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ABSTRACT

Traditional manual code compliance checking process is a time-consuming, costly, and 

error-prone process that has many shortcomings (Zhang & El-Gohary, 2015). Therefore, 

automated code compliance checking systems have emerged as an alternative to traditional code 

compliance checking. However, computer software cannot directly process regulatory 

information in unstructured building code texts. To support automated code compliance 

checking, building codes need to be transformed to a computer-processable, structured format. In 

particular, the problem that most automated code compliance checking systems can only check a 

limited number of building code requirements stands out.

The transformation of building code requirements into a computer-processable, structured 

format is a natural language processing (NLP) task that requires highly accurate part-of-speech 

(POS) tagging results on building codes beyond the state of the art. To address this need, this 

dissertation research was conducted to provide a method to improve the performance of POS 

taggers by error-driven transformational rules that revise machine-tagged POS results. The 

proposed error-driven transformational rules fix errors in POS tagging results in two steps. First, 

error-driven transformational rules locate errors in POS tagging by their context. Second, error-

driven transformational rules replace the erroneous POS tag with the correct POS tag that is 

stored in the rule. A dataset of POS tagged building codes, namely the Part-of-Speech Tagged 

Building Codes (PTBC) dataset (Xue & Zhang, 2019), was published in the Purdue University 

Research Repository (PURR). Testing on the dataset illustrated that the method corrected

71.00% of errors in POS tagging results for building codes. As a result, the POS tagging 

accuracy on building codes was increased from 89.13% to 96.85%.

This dissertation research was conducted to provide a new POS tagger that is tailored to 

building codes. The proposed POS tagger utilized neural network models and error-driven 

transformational rules. The neural network model contained a pre-trained model and one or more 

trainable neural layers. The neural network model was trained and fine-tuned on the PTBC (Xue 

& Zhang, 2019) dataset, which was published in the Purdue University Research Repository 

(PURR). In this dissertation research, a high-performance POS tagger for building codes using 

one bidirectional Long-short Term Memory (LSTM) Recurrent Neural Network (RNN) trainable 

layer, a BERT-Cased-Base pre-trained model, and 50 epochs of training was discovered. This 
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model achieved 91.89% precision without error-driven transformational rules and 95.11% 

precision with error-driven transformational rules, outperforming the otherwise most advanced 

POS tagger’s 89.82% precision on building codes in the state of the art.

Other automated information extraction methods were also developed in this dissertation. 

Some automated code compliance checking systems represented building codes in logic clauses 

and used pattern matching-based rules to convert building codes from natural language text to 

logic clauses (Zhang & El-Gohary 2017). A ruleset expansion method that can expand the range 

of checkable building codes of such automated code compliance checking systems by expanding 

their pattern matching-based ruleset was developed in this dissertation research. The ruleset

expansion method can guarantee: (1) the ruleset’s backward compatibility with the building 

codes that the ruleset was already able to process, and (2) forward compatibility with building 

codes that the ruleset may need to process in the future. The ruleset expansion method was 

validated on Chapters 5 and 10 of the International Building Code 2015 (IBC 2015). The Chapter 

10 of IBC 2015 was used as the training dataset and the Chapter 5 of the IBC 2015 was used as 

the testing dataset. A gold standard of logic clauses was published in the Logic Clause 

Representation of Building Codes (LCRBC) dataset (Xue & Zhang, 2021). Expanded pattern 

matching-based rules were published in the dissertation (Appendix A). The expanded ruleset 

increased the precision, recall, and f1-score of the logic clause generation at the predicate-level 

by 10.44%, 25.72%, and 18.02%, to 95.17%, 96.60%, and 95.88%, comparing to the baseline 

ruleset, respectively. 

Most of the existing automated code compliance checking research focused on checking 

regulatory information that was stored in textual format in building code in text. However, a 

comprehensive automated code compliance checking process should be able to check regulatory 

information stored in other parts, such as, tables. Therefore, this dissertation research was 

conducted to provide a semi-automated information extraction and transformation method for 

tabular information processing in building codes. The proposed method can semi-automatically 

detect the layouts of tables and store the extracted information of a table in a database. 

Automated code compliance checking systems can then query the database for regulatory 

information in the corresponding table. The algorithm’s initial implementation accurately 

processed 91.67 % of the tables in the testing dataset composed of tables in Chapter 10 of IBC     
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2015. After iterative upgrades, the updated method correctly processed all tables in the testing

dataset.
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1 INTRODUCTION

A portion of this chapter was previously published in:

Xue, X., Zhang, J. (2020). Building codes part-of-speech tagging performance improvement by 

error-driven transformational rules. Journal of Computing in Civil Engineering, 34(5), 

04020035. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917 

Xue, X., Zhang, J. (2021). Erratum for “Building codes part-of-speech tagging performance 

improvement by error-driven transformational rules” by Xiaorui Xue and Jiansong Zhang.

Journal of Computing in Civil Engineering, 35(1), 08220002. 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000950 

Xue, X., Zhang, J. (2021). Part-of-speech tagging of building codes empowered by deep learning 

and transformational rules. Advanced Engineering Informatics, 47(January 2021), 101235. 

https://doi.org/10.1016/j.aei.2020.101235 

Xue, X., Zhang, J. (2022). Regulatory information transformation ruleset expansion to support 

automated building code compliance checking. Automation in Construction, 138(June 

2022), 104230. https://doi.org/10.1016/j.autcon.2022.104230 

Xue, X., Wu, J., Zhang, J. (2022). Semi-automated generation of logic rules for tabular 

information in building codes to support automated code compliance checking. Journal of 

Computing in Civil Engineering, 36(1), 04021033. https://doi.org/10.1061/(ASCE)CP.1943-

5487.0001000 

Republished with permission of American Society of Civil Engineers, from Building codes part-

of-speech tagging performance improvement by error-driven transformational rules, Xiaorui 

Xue, and Jiansong Zhang, 34, 2020; permission conveyed through Copyright Clearance

Center,Inc.

Republished with permission of American Society of Civil Engineers, from Erratum for 

“Building codes part-of-speech tagging performance improvement by error-driven 

transformational rules” by Xiaorui Xue and Jiansong Zhang, Xiaorui Xue and Jiansong Zhang,

35, 2021; permission conveyed through Copyright Clearance Center,Inc.

Republished with permission of Elsevier Science &Technology Journals, from Part-of-speech 

tagging of building codes empowered by deep learning and transformational rules, Xiaorui Xue, 

and Jiansong Zhang, 47, 2022; permission conveyed through Copyright Clearance Center,Inc.

Republished with permission of Elsevier Science &Technology Journals, from Regulatory 

information transformation ruleset expansion to support automated building code compliance 

checking, Xiaorui Xue, and Jiansong Zhang, 138, 2022; permission conveyed through Copyright 

Clearance Center,Inc.

Republished with permission of American Society of Civil Engineers, from Semi-automated 

generation of logic rules for tabular information in building codes to support automated code 

compliance checking, Xiaorui Xue, Jin Wu, and Jiansong Zhang, 36, 2022; permission conveyed 

through Copyright Clearance Center,Inc.
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Construction industry is regulated by a wide range of building codes. Code compliance 

checking to get the approval of a building permit is a crucial step prior to construction. However, 

traditional manual code compliance checking is time-consuming and expensive (Zhang & El-

Gohary, 2016). Therefore, the demand to automate code compliance checking emerged. In order 

to achieve full automation in code compliance checking, regulatory information in building 

codes must be extracted and stored in a computer-processable and structured format to support 

automated code compliance checking. 

Building codes need to be converted from unstructured natural language to a structured 

format that computers are able to process to support automated code compliance checking. Some 

automated code compliance checking systems relied on hiring domain experts to perform manual 

transformations (İlal & Günaydın, 2017). However, attempts to achieve automated code 

compliance checking this way, even with support from government, often ceased after intensive 

investment due to high cost of maintaining domain experts’ efforts (Amor & Dimyadi, 2021). 

The automated transformation of building code requirements to a computable structured format 

is a natural language processing (NLP) task that requires highly accurate part-of-speech (POS) 

tagging on building codes. Part-of-speech taggers categorize words according to their syntactic 

functions in a sentence (Brill, 1992) and was frequently used as a basic step in NLP-based 

architecture, engineering, and construction (AEC) domain research and applications (Kwayu et 

al, 2019; Ren & Zhang, 2021; Zhang & El-Gohary, 2013). Existing POS taggers, however, do 

not provide sufficient accuracy on building codes, because performance of POS taggers 

deteriorates in out-of-domain text (Coden et al., 2005). To better support automated code 

compliance checking, the authors proposed the following Natural Language Processing (NLP)-
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based methods to support automated Information Extraction (IE) from building codes in this 

chapter: (1) improving performance of part-of-speech tagging on building codes by error-fixing 

rules, (2) part-of-speech tagging of building code by deep learning and error-fixing rules, (3) 

generating logic clauses for tabular information in building codes, and (4) pattern matching-

based transformational ruleset expansion method to increase the coverage of building code 

transformational rules.

