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Appendix A: Experiments 1 

Detailed methods for larvae temperature experiments 2 

Experimental methodology 3 

Source of Ostertagia gruehneri eggs 4 

Two adult female reindeer housed at the Wildlife Research Station, Faculty of Veterinary 5 

Medicine, University of Calgary, were experimentally infected with O. gruehneri third stage larvae 6 

(L3) sourced from the Bathurst caribou herd, Northwest Territories and Nunavut, Canada (Hoar 7 

2012). Fresh fecal samples were collected from the infected reindeer and refrigerated at 8 

approximately 4oC. No more than 24 hours later, O. gruehneri eggs were isolated from the fecal 9 

samples following the methods outlined in Hoar et al. (2012). 10 

Data Collection 11 

Following the isolation of O. gruehneri eggs from reindeer feces, forty Petri dishes of 3 cm 12 

diameter were seeded with approximately 50 eggs each. These Petri dishes were then distributed 13 

into incubators with 100% relative humidity and set at 5, 10, 15, 20, 25, 30, 35, and 40oC, 14 

respectively, thus yielding five replicate cohorts for each temperature trial. Larval food (250 µl; 15 

Hubert and Kerboeuf, 1984) was added to each Petri dish on the same day at least one egg had 16 

hatched in all of the five replicates of a given temperature trial. Initially, each replicate was 17 

examined daily at room temperature (~10-15 minutes per replicate) using a Leica L2 dissecting 18 

microscope at 20-25x magnification, when the numbers of live individuals in each stage of 19 

development (eggs, L1, L2, L3) were recorded. Larvae that were moving were hereby considered 20 

to be alive, whereas immobile larvae were considered to be dead. Eggs were considered dead 21 

when a breakdown of internal structure was noted or when the entire egg turned black. 22 

Examination of all replicates within a given temperature treatment was reduced to every three 23 

days once a minimum of one L3 was observed in each of the five replicates. The only exception 24 

to this sampling protocol was the 5oC treatment where, due to the slower development rate at 25 

this temperature, replicates were examined every three days from the beginning of the trial. At 26 

each sampling occasion, egg and larval counts were performed three times for every replicate 27 
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dish to minimize the effect of potential observer error in detecting eggs and larvae, in correctly 28 

identifying the developmental stages of larvae, and in correctly assessing larval survival. 29 

Replicates continued to be examined until no live larvae or eggs were observed, or for a 30 

maximum of 120 days (a conservative estimate of the number of days with mean temperatures 31 

>0oC in the Canadian low Arctic). 32 

Model development 33 

To extract development and mortality rates from the cohort data, we begin by describing a cohort 34 

model that tracks individuals through the pre-infective (egg, L1, L2) and infective (L3) life stages. 35 

As we are primarily interested in the appearance of the infective L3, the model considers a 36 

simplified life cycle where eggs, L1 and L2 are pooled into a “pre-infective” class (subscript 0), 37 

and larvae in the L3 stage constitute the “infective” class (subscript 3). The model specifies the 38 

expected number of individuals in the pre-infective and infective classes as a function of time and 39 

temperature, and is specifically designed to account for variability in development rates among 40 

individuals as well as for any mortality that may occur between the start of the experiment at 41 

time 𝑡0 = 0 and a given sampling day 𝑡. 42 

 We first determine the probability that an individual in experimental treatment 𝑖 43 

experiencing rearing temperature 𝑇𝑖 is alive on day 𝑡 but has not yet developed to the infective 44 

L3 stage. Régnière and Powell (2003) argue that in many cases the actual development time of 45 

an individual at temperature 𝑇, 𝑡∗(𝑇), will have a log-normal distribution with a mean that equals 46 

the cohort mean, 𝜏(𝑇). From this, it follows that development times to the infective stage are 47 

log-normally distributed: 48 

𝑡∗(𝑇) ~ logN(−
𝜎2

2
− log(𝜌0(𝑇)) , 𝜎

2), 
(A1) 

where the cohort mean development rate, 𝜌0(𝑇) = 1/𝜏(𝑇), is the inverse of the cohort mean 49 

development time, 𝜎 is the scale parameter of the log-normal distribution, and −𝜎2/2 is a 50 

correction to the mean of the lognormal so the expected development time is 1/𝜌0(𝑇) (Hilborn 51 
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and Mangel 1997). Given a starting cohort of 𝑁0 eggs, the expected number of live, pre-infective 52 

individuals on sampling day t is 53 

𝐿0(𝑡, 𝑇𝑖) = 𝑁0 exp(−𝜇0(𝑇𝑖) 𝑡)
⏞          

not yet dead

 

