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We elaborate on the classical method used to simulate the linear and nonlinear optical response
associated with plasmon resonances in graphene nanostructures, with emphasis on the derivation
of Eqs. (1-4) in Methods. We also discuss and explore the influence of temperature and interband
transitions on the optical response of nanographenes, and provide frequency-dependent values of the
nonlinear refractive index and nonlinear absorption coefficient for graphene nanoribbons. Finally, we
give additional details pertaining to the fast-Fourier transform method used to expedite calculations
for graphene nanoislands.
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I. CLASSICAL ELECTROSTATIC THEORY FOR NANOSTRUCTURED GRAPHENE

We consider a graphene nanostructure with a characteristic size D, corresponding to the width of a nanoribbon
or the side length of an equilateral triangle, that is much less than the wavelength of the incident illumination, for
which the electric field is given by Eext = E0ê

(
e−iωt + c.c.

)
, where ê is the polarization unit vector. We quantify the

linear and nonlinear optical response of a finite nanostructure by the nth-order dipole induced along ê oscillating at
harmonic s of the excitation frequency ω, for which the polarizability is given by

α(n)
sω (ω) =

1

(E0)n

∫
d2R (ê ·R) ρind,(n)sω (R, ω), (1)

where the induced charge density is obtained from the surface currents j
(n)
sω (R, ω) using the continuity equation,

ρind,(n)sω (R, ω) = − i

sω
∇R · j(n)sω (R, ω), (2)

and R = (x, y) are 2-D coordinate vectors in the x-y plane.

For the linear optical response (taking n = s = 1 in the above expressions), the surface current is j
(1)
ω (R, ω) =

σ
(1)
ω (R, ω)E(R, ω), where σ

(1)
ω (R, ω) is the linear conductivity of graphene (see Methods) and E(R, ω) = −∇Rφ(R, ω)

is the total electric field acting on the graphene nanostructure due to the self-consistent potential φ, which is given in
the electrostatic approximation by [1]

φ(R, ω) = φext(R, ω) +
i

ω

∫
d2R′

|R−R′|
∇R′ · σ(1)

ω (R′, ω)∇R′φ(R′, ω). (3)
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Following the method of Ref. [1], we assume that the linear conductivity can be separated as σ
(1)
ω (R, ω) = f(R)σ

(1)
ω (ω),

where the occupation factor f(R) is 1 within the graphene structure and zero everywhere else, and we express Eq.

(2) in terms of a reduced 2-D coordinate vector ~θ = R/D as

ρind,(1)ω (~θ, ω) = −η
(1)
ω

D
∇~θ ·

√
f(~θ) ~ε(~θ, ω)/D. (4)

In obtaining the above expression we have defined η
(n)
sω = iσ

(n)
sω (ω)/sωD and introduced the normalized electric field

~ε(~θ, ω) = −
√
f(~θ)∇~θ φ(~θ, ω), which is expanded in a complete set of eigenmodes ~εj with real eigenvalues 1/ηj as [1]

~ε(~θ, ω) =
∑
j

cj

1− η(1)ω /ηj
~εj(~θ), (5)

where the expansion coefficients are

cj =

∫
d2~θ~εj(~θ) · ~ε ext(~θ, ω) = DE0ê ·

∫
d2~θ

√
f(~θ)~εj(~θ), (6)

and the eigenmodes are orthogonal, i.e.,

~εj(~θ) =

∫
d2~θ~εj(~θ) · ~εj(~θ) = δjj′ . (7)

Now, assuming that the optical response is dominated by the lowest-order dipolar mode [the j = 1 term in Eq. (5)],
the induced charge density given in Eq. (4) becomes

ρind,(1)ω (~θ, ω) = −η
(1)
ω

D

c1

1− η(1)ω /η1
∇~θ ·

√
f(~θ)~ε1(~θ). (8)

We then express Eq. (1) in terms of normalized coordinates ~θ and use Eq. (8) to write the linear polarizability as

α(1)
ω (ω) =

η
(1)
ω ξ21D

3

1− η(1)ω /η1
, (9)

where we have defined

ξ1 = ê ·
∫
d2~θ~θ∇~θ ·

√
f(~θ)~ε1(~θ) = −ê ·

∫
d2~θ

√
f(~θ)~ε1(~θ). (10)

Moving back to R space, we write ξ1 = −ê ·
∫
S
d2R ~ε1(R)/D2, as given in Methods of the main paper, by using the

function f(R) to restrict the integration to the surface of the graphene nanostructure, S, while Eq. (7) guarantees
that

∫
S
d2R|~ε1(R)|2 = D2.

