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Supporting information-1: Experimental Method

The nano quantum rings (NQRs) were grown in Riber Compact21 MBE system. After ther-

mal removal of any surface oxide on the GaAs under an As tetramer ambience of 620◦C,

a ∼ 100 nm-thick GaAs buffer layer was grown at 580◦C. 20 pairs of (61.35 nm-thick AlAs

and 53.2 nm-thick Al0.31GaAs) and 53.2 nm-thick Al0.31GaAs were grown successively. The

substrate temperature was then cooled to 310◦C and the supply of As tetramer was discon-

nected until the partial pressure of As and the pressure of the main chamber became less

than 1 × 10−11 Torr and 1.5 × 10−9 Torr, respectively. Ga metal was introduced on the

substrate in this clean state of the chamber, equivalent to 1 monolayer of GaAs. In this

state, the density of Ga droplets was ∼ 7 × 108 cm−2. After As tetramer introduction at a

beam equivalent pressure of 1.25× 10−7 Torr at 200◦C, the Ga droplets changed into GaAs

quantum ring structures. A 53.2 nm-thick layer of Al0.31GaAs was then grown on the rings.

Finally, the whole structure was annealed in the chamber under an As tetramer ambient of

beam equivalent pressure of 3.00× 10−6 Torr at 600◦C for 1 hour.

The micro-PL spectrum of a single NQR was measured at 4.2K using a confocal arrange-

ment, where the PL spectrum was measured by charge coupled device under the excitation

of frequency-doubled (400 nm) Ti:sapphire laser pulse (120 fs pulse duration at a 80 MHz

repetition rate). Magneto-PL from a single NQR was also performed in a resistive DC mag-

net (52 mm-bore diameter), where a miniaturised optical alignment system was installed and

the sample position was controlled by a piezoelectric stage. Excitation by a continuous-wave

Ar+-ion laser (488 nm) was introduced to the sample through a multi-mode fiber, and the

PL was detected through another single-mode optical fiber.
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Supporting information-2: Identification of charged exci-

tons and biexcitons in a single NQR

While the optical AB effect terminology is often used to present the energy oscillations in

the exciton PL spectrum, charged excitons (M. Bayer et al., Phys. Rev. Lett. 90, 186801

(2003)) and biexcitons (R. Okuyama et al., Phys. Rev. B 83, 195311 (2011)) can also re-

sult in novel energy oscillations in the PL spectrum. In the case of quantum dots, either

negatively or positively charged excitons are often measured. For increasing the excitation

intensity, charged excitons also dominate along with biexcitons in the PL spectrum, where

both the PL intensity increases super-linearly with excitation intensity. As a preliminary

work, we have identified charged excitons and biexcitons in terms of the excitation power

dependence and time-resolved PL.

As shown in S-Fig. 1(a), additional PL peaks arise near the neutral exciton (X) with

increasing the excitation intensity. In S-Fig. 1(b), the integrated PL intensity of the addi-

tional PL peaks was plotted for excitation intensity (I), whereby the power factor (α) for the

excitation (∼ Iα) were obtained. While the integrated PL intensity of X increases linearly

with excitation intensity (α ∼ 0.99), the XX and two charged excitons increase super-linearly

with α ∼ 2.02 (XX), ∼ 1.59 (X∗2), and ∼ 1.49 (X∗1) respectively. Because our samples were

undoped, charged excitons were rarely observed unless the excitation intensity was strong

enough to generate XXs. Therefore, the charged excitons are possibly generated via the XX

decay. As shown in S-Fig. 1(c), normalised time-resolved PL spectra from X, XX, X∗1, and

X∗2 were compared under an excitation power of 1.9 kWcm−2. As the carriers are generated

by strong excitation, XXs dominate earlier than Xs during the rising time of the TR-PL.