This dissertation research was conducted to improve the performance of POS taggers by 

error-driven transformational rules that revise machine tagged POS results. The proposed method 

utilizes a syntactic and semantic rule-based, NLP approach combined with a structure that is 

inspired by transfer learning. In transfer learning, large models, which are usually trained on 

large body of texts on unsupervised tasks, are fine-tuned on small labeled datasets to increase 

performance on supervised tasks (Pan & Yang, 2009). This method generates a group of 

transformational rulesets, from simple ones to complex ones, that can convert machine taggers’ 

tagging results to their corresponding human-labeled gold standard. The transformational rules 

utilize syntactic and semantic information of domain texts.

Automated building code compliance checking systems were under development for many 

years (Dimyadi & Amor, 2013). However, the excessive number of human inputs needed to 

convert building codes from natural language to computer understandable codes severely limited

their range of applicable code requirements (İlal & Günaydın, 2017). To address this, automated 

code compliance checking systems need to enable an automated regulatory rules conversion. 

Accurate POS tagging of building code texts is crucial to support this conversion. Previous 

experiments showed that the state-of-the-art generic POS taggers did not perform well on 

building codes (Xue & Zhang, 2020). In view of that, this dissertation research was conducted to

provide a new POS tagger tailored to building codes. It utilizes deep learning neural network 

model and error-driven transformational rules. The neural network model contains a pre-trained 

model and one or more trainable neural layers. The pre-trained model was fine-tuned on Part-of-

speech Tagged Building Codes (PTBC), a POS tagged building codes dataset prepared in this 

dissertation research. The fine-tuning of pre-trained model allows the proposed POS tagger to 

reach high precision with a small amount of available training data. 

One limitation of many existing automated code compliance checking systems/methods is 

their limited range of checkable building code requirements. To address that, the state of the art 
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uses pattern matching-based rules to transform building code requirements to computable 

formats automatically, but the ruleset was developed and tested only on few chapters of building 

code requirements (Zhang & El-Gohary, 2016). An efficient ruleset expansion method is needed 

to enlarge its range of checkable building code requirements with low-cost and bring automated 

code compliance checking systems closer to full deployment. Expanding an existing regulatory 

information transformation ruleset requires less manual effort than developing a new ruleset. 

This dissertation research was conducted to provide a method that can expand the range of 

checkable code requirements of automated code compliance checking systems without 

significant manual effort. The proposed ruleset expansion method takes an iterative approach to 

ensure the generality and validity of new pattern matching-based rules and the quality of 

information transformation results. 

Another limitation of the range of checkable building codes of many existing automated 

code compliance checking system is that they mostly focused on and were limited to 

automatically processing regulatory information that was stored in the text part of the codes. 

Nonetheless, a fully automated method for code compliance checking should be able to examine 

regulatory information in other parts of the textual document, such as in tables. This dissertation 

research was therefore conducted to provide a semiautomated information extraction and 

transformation approach for tabular regulatory information in building codes. The proposed 

method can detect table layouts semi-automatically and save extracted table information in a 

database. Automated code compliance checking systems can then query this database for 

regulatory information in related tables from building codes. 

1.1 Research Question

This dissertation research was conducted to answer the research question “How to improve 

the automated processing of building codes to better support automated code compliance 

checking compared to the state of the art?” 

The main research question was divided into two sub-questions:

1. How to improve the performance of POS tagging on building codes compared to the 

state of the art?

2. How to expand the range of checkable building code requirements that can be used in 

state-of-the-art automated code compliance checking systems?
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1.2 Significance

The problem addressed in this dissertation research is the lack of full automation in building 

code compliance checking. Manual code compliance checking is time-consuming, costly and 

error-prone (Zhang & El-Gohary 2015). The average waiting time for obtaining building permit 

is more than two months with a minimum cost of hundreds of dollars (Xue & Zhang, 2020). 

Productivity of construction industry is also affected by a slow manual code compliance 

checking (Ding et al., 2006). Construction industry contributes 4.1% of US economy in 2018 and 

2019 (Bureau of Economic Analysis, 2022). However, productivity of the construction industry 

has been in stagnation (Bureau of Labor Statistics, 2018). Automated code compliance checking 

can reduce errors and improve efficiency in code compliance checking (Zhong et al., 2012). 

Non-compliance in building design is expensive to fix and could lead to expensive penalty fines. 

1.3 Purpose Statement

The overall purpose of this dissertation research is developing NLP-based automated 

information extraction methods to support automated building code compliance checking. For 

the four methods proposed in this dissertation, each of them has their own specific purpose as 

detailed as follows. The goal of the first two POS tagging methods is to improve the performance 

of POS taggers on building codes compared to the state of the art. The third and fourth methods, 

the ruleset expansion methods and the tabular information extraction, respectively, aim to 

increase the range of checkable building code requirements that can be used in state-of-the-art 

automated code compliance checking systems. 

1.4 Dissertation Structure

This dissertation consists of six chapters (Table 0.1) and addressed two research questions 

(Figure 0.1). Chapter One (i.e., introduction chapter) introduces the motivation behind the 

research carried out in this dissertation research and two research questions addressed in this 

dissertation research. Chapter Two focuses on improving the accuracy of POS tagging of 

existing POS taggers on building codes by using error-driven transformational rules. Chapter 

Three then goes beyond the use of existing POS taggers by developing a new building code POS 

tagger that combines the use of error-driven transformational rules and a neural network model.
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A highly accurate POS tagging is important for automated code compliance checking to achieve 

full automation because NLP is needed to extract and transform regulatory information from 

building codes automatically into a computable format and POS tagging is an important basic 

step in NLP. Zhang (2015) described the importance/challenge of the NLP as:

“For the purpose of ACC, a successful information extraction does require 

correct understanding of the text source (i.e., textual regulatory documents). This 

need of a deep level of NLP makes the problem of automated information 

extraction for compliance checking purposes challenging.” (p.11)

POS tagging is an essential first step of many (if not all) NLP processes. Previous works use 

generic POS tagger, whose performance is limited on building codes. To push for full

automation, a construction domain specific POS tagger was developed in this dissertation 

research.

Chapter Four expands the range of checkable building code requirements of an automated 

code compliance checking system by providing a pattern matching-based ruleset expansion 

method to expand an existing pattern matching-based ruleset. The pattern matching-based ruleset 

utilizes POS tagging information of the building code. Chapter Five expands the range of 

checkable building code requirements from textual information to non-textual information by 

proposing a tabular information extraction method. Last but not least, Chapter Six, which is the 

conclusion chapter, discusses the overall conclusions of the dissertation research.
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Figure 0.1. Relation between Published Chapters and Research Questions

Table 0.1. Chapters in the Dissertation

Chapter Title

1 Introduction

2
Building codes part-of-speech tagging performance improvement by error-driven 

transformational rules

3
Part-of-speech tagging of building codes empowered by deep learning and 

transformational rules.

4
Regulatory information transformation ruleset expansion to support automated 

building code compliance checking.

5
Semi-automated generation of logic rules for tabular information in building codes 

to support automated code compliance checking.

6 Conclusion

1.5 Definitions

A group of concepts and terms are central to this dissertation research. To provide key 

information about the dissertation and facilitate understanding to the dissertation research, 

definitions of key concepts and terms are provided in this section. For terms and concepts that 

are unique to this dissertation research, operational definitions are provided. 
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Automated Code Compliance Checking System (ACCC) system is defined as “a software 

that does not modify a building design, but rather assesses a design on the basis of the 

configuration of objects, their relations or attributes” automatically (Eastman et al., 2009). 

Building Code is defined as “a set of laws enacted by state, county and city governments to 

determine the required design and construction standards for home construction” (Findwell,

2020). 

Industry Foundation Classes (IFC) is defined as “a standardized, digital description of the 

built asset industry.” (buildingSMART International, 2020). The IFC models are defined using 

the Standard for Exchange of Product (STEP) method. The IFC specification is drafted in the 

EXPRESS data modeling language. The IFC standard is registered as an international standard 

(ISO 16739-1:2008). The IFC standard is a vender-neutral, open and platform-independent 

standard. (buildingSMART International, 2020). 

Building Information Modeling (BIM) is defined as “a digital representation of physical 

and functional characteristics of a facility. A BIM is a shared knowledge resource for 

information about a facility forming a reliable basis for decisions during its life-cycle; defined as 

existing from earliest conception to demolition” by the National Building Information Model 

Standard Project Committee. The application of BIM promises the collaboration of stakeholders 

in different stage of a building construction project. (National Building Information Model 

Standard Project Committee, 2022). The BIM model of a building can be used to plan, design, 

construct, and operate the building (Azhar, 2011). In recent years, the term can also be used to 

refer to the process of creating digital representation of a built asset (Autodesk Company, 2022).

Natural Language Processing (NLP) is defined as “the subfield of computer science 

concerned with using computational techniques to learn, understand, and produce human 

language content” (Hirschberg & Christopher, 2015). Natural Language Processing “in a wide 

sense to cover any type of computer manipulation of natural language. At one extreme, it could 

be as simple as counting word frequencies to compare different writing styles. At the other 

extreme, NLP involves “understanding” complete human utterances, at least to the extent of 

being able to give useful responses to them.” (Bird et al., 2009). Natural language processing 

algorithm can take a rule-based approach or used statistical models (Nadkarni et al., 2011). 