To describe the nonlinear response associated with second-harmonic generation (SHG), we express the second-
harmonic current as [2]

j
(2)
2ω,i(R, ω) = σ

(2)
2ω (R, ω)

∑
jkl

∆
(2)
ijklEj(R, ω)∂kEl(R, ω), (11)

where we assume that the nonlinear conductivity can be written as σ
(2)
2ω (R, ω) = f(R)σ

(2)
2ω (ω), and we have isolated

its tensorial part, ∆
(2)
ijkl = 5δijδkl/3− δikδjl+ δilδjk/3. We then express Eq. (2), for n = s = 2, in reduced coordinates

as

ρ
ind,(2)
2ω (~θ, ω) = −η

(2)
2ω

D3

∑
ijkl

∂~θ,i

∆
(2)
ijkl

√
f(~θ)εj(~θ, ω)∂~θ,k

1√
f(~θ)

εl(~θ, ω)

 . (12)

Keeping the total electric field to linear order, we again use only the j = 1 term in Eq. (5) and write

ρ
ind,(2)
2ω (~θ, ω) = −η

(2)
2ω

D3

c21(
1− η(1)ω /η1

)2 ∑
ijkl

∂~θ,i

∆
(2)
ijkl

√
f(~θ)ε1,j(~θ)∂~θ,k

1√
f(~θ)

ε1,l(~θ)

 . (13)
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Using the above expression in Eq. (1), expressed in terms of ~θ, then yields the nonlinear polarizability for SHG,

α
(2)
2ω (ω) =

η
(2)
2ω ξ

2
1ζ

(2)
2ωD

2(
1− η(1)ω /η1

)2 , (14)

where we introduce the dimensionless parameter

ζ
(2)
2ω = −

∫
d2~θ

(
~θ · ê

)∑
ijkl

∂~θ,i

∆
(2)
ijkl

√
f(~θ)ε1,j(~θ)∂~θ,k

ε1,l(~θ)√
f(~θ)

 =
∑
ijkl

êi∆
(2)
ijkl

∫
d2~θ

√
f(~θ)ε1,j(~θ)∂~θ,k

ε1,l(~θ)√
f(~θ)

. (15)

Note that ε1,i(~θ)/

√
f(~θ) is proportional to the physical electric field associated with the dipolar plasmon mode, and

therefore is continuous across the graphene edge, even in the limit where f(~θ) jumps from 1 to 0 at the edge itself; the

leading factor of

√
f(~θ) then limits the integration in the above expression to the region occupied by the graphene,

S. By moving to R space, and considering (without loss of generality) the response along the x-direction, i.e., for êx,

we may express ζ
(2)
2ω in the form

ζ
(2)
2ω =

1

D

∫
S

d2R

{
ε1,x(R)

[
∂

∂x
ε1,x(R) +

5

3

∂

∂y
ε1,y(R)

]
+ ε1,y(R)

[
1

3

∂

∂y
ε1,x(R)− ∂

∂x
ε1,y(R)

]}
, (16)

which corresponds to the expression provided in Methods.
The extension to third-order nonlinearities follows straightforwardly: For third-harmonic generation (THG), we

start with the third-order surface current

j
(3)
3ω,i(R, ω) = σ

(3)
3ω (R, ω)

∑
jkl

∆
(3)
ijklEj(R, ω)Ek(R, ω)El(R, ω), (17)

where the tensor part is ∆
(3)
ijkl = (δijδkl + δikδjl + δilδjk) /3. We isolate the spatial dependence of the third-order

conductivity according to σ
(3)
3ω (R, ω) = f(R)2σ

(3)
3ω (ω), and so Eq. (2) (for n = s = 3) becomes

ρ
ind,(3)
3ω (~θ, ω) = −η

(3)
3ω

D3

∑
ijkl

∂~θ,i

[
∆

(3)
ijkl

√
f(~θ)εj(~θ, ω)εk(~θ, ω)εl(~θ, ω)

]
. (18)

Using Eq. (5), we find that

ρ
ind,(3)
3ω (~θ, ω) = −η

(3)
3ω

D3

c31(
1− η(1)ω /η1

)3 ∑
ijkl

∂~θ,i

[
∆

(3)
ijkl

√
f(~θ)ε1,j(~θ)ε1,k(~θ)ε1,l(~θ)