However, dissociation of the XXs occurs with a decay time of τXX ∼ 370 ps, which is signifi-

cantly shorter than the decay time of Xs (τX ∼ 820 ps). Since the population of Xs can also

be enhanced by the dissociation of XXs, the maximum TR-PL intensity of Xs appears later

than that of XXs, and the X population is saturated transiently up to ∼ 250 ps. Meanwhile,
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either positively or negatively charged excitons can be generated. As a result, the maximum

population of the charged excitons is seen later than that of Xs. Nevertheless, the decay

times of the charged excitons (τX∗1
∼ 880 ps for X∗1 and τX∗2

∼ 890 ps for X∗2) are comparable

to that of the X. On the other hand, it should be noted that the XX binding energy in

S-Fig. 1(a) is sub meV, which is smaller than a few meV for the XX binding energy in GaAs

quantum dots (30 − 40 nm in radius) (M. Ikezawa et al., Phys. Rev. B 73, 125321 (2006)

and J. W. Luo and A. Zunger, Phys. Rev. B 84, 235317 (2011)). While Xs are likely to be

localised in the anisotropic ring structure in the absence of a magnetic field, the wavefunction

of XX can be more extended. In this case, two kinds of XXs are possible. One is a localised

XX, which consists of two Xs localised in the same crescent-like structure. Another one is an

extended XX, where separate Xs are located in two different crescent-like structures. This

is similar to the XX in a coupled-dot-molecule. In the latter case, the extended XX binding

energy should be sub-meV (Ta-Chun Lin et al., Phys. Rev. B 80, 081304 (2009)). For the

localised XX in a NQR, the XX binding energy was observed to be ∼ 5meV from the PL

spectrum near 1.816 eV (H. D. Kim et al., Appl. Phys. Lett. 102, 033112 (2013)). Because

the extended XX is advantageous for circumferential phase coherence, we found a particular

NQR with the sub-meV XX binding energy (Fig. 1(c),(e)) for the fractional optical AB

oscillations.

Supporting information-3: Theoretical model with quasi

1-dimensional confinement potential for the optical Aharonov-

Bohm effect

For the theoretical results given in Fig. 2(b), Fig.4(b),(c),(d), and Fig.5(a),(b), we used a

model of a quasi 1-dimensional NQR, where the radial confinement is given by the finite rim

width. The eigenenergy levels and the two-body density for the exciton and biexciton were
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obtained by using the exact diagonalisation method, where a Coulomb interaction between

the electron and the hole was also considered in the presence of an external magnetic field

(B = Bẑ) applied perpendicular to the lateral xy plane of a NQR. We assumed the isotropic

confinement potential as an ideal theoretical reference, whereby the anisotropy effect of a

volcano-like NQR can be compared. While AB oscillations of our NQR emerge beyond a

threshold magnetic field, theoretical AB oscillations begin from B = 0. Therefore, the the-

oretical results can be used as a reference to measure a magnetic field difference for the

AB oscillation extremum between theory and experiment (δB), whereby the modulated AB

oscillations in a real NQR is defined in this context.

We used different orbital radii of the electron (Re) and the hole (Rh) in order to consider

charge separation effects for the electron and hole, which are known to be crucial for optical

AB oscillations to emerge (A. O. Govorov et al., Phys. Rev. B 66, 081309 (2002), Luis G.

G. V. Dias da Silva et al., Phys. Rev. B 72, 125327 (2005)). In a NQR, any asymmetry

of the confinement potential likely gives rise to a so-called radially polarised electron-hole

pair, whereby the electron and hole rotate along the different orbits. Suppose the electron

and hole are confined in an anharmonic potential along the radial direction, a wavefunc-

tion separation between the electron and hole can occur due to the mass difference and the

asymmetry of the confinement potential. Additionally, there are various other effects which

possibly result in a radially-polarised electron-hole pair in a NQR such as the deformation

potential with a large difference in the conduction and valence bands, the strain-induced

piezoelectric field, and the local electric field arising from the charge-trapped interface de-

fects. Therefore, it is plausible to assume different orbital radii for the electrons and holes

(Re 6= Rh) to describe the charge separation effect. According to a recent theory, strain

effects are known to localise the hole toward the ring center (V. V. Arsoski et al. Phys. Rev.