Machine Learning (ML) is defined as a “field of study that gives computers the ability to 

learn without being explicitly programmed” (Samuel, 1959). Another popular definition of 
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machine learning is “the study of computer algorithms that allow computer programs to 

automatically improve through experience” (Mitchell, 1997). Machine learning includes 

supervised algorithms that infer the underlying relationship between observed data and targeted 

value (label) and unsupervised algorithms that discover hidden patterns in unlabeled dataset 

(Awad & Khanna, 2015).

Deep Learning is defined as “computational models that are composed of multiple 

processing layers to learn representations of data with multiple levels of abstraction.” (LeCun et 

al., 2015). Deep learning algorithms use neural networks with a muti-layer structure (Ciregan et 

al., 2012).

Logic Clause is a representation that supports automated logic reasoning (Zhou, 1994).

Recurrent Neural Network (RNN) is a type of network that feed outputs of previous 

timesteps to the next step (Staudemeyer & Morris, 2019).

Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) is a type of RNN that 

has a cell state to control access to information in previous timesteps (Staudemeyer & Morris,

2019).

1.6 Assumptions

In this dissertation research, the following assumptions were made. First, different chapters 

of the same building code were drafted in a coherent style. Therefore, patterns that exist in one 

chapter of building code may also exist in other chapters of the same building code. Second, 

structures in building codes were well-defined (Jiang, 2012). Third, building design information 

has been comprehensively and accurately extracted from building design documents (i.e., 

Industrial Foundation Classes (IFC) files). The last assumption is that all needed building design 

information for code checking was provided in the building design model. 

1.7 Limitations

This dissertation research has multiple limitations. First, the conversion of building code 

from natural language to a computer-processable format is not perfect yet. Manual refinement of 

conversion result is still needed. Second, this dissertation research focuses on compliance 

checking of International Building Code 2015. The range of checkable building codes tested in 
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this dissertation research, although improved from the state of the art, is still not comprehensive. 

Third, the tabular information extraction method is semi-automated instead of fully automated. 

1.8 Delimitations

The scope of this dissertation research is limited to building code in English. Building codes 

that are not in English are excluded from this dissertation research. 

1.9 Permission to Republish

Contents of this dissertation are based on published papers. Permissions to republish them 

in this dissertation are obtained from their corresponding publisher (Appendix B).

Xue, X., Zhang, J. (2020). Building codes part-of-speech tagging performance improvement by 

error-driven transformational rules. Journal of Computing in Civil Engineering, 34(5), 

04020035. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917 

Xue, X., Zhang, J. (2021). Erratum for “Building codes part-of-speech tagging performance 

improvement by error-driven transformational rules” by Xiaorui Xue and Jiansong Zhang.

Journal of Computing in Civil Engineering, 35(1), 08220002. 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000950 

Xue, X., Zhang, J. (2021). Part-of-speech tagging of building codes empowered by deep learning 

and transformational rules. Advanced Engineering Informatics, 47(January 2021), 101235. 

https://doi.org/10.1016/j.aei.2020.101235 

Xue, X., Wu, J., Zhang, J. (2022). Semi-automated generation of logic rules for tabular 

information in building codes to support automated code compliance checking. Journal of 

Computing in Civil Engineering, 36(1), 04021033. https://doi.org/10.1061/(ASCE)CP.1943-

5487.0001000 

Xue, X., Zhang, J. (2022). Regulatory information transformation ruleset expansion to support 

automated building code compliance checking. Automation in Construction, 138(June 

2022), 104230. https://doi.org/10.1016/j.autcon.2022.104230 

Republished with permission of American Society of Civil Engineers, from Building codes part-

of-speech tagging performance improvement by error-driven transformational rules, Xiaorui 

Xue, and Jiansong Zhang, 34, 2020; permission conveyed through Copyright Clearance 

Center,Inc.

Republished with permission of American Society of Civil Engineers, from Erratum for 

“Building codes part-of-speech tagging performance improvement by error-driven 

transformational rules” by Xiaorui Xue and Jiansong Zhang, Xiaorui Xue and Jiansong Zhang,

35, 2021; permission conveyed through Copyright Clearance Center,Inc.



25

Republished with permission of Elsevier Science &Technology Journals, from Part-of-speech 

tagging of building codes empowered by deep learning and transformational rules, Xiaorui Xue, 

and Jiansong Zhang, 47, 2022; permission conveyed through Copyright Clearance Center,Inc.

Republished with permission of Elsevier Science &Technology Journals, from Regulatory 

information transformation ruleset expansion to support automated building code compliance 

checking, Xiaorui Xue, and Jiansong Zhang, 138, 2022; permission conveyed through Copyright 

Clearance Center,Inc.

Republished with permission of American Society of Civil Engineers, from Semi-automated 

generation of logic rules for tabular information in building codes to support automated code 

compliance checking, Xiaorui Xue, Jin Wu, and Jiansong Zhang, 36, 2022; permission conveyed 

through Copyright Clearance Center,Inc.



26

2 BUILDING CODES PART-OF-SPEECH TAGGING PERFORMANCE 

IMPROVEMENT BY ERROR-DRIVEN TRANSFORMATIONAL RULES

Xiaorui Xue, S.M.ASCE1; Jiansong Zhang, Ph.D., A.M.ASCE2

A portion of this chapter was previously published by:

Xue, X., Zhang, J. (2020). Building codes part-of-speech tagging performance improvement by 

error-driven transformational rules. Journal of Computing in Civil Engineering, 34(5), 

04020035. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917 

Xue, X., Zhang, J. (2021). Erratum for “Building codes part-of-speech tagging performance 

improvement by error-driven transformational rules” by Xiaorui Xue and Jiansong Zhang.

Journal of Computing in Civil Engineering, 35(1), 08220002. 

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000950 

Republished with permission of American Society of Civil Engineers, from Building codes part-

of-speech tagging performance improvement by error-driven transformational rules, Xiaorui 

Xue, and Jiansong Zhang, 34, 2020; permission conveyed through Copyright Clearance 

Center,Inc.

Republished with permission of American Society of Civil Engineers, from Erratum for 

“Building codes part-of-speech tagging performance improvement by error-driven 

transformational rules” by Xiaorui Xue and Jiansong Zhang, Xiaorui Xue and Jiansong Zhang,

35, 2021; permission conveyed through Copyright Clearance Center,Inc.

Author Contributions

The authors confirmed contribution to the paper as follows: 

1. Study conception and design: Xiaorui Xue, Jiansong Zhang.

2. Data collection: Xiaorui Xue, Jiansong Zhang.

3. Analysis and interpretation of results: Xiaorui Xue, Jiansong Zhang.

4. Draft manuscript preparation: Xiaorui Xue, Jiansong Zhang.

5. All authors reviewed the results and approved the final version of the manuscript.

2.1 Literature Review

2.1.1 Automated Code Compliance Checking

To address the increasing demand in building permits, many researchers and industry 

experts introduced new methods of code compliance checking. Their efforts focus on making 

code compliance checking paperless, automated and standardized. The structural design 

checking using decision table (Fenves, 1966) was one of the first efforts in this domain (İlal & 
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Günaydın, 2017), which led to many attempts to create expert systems for building codes in the 

1980s (Dimyadi & Amor, 2013), such as the Standard Interface for Computer Aided Design 

(SICAD) (Lopez et al., 1989), the Standards Processing Expert (SPEX) (Delis & Delis, 1995; 

Garrett & Fenves, 1987), and the Design Prototypes (Gero, 1990). However, low performance 

and high maintenance cost of expert systems in the 1980s limited these attempts only to proofs of 

concepts with a lack of actual implementations. An expert system, which uses a vast body of 

domain-specific knowledge stored in a computer (Liao, 2005), has limitations such as high 

maintenance cost, difficulty in scalability, and the narrow range of applications (Chollet, 2017)

These forerunners’ efforts gave birth to more recent code compliance checking expert systems, 

such as BCAider and DesignCheck, in early 2000s (Dimyadi & Amor, 2013). In addition, there 

were expert systems that focused on building codes in a specific domain or a limited range of 

domains in 1980s and 1990s. For example, the Fire-Code Analyzer (Delis & Delis, 1995)

focused on fire protection related codes in New Zealand, the Life Safety Code Advisor focused 

on National Fire Protection Association (NFPA) safety code in the U.S., and the TALLEX 

(Sabouni & Al-Mourad, 1997) focused on tall buildings in the United Arab Emirates (UAE). 