]
, (19)

from which Eq. (1) provides the nonlinear polarizability corresponding to THG,

α
(3)
3ω (ω) =

η
(3)
3ω ξ

3
1ζ

(3)
3ωD

3(
1− η(1)ω /η1

)3 , (20)

where

ζ
(3)
3ω =

∫
d2~θ

(
~θ · ê

)∑
ijkl

∂~θ,i

[
∆

(3)
ijkl

√
f(~θ)ε1,j(~θ)ε1,k(~θ)ε1,l(~θ)

]
= −

∑
ijkl

êi∆
(3)
ijkl

∫
d2~θ

√
f(~θ)ε1,j(~θ)ε1,k(~θ)ε1,l(~θ). (21)

The above expression for the dimensionless parameter ζ
(3)
3ω is simplified by moving to R coordinates and using the

property f(R) = 1 for R ∈ S, and is zero otherwise, to write

ζ
(3)
3ω = − 1

D2
ê ·
∫
S

d2R ~ε1(R) · ~ε1(R) ~ε1(R), (22)
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corresponding to the expression provided in Methods.
In an analogous manner, the nonlinear polarizability corresponding to the Kerr nonlinearity [Eq. (1) for n = 3,

s = 1] is obtained from the third-order surface current

j
(3)
ω,i(R, ω) = σ

(3)
3ω (R, ω)

∑
jkl

∆
(3)
ijklEj(R, ω)E∗k(R, ω)El(R, ω) (23)

as

α(3)
ω (ω) =

η
(3)
ω ξ31ζ

(3)
ω D3∣∣∣1− η(1)ω /η1

∣∣∣2 (1− η(1)ω /η1

) (24)

where

ζ(3)ω =

∫
d2~θ

(
~θ · ê

)∑
ijkl

∂~θ,i

[
∆

(3)
ijkl

√
f(~θ)ε1,j(~θ)ε

∗
1,k(~θ)ε1,l(~θ)

]
= −

∑
ijkl

êi∆
(3)
ijkl

∫
d2~θ

√
f(~θ)ε1,j(~θ)ε

∗
1,k(~θ)ε1,l(~θ). (25)

After performing the summation in the above expression, we obtain

ζ(3)ω = − 1

D2
ê ·
∫
S

d2R

{
2

3
|~ε1(R)|2 ~ε1(R) +

1

3
~ε1(R) · ~ε1(R) [~ε1(R)]

∗
}
, (26)

which coincides with the expression provided in Methods.

II. TEMPERATURE DEPENDENCE OF THE OPTICAL RESPONSE

Through iterative solution of the Boltzmann transport equation (in the local limit),

∂fk(r, t)

∂t
− e

h̄
E · ∇kfk(r, t) = −1

τ

[
fk(r, t)− f0k

]
, (27)

we consider an electric field E(t) = Eω(e−iωt + eiωt) and find that, to first-order,

σ(1)
ω (ω) = i

e2

πh̄2
F

(1)
k

ω + iτ−1
, (28)

with

F
(1)
k =

∫ ∞
−∞

dεk |εk|
∂f0k
∂εk

= EF + 2kBT log
(

1 + e−EF /kBT
)
,

so that Eq. (28) leads to Eq. (5) of the main text in the T → 0 limit. Actually, the linear result is virtually unchanged

by considering T = 300 K, for which we find F
(1)
k ' EF for the Fermi energies considered in this work, i.e. for

0.2 ≤ EF /eV ≤ 2.0. At third-order, we obtain expressions for the local intraband conductivity of graphene as

σ(3)
sω (ω) = −i

e4v2F
π2h̄2

−sF (3)
k

Dsω
, (29)

where

F
(3)
k =

∫ ∞
−∞

dεk

(
−1

|εk|
∂f0k
∂εk

+
∂2f0k
∂ε2k

+ |εk|
∂3f0k
∂ε3k

)
, (30)

and D3ω = (ω + iτ−1)(2ω + iτ−1)(3ω + iτ−1) for THG (s = 3) or Dω = (ω + iτ−1)(2ω + iτ−1)(−ω + iτ−1) for the
Kerr nonlinearity (s = 1). Now, at zero temperature, we have ∂f0k/∂εk = −δ (EF − εk), and Eq. (30) reduces to

F
(3)
k = −3π/4, after having used the general relation∫

dx
∂nf(x)

∂xn
δ(a− x) = (−1)n

∂nf(x)

∂xn

∣∣∣∣
x=a

. (31)
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FIG. S1: Temperature dependence of the nonlinear optical response in nanoribbons. We show spectra for the linear
absorption cross-section (upper panels), along with the nonlinear polarizabilities corresponding to THG (middle panels), and
the Kerr nonlinearity (lower panels) for ∼ 10 nm armchair- (left panels) and zigzag-edged (right panels) nanoribbons at zero
temperature (filled curves) and for T = 300 K (regular curves). Different Fermi energies are considered here, as indicated by
the color-coded numerical values in the upper-left panel.