B 87, 085314 (2013)), whereas the electron resides within the rim width. Also, in the case

of an anharmonic radial confinement, tunneling towards the direction away from the ring

center could be dominated by light electron. Therefore, we assumed the orbital radius of the
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electron to be larger than that of the hole (Re > Rh). Nevertheless, our model is still arbi-

trary as experimental clarification has yet to be accomplished for the separation between the

electron and hole. While AB oscillations of our NQR emerge beyond a threshold magnetic

field, theoretical AB oscillations begin from B = 0. Therefore, the theoretical results can be

used as a reference to measure a magnetic field difference for the AB oscillation extremum

between theory and experiment (δB), whereby the modulated AB oscillations in a real NQR

is defined in this context.

Suppose Ne electrons and Nh holes are given in a single NQR, the effective mass Hamil-

tonian can be given by H = He +Hh + VC,

He =
Ne∑
j=1

{
[pe,j + eA(re,j)]

2

2me

+ Ve(re,j) +
1

2
Eg + geµBS

z
e,jB

}
, (1)

Hh =

Nh∑
j=1

{
[ph,j − eA(rh,j)]

2

2mh

+ Vh(rh,j) +
1

2
Eg + ghµBS

z
h,jB

}
, (2)

VC =
∑

1≤j<k≤Ne

e2

4πε|re,j − re,k|
+

∑
1≤j<k≤Nh

e2

4πε|rh,j − rh,k|
−

Ne∑
j=1

Nh∑
k=1

e2

4πε|re,j − rh,k|
, (3)

with A(r) = (1/2)B × r. He (Hh) is the Hamiltonian for non-interacting electrons (holes),

whereas VC describes the Coulomb interaction. mα and gα are the effective mass and g-factor

for electrons (α = e) and holes (α = h), respectively. Eg, ε, and µB are the band gap, the

dielectric constant, and the Bohr magneton, respectively. We use me = 0.067m0, mh =

0.51m0, and the effective Bohr radius aB = 4πεh̄2/(µe2) = 12 nm with µ−1 = m−1
e + m−1

h ,

for GaAs. The g-factors for electrons (ge) and holes (gh) are associated with the observable

excitonic g-factor (gX = ge − gh = −1.3). The anharmonic confinement potential energy

Vα(r) is given by (C. González-Santander et al., Phys. Rev. B 84, 235103 (2011))

Vα(r) =
h̄2λ2

α

2mαr2
+

1

2
mαω

2
αr

2. (4)
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Using λα = (1/2)(Rα/Wα)2 and ωα = h̄/(2mαW
2
α), this can be approximated as

Vα(r) =
h̄2

2mαW 2
α

[
1

4

(
Rα

Wα

)2

+

(
r −Rα

Wα

)2

+O
(
r −Rα

Wα

)3
]
. (5)

Therefore, Vα=e,h(r) describes a quasi 1-dimensional isotropic confinement potential energy

with orbital radius Rα and confinement width Wα. Since Re and Rh are much larger than

the atomic scale, the effective mass approximation is still valid, and we considered only the

heavy-hole state, which means the mixing between the heavy-hole and light-hole states is

ignored.

Note that Vα=e,h(r) is a lateral confinement potential energy. In order to explain the

energy of the X PL spectrum near ∼ 1.732 eV, the vertical confinement energy also needs

to be considered. Because the lateral size of our NQR is larger than the vertical size,

similar to the case of a pancake, the vertical confinement energy can be separated according

to the adiabatic approximation. The so-called adiabatic potential obtained through this

approximation corresponds to Vα=e,h(r), which also represents the morphology of a NQR.

Therefore, the vertical confinement energy gives an energy offset of Vα=e,h(r) with respect

to the conduction and valence band edge of bulk GaAs, respectively. For ∼ 10, nm height

of our NQR, the total vertical confinement energy for an electron-hole pair is ∼ 194.1meV.