The rise of building information modeling (BIM) since the 2000s provided new ways for 

performing many tasks in the AEC domain such as structural analysis (Ren & Zhang, 2020; 

Wong Chong et al., 2020; Wu et al., 2021), fire safety evaluation (Wang et al., 2020), building 

energy modeling (Li & Zhang, 2020; Li et al., 2022; Li & Zhang, 2021, Li et al., 2021), 

construction management (Akanbi et al., 2020; Zhang & Laddipeerla, 2018), construction 

automation (Brissi et al., 2021; Lacny & Zhang, 2022; Wong Chong & Zhang, 2021; Wong 

Chong et al., 2022) and civil infrastructure management (Akanbi & Zhang 2022; Guo et al., 

2021). BIM also dramatically changed the way code compliance systems work by providing a 

reliable digital representation of buildings (Nguyen & Kim, 2011). For example, Solibri Model 

Checker (SMC) started as a BIM validation tool, and it obtained code compliance checking 

ability in its later updates (Eastman et al., 2009). Singapore government initiated the 

Construction and Real Estate Network (CORENET) project, which allows BIM models, instead 

of papers, to be submitted for plan review. The UK government started to require submissions of 

BIM for all public projects that are funded by the British Central Government from 2016 (UK 

BIM Task Group, 2016). The KbimCode in South Korea was capable of code compliance
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checking of BIM against building codes, but it needs manual efforts to convert building codes 

from natural language to a computer-processable format (Choi & Kim, 2017).

2.1.2 Information Extraction Systems

With BIM as a reliable digital representation of buildings, code compliance checking 

systems made great progress over the last two decades. However, they are still far from a wide 

real-world deployment. In many current automated code compliance systems, information 

extraction and information transformation rely on domain experts’ manual efforts to convert 

building codes to a computer-processable format, such as decision tables (Tan et al., 2010),

regulatory knowledge model (Dimyadi et al., 2016), and structured regulatory information 

rulesets (İlal & Günaydın, 2017).

Based on existing literature, current code compliance checking systems lack automated 

regulatory information extraction and transformation capabilities. By drafting building codes in 

computer-checkable logic clauses or rulesets instead of natural language, code compliance 

checking systems can bypass the needed information extraction and transformation step and 

achieve full automation in an alternative way. However, such a dramatic shift is not expected in a 

foreseeable future (Bell et al., 2009; Li et al., 2012). In addition, the large size of existing 

building codes creates further challenges in achieving such a transition. In the U.S., local 

jurisdictions usually apply customizations and modifications to standard codes published by the 

international code council (ICC), which further contribute to the complexity of the body of 

building codes. Automated information extraction and transformation are necessary for 

automated code compliance systems to function on existing as well as forthcoming building code 

versions. Some researchers proposed sematic analysis of building codes through deep learning 

for information extraction, but the extracted information failed to convert to checkable rules 

(Song et al., 2018). Pattern matching-based natural language processing method, on the other 

hand, can generate logic clauses through information extraction and transformation with a high 

accuracy (Li et al., 2016; Xu & Cai, 2020; Zhang & El-Gohary, 2015). The pattern matching-

based method of Zhang and El-Gohary (2015) can convert natural language provisions to logic 

clauses, and their entire automated code compliance checking method reached a 98.7% recall 

and 87.6% precision in non-compliance detection (Zhang & El-Gohary, 2017). However, to 

enable real-world applications, the recall must be improved to 100%. The main sources of errors 
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reported by Zhang and El-Gohary (2017) were of two types: limitations of the extraction and 

transformation rules, and limitations of the state-of-the-art POS taggers’ performance on building 

codes. Reducing/eliminating such errors were expected to further improve the overall non-

compliance detection performance. In this chapter, the authors focus on addressing the 

performance of the state-of-the-art POS taggers on building codes, because the extraction and 

transformation rules use the POS tagging information and therefore rely on its performance.

2.1.3 Part-of-Speech (POS)

A fully automated code compliance checking system could be an NLP-based system with 

an essential information extraction and transformation component. The information extraction 

and transformation component utilizes part-of-speech information as well as other 

syntactic/semantic information of building codes provisional sentences to convert building codes 

from natural language to computer-processable representations. POS tagging is about assigning 

the corresponding morphosyntactic category to each word in a sentence (Giménez & Marquez, 

2004). As an early step of the discussed automated code compliance checking system, POS 

tagging will cascade errors into later steps of the system (Dell’Orletta, 2009) and jeopardize its 

final performance. An accurate POS tagging results of building codes is the foundation to 

support the high performance of the information extraction and transformation component and 

therefore the entire automated code compliance checking system. 

POS categories of words are classes of words that share common features (Brill, 1992). In 

general, there are eight basic POS categories in English, namely, noun, pronoun, verb, adjective, 

adverb, preposition, conjunction and interjection (Butte College, 2016). However, a decent 

representation of text for further NLP analysis needs more than just eight POS tags. For example, 

singular noun and plural noun are usually separated into two different categories. Among the 

commonly used tagsets, Universal tagset has 12 tags (Petrov et al., 2012), Penn Treebank tagset 

has 36 tags (Marcus et al., 1993), and Brown tagset has 179 tags (Francis & Kucera, 1979). The 

authors decided to use Penn Treebank tagset (Table 0.1) because of its good balance between 

information richness and conciseness.
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Table 0.1. POS Tags in the Penn Treebank Tagset

Tag Description

1 CC Coordinating conjunction

2 CD Cardinal number

3 DT Determiner

4 EX Existential there

5 FW Foreign word

6 IN Preposition or subordinating conjunction

7 JJ Adjective

8 JJR Adjective, comparative

9 JJS Adjective, superlative

10 LS List item marker

11 MD Modal

12 NN Noun, singular or mass

13 NNS Noun, plural

14 NNP Proper noun, singular

15 NNPS Proper noun, plural

16 PDT Predeterminer

17 POS Possessive ending

18 PRP Personal pronoun

19 PRP$ Possessive pronoun

20 RB Adverb

21 RBR Adverb, comparative

22 RBS Adverb, superlative

23 RP Particle

24 SYM Symbol

25 TO to

26 UH Interjection

27 VB Verb, base form

28 VBD Verb, past tense

29 VBG Verb, gerund or present participle

30 VBN Verb, past participle

31 VBP Verb, non-3rd person singular present

32 VBZ Verb, 3rd person singular present

33 WDT Wh-determiner

34 WP Wh-pronoun

35 WP$ Possessive wh-pronoun

36 WRB Wh-adverb

There are multiple ways to get a textual corpus POS tagged. Human annotators can 

complete this task with their knowledge in English and understanding of the text. However, the 

high cost, low speed and human inconsistency make it rarely used in real-word applications. This 

is especially the case if the POS tagging is to support automated extraction and transformation of 
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code requirements for automated compliance checking. In contrast, POS tagging software, or 

POS taggers (will be called machine taggers hereafter) are usually used in NLP systems because 

of their fast tagging speed, low tagging cost, and free of human inconsistency. Machine taggers 

can tag a large amount of text in a short time without human interventions. The large amount of 

existing and upcoming building codes and frequent building codes updates require a machine 

POS tagging solution to support automated code compliance checking systems. POS taggers 

annotate texts according to rules or mathematical models. Correspondingly, there are two main 

types of machine POS taggers based on their corresponding annotation methodologies: rule-

based POS taggers and machine learning POS taggers. These rules or models are either 

developed by humans or generated by algorithms.

2.1.3.1 Rule-based Part-of-Speech Tagger

Rule-based POS taggers decide POS tags of words based on a set of rules. Rules are 

designed to make POS tagging results of texts follow human-labeled results. These rules can be 

either hand-crafted by domain experts or generated by algorithms. Domain experts generate rules 

based on their understanding of English grammar and the text being tagged. Rules can also be 

generated by algorithms. POS taggers with hand-crafted rules are rarely used nowadays. They 

usually are not intended for practical use but rather for educational purposes. For example, Bird 

et al. (2009) introduced a rule-based tagger with hand-crafted rules for educational purpose. 

However, this tagger has a low accuracy and only slightly outperformed a baseline tagger that 

tagged all words as “NNS” (plural nouns) (Bird et al., 2009). Development of rule-based POS 

taggers stopped because they, even with thousands of hand-crafted rules, fail to reach a 

comparable accuracy to that of machine learning taggers. For example, the TAGGIT system 

contains more than 3,000 hand-crafted rules and reached a 77% accuracy on Brown corpus

(Greene & Rubin, 1971), whereas the state-of-the-art machine taggers had an accuracy of 87.1% 

on Brown corpus which was much higher than the 77% accuracy achieved by TAGGIT (Li et al., 

2012). However, rule-based POS tagger with algorithm-generated rules can achieve a higher 

accuracy than rule-based POS taggers with hand-crafted rules (Bird et al., 2009). For example, 

Brill (1992) developed the Brill tagger with algorithm-generated rules and claimed his tagger’s 

performance “on par with stochastic taggers.”
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2.1.3.2 Machine Learning Part-of-Speech Tagger

Classification is one main task that machine learning was designed for. POS tagging is a 

type of classification task, i.e., classifying words into different POS categories according to its 

context and English grammar. Machine learning taggers are built by training machine learning 

models on corpus of English texts. Different machine learning models can be used such as 

support vector machines (SVM), decision tree, hidden Markov model (HMM), and neural 

network. 