(

 
 
 
1 − 𝛷 [

(ln(𝑡 𝜌0(𝑇𝑖) ) +
𝜎2

2 )

𝜎
]

⏞                
probability developed

)

 
 
 

⏟                    
not yet developed

 

(A2) 

where 𝜇0(𝑇𝑖) is the per capita mortality rate of pre-infectives (eggs, L1, and L2) at temperature 54 

𝑇𝑖 and 𝛷 is the cumulative distribution function of the standard normal distribution. To calculate 55 

the expected number of larvae in the L3 stage on day t, we first need to account for the fact that 56 

– due to the variability in development times – different individuals will start this life stage at 57 

different times. The expected number of individuals that start the L3 stage exactly at time t, 58 

𝐿3,start(𝑡, 𝑇𝑖), can be obtained from the probability density function of the lognormal 59 

development distribution, discounted for any mortality occurring in the pre-infective stage: 60 

𝐿3,start(𝑡, 𝑇𝑖) =
𝑁0

𝑡 √2 𝜋 𝜎2
 exp

[
 
 
 

−
(ln(𝑡 𝜌0(𝑇𝑖)) +

𝜎2

2
)
2

2𝜎2
− 𝜇0(𝑇𝑖)𝑡 

]
 
 
 

 

(A3) 

The expected number of larvae in the infective L3 stage on sampling day t is obtained by 61 

integrating over all larvae that have reached the L3 stage before day t while discounting for any 62 

mortality that has occurred since these larvae started the L3 stage: 63 

𝐿3(𝑡, 𝑇𝑖) = ∫ 𝐿3,start(𝑡
′, 𝑇𝑖)  exp(−𝜇3(𝑇𝑖)(𝑡 − 𝑡

′)  𝑑𝑡′
𝑡

0

 
(A4) 

where 𝜇3(𝑇𝑖) is the per capita mortality rate of infectious L3 at temperature 𝑇𝑖. 64 
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Metabolic Theory of Ecology relationships 65 

We assessed up to four different sub-models for the temperature dependencies of 𝜇0(𝑇), 66 

𝜇3(𝑇), and 𝜌0(𝑇): (1) no relationship among parameters at different temperatures,  (2) 67 

constant parameter value across temperatures, (3) an Arrhenius relationship that describes 68 

increasing development and mortality rates with temperature (McCoy and Gillooly 2008), or (4) 69 

a Sharpe-Schoolfield relationship that builds on the Arrhenius relationship to include the 70 

possibility of upper and/or lower temperature thresholds (Schoolfield et al. 1981; Molnár et al. 71 

2013). 72 

 73 

Figure A1. Illustration of the possible MTE relationships for mortality and development parameters (written 74 

generally as 𝑦(𝑇)), with corresponding equations on the right. The vertical grey lines indicate the lower and upper 75 

temperature thresholds in the Sharpe-Schoolfield relationships (green and blue dashed lines). The inverse Sharpe-76 

Schoolfield relationship is tailored to the mortality rate, which tends to increase at extreme values. Parameters are 77 

described in Table A1, and k = 8.62 × 10-5  eV K-1 is Boltzmann’s Constant. 78 

 79 

As described in the main text, testing all possible combinations of five MTE relationships 80 

(constant, Arrhenius, and Sharpe-Schoolfield with lower, upper, or both thresholds) for the 81 

three parameters (n = 35 = 243 models) was not practically feasible due to the computation 82 

time involved, and also would have increased the chance of spurious significant results. We 83 

chose nine models to test based on initial parameter estimates and limitations of the data 84 

(Table A2). Notably, this suite of 9 models does not include the Sharpe-Schoolfield model with a 85 
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lower temperature threshold, since the lower bound of temperatures tested in experiments 86 

was 5 °C, which is well above the lower thermal limits of this parasite. We encountered 87 

convergence issues when trying to estimate an upper thermal bound for L3 because of low 88 

survival to this stage at high temperatures, but include results for one of those models from 89 

which the estimates were applied in the population modelling.  90 

Parameter estimation 91 

We fit the cohort model, incorporating temperature-dependent parameters 𝜇0(𝑇), 𝜌0(𝑇), and 92 