With rough estimation of the Coulomb interaction by e2

4πε|Re−Rh|
∼ 6meV, the energy of the

X PL spectrum near ∼ 1.732 eV can be explained. Therefore, this is the case that both

lateral and vertical confinement energy are larger than the Coulomb interaction. However,

our calculation is not the case of single-particle states with Coulomb corrections. The many-

body correlation is fully taken into account. We expanded the many-body states by the

single-particle states. In this case, a large number of the single-particle states are required

for calculation to converge. We have confirmed that the truncation error becomes negligibly

small with few thousands of the single-particle states.

For the single-particle states (Hα=e,h) of a NQR in the presence of an external magnetic
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field, the eigenenergy and eigenfunction can be obtained analytically (W. C. Tan and J. C.

Inkson, Semicond. Sci. Technol. 11, 1635 (1996)) as

Eα,n,m =
h̄2

2mαW 2
α

1

2

[(
Rα

Wα

)4

+m2

]1/2

+ 2n+ 1


[

1 + 4

(
Wα

Rα

)4

φ2
α

]1/2

− h̄2φαm

mαR2
α

+
1

2
Eg, (6)

ψα,n,m(r) =

[
n!

πΓ(µα,m + n+ 1)

]1/2
1

Ωα

(
r

Ωα

)µα,m
e−r

2/(2Ω2
α)P µα,m

n

(
r2

Ω2
α

)
eimθ, (7)

for angular momentum m = 0,±1,±2, . . . and radial quantum number n = 0, 1, 2, . . . with

P k
j (x) being the associated Laguerre polynomials and

φα = ∓πR
2
αB

h/e
, µα,m =

1

2

[(
Rα

Wα

)4

+ 4m2

]1/2

, Ωα =
√

2Wα

[
1 + 4

(
Wα

Rα

)4

φ2
α

]−1/4

.

(8)

Using these states, we diagonalised the Hamiltonian H numerically, and the matrix elements

of the Coulomb interaction were evaluated analytically by the use of the multipole expansion

(R. Okuyama et al., Phys. Rev. B 83, 195311 (2011)). As (Rα/Wα)2 � 1, we only consider

the states with n = 0. The states with n > 0 hardly modify the calculated results.

Finally, the exciton eigenenergies (EL
X(B)) for different exciton orbital angular momenta

(L) were obtained as a function of the external magnetic field (B). When the excitonic

Zeeman effect is considered with the exciton g-factor (gX), the two exciton PL peak energy

of spin-parallel (Eσ+

X ) and anti-parallel (Eσ−
X ) can be given as

Eσ±

X−PL(B) = EL
X(B)∓ gX

2
µBB, (9)
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where EL
X(B) is the lowest energy among various L at a certain B to minimise Eσ±

X−PL(B).

Also, the theoretical EL
X(B) can be compared with the measured Eσ±

X−PL(B) as

EL
X(B) = [Eσ+

X−PL + Eσ−

X−PL]/2. (10)

Likewise, the XX eigenenergy (EL
XX(B)) of different exciton orbital angular momenta (L)

were obtained as a function of the external magnetic field (B) through an exact diagonal-

isation method by taking into account the Coulomb interaction amongst the two electrons

and two holes. For a XX, our model conserves the electron and hole spins, separately as

~Se = ~Se1 + ~Se2 and ~Sh = ~Sh1 + ~Sh2. Thus, we can split the 4-particle Hilbert space into

4 sectors, i.e., (electron singlet)×(hole singlet), (electron singlet)×(hole triplet), (electron

triplet)×(hole singlet), and (electron triplet)×(hole triplet). This method drastically re-

duces calculation costs. For each sector, we used 500 low-lying states to diagonalize the

Hamiltonian with the Coulomb interaction. For comparison, we also diagonalized it with

1,000 states, and confirmed that the truncation error in the total energy is less than 0.1%.