2.2 Methodology

The authors propose to use transformational rules to address errors in the tagging results of 

general POS taggers (i.e., machine taggers trained on general English texts) on building codes to 

increase their accuracy on POS tagging of building codes. Instead of training a new POS tagger 

from scratch, improving existing taggers can decrease the amount of annotated data needed, 

therefore save system development time and effort and potentially achieve higher POS tagging 

accuracy. The transformational rules are automatically generated by algorithms with no human 

intervention during the generation process execution.

In this chapter, the authors define errors in POS tagging as nonconformities between the

machine-assigned POS tag of a word and that word’s human-labeled tag. For example, machine 

taggers make a POS tagging error by tagging the word “can” in the phrase “a steel can,” which is 

a noun, as an “auxiliary verb.” Errors are further grouped into types. A type of error subsumes all 

appearances of a word in the textual data that have the same correct POS tag and are given the 

same incorrectly assigned POS tag by machine taggers. For example, for all occurrences of the 

word “can” as a noun, machine taggers may correctly tag them as a noun or incorrectly tag them 

as a modal verb or verb. For the occurrences that machine taggers incorrectly tagged the word 

“can” as a verb, it is one type of error. For the occurrences that machine taggers incorrectly 

tagged the word “can” as a modal verb, it is a different type of error. The proposed method 

focuses on decreasing the overall occurrence of errors, not specific types of errors. However, 

knowing possible types of errors is helpful to identify sources of errors. Furthermore, POS 

tagging errors in building codes textual data show a long-tail distribution. That is, a few types of 

errors happen many times and most types of errors only happen few times. In fact, for 1,758 
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types of 31,495 errors in the authors’ data of POS tagged building code where errors were 

defined to be the difference between machine tagging results and manually created gold 

standard, the top 100 types occurred 20,338 times, which accounted for 64.58% of all errors

(Xue & Zhang, 2020). The uneven distribution of errors implies that a small number of fixes may 

eliminate a large portion of errors. 

2.2.1 Overview of the Method

The authors’ proposed method divides textual data into two parts, training dataset and 

testing dataset. The proposed method has two main components, rule generation component, and 

rule application component. The rule generation component uses rule templates to generate 

transformational rules. For example, “If the word B after the word A is tagged as X and the word 

A is tagged as Y, then change the tag of the word A to Z” is a rule template. All rules that are 

generated by the same template form a ruleset. This method allows users to input their 

customized templates to generate customized rulesets. The authors provided sample rule 

templates in the experiment section. The rule generation component generates rules from simple 

rulesets to complex rulesets, from unigrams to n-grams, and from syntax to semantics. Before the 

development of each ruleset, the errors in the training set are collected and recorded. A process 

flowchart about error collection is shown in Figure 0.1. This process compares machine-

generated tags of words and their corresponding human-labeled tags (from gold standard) in the 

training dataset, and records any word whose machine-generated tag is different from its human-

labeled tag. If the machine-generated tag of the word “wood” is JJ (Adjective) and its human-

labeled tag is NN (Noun), this method then records that the word “wood” is incorrectly tagged as 

JJ (Adjective) when it should be tagged as NN (Noun). This process is automatically and 

algorithmically performed by comparing the machine-assigned POS tag of a word and the 

human-labeled POS tag (from gold standard) of the same word, and recording any discrepancy 

between them for later steps of this method. After the error collection process, the rule 

generation process begins. The rule extraction component collects contextual information of 

errors in the training dataset and converts them to candidate transformational rules according to 

the template of that ruleset, and filters out unqualified rules. This is also automatically performed 

without human intervention. The proposed method will collect POS tags of words before and 

after the target word as the contextual information of the collected error. Before the extraction of 
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the next ruleset, rules in the previous ruleset are applied to the training text. After the completion 

of rule development, all rulesets are applied to the testing dataset to evaluate the performance of 

the developed rules. The method also records remaining errors after each ruleset is applied to the 

testing dataset. The steps of this method are shown in Figure 0.2.
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Figure 0.1. Error Collection Process
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Figure 0.2. Proposed Method
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2.2.2 Description of Transformational Rules

The transformational rules fix POS tagging errors in the textual data. The POS tagging 

errors in the textual data are gathered by comparing machine tagging results of the textual data to 

the human-labeled gold standard. The rules store the word it matches and its contextual 

information, including semantic information (e.g., the word before the target word is “egress”) 

and syntax information [e.g., the POS tag of the word before the target word is NN (noun)]. The 

proposed method utilizes two types of rulesets: n-gram rulesets that consider n-grams 

information of words and remaining error rulesets that consider remaining errors in the text. 

Rules in the N-grams rulesets also need to meet the rule acceptance criterion, which states that 

rules should be risk-controlled in introducing new errors in the training set.

2.2.2.1 N-grams Rulesets

N-gram rulesets are developed through the contextual information of errors in the training 

data. This chapter does not differentiate bigram rules from n-gram rules. The authors treated 

them unanimously as n-gram rules. For example, “If machine tagger tags the word before 

‘pedestrian’ as a noun and tags the token ‘pedestrian’ as an adjective, change POS tag of that 

prior word to adjective” is an n-gram rule. Each N-gram rule represents a context in which a 

word only has one possible correct POS tag. The context may include the word itself, the 

machine-assigned POS tag of the word, and machine-assigned POS tags of the word before and 

after a word.

2.2.2.2 Remaining Error Rulesets

After all n-gram rulesets are applied to the training data, a special ruleset is generated by 

fixing the n most common errors remaining in the training data. The choice of n is arbitrary. This 

special ruleset is special because the generation of rules in this set needs information from the 

entire training dataset whereas the generation of n-gram rulesets only need information from one 

sentence. The rule of thumb is that the user can choose a larger n when there are more errors in 

the training dataset compared to when there are less errors. Different values of n can be tested to 

optimize the performance.
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2.2.2.3 Rule Acceptance Test

To reduce the potential negative effects of transformational rules on the downstream tasks 

of the automated code compliance checking system, n-gram rules should be risk controlled in 

introducing new errors to the textual data. The rule acceptance test ensures an n-gram rule should

be at a low risk in introducing new errors by making sure that transformational rules only replace 

the POS tag of a word with a more commonly used POS tag of the word in the context described 

in the rule. If a rule replaces the POS tag of a word from a more commonly used one to a less 

commonly used one, the rule is prone to introducing new errors and therefore will be dropped. 

Although the introduction of errors could have negative impact on the downstream tasks of the 

automated code compliance checking system, it is mathematically true that a rule that fixes more 

errors than it introduces can increase the level of accuracy. The increase in POS tagging accuracy 

may enhance the performance of downstream tasks of the automated code compliance checking 

system and drive the entire system closer to the 100% recall goal. Therefore, if a rule replaces a 

rarely used POS tag of a word with a commonly used POS tag of the word, the risk of it 

introducing errors is low. The rule meets the rule acceptance criterion and will be kept in the 

ruleset. This strict requirement may limit the number of transformational rules generated, but it 

ensures a steady improvement of the quality of extracted rules and the rulesets’ performance.

Calculating the accuracy of POS tagging before and after a rule is applied is a possible solution. 

However, a rule may overfit the training dataset and its ability to increase the accuracy in the 

training dataset does not necessarily lead to the same effect on the testing text. Instead, selecting 

a more commonly used POS tag for replacement can leverage syntactic information in the rule 

generation process to alleviate overfitting.

2.2.3 Rule Generation 

The rule generation processes for each ruleset are similar. A general description of the rule 

generation procedure is shown in

Figure 0.3. For each ruleset, the rule generation component collects contextual information 

of all errors and their corresponding human-labeled tags in the training dataset. In the second 

step, this component coverts collected information of each error into candidate rules by deleting 

unnecessary contextual information. For example, if a rule only considers the POS tag of the 
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word before the target word, then only the target word, POS tag of the target word, and POS tag 

of the word before the target word will be kept and everything else in the target word’s context

will be deleted.
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Figure 0.3. Rule Generation Process
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After that, all candidate rules need to undergo the rule acceptance test. This test clarifies the 

ambiguities in the textual data. One main challenge in POS tagging is that the same word may 

have different POS tags in different contexts. This test can ensure that a rule changes the POS tag 

of the target word to a POS tag that has a low risk to be incorrect. 

There are two scenarios that may occur in the generation of rules: (1) a rule replaces a 

word’s POS tag with the word’s more commonly used POS tag in the context, or (2) a rule does 

not replace a word’s POS tag with the word’s more commonly used POS tag in the context. In 

the first scenario, this method will generate one candidate rule to fix all occurrences of this type 

of error. The candidate rule can pass the rule acceptance test and be included. In the second 

scenario, however, this indicates that the POS tag replacement was inappropriate. The rule 

acceptance test will prevent such candidate rules from being used, by comparing the POS tag that 

the rule uses to replace the machine-generated POS tag of a word with the word’s commonly 

used POS tags in the gold standard. There is less risk in the first scenario than in the second 

scenario. Replacing the machine generated tag of a word with the word’s more commonly used

POS tag in the gold standard has low risk in introducing new errors. For example, the word 

“accordance” has the most commonly used POS tag NN and a rarely used POS tag IN in the gold 

standard and it is more likely to fix an error by replacing the machine generated POS tag with 

NN than with IN. In the second scenario, however, there is a high risk. For example, replacing 

the tag of “accordance” to IN is more likely to introduce error than replacing it with NN. This 

indicates the POS tag in this case is inappropriate and the method will not accept the rule in this 

scenario. Table 0.2 shows some example sentences and candidate rules with regard to the above 

discussed scenarios. In this chapter, the authors adopted the widely used Penn Treebank POS 

tagset, which consists of 36 tags.
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Table 0.2. Candidate Rules with High Risk and Low Risk

Scenario Sentence Candidate Rule

High 

Risk

Each portion of a building shall be individually 

classified (Manual tag: VBD, Machine tag: VBN) in (IN)

accordance with Section 302.1.