𝜇3(𝑇) in a Bayesian framework that could accommodate a hierarchical structure accounting for 93 

potential variability in parameters among replicates, latent variables, as well as the triplicate 94 

counts at each sampling occasion.  We included a random effect for replicate (i.e., petri dish) on 95 

the parameters 𝜇0(𝑇𝑖), 𝜌0(𝑇𝑖), 𝜇3(𝑇𝑖), and 𝜎 within each temperature trial 𝑖. Specifically, the 96 

parameter for replicate k was drawn from a log-normal distribution, e.g.,  97 

𝜇0,𝑖,𝑘  ~ logN(mean log = log(𝜇0(𝑇𝑖)) , sd =  0.05). We initially tried to estimate the standard 98 

deviation among replicates as a free parameter, but could not achieve convergence in that case 99 

and so we assumed the standard deviation to have a fixed value of 0.05 which is relatively small 100 

but nonetheless allowed the flexibility to capture observed differences in survival and mortality 101 

among replicates (Figure A2).  102 

Due to counting error, the initial number of eggs in each petri dish was not known and so it was 103 

treated as a latent variable to be estimated for each temperature, i,  and replicate, k, with prior 104 

distribution 𝑁0,𝑖,𝑘 ∼  logNormal(log(50) − 0.3
2/2 , 0.3) , with an expected value of 50 eggs.  105 

The likelihood of the pre-infective and infective counts from day 0 to day 120 was calculated 106 

assuming Poisson count error for the triplicate observations, with an expected count equal to 107 

the prediction from the cohort model for the given day, temperature, and replicate.   108 

We used the MCMC software JAGS (Plummer 2003), and implemented the fitting via R (R Core 109 

Team 2021) using the packages rjags (Plummer 2019) and dclone (Sólymos 2010). R code for 110 
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the analysis is available at https://github.com/sjpeacock/OsterBou_pop.  An example of a 111 

model function for Model 3 from Table 2 is provided below on pages 7-8. 112 

We applied relatively uninformative priors on all MTE parameters, but constrained to 113 

biologically reasonable values (Table A1).  114 

Table A1. The priors on MTE hyperparameters used in the Bayesian parameter estimation (see Figure A1 for 115 

equations).*  116 

Hyperparameter Description Units Prior distribution 

𝑦0 Parameter value at 

standardization 

temperature 𝑇0 = 15 °C  

d-1 (mortality 

rate) or d 

(development 

time) 

log-normal(log(0.5),  1) 

𝐸 Activation energy eV log-normal(log(0.65), 0.5) 

𝐸𝐻 Upper inactivation 

energy 

eV log-normal(log(3.25), 1) 

𝑇𝐻 Upper temperature 

threshold 

°C normal(23, 3) 

* We report all temperatures in °C for ease of interpretation, with the conversion to K occurring in the model code. 117 

In total, we had 2,520 unique sampling instances (i.e., temperature, petri dish, and day 118 

combinations) with triplicate counts and two larval stages, yielding 15,120 data points. Due to 119 

the large amount of data, the hierarchical (non-independent) structure of both the data and the 120 

model, and the complexity of the model, we were concerned about overfitting. Thus, we 121 

evaluated models by holding out one of the five replicates when estimating parameters, using 122 

the remaining four replicates as the training data, and then calculating how well the fitted 123 

model predicted the hold-out replicate (i.e., the likelihood of the hold-out data given the model 124 

fitted to the training data).  This was repeated using each of the five replicates as the hold-out 125 

data, and then taking the average likelihood over the five hold-out replicates. We took the 126 

model with the lowest average negative log-likelihood among the validation sets as the best 127 

https://github.com/sjpeacock/OsterBou_pop
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model and re-fitted that model to the entire dataset to yield the best parameter estimates for 128 

inference and prediction.  129 
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########################################################################## 130 
# Model 3: A A SSU 131 
########################################################################## 132 
model3 <- function(){  133 
 #------------------------------------------------------------------ 134 
 # Parameter models 135 

