SUPPORTING INFORMATION

Small molecule inhibitors of Ca²⁺-S100B reveal two protein conformations

Michael C. Cavalier[†], Mohd. Imran Ansari[#], Adam D. Pierce[†], Paul T. Wilder^{†§}, Laura E. McKnight[†], E. Prabhu Raman[#], David B. Neau[‡], Padmavani Bezawada[#], Milad J. Alasady[†], Thomas H. Charpentier[†], Kristen M. Varney[†], Eric A. Toth^{†§¥}, Alexander D. MacKerell, Jr.^{#§}, Andrew Coop^{#§}, and David J. Weber^{†§*}

[†] Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States. [§]Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States.

[#]Computer Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, Maryland 21201, United States. [¥]Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive Rockville, MD 20850, USA

[‡]NE-CAT, Cornell University, Argonne IL 60439, USA.

Funding Source: This work was supported by grants from the NIH (GM58888 and CA107331) to D.J.W. The training of M.C.C. is supported by a NIH T32 grant (CA154274).

*To whom correspondence should be addressed; D.J.W., University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Biomedical Research Facility Rm. 439, 108 N. Greene St., Baltimore, MD 21201. Phone (410) 706-4354, Fax (410) 706-0438, E-mail: dweber@som.umaryland.edu.

Table of Contents

Table S1	Page S2
Figure S1	Page S3
Figures S2-5	Pages S4-7
Figure S6	Page S8
Figure S7-29	Page S9-31
Figures S30-48	Pages S32-50
Table S2	Page 51

Table S1. Calculated RMSD (Å) of Models from C^{α} of <u>1MHO</u>		
^{Ca} S100B•5a	0.830 (0.307)	
^{Ca} S100B•6b	0.829 (0.328)	
^{Ca} S100B•17	0.215 (0.215)	0.360 (0.235)
The protein chains of the introduced models were aligned with the		
protein chain within $\underline{1MHO}^{46}$. Numbers in parentheses are the		
calculated RMSD of only the globally conserved residues 1-84.		

Figure S1. The crystal structure of S100B overlaid with compound 9a. (A) Top scoring conformation predicted by AutoDock, (B) Representative conformations calculated by MC-SILCS, (C) SILCS FragMaps are shown at a cutoff of -1.2 kcal/mol. Nonpolar maps are shown in green and positively charged group maps in cyan. The positively charged group maps drive the placement of the basic alkyl groups in the MC-SILCS docking.

Figures S2-5. Assigned 2D ¹**H-**¹⁵**N HSQC NMR Spectra.** The binding of inhibitors to ^{Ca}S100B was assessed by monitoring perturbations of backbone ¹H–¹⁵N HSQC NMR experiments.

Figure S6. Measurements of Chemical Shift Perturbations from Assigned 2D ¹H-¹⁵N HSQC NMR spectra.</sup> The solid horizontal line is plotted at the mean perturbation (Hz) plus one standard deviation for each dataset.

Figures S7-29. HPLC-MS. Purity of all compounds was determined to be >95% by HPLC. Compound 16a

Compound 11

Compound 10

Compound 9b

Compound 9a

Compound 8

Compound 7d

Compound 7b

Compound 7a

Compound 6d

Compound 6c

Compound 6b

Compound 6a

Compound 5d

Compound 5b

Compound 5a

Compound 4c

Compound 4b

Compound 4a

Figures S30-48(below). ¹H and ¹³C NMR spectra for synthesized compounds obtained using a 500 MHz Varian NMR Spectrometer.