If the word that is one 

position after the word 

“classified” is tagged as IN and 

the word “classified” is tagged 

as VBN, then change the tag of 

the word “classified” to VBD.

Handrails within dwelling units are permitted to be  

interrupted (Manual tag: VBD, Machine tag: VBN) by (IN)

a newel post at a turn or landing.

If the word that is one 

position after the word 

“interrupted” is tagged as IN and 

the word “interrupted” is tagged 

as VBN, then change the tag of 

the word “interrupted” to VBD.

Low Risk

The face of an exit sign illuminated (Manual tag: VBN, 

Machine tag: VBD) from (IN) an external source shall have 

an intensity of not less than 5 footcandles.

If the word that is one 

position after the word 

“illuminated” is tagged as IN 

and the word “illuminated” is 

tagged as VBD, then change the 

tag of the word “illuminated” to 

VBN.

Clear openings of doorways with swinging (Manual 

tag: VBG, Machine tag: JJ) doors (NNS) shall be measured 

between the face of the door and the stop, with the door 

open 90 degrees.

If the word that is one 

position after the word 

“swinging” is tagged as NNS

and the word “swinging” is 

tagged as JJ, then change the tag 

of the word “swinging” to VBG.

The decrease in the total number of errors only indicates that a rule solved more errors than 

it introduced in the training dataset. It cannot ensure that a rule is general enough to have the 

same effect on the testing text. To alleviate potential overfitting, additional syntactic information 

about the building codes and English grammar is used in the rule generation. The syntactic 

information helps prevent adding a rule that is likely to introduce more errors than it fixes.

2.2.4 Rule Application

In the rule application process (Figure 0.4), the rule application component will apply 

transformational rules to the textual data and fix POS tagging errors. For each rule, the rule 

application component will search through the entire text and look for words whose contextual 

information matches that rule’s conditions. If a word’s contextual information was found to 

match that rule’s conditions, the rule application component will replace the machine-generated 

tag of that word with the predefined tag in the rule. After the generation of each ruleset, the 

developed ruleset is applied to the training dataset to prevent the rule application component 
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from developing different rules that essentially fix the same error. After the generation of all 

rulesets, the rulesets are applied to the testing dataset as a whole.
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Figure 0.4. Rule Application Process
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2.3 Experiment

To test the performance of the proposed method on domain-specific data, the authors

applied this method to the POS tagged building codes (PTBC) dataset (Xue & Zhang, 2019). It 

contains 1,522 POS tagged sentences from Chapters 5 and 10 of the 2015 International Building 

Codes (IBC). For each tagged sentence, the dataset provides machine-generated and human-

labeled POS tags of every token. In the formation of the PTBC dataset, the authors collected 

textual data by obtaining the Portable Document Format (PDF) version of 2015 IBC and 

manually extracted building code text from Chapters 5 and 10. A group of seven state-of-the-art 

machine taggers POS tagged the extracted texts. The seven selected POS taggers were: (1) the 

NLTK tagger (Loper & Bird, 2002), (2) the spaCy tagger (Explosion AI, 2017), (3) the 

Standford coreNLP tagger (Manning et al., 2014), (4) A Nearly-New Information Extraction 

System (ANNIE) tagger in the General Architecture for Text Engineering (GATE) tool

(Cunningham, 2002), (5) the Apache OpenNLP tagger (Kottmann et al., 2011), (6) the 

TreeTagger (Schmid et al., 2007), and (7) the RNNTagger (Schmid, 2019). These taggers were 

chosen because they have high accuracy, are easy to use, and freely available. The most 

commonly chosen tag of each word in the extracted text by all the seven taggers formed the 

machine tagging results. The authors selected the Penn Treebank POS tagset because it was 

commonly used in various domains for NLP tasks and it is balanced between conciseness and 

informational richness. Five graduate students labeled textual data without access to others’

tagging results. All of them have proficiency in English and building domain knowledge to 

complete the tagging task, which ensures the quality of the textual data annotation. The mostly 

commonly chosen tag by them formed the gold standard of POS tagging of the textual data, with 

an inter-annotator agreement of 0.91.

The PTBC dataset was split into the training data, which contains 80% of the original 

dataset, and the testing data, which contains the remaining 20% of the original dataset. In the 

experiment, text is stored in lists of tuples (Figure 0.5). Each sentence is a list of tuples and each 

tuple in the list stores the word itself, human generated tag of the word, and machine generated 

tag of the word. In this experiment, the authors used possible combinations of contextual 

information of mistakenly tagged words in the textual data, to generate templates that rule 

generation component can use to extract rules. In total, fourteen templates were used in the 

experiment. They are listed in 
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Table 0.3. The rule generation component extracted rules in the same order. 

Figure 0.5. Textual Data Example
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Table 0.3. Transformational Rulesets in the Experiment

Ruleset Description

1 If the word A is tagged as X, then change the tag X to Y.

2 If the word that is one position before the word A is tagged as X and the word A is tagged as Y, then 

change the tag of the word A to Z.

3 If the word that is one position after the word A is tagged as X and the word A is tagged as Y, then 

change the tag of the word A to Z.

4 If the word that is one position before the word A is word B and the word A is tagged as X, then 

change the tag of the word A to Y.

5 If the word that is one position after the word A is word B and the word A is tagged as X, then change 

tag of the word A to Y.

6 If the word that is one position after the word A is tagged as X and the tag of the word that is two 

positions after word A is Y and the word A is tagged as Z, then change the tag of the word to W.

7 If the word that is one position after the word A is tagged as X and the tag of the word that is two 

positions after word A is Y and the word A is tagged as Z, then change the tag of the word A to W.

8 If the word one position before the word A is B, the word two positions before the word A is C, and 

the word A is tagged as X, then change the tag of word A to Y.

9 If the word one position after the word A is B, the word two positions after the word A is C, and the 

word A is tagged as X, then change the tag of the word A to Y.

10 If the tag of the word that is two positions after word A is X and the word is tagged as Y, then change 

the tag of the word A to Z.

11 If the tag of the word that is two positions before word A is X and the word is tagged as Y, then 

change the tag of the word A to Z.

12 If the word that is two positions after the word A is B and the word A is tagged as X, then change the 

tag of the word A to Y.

13 If the word that is two positions before the word A is B and the word A is tagged as X, then change the 

tag of the word A to Y.

14 Fix five most common errors remaining in the training set.

This method was also tested on the freely accessible portion of the Penn Treebank Corpus 

in the Natural Language Toolkit (NLTK) to further evaluate the applicability of the proposed 

method. The authors used the NLTK tagger to tag the text and collected the machine tagging 

results. Gold standard POS tags of the available text provided by the Penn Treebank Corpus 

served as the target of transformation. This comparative experiment was conducted in the same 

way as the previous experiment on PTBC data.

2.4 Results

In total, on the PTBC data, 671 rules were generated in 14 rulesets. All extracted rules, 

when combined, fixed 2,097 out of 3,013 errors in the training dataset and 656 out of 924 errors 

in the testing dataset. They increased the tagging accuracy in the training dataset from 90.49% to 

97.11% and that in the testing dataset from 89.13% to 96.85%. This 96.85% accuracy in testing 

dataset is comparable to the performance of the state-of-the-art POS taggers on general English 

corpus. The first three rulesets, which used contexts represented by: (1) the target word itself, (2) 
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POS tag of the word two positions before the target word, and (3) POS tag of the word two 

positions after the target word, contained 616 rules (91.80% of all rules). In total, these first three 

rulesets fixed 2,042 errors (67.77% of errors) in the training dataset and 553 errors (59.85% of 

errors) in the testing dataset.

Accuracy of POS tagging both in the training dataset and in the testing dataset increased 

after application of the transformation rules. Before application of any transformational rules, the 

training dataset had an accuracy of 90.49% and the testing dataset had an accuracy of 89.13%. 