When considering the biexciton emission between EL
XX(B) and EL

X(B), the oscillation

period for the minimum EL
XX(B) with B is shorter than that for the minimum EL

X(B). The

selection rule adds a restriction such that the emission only occurs when EL
XX(B) and EL

X(B)

have the same L. For example, when the biexciton energy changes from EL=0
XX to EL=1

XX with

increasing B, EL=0
X is still less than EL=1

X . Therefore, an emission between EL=1
XX and EL=0

X

gives the minimum biexciton PL energy. However, this is not the case. The emission occurs

between EL=1
XX and EL=1

X due to the selection rules. Consequently, an abrupt decrease of the

XX PL energy can be measured at the transition magnetic field, where the biexciton changes

its L from 0 to 1.

For an exciton, we found the optimum values for Re = 32 nm, Rh = 15 nm, and

We = Wh = 5 nm to reproduce the observed AB oscillation period (∆BX ∼ 1.8T). On the

other hand, for a biexciton, we found the confinement parameters (R′e, R
′
h,W

′
e,W

′
h) should be
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1.4 times those for exciton. When a single particle is confined, Vα(r) is determined by geo-

metric structure. However, interaction among the Ne electrons and Nh holes can also modify

Vα(r) as well as the band gap Eg through the electron-electron and hole-hole repulsion with

re-distribution of the surrounding electrons and holes. Therefore, the relatively large values

in the parameters (R′e, R
′
h,W

′
e,W

′
h) effectively describe the modified V ′e,h(r,Ne,h).

We also calculate the two-body densities (Fig.5(a),(b)),

ρee(xe|Xe) =
1

2

∑
σ,σ′

〈
ψ̂†e,σ(xe)ψ̂

†
e,σ′(Xe)ψ̂e,σ′(Xe)ψ̂e,σ(xe)

〉
, (11)

ρhe(xh|Xe) =
∑
σ,σ′

〈
ψ̂†h,σ(xh)ψ̂h,σ(xh)ψ̂

†
e,σ′(Xe)ψ̂e,σ′(Xe)

〉
, (12)

that are the probabilities to find an electron at xe and a hole at xh, respectively, with an

electron fixed at Xe. Here, ψ̂e,σ(x)
[
ψ̂h,σ(x)

]
is the field operator of the electron [hole] with

spin σ and position x. We choose Xe at which the electron density has a maximum.

Since excitons are charge neutral, the exciton AB effect requires a difference between

the phases acquired by the electron and the hole when the magnetic flux threads the ring.

Suppose the electron and the hole in a widthless 1-dimensional (1D) loop are independent

or weakly bound through a short-range interaction, optical AB oscillations can be seen in

the ground states of the bright exciton, where the total angular momentum of the exciton

is kept null as the individual orbital angular momentum of the electron and the hole are

canceled (L = `e + `h = 0). When a finite width of the ring structure is considered, a quasi

1-dimensional geometric confining potential Vα(r) is obtained, which depends on only ring

radius (r) under the assumption of rotational symmetry. In this case, it was known that

the ratio of exciton orbit-to-width (γ = Rx/W ≥ 1) is crucial in determining the amplitude

of the excitonic AB oscillations. With increasing W , up to Rx in a NQR, the excitonic

AB oscillations become suppressed. However, when the e-h pair confined in a finite ring

width is strongly bound through a long-range Coulomb interaction, the recent 2D model

proposed that the emergence of excitonic AB oscillations is determined by the ring width
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and the strain, i.e., the excitonic AB oscillations occur in a limited range of the widths for an

isotropic Vα(r). Additionally, the presence of the ring core layer (otherwise the core area is

open), plays an important role in enhancing the excitonic AB oscillations via strain effects.