# Note: variance in prior distributions specified as precision = sd^-2 136 
 #------------------------------------------------------------------ 137 
 # For each parameter (u0, u1, rho), draw base value (a) and activation  138 
 # energy (E) 139 
 for(j in 1:3){   140 
  a[j] ~ dlnorm(log(0.5), pow(1, -2))  141 
  E[j] ~ dlnorm(log(0.65), pow(0.5, -2)) 142 
  }  143 
 # Set upper threshold to zero for the two Arrhenius relationships 144 
 for(j in 1:2){ 145 
  Eh[j] <- 0 146 
  Th[j] <- 0 147 
  }  148 
 # Draw upper thresholds for the SS relationship of u1 149 
 Eh[3] ~ dlnorm(log(3.25), pow(1, -2))  150 
 Th[3] ~ dnorm(23, pow(3, -2)) 151 
 # Calculate temperature-specific mean parameter value 152 
 for(i in 1:nT){ # for each temperature treatment 153 
  for(j in 1:2){ # for the two Arrhenius relationships (u0, u1) 154 
   p.mean[i,j] <- a[j]*exp(-E[j]/(8.62*10^-5)*(1/(T.obs[i]+273.15)-1/(15+273.15)))} 155 
   156 
  # For the SS relationships (rho) 157 
  p.mean[i,3] <- a[3]*exp(-E[3]/(8.62*10^-5)*(1/(T.obs[i]+273.15)-1/(15+273.15)))*(1+exp(Eh[3]/(8.62*10^-158 
5)*(-1/(T.obs[i]+273.15)+1/(Th[3]+273.15))))^(-1) 159 
 } 160 
  161 
 # Sigma - constant across temperature; no metabolic theory underpinning 162 
 sigma.log ~ dnorm(0, 0.01) 163 
 for(i in 1:nT){p.mean[i,4] <- exp(sigma.log)} 164 
  165 
 # Draw random model parameters (u0, u1, rho, sigma) for each temp and replicate 166 
 for(i in 1:nT){ # for each temperature 167 
  for(k in 1:nk){ # for each replicate 168 
   for(j in 1:4){ # for each parameter 169 
    p.rep[i,j,k]  ~ dlnorm(log(p.mean[i,j]), sigp^(-2))}}} 170 
 171 
 # Draw starting number of eggs in each temp and replicate 172 
 for(i in 1:nT){ # for each temperature 173 
  for(k in 1:nk){ # for each replicate 174 
   N0[i,k] ~ dlnorm(log(50)-1/2*(sigN0^2), 1/(sigN0^2))}} 175 
  176 
 #------------------------------------------------------------------ 177 
 # Process model 178 
 #------------------------------------------------------------------ 179 
 for(i in 1:nT){ # for each temperature 180 
  for(k in 1:nk){ # for each replicate 181 
    182 
   # Pre-infectives 183 
   for(j in 1:nt){ 184 
    N[i,1,j,k]<-N0[i,k]*exp(-p.rep[i,1,k]*t[j])*(1-185 
phi((log(t[j]*p.rep[i,3,k])+p.rep[i,4,k]^2/2)/p.rep[i,4,k])) 186 
   } 187 
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    188 
   # Infectives that develop at time "jj" 189 
   for(j in 1:nt){ 190 
    N1_start[i,j,k]<-N0[i,k]/(t[j]*sqrt(2*3.141593*p.rep[i,4,k]^2))*exp(-191 
1/(2*p.rep[i,4,k]^2)*(log(t[j]*p.rep[i,3,k])+p.rep[i,4,k]^2/2)^2-p.rep[i,1,k]*t[j]) 192 
   } 193 
   # ...and survive to time j 194 
   for(j in 1:nt){ 195 
    for(jj in 1:j){ 196 
     N1_surv[i,j,k,jj]<-N1_start[i,jj,k]*exp(-p.rep[i,2,k]*(t[j]-t[jj])) 197 
    } 198 
    # Summed from 1:j  199 
    N[i,2,j,k]<-sum(N1_surv[i,j,k,1:j]*dt) 200 
   } #end j 201 
  }} 202 
  203 
 #---------------------------- 204 
 # Data model 205 
 #---------------------------- 206 
 # n_obs[i,j,k,l,s] is the observed number of  larvae alive in  207 
 # temperature i, time j, replicate k, count l, and stage s 208 
  209 
 for(i in 1:nT){ #for each temperature 210 
  for(k in 1:nk){ # for each replicate 211 
   for(l in 1:3){ # for each of three counts 212 
     213 
    # Likelihood of initial number of eggs 214 
    n_obs[i,1,k,l,1] ~ dpois(N0[i,k]) 215 
     216 
    # Likelihood of preinfective and infective stages 217 
    # at each timestep 218 
    for(s in 1:2){ # for each stage 219 
     for(j in 2:nt_obs[i,k]){ # for each timestep 220 
      n_obs[i,j,k,l,s] ~ dpois(max(10^-10, N[i,s,ind[i,j,k],k])) 221 
     }}}}} 222 
} # end model 223 