After all rulesets were applied, the training dataset achieved an accuracy of 97.11% and the 

testing dataset achieved an accuracy of 96.85%. The overall reduction of errors in the training set 

was 69.60% and that in the testing set was 71.00%. The most significant increase in accuracy 

happened after the application of the first and second rulesets. After the first ruleset was applied, 

accuracy in the training dataset increased from 90.49% to 95.97% and that in the testing dataset 

increased from 89.13% to 93.90%. After the second ruleset was applied, accuracy in the training 

dataset increased from 95.97% to 96.61% and that in the testing dataset increased from 93.90% 

to 95.20%. The number of errors and accuracy after application of each ruleset is provided in

Table 0.4.
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Table 0.4. POS Tagging Accuracy After Applying Each Ruleset

Ruleset
Training Dataset Testing Dataset

Number of Errors Accuracy Number of Errors Accuracy

1 1277 95.97% 518 93.90%

2 1073 96.61% 408 95.20%

3 971 96.93% 371 95.63%

4 928 97.07% 355 95.82%

5 926 97.08% 355 95.82%

6 918 97.10% 355 95.82%

7 918 97.10% 355 95.82%

8 914 97.11% 353 95.85%

9 902 97.15% 347 95.92%

10 899 97.16% 347 95.92%

11 899 97.16% 347 95.92%

12 899 97.16% 347 95.92%

13 899 97.16% 347 95.92%

14 916 97.11% 268 96.85%

The authors recorded the number of errors each rule fixed to evaluate effectiveness of the 

generated rules. Ten rules that fixed the most errors fixed 30.47% errors in the training dataset 

and 23.70% errors in the testing dataset, respectively. This distribution confirms the authors’

prediction that a small group of rules can fix a large number of errors. Eight out of ten most 

frequently applied rules in the training dataset are unigram rules, and that in the testing dataset is 

also eight out of ten. This distribution shows that simple rules are more frequently applied than 

complex rules. It may not be necessary to generate over-complex rules for increasing POS 

tagging accuracy.

In the development of this method, the authors attempted to lemmatize word in text before 

the generation of transformational rules. The authors assumed that mapping multiple words to 

their common lemmatized form would improve the coverage of error cases. However, this 

generalization did not improve the performance and therefore the authors abandoned this 

technique. Word lemmatization didn’t change the number of extracted rules in all rulesets. It is 

possible that mapping multiple forms of a word to one may have harmed the diversity of 

contextual information representation. The authors concluded that word lemmatization did not 

bring benefit to the proposed method.
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This chapter also included a comparative study that applied the proposed method to 

improving NLTK POS tagger’s performance on Penn Treebank Corpus. This cross-comparison 

provides a useful benchmark for other researchers to compare this method’s performance on 

general English text. In the processing of the Penn Treebank Corpus, the authors noticed that a 

non-negligible amount of words in Penn Treebank Corpus, which do not belong to any Penn 

Treebank POS tagset, were tagged as ‘-none-’. Pre-processing Penn Treebank Corpus is a 

possible way to eliminate this ‘-none-’ tag. However, solving this issue is out of the scope of this 

chapter. The authors decided to use the Penn Treebank Corpus and the NLTK tagging results in 

this method as is. The authors divided the Penn Treebank Corpus into a training dataset and a 

testing dataset with an 80/20 split. NLTK tagger tagged 89.28% of words in the training dataset 

correctly and 89.37% of words in the testing dataset correctly. The proposed method then 

increased the accuracy of NLTK tagger to 91.58% on the training dataset and to 91.91% in the 

testing dataset. This increase in accuracy indicates that the proposed method has the ability of 

improving the POS tagging accuracy of general English text as well (in addition to building 

codes).

2.5 Discussion

Comparing to previous rule-based POS tagger that used hand crafted rules (Bird, 2009), the 

proposed error-driven transformational rules are automatically generated by algorithms. Previous 

rule-based POS tagger that used automated generated rules is not for domain-specific text (Brill,

1992). The error-driven transformational rules are applicable to domain-specific text, such as 

building codes. Existing machine learning POS taggers require a significant amount of training 

data (Giménez, 2004; Brants, 2000). The proposed error-driven transformational rules can be 

trained on a limited amount of training data.

Due to the specific type of texts covered in the chapter, the authors suggest that error-driven 

transformational rules should only be applied to texts that are in the target domain. A major 

potential risk is that transformational rules may introduce errors to the tagging results. This risk 

is controlled by the rule acceptance test. This constraint can push the machine labeled result 

unidirectionally to the human labeled result.

Research interests of the authors require the use of the PTBC dataset (Xue & Zhang, 2020), 

which is a new dataset and not used by other research currently. This method may overfit this 
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particular dataset and lacks the ability to boost tagging accuracy of POS taggers, which are 

trained on general English, on general English. The authors conducted a comparative study to 

address this concern. Specifically, this method was used to boost the performance of Natural 

Language Toolkit (NLTK) tagger on the part of Penn Treebank Corpus that were readily 

available in NLTK (Loper & Bird, 2002).

This method does not address unknown words. It requires a word to exist in the training 

dataset to generate transformational rules for it. This limitation, however, should not 

significantly influence the performance of the error-driven transformational rules, because 

generated rules are only to be applied to the text in the target domain (e.g., building codes), in 

which the rate of unknow words is expected to be low. The stringent format of the error-driven 

transformational rules in the proposed method, while effectively induced rules to improve POS 

tagging results, may introduce counter-intuitive tagging results. To alleviate that, future work 

may look into different representations of the fixes (e.g., tokens’ roles) in addition to their 

original POS tags. In addition, the authors only tested the method on the commonly adopted 

Penn Tree bank tag set, how this method will perform when using other tag set will need to be 

investigated in the future work.  

2.6 Contributions to the Body of Knowledge

This chapter research was conducted to present a new way to obtain domain-specific 

English texts POS tagged accurately when there is no POS tagger trained on text in that domain 

by error-driven transformational rules. The proposed method can alleviate problems such as, (1) 

the lack of POS taggers that are trained on domain-specific English texts, (2) the performance 

drops of general POS taggers on domain-specific texts, and (3) the high cost of developing a 

large domain-specific corpus needed in training domain-specific POS taggers. 

First and foremost, this method provides a possible way for future researchers to get reliable 

POS tagged text in a selected domain without the need of a specialized POS tagger. The authors

discovered that simple unigram and bigram rules resolved most errors. Word lemmatization did 

not bring observable benefit to this method. For future application of this method, development 

time could be saved by avoiding over-complicated rulesets and word lemmatization. 

Secondly, this chapter research was conducted to prove that it is possible to boost the 

performance of POS taggers that are trained on general English texts on domain-specific English 
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texts with a small set of algorithmically generated rules. The authors used building codes as an 

example. These rules can increase the accuracy of POS taggers on building codes from 89.13% 

to 96.85% with 671 rules. This significant improvement is achieved by using a small set of 

labeled data. The fact that all rulesets transform machine-generated POS tags of words 

unidirectionally to their human-annotated tags proved the validity of the rule acceptance 

criterion. In addition, the increase in the accuracy in the testing dataset after the application of 

the last ruleset supports its exemption from the rule acceptance criterion. 

Thirdly, the rules generated in this chapter research can be used to increase the accuracy of 

POS tagging results on building codes. If interested researchers use one of the POS taggers 

tested, they can directly apply the developed rulesets to improve the POS tagging 

results/performance on building codes. The potential risk of introducing more errors were

alleviated by the constraint applied when the rules were derived. This method does not need 

experts to generate new rules to be adapted to new domains, but it needs experts to annotate 

some training data as gold standard. Last but not least, this method is also applicable to general 

English. With a small amount of human-labeled data, it can boost the accuracy of POS taggers 

that are trained on general English, on general English. 

2.7 Conclusion

This chapter research presented a new method to increase the accuracy of POS taggers, that 

were trained on general English texts, on building codes by using error-driven transformational 

rules. The authors developed an algorithm to generate these rules and tested the algorithm on the 

PTBC dataset (Xue & Zhang, 2019). The experiment shows this method can increase the POS 

tagging accuracy on building codes from 89.13% to 96.85%. A comparative test on NLTK and 

Penn Treebank Corpus shows that the proposed method can also increase the POS tagging 

accuracy on general English texts.
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3.1 Literature Review

3.1.1 Part-of-Speech (POS)

A word’s POS category provides its syntactic information in a sentence (Abzianidze & Bos, 

2017). In English, there are eight main POS categories: (1) noun, (2) verb, (3) adjective, (4) 

adverb, (5) pronoun, (6) preposition, (7) conjunction, and (8) interjection. POS taggers are 

systems that automatically assign POS categories to words according to their contextual 

information in a sentence (Schmid, 1994). POS taggers have a variety of applications in the AEC 

domain. For example, Lee et al. (2020) POS tagged construction contracts to identify missed 

contract conditions from the perspective of contractors. However, the reliance on manual feature 
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extraction and manual rule generation creates challenges in large scale applications. Hassan and 

Le (2020) used POS tagging to spot contractual requirements from construction contract 

documents. However, the Support Vector Machines (SVM) algorithm used to identify 

contractual requirements relies on manual feature engineering and may raise the concern of 

overfitting. Zhou and El-Gohary (2018) utilized POS tagging information to match design 

requirements in energy codes to their corresponding objects in building information models 

(BIMs). The matching process takes a four-step approach: First, POS tagging information and 

other contextual information of design requirements and BIM objects are collected; Second, the 

Word2vec algorithm calculates the vectors of BIM objects and design requirements; Third, 

vector similarity algorithm calculates the vector similarity between BIM objects and design

requirements; Fourth, a match is claimed if the vector similarity between a BIM object and a 

design requirement is higher than a predefined threshold, which was set arbitrarily to obtain the 

highest precision and recall empirically. In this four-step approach, errors could accumulate in 

each step, and the concern of overfitting also presents. Therefore, the authors suggest an end-to-

end method that does not rely on manually generated rules or features. Neural network models 

could meet the above requirements (Wang et al., 2019). 