In the case of a strongly bound e-h pair, the 1D model claims that the initial bright

exciton (L = 0) becomes dark state (L 6= 0) with increasing magnetic field, resulting in no

excitonic AB oscillation (A. O. Govorov et al., Phys. Rev. B 66, 081309 (2002)). However,

this conjecture has not been verified experimentally, for example by looking for emission

quenching with increasing magnetic field. In the case of type-II quantum dots, orbital

angular momentum is added to the charged single particle rotating in the shell. However,

optical AB oscillations were still observed from excitons with non-zero total orbital angular

momentum (L 6= 0). The exact reason is not clear at the moment. However, regarding the

anisotropy of the volcano-like structure, the ideal selection rule for bright and dark exciton

states may break down. Therefore, the fine states of the PL spectrum could be described

by the mixed states of the spin and orbital angular momentum of bright and dark exciton

states.

Supporting information-4: Approximated into a simple 1-

dimensional model for excitons and biexcitons

Although our calculation considers the rim width in the quasi 1-dimensional model, we found

the strongly correlated states of an electron and a hole in an exciton and also the Wigner

molecularisation between two excitons in a biexciton can be approximated into a simplified

one-dimensional model. When the ring width is ignored, the effective mass Hamiltonian in

Eqs. (1)–(3) for an electron and a hole can be simplified as (A. O. Govorov et al., Phys. Rev.
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B 66, 081309 (2002))

H =
h̄2

2meR2
e

(
ˆ̀
e +

πR2
eB

h/e

)2

+
h̄2

2mhR2
h

(
ˆ̀
h −

πR2
hB

h/e

)2

− e2

4πε

[
(Re −Rh)2 + 4ReRh sin2

(
θe − θh

2

)]−1/2

, (13)

where, θe (θh) and ˆ̀
e = −i∂/∂θe (ˆ̀

h = −i∂/∂θh) are the azimuth angle and angular mo-

mentum of the electron (hole) respectively, and the Zeeman effect is not included. The

center-of-mass and relative coordinates of the exciton are given by

Θ =
meR

2
eθe +mhR

2
hθh

meR2
e +mhR2

h

, θ = θe − θh. (14)

Then, the Hamiltonian in Eq. (13) becomes decoupled as H = HCM +Hrel,

HCM =
h̄2

2mXR2
X

[
L̂+

π(R2
e −R2

h)B

h/e

]2

, (15)

Hrel =
h̄2

2µR2
rel

(
ˆ̀+

πR2
relB

h/e

)
− e2

4πε

[
(Re −Rh)2 + 4ReRh sin2 θ

2

]−1/2

, (16)

with R2
X = (meR

2
e + mhR

2
h)/(me + mh), Rrel = ReRh/RX, and mX = me + mh. We

have introduced the total angular momentum L̂ = ˆ̀
e + ˆ̀

h = −i∂/∂Θ and relative an-

gular momentum ˆ̀ =
mhR

2
h

ˆ̀
e−meR2

e
ˆ̀
h

meR2
e+mhR

2
h

= −i∂/∂θ. The energy eigenstates can be given as

ΨX,L(θe, θh) = eiLΘψX,L(θ) with L (= 0,±1,±2, . . .). We see that the center-of-mass and

relative motion are not completely decoupled; ΨL(θe, θh) = ΨL(θe±2π, θh) = ΨL(θe, θh±2π),

and an unusual boundary condition for ψL(θ) is given by

ψL(θ ± 2π) = exp

[
±i2πL meR

2
e

meR2
e +mhR2

h

]
ψL(θ). (17)

The low-lying states of an exciton can be estimated by using the harmonic approximation.

By expanding the Coulomb interaction up to θ2, we obtain ψX,L(θ) ∝ exp
{
−θ2/(2ξ2

X)
}
with
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the “localization length” defined by

ξX =

[
aBR

2
X|Re −Rh|3

(ReRh)3

]1/4

. (18)

As ξX ∼ 0.64 in our system is sufficiently small compared to π, the harmonic approximation

can be justified. This indicates that the electron and the hole are strongly correlated to each

other, and move together with θe ' θh, as schematically shown in S-Fig. 2(a). The low-lying

energies can also be approximated as

EX(L) =
h̄2

2mXR2
X

[
L+

π(R2
e −R2

h)B

h/e

]2

+ const., (19)

which is in agreement with the recent 1-dimensional model (A. O. Govorov et al., Phys. Rev.