Thus, we recover

σ
(3)
3ω (ω) =

3ie4v2F
4πh̄2EF

1

(ω + iτ−1)(2ω + iτ−1)(3ω + iτ−1)
(32)

and

σ(3)
ω (ω) =

9ie4v2F
4πh̄2EF

1

(ω + iτ−1)(−ω + iτ−1)(2ω + iτ−1)
,

corresponding to Eqs. (9) and (10) in Methods, and in agreement with the result of Ref. [3]. These third-order
expressions differ in multiplicative factors from those reported in a previous study [4], where the phenomenological
decay is introduced in the Fourier integrals; if in Eq. (27) we had instead defined E(t) =

∫∞
−∞ dωEωe−iωt+t/τ , we

would recover the purely intraband contributions to the third-order currents obtained from Ref. [4]:

σ
(3)
3ω (ω) =

ie4v2F
8πh̄2EF

1

(ω + iτ−1)3
(33)

and

σ(3)
ω (ω) =

3ie4v2F
8πh̄2EF

1

(ω + iτ−1)2(−ω + iτ−1)
.

For non-zero temperatures, Eq. (30) becomes

F
(3)
k =

−3π

4kBT

{∫ ∞
−∞

dεk
|εk|

e(εk−EF )/kBT[
e(εk−EF )/kBT + 1

]2 +
2e−EF /kBT

(e−EF /kBT + 1)2

}
. (34)

Note that the integrand in the first term above has a singularity at εk = 0, and so F
(3)
k diverges. This suggests that

the perturbation theory (up to third order) is inadequate for dealing with finite temperatures, in the same way it fails

as EF → 0 (consider the 1/EF dependence of σ
(3)
sω ). However, we expect that the T = 0 description of the third-order,

purely intraband conductivities should also describe the T = 300 K case reasonably well, considering the negligible
change in the linear response [see Eq. (28)], as well as those in the nonlinear response for graphene nanoribbons
predicted by atomistic simulations (see Fig. S1).
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FIG. S2: Exploring the role of interband transitions in the optical response of nanoribbons. The symbols indicate
the peak maxima for the linear absorption cross-section (left column), as well those for the nonlinear polarizabilities correspond-
ing to THG (central column) and the Kerr nonlinearity (right column), calculated for graphene nanoribbons illuminated by light
polarized perpendicular to their direction of translational symmetry. Results are presented for QM calculations of armchair
(solid blue circles) and zigzag (solid red circles) ribbons, along with classical simulations for purely intraband contributions
in the linear and nonlinear conductivities (open black circles) or including interband contributions in the linear conductivity
(open green circles). The peak maxima are proportional to the symbol areas (see grey legends in each panel).

III. INTERBAND CONTRIBUTIONS TO THE NONLINEAR OPTICAL RESPONSE

Computing the full third-order nonlinear optical conductivity of extended graphene, i.e., including contributions
from both intraband and interband optical transitions, is presently an area of active study, with various approaches
in the literature that apparently yield different results (see for example the work of Cheng et al. in Refs. [5, 6] and
by Mikhailov in Ref. [4]). In the present study, we focus primarily on the nonlinear optical response of graphene
nanostructures associated with plasmonic exctations, for which only intraband processes contribute significantly to
the nonlinear conductivities. Incidentally, it has been argued that interband transitions only become important at
energies h̄ω ≥ 2EF , and even then their effect is orders of magnitude smaller than the contribution of intraband
transitions [4].

