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1 Derivation of the free-energy afunctional integral as follows:
functional for a homopoly-
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For charge neutrality, the bulk charge density be- (S5)
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Egs. (S5) and (S6) then lead to
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where we have set, = —q_ = (o for charge neu-
trality. We then obtain
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Incidentally, the effective free energy resulted
from Gehain(K) is consistent with those for charge-
neutral polymer blends in Refs. 3 and 4, with one
of the components being a non-polymeric solvent,
and that in Ref. 5, witly = 0 set in our theory. In
addition,Gg (k) is an analog of the self-energy of
ions in Ref. 6.
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