B 66, 081309 (2002)).

On the other hand, for a biexciton, instead of two electrons and two holes, we consider

two excitons as point particles that move in the ring, as shown in Supplementary Fig. 2(b).

Suppose a ring orbit radius R′X is given for the exciton, the electric dipole of j-th exciton

can be defined as −e(R′e−R′h)rj/R
′
0 , where rj is its position measured from the ring center.

Therefore, the effective Hamiltonian for two excitons with the dipole-dipole interaction can

be given by

H =
2∑
j=1

h̄2

2mXR
′2
X

[
ˆ̀
j +

π(R
′2
e −R

′2
h )B

h/e

]2

+
e2(R′e −R′h)2

4πεR
′3
X

1 + sin2 θ1−θ2
2

8
∣∣sin3 θ1−θ2

2

∣∣ . (20)

The dipole-dipole interaction becomes minimised when |θ1 − θ2| = π, i.e., the two excitons

are located at opposite sides of the ring. In a similar case to that used for the exciton,

the harmonic approximation enables us to estimate the wavefunction of the biexciton (or

interacting two exciton dipoles) in relative coordinates as ψXX,L(θ1− θ2) ∝ exp[−(|θ1− θ2|−
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π)2/(2ξ2
XX)] (|θ1 − θ2| < 2π). Since the “localization length” of the biexciton,

ξXX =

[
64

5

µ

mX

aBR
′
X

(R′e −R′h)2

]1/4

∼ 0.91, (21)

is smaller than π, the harmonic approximation is still valid again. Likewise, the low-lying

energy of the biexciton can be approximated as

EXX(L) =
h̄2

2(2mX)R
′2
X

[
L+ 2

π(R
′2
e −R

′2
h )B

h/e

]2

+ const.. (22)

This equation suggests the biexciton can be treated as a single particle with twice the exciton

mass (mX). Indeed, when the dipole-dipole interaction becomes minimised with |θ1−θ2| = π,

the distance between the two excitons becomes maximised. This condition indicates the

formation of a Wigner molecule from the two excitons (R. Okuyama et al., Phys. Rev. B

83, 195311 (2011)).

S15



0.0 0.5 1.0 1.5

-3

-2

-1

0

1

Time (ns)

Ln
 N

or
m

al
iz

ed
 In

te
ns

ity

 X
 XX
  X*

1

  X*
2

1 2 3 4 5

PL
 in

te
ns

ity
 (a

rb
. u

ni
ts

)

Excitation (Wcm-2)

~ I1.49

~ I1.51

~ I2.02

~ I0.99
 X
 XX
 X*

1

 X*
2

1.728 1.730 1.732 1.734

1.728 1.730 1.732 1.734

X*
1

X XX

X*
2

PL
 in

te
ns

ity
 (a

rb
. u

ni
ts

)

Energy (eV)

5.1 kWcm-2

4.1 kWcm-2

3.4 kWcm-2

2.6 kWcm-2

1.9 kWcm-2

1.0 kWcm-2

 

 

 

(c)

(b)

(a)

S-Fig. 1: (a) As the excitation power increases, biexcitons (XX) and charged excitons (X∗1
and X∗2) emerge near the neutral exciton (X) in the PL spectrum, which can be identified
by measuring the integrated PL intensity as a function of excitation power (b) and by

time-resolved PL (c).
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(a) (b)

S-Fig. 2: (a) Schematic view of the low-lying states of an exciton in a quantum ring. An
electron and a hole are strongly coupled to each other, and they move together with

θe ' θh. (b) Simplified model of a biexciton in the ring, where each exciton is treated as a
point particle with a radial electric dipole moment.
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