 224 
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Supplemental results 225 

Table A2. Model comparison statistics for the MTE models fit to experimental data of O. 226 

gruehneri larval mortality and development at seven temperature treatments from 5 – 35 °C. 227 

The negative log-likelihoods of the training data (four replicates) and of the validation data (one 228 

replicate) were averaged across the five different hold-out replicates, and the overall negative 229 

log-likelihood is from the given model fitted to all five replicates (which is why it is a larger 230 

number than the sum of the other two values). 231 

Model # 𝜇0
1 𝜇3 𝜌0 np2 

Negative log-likelihood 

AIC 

mean 

training 

mean 

validation overall 

model1 I I I 22 15675.2 4396.5 20962.9 41970 

model53 A C SSU 8 17495.7 4475.8 22663.3 45343 

model3 A A SSU 9 17520.9 4486.1 22689.1 45396 

model7 SSU A SSU 11 17519.8 4487.7 22687.1 45396 

model104 A SSU SSU 11 17507.7 4503.1 22777.6 45577 

model4 A C A 6 19344 4897.4 25148.1 50308 

model6 SSU A A 9 19370.1 4909.4 25187.7 50393 

model2 A A A 7 19370.6 4909.6 25189.1 50392 

model8 SSU C A 8 67626.2 11350.8 25143.3 50303 

model9 SSU C SSU 10 69712.8 19447.9 440627.6 881275 

1. Temperature relationships considered were: I = parameter estimated independently at each temperature (n = 7 232 
parameters); C = constant parameter value across temperature (n = 1 hyperparameter); A = Arrhenius relationship 233 
(n = 2 hyperparameters), SSU = Sharpe-Schoolfield relationship with an upper thermal bound (n = 4 234 
hyperparameters).  235 
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2. The number of (hyper)parameters in the model. For each model, the standard deviation in the log-normal 236 
distribution of development times, 𝜎, was also estimated.  237 

3. Model5 in bold was the best-fit MTE model, with the lowest average validation NLL. 238 

4. There were some convergence issues for this model, see Table A5.  239 

 240 

Table A3. Parameter estimates1 for pre-infective and infective mortality and pre-infective development of O. 241 

gruehneri larvae, estimated separately for each of seven temperature treatments from 5 – 35 °C. 242 

Temperature  𝜇0 𝜇3 𝜌0 

5 °C 0.017 (0.016, 0.019) 0.011 (0.008, 0.014) 0.012 (0.012, 0.013) 

10 °C 0.024 (0.023, 0.026) 0.046 (0.042, 0.049) 0.023 (0.022, 0.024) 

15 °C 0.103 (0.097, 0.109) 0.024 (0.020, 0.028) 0.021 (0.020, 0.023) 

20 °C 0.102 (0.095, 0.110) 0.018 (0.016, 0.019) 0.059 (0.056, 0.063) 

25 °C 0.307 (0.288, 0.327) 0.008 (0.006, 0.010) 0.077 (0.072, 0.083) 

30 °C 0.469 (0.436, 0.504) 0.072 (0.049, 0.099) 0.086 (0.077, 0.095) 

35 °C 0.456 (0.425, 0.489) 1.739 (0.080, 51.570)2 0.007 (0.001, 0.042)2 

1. The estimate for 𝜎 was 0.441 (0.425, 0.457). 243 

2. Estimates in red did not converge, likely because there were no infective larvae counted in any replicate at 35 244 
°C. 245 



Peacock et al.  Appendix A: Experiments 1 June 2022 

 12 

Table A4. Hyperparameter estimates1 for MTE relationships describing pre-infective and infective mortality and 246 

pre-infective development of O. gruehneri larvae across seven temperatures (Table S2). 247 

Hyperparameter 

Parameter 

𝜇0 𝜇1 𝜌 

𝑦0 0.068 (0.066, 0.070) 0.022 (0.021, 0.023) 0.032 (0.031, 0.033) 

𝐸 0.884 (0.865, 0.902) 

 

0.686 (0.659, 0.713) 

𝐸𝐻  
  

7.957 (3.781, 13.390) 

𝑇𝐻 
  

30.568 (30.202, 31.170) 