A relatively simple, straightforward improvement to the classical description of the plasmon-enhanced nonlinear
response in nanostructured graphene can be achieved by including the effect of interband optical transitions in the
linear response. This is accomplished by using the linear conductivity for graphene obtained from the random-phase
approximation in the local limit [7],

σ(1)
ω (ω) = i

e2

πh̄2
1

ω + iτ−1

F (1)
k −

∫ ∞
−∞

dεk
(εk/|εk|)f0k(εk)

1− 4ε2k/
[
h̄2 (ω + iτ−1)

2
]
 . (35)

The linear conductivity enters the factors η
(1)
ω in Eqs. (1-4) of Methods, where it accounts for the local field generated

by the dipolar plasmon mode of a graphene nanostructure. An accurate treatment of this local field enhancement
is arguably more critical than the inclusion of interband optical transitions in the nonlinear conductivities when
describing the nonlinear response at plasmon resonances. Indeed, as we show in Fig. S2 for graphene nanoribbons,
the peak intensities of the linear and nonlinear response are in better agreement with those predicted in quantum-
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FIG. S3: Kerr-type nonlinearities in graphene nanoribbons We present the real and imaginary parts of the third-
order nonlinear susceptibilities used to produce Fig. 1d in the main text (left column, in electrostatic units), along with the
corresponding values of the nonlinear refractive index, n2, and the nonlinear absorption coefficient, β (right column, in SI
units). Different Fermi energies [color-coded numerical values in (a), eV] are considered, and the ribbon width is ≈ 10 nm.

mechanical simulations when we use Eq. (35) to describe the linear conductivity in graphene, where the most noticeable
improvements appear for resonances above or near the Fermi level.

IV. NONLINEAR REFRACTIVE INDEX AND NONLINEAR ABSORPTION

The complex third-order susceptibility oscillating at the fundamental frequency of illumination, χ
(3)
ω , which quanti-

fies what we have referred to here as the Kerr nonlinearity, is related to the nonlinear refractive index n2 and nonlinear
absorption coefficient β of a medium. These quantities are typically what are measured directly in nonlinear optical

experiments, from which values for the nonlinear susceptibility are inferred. The relations among a medium’s χ
(3)
ω ,

n2, and β are provided in Ref. [8] as

n2 =
3

4ε0c (n20 + k20)

(
Re{χ(3)

ω }+
k0
n0

Im{χ(3)
ω }
)

(36)

and

β =
3

2ε0c2 (n20 + k20)

(
Im{χ(3)

ω } −
k0
n0

Re{χ(3)
ω }
)
, (37)

where n0 = Re{(1 + χ
(1)
ω )1/2} and k0 = Im{(1 + χ

(1)
ω )1/2}, with all of the above quantities in SI units. The above

expressions are intended to properly account for the interplay between the complex first- and third-order susceptibilities
in highly-absorbing media [8], and we use them here to show the frequency-dependence of n2 and β for the ∼ 10 nm
graphene nanoribbons considered in Fig. 1 of the main text.

V. CONVERGENCE OF THE FAST-FOURIER TRANSFORM METHOD FOR NANOISLANDS

Here we describe the nonlinear response for graphene nanotriangles using the perturbative expansion procedure for
the single-electron density matrix outlined in Ref. [9]. Following this approach, we compute several noninteracting
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FIG. S4: Convergence of the FFT method for graphene nanoislands. We show spectra for the linear absorption
cross-section (upper left), along with the nonlinear polarizabilities corresponding to SHG (upper right), THG (lower left), and
the Kerr nonlinearity (lower right) for a ∼ 4.4 nm, armchair-edged nanotriangle, with light polarized in the graphene plane and
perpendicular to one of the triangle sides (see inset in upper-left panel). Results are shown for a simulation in which the RPA
susceptibility is evaluated directly (filled curves) along with those computed using the fast-Fourier transform (FFT) method,
using the indicated number of frequencies in the Fourier integral.

RPA susceptibilities, χ0
ll′(sω), which have the same form as Eq. (23) of Methods (but lack any wave vector dependence),

to obtain the nonlinear polarizabilities for a single structure. To expedite these computations, which require summing
∼ N4 terms for each χ0

ll′(sω), N being the number of carbon atoms in a nanoisland, we employ the fast-Fourier
transform (FFT) method described in Ref. [10], for which only ∼ N3 operations are required. To perform the
FFT, a finite grid of Nω equally-spaced frequencies must be defined, and it is this discretization that determines the
convergence of the χ0

ll′(sω) computed using the FFT method with that obtained from a direct summation. In Fig. S4,
we show that while the FFT method can provide excellent convergence for Nω = 1012 frequencies, particularly in the
linear response, more satisfactory results for the nonlinear polarizabilities are obtained with 1013 frequencies. Note
that while this convergence is rather independent of a graphene nanoisland’s size, more frequencies are required if the
phenomenological relaxation rate is reduced.
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