})$. Combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by silica gel column chromatography (hexane:EtOAc:MeOH $=100: 200: 0$ to $100: 200: 4.5$) to yield 17 as an off-white solid ($12.7 \mathrm{mg}, \mathrm{y} .70 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.13(\mathrm{~s}, 4 \mathrm{H}), 4.46(\mathrm{dd}, J=6.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.1,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.9,136.8,132.6$, 129.4, 129.4, 71.1, 39.7, 21.1; HRMS (ESI) m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3}{ }^{-}$([M-H]) 179.0714, found 179.0718; HPLC CHIRALPAK AD-H ($10 \% 2-\mathrm{PrOH}+0.2 \% \mathrm{TFA}$ in hexane; $0.5 \mathrm{~mL} / \mathrm{min}) \mathrm{t}_{\mathrm{r}}=15.973$ \min (major), 20.593 min (minor): $98.8 \% \mathrm{ee}$.

HPLC Spectra

Compound 19
Area \% Report
Data File: C:¥EZChrom Elite $¥ E n t e r p r i s e ¥ P r o j e c t s ¥ D e f a u l t ¥ D a t a ¥ T e t s u y a ¥ T T 02-065 _c h i r a l _3$
Method: C:¥EZChrom Elite $¥$ Enterprise $¥$ Projects $¥$ Default $¥$ Method $¥ A 90 \mathrm{~min}$ without fc 0.5 ml per min.met

Acquired: 8/22/2014 9:15:12 AM
Printed: 8/22/2014 7:49:03 PM

DAD-CH2 205
nm Results

Retention Time	Area	Area $\%$	Height	Height \%
45.347	173184	0.17	5956	0.62
50.587	99208099	99.83	959804	99.38

Totals	99381283	100.00	965760	100.00

Compound 17

Area \% Report

 Method: C:¥EZChrom Elite $¥$ Enterprise $¥$ Projects $¥$ Default $¥$ Method $¥ A 90$ min without fc 0.5 ml per min.met

Acquired: \quad 8/22/2014 4:46:48 PM
Printed: 8/22/2014 8:26:58 PM

DAD-CH2
205
nm
Results

Retention Time	Area	Area \%	Height	Height \%
15.973	71508403	99.41	2049031	99.43
20.593	426905	0.59	11822	0.57

Totals	71935308	100.00	2060853	100.00

NMR Spectra

$N-[(R)$-2-(benzyloxy)propionyl]-L-valine (1a)

(

$N-[(R)$-2-(benzyloxy)propionyl]-D-valine (1b)

$N-[(R)$-2-(benzyloxy)propionyl]-L-alanine (1c)

		$\stackrel{8}{6}$	$\stackrel{8}{\square}$					$\stackrel{\circ}{-}$	8					-		
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	Chemical Shift (ppm)

$N-[(R)$-2-(benzyloxy)propionyl]-L-isoleucine (1d)

$N-[(R)$-2-(benzyloxy)propionyl]-L-phenylalanine (1e)

(R)-2-[2-(benzyloxy)propanamido]-2-methylpropanoic acid (1f)

	-i¢	- ${ }_{\text {- }}^{\text {- }}$		$\stackrel{\%}{\circ}$	

$N-[(R)$-2-(benzyloxy)propionyl]-glycine (1g)

$N-[(R)$-2-(benzyloxy)-3-(p-tolyl)propionyl]-L-valine (2a)

$N-[(R)$-2-(benzyloxy)-3-(m-tolyl)propionyl]-L-valine (3)

N-[(R)-2-(benzyloxy)-3-(o-tolyl)propionyl]-L-valine (4)

$N-[(R)$-2-(benzyloxy)-3-phenylpropionyl]-L-valine (5)

$N-[(R)$-2-(benzyloxy)-3-(naphthalen-2-yl)propionyl]-L-valine (6)

$N-\{(R)$-2-(benzyloxy)-3-[4-(trifluoromethyl)phenyl]propionyl $\}$-L-valine (7)

$N-[(R)$-2-(benzyloxy)-3-(4-bromophenyl)propionyl]-L-valine (8)

$N-[(R)$-2-(benzyloxy)-3-(2-bromophenyl)propionyl]-L-valine (9)

$N-[(R)$-2-(benzyloxy)-3-(3-chlorophenyl)propionyl]-L-valine (10)

$N-[(R)$-2-(benzyloxy)-3-(4-fluorophenyl)propionyl]-L-valine (11)

$N-[(R)$-2-(benzyloxy)-3-(2-fluorophenyl)propionyl]-L-valine (12)

$N-[(R)$-2-(benzyloxy)-3-(4-methoxyphenyl)propionyl]-L-valine (13)

$N-\{(R)$-2-(benzyloxy)-3-[4-(methoxycarbonyl)phenyl]propionyl $\}$-L-valine (14)

 5...日.0.0 $\stackrel{8}{\circ}$

$N-[(R)$-2-(benzyloxy)-3-(3-acetylphenyl)propionyl]-L-valine (15)

$N-[(R)$-2-(benzyloxy)-3-(4-nitrophenyl)propionyl]-L-valine (16)

Methyl (S)-2-[(R)-2-(benzyloxy)-3-(p-tolyl)propanamido]-3-methylbutanoate (18)

(R)-2-(benzyloxy)-3-(p-tolyl)propanoic acid (19)

								Oֻ O	$\stackrel{8}{\square}$		O O	$\stackrel{\ddot{c}}{\underset{\sim}{0}}$				
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5		3.5	3.0	2.5	2.0	1.5	1.0	Chemical Shift (ppm)

(

(R)-2-hydroxy-3-(p-tolyl)propanoic acid (17)

[^0]: ${ }^{\text {a }}$ The yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude products using $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as an internal standard. ${ }^{\mathrm{b}} 2$ equiv ${ }^{\mathrm{C}} 5 \mathrm{~mol} \%$. ${ }^{\mathrm{d}} 1.5$ equiv ${ }^{\mathrm{e}} 3$ equiv ${ }^{\mathrm{f}} 16 \mathrm{~h} .{ }^{\mathrm{g}} 120^{\circ} \mathrm{C}$. ${ }^{\mathrm{h}} 4-\mathrm{Me}$ $\mathrm{C}_{6} \mathrm{H}_{4}$ (3 equiv).