1. The estimate for 𝜎 was 0.436 (0.421, 0.451). 248 

Estimation of lower temperature thresholds for population modelling 249 

As described in the main text, we were unable to estimate freezing survival of pre-infective and 250 

infective larvae from experiments because the minimum temperature tested was 5 °C. We 251 

therefore estimated lower thresholds on mortality parameters by fixing other hyperparameters 252 

in the Sharpe-Schoolfield relationship according to their estimated values in Table A5, and 253 

estimated just the lower inactivation energy (𝐸𝐿) and lower temperature threshold (𝑇𝐿) using 254 

data on freezing survival of Marshallagia marshalli larvae reported in Figure 3 of Aleuy et al. 255 

(2020). Specifically, we fit exponential curves to the mean survival over time of eggs, L1, and L3 256 

at -9 °C and -20 °C, yielding the mortality rates for M. marshalli at each of those temperatures 257 

(Figure A2). We then estimated the two unknown parameters in the Sharpe-Schoolfield 258 

relationship for pre-infective and infective stages from these two points for L1 and L3, 259 

respectively, assuming a log-normal error distribution (Figure A3, Table A5). We used the 260 

mortality rates for L1, rather than eggs, to estimate the lower bounds for the pre-infective 261 

larvae because M. marshalli eggs are less sensitive to freezing and thus not the limiting stage 262 

determining lower thermal tolerance (Figure A2). 263 
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 264 

 265 

Figure A2. The proportion of eggs, L1, and L3 stages of Marshallagia marshalli surviving over 80 days at (A) -9 °C, 266 

(B) -20 °C, (C) -35 °C, taken from Aleuy et al. (2020). The solid lines are the fitted exponential curves, with the 267 

estimated mean mortality rates indicated on the figure. 268 

 269 

 270 

Table A5. Hyperparameters assumed in population modelling for MTE relationships describing pre-infective and 271 

infective mortality and pre-infective development of O. gruehneri.1  272 

Hyperparameter 

Parameter 

𝜇0 𝜇3 𝜌0 

𝑦0 0.068 (0.066, 0.070) 0.0211 (0.020, 0.022) 0.032 (0.031, 0.033) 

𝐸 0.884 (0.865, 0.902) 0.208 (0.171, 0.246) 0.686 (0.659, 0.713) 

𝐸𝐻  
 

3.554 (3.217, 3.970)2  7.957 (3.781, 13.390) 

𝑇𝐻 
 

27.6 (26.7, 28.3)2 30.568 (30.202, 31.170) 

𝐸𝐿 -3.358 (-4.279, -2.406) 
-19.318 (-20.596, -
18.084)  

𝑇𝐿 2.928 (2.759, 3.088) 3.409 (1.961, 5.136)  
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1. Hyperparameters in red were estimated from data on Marshallagia marshalli from Aleuy et al. (2020). 273 

Hyperparameters in blue were estimated from Model 10. Note that the hyperparameters for  274 

𝜇0 and 𝜌0 were not significantly different between Model 5 and Model 10 (Table A2). 275 

2. Parameters showed some convergence issues with 𝑅̂ > 1.1. 276 

 277 

 278 

Figure A3. Full MTE curves for the mortality rates (d-1) of (A) pre-infective stage and (B) infective stage larvae, 279 

including lower thermal bounds estimated from M. marshalli data (red points). 280 
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 281 

Figure A4. Instantaneous rates of (A) pre-infective mortality (𝜇0) (B) development from pre-infective to infective 282 

(𝜌0), (C) infective mortality (𝜇1), and (D) the proportion of eggs that survive to the infective stage (exp(−𝜇0 𝜌0)) 283 

throughout the year at x = 660 km (approximate calving grounds). For each panel, rates are shown for current 284 

temperatures (black) and under RCP 2.6 (blue) and RCP 8.5 (red) climate change scenarios. These rates were 285 

calculated using the relationships from Fig. 5 and temperature curve from Fig. 4C. 286 
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Figures A5. Plot of experimental data showing the number of pre-infective (left) and infective (right) larvae alive 289 

from time 0 to 120 days at seven temperature treatments (rows) and 5 replicates within each temperature 290 

treatment (symbols). The lines show three different model predictions: the independent fits to each temperature 291 

treatment (model 1; red), the best-fitting MTE model (model 5; orange) and the assumed SSU model used in the 292 

host-parasite population modelling (Assumed; turquoise). The following plots show the same data, but highlight 293 

each replicate in turn (black points) and show the replicate-specific predictions using replicate-specific parameters 294 

from the hierarchical model. The average model, corresponding to that shown above, is also shown in a lighter 295 

dashed line. 296 
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