¹H and ¹³C NMR of 5a

¹H and ¹³C

NMR of 5b

¹H and ¹³C NMR of 5c

¹H and ¹³C NMR of 5d

¹H and ¹³C NMR of 6a

¹H and ¹³C

NMR of 6b

¹H and ¹³C NMR of 6c

¹H and ¹³C NMR of 6d

¹H and ¹³C NMR of 7a

¹H and ¹³C NMR of 7b

¹H NMR of 7c

¹H and ¹³C NMR of 7d

¹H and ¹³C NMR of 8

¹H and ¹³C NMR of 9a

¹H and ¹³C NMR of 9b

¹H and ¹³C NMR of 10

¹H and ¹³C NMR of 11

¹H and ¹³C NMR of 16a

¹H and ¹³C NMR of 16b

Table	Table S2. SMILES Documentation		
Drop	Internal		
riep.	I.D.	SMILE	
I.D.	SBiX		
4a	4211	N=C(N)C(C=C1)=CC=C1OCCCCCCCCC2=CC=C(C(N)=N)C=C2	
4b	1	N=C(C1=CC=C(OCCCCCOC2=CC=C(C(N)=N)C=C2)C=C1)N	
4c	4210	N=C(N)C(C=C1)=CC=C1OCCCCCCOC2=CC=C(C(N)=N)C=C2	
5a	4225	C1(C2=NCCN2)=CC=C(OCCCCCCCC3=CC=C(C4=NCCN4)C=C3)C=C1	
5b	4224	C1(C2=NCCN2)=CC=C(OCCCCCOC3=CC=C(C4=NCCN4)C=C3)C=C1	
5c	4226	C1(C2=CC=C(OCCCCCOC3=CC=C(C4=NCCN4)C=C3)C=C2)=NCCN1	
5d	4221	C1(C2=CC=C(OCCCCCCCCC3=CC=C(C4=NCCN4)C=C3)C=C2)=NCCN1	
6а	4213	C1(C2=NCCCN2)=CC=C(OCCCCCCCCC3=CC=C(C4=NCCCN4)C=C3)C=C1	
6b	4214	C1(C2=NCCCN2)=CC=C(OCCCCCOC3=CC=C(C4=NCCCN4)C=C3)C=C1	
6c	4218	C1(C2=NCCCN2)=CC=C(OCCCCCOC3=CC=C(C4=NCCCN4)C=C3)C=C1	
6d	4217	C1(C2=NCCCN2)=CC=C(OCCCCCCCCCC3=CC=C(C4=NCCCN4)C=C3)C=C1	
7a	4227	C1(C2=CC=C(OCCCCCCCC3=CC=C(C4=NCCCCCN4)C=C3)C=C2)=NCCCCCN1	
7b	4223	C1(C2=CC=C(OCCCCCOC3=CC=C(C4=NCCCCN4)C=C3)C=C2)=NCCCCN1	
7c	4228	C1(C2=CC=C(OCCCCCOC3=CC=C(C4=NCCCCN4)C=C3)C=C2)=NCCCCN1	
7d	4222	C1(C2=CC=C(OCCCCCCCCCC3=CC=C(C4=NCCCCN4)C=C3)C=C2)=NCCCCN1	
8	4236	N=C(NCCCCCN)C(C=C1)=CC=C1OCCCCCOC2=CC=C(C(NCCCCCN)=N)C=C2	
9a	4232	N=C(NCCCCCCN)C(C=C1)=CC=C1OCCCCCCOC2=CC=C(C(NCCCCCCN)=N)C=C2	
9b	4230	N=C(NCCCCCCN)C1=CC=C(OCCCCCCCCCC2=CC=C(C(NCCCCCCCN)=N)C=C2)C=C1	
10	4235	N=C(NC(NC1=CC=CC=C1)=O)C(C=C2)=CC=C2OCCCCCCCCCCCC3=CC=C(C(NC(NC4=CC=CC=C4)=O)=N)	
		C=C3	
11	4212	CNC(NC(C1=CC=C(OCCCCCCCCC2=CC=C(C(NC(NC)=O)=N)C=C2)C=C1)=N)=O	
16a	4239	NC(C(C=C1)=CC=C1OCCCN(CC2=CC=CC=C2)CCCOC3=CC=C(C(N)=N)C=C3)=N	
16b	4238	NC(C(C=C1)=CC=C1OCCCN(CCC)CCCOC2=CC=C(C(N)=N)C=C2)=N	
17	29	N=C(C1=CC=C(OC2=CC=C(C3=CC(C=CC(C(N)=N)=C4)=C4N3)C=C2)C=C1)N	