A simple deep learning model without man-made task-specific features can outperform 

most state-of-the-art non-deep learning models even with cherry-picked features, in a wide range 

of NLP tasks such as part-of-speech tagging, chunking, named entity recognition, and semantic 

role labeling (Collobert et al., 2011). For example, Marques and Lopes (2001) utilized a simple 

feed-forward model to decrease the amount of data needed to train a POS tagger. Yu et al. (2017)

used two Convolutional Neural Network (CNN) models to capture morphological information of 

character-level n-grams and contextual information of word-level n-grams, which outperformed 

simple feed-forward model. Recent developments in deep learning indicated that RNN is the “to-

go” solution for NLP tasks (Chollet, 2017). Pre-trained models were pre-trained on a large body 

of text with unsupervised tasks, such as, predicting the next word given all preceding words and 

predict if two sentences are from the same article (Devlin et al., 2018). The use of general pre-

trained models helped boost the performance of domain-specific NLP tasks in biology (Lee et 

al., 2020), finance, and law (He et al., 2020). It also reduced the amount of labeled data needed 

when applying deep learning in domain-specific tasks (Tai et al., 2020; Xue et al., 2022).
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3.1.2 Error-driven Transformational Rules

Error-driven transformational rules are introduced to boost POS taggers’ accuracy

(Raghavan et al., 2010; Xue & Zhang 2020). The rules are designed to transform the machine-

generated POS tag of a word to its human-labeled gold standard. When the rule generation 

algorithm spots a difference between machine-generated POS tags and the human-labeled gold 

standard, it records the difference as an error and uses the context of the error (i.e., words and 

POS tags of words around the word) to generate a rule to fix the error. The generation of rules is 

automated. Rules are reusable once generated. Rules may have the risk to introduce new errors. 

The rule generation algorithm controls this risk by dropping rules that have a high risk of 

introducing errors.

3.1.3 Recurrent Neural Network 

Like any machine learning models including classic ones such as Naïve Bayes, Decision 

Tree, Support Vector Machines (SVMs), Random Forest (Cao et al., 2020; Wu et al., 2022; 

Zhang et al., 2016), neural networks predict categories of given inputs. In the context of POS 

tagging, neural networks predict POS categories of each word in a given input text, according to 

the word itself and its context (Figure 0.1). Neural networks learn a relationship between words 

and POS tags during their training and use this relationship to predict POS tags of words during 

their application. Traditional neural networks consider all words in a sentence to be independent 

from each other and do not consider words surrounding them in this prediction task. In contrast, 

Recurrent Neural Network (RNN) keeps a vector that represents other words in the sentence 

(which is called hidden state) and considers them in the prediction task. RNN processes 

sequential information by taking elements in the sequence one by one while maintaining a 

representation of all information it has seen so far (Chollet, 2017). RNN is able to process 

sentences with arbitrary length (Tang et al., 2015). The way that RNN processes sequential 

information gives it the ability to capture semantic meaning of a word based on words 

before/after it in the sentences (Young et al., 2018). For example, it is able to differentiate the 

meaning of the word “bank” in the phrase “river bank” and “blood bank”. The sequential nature 

of RNN makes it widely adopted in many subfields of NLP, such as: (1) information extraction 

(Bhutani et al., 2019; Rao & Ke 2018), (2) machine translation (Barone et al., 2017; Vaswani et 
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al., 2018), (3) speech recognition (Chan et al., 2016; Karita et al., 2019), (4) POS tagging (Plank 

et al., 2016; Shao et al., 2017), and (5) sentiment analysis (Agarwal et al., 2019; Baktha & 

Tripathy, 2017). There is also an RNN encoder-decoder model which has a high accuracy in 

sequence-to-sequence tasks (Cho et al., 2014). In this structure, the encoder is an RNN model 

that converts a variable-length sequence to a fixed-length vector representation and the decoder 

is another RNN model that converts the fixed-length representation to a variable-length 

sequence. Neural network models are deterministic when applied (i.e., in making predictions). 

One neural network model makes the same prediction result with the same input.



58

Figure 0.1. Example Application of a Neural Network POS Tagger
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3.1.3.1 Simple RNN

A simple RNN keeps a hidden state that represents all previous words in the sentence. 

Therefore, the hidden state allows the simple RNN to take into consideration all words before the 

target word in POS tagging. A simple RNN contains an input layer x, a hidden layer h, and an 

output layer y (Elman, 1990). The hidden layer has weight 𝑊ℎ and a bias vector 𝑏ℎ. The input 

layer has a weight 𝑊𝑖. The output layer has a weight 𝑊𝑜 and a bias vector 𝑏𝑜. In time step t of the 

training, the input to the RNN is denoted as 𝑥𝑡, the hidden state is denoted as ℎ𝑡, and the output 

is denoted as 𝑌𝑡. The hidden state at the time step t (i. e. , ℎ𝑡) is the sum of: (a) the input of current 

step 𝑥𝑡 multiples the weight of the input layer 𝑊𝑖, (b) the hidden state of the last time step ℎ𝑡−1

multiplies its weight 𝑊ℎ, and (c) the bias vector of hidden layers 𝑏ℎ, after some non-linear 

transformation [Eq. (1)].

ℎ𝑡 = 𝑓(𝑊𝑖𝑥𝑡 +  𝑊ℎℎ𝑡−1 + 𝑏ℎ) (1)

The output at the time step t (𝑖. 𝑒. , 𝑌𝑡) is the sum of: (a) the weights of output layer 𝑊𝑜

multiples the hidden state at this time step ℎ𝑡, and (b) the bias vector of output layer 𝑏𝑜 [Eq. (2)].

𝑌𝑡 = 𝑔(𝑊𝑜ℎ𝑡 + 𝑏𝑜) (2)

In Eqs. (1) and (2), f and g are activation functions that perform non-linear transformations. 

Some commonly used activation functions include sigmoid, Tanh, and Rectified Linear Unit 

(ReLU) (Glorot et al., 2011; Nwankpa et al., 2018).

Simple RNN suffers from the vanishing gradient problem (Hochreiter, 1998). The hidden 

state of a word is influenced more by words near it than words far away. In other words, simple 

RNN does not have a “long-term memory”. This problem makes simple RNN difficult to train 

and hard to capture long-term dependencies in a sentence. The long-term dependencies between 

words are important in POS tagging. Many variations of simple RNN were therefore developed 

to solve this problem. 

3.1.3.2 Long Short-Term Memory 

Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) alleviates the 

vanishing gradient problem by having a forget gate layer to decide which words to “remember” 

and which words to “forget”. It has a cell state to keep long-term dependencies, so it has “long-

term memory”. The cell state allows LSTM-RNN to use long-term dependencies in POS tagging. 
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LSTM-RNN has an additional forget gate layer f to decide which information to keep or 

abandon, and a cell state C to capture long-term dependencies (Sak et al., 2014). The weight of 

the forget gate layer is 𝑊𝑓 and its bias vector is 𝑏𝑓. The cell state has a weight 𝑊𝐶 and a bias 

vector 𝑏𝐶. LSTM-RNN also has an input layer x. The input layer has a weight 𝑊𝑖 and a bias 

vector 𝑏𝑖. The output layer has a weight 𝑊𝑜 and a bias vector 𝑏𝑜. In time step t of the training, 

the input to the RNN is denoted as 𝑥𝑡, the hidden state is denoted as ℎ𝑡, the output is denoted as 

𝑌𝑡, and the cell state is denoted as 𝐶𝑡, the value to update is denoted as 𝑖𝑡. Input to the neural 

network is first fed into the forget gate layer. The forget gate layer generates a vector 𝑓𝑡 to 

represent the amount of information to keep, and 𝑓𝑡 is calculated by Eq. (3):

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) (3)

where 𝜎 is the sigmoid function.

Then, the input layer calculates the candidate cell state by Eq. (4) and Eq. (5):

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4)

𝐶�̃� = tanh(𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (5)

Then, the cell state 𝐶𝑡 is calculated by Eq. (6):

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃� (6)

After that, the output layer 𝑌𝑡 and hidden state ℎ𝑡 are calculated by Eq. (7) and Eq. (8), 

respectively:

𝑌𝑡 =  𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜) (7)

ℎ𝑡 = 𝑌𝑡 ∗ tanh(𝐶𝑡) (8)

There is also a bi-directional variant of LSTM, which can capture information in a sequence 

from both directions. Simple RNN and LSTM-RNN have one hidden state that represents all 

words before the target word. Bi-directional LSTM-RNN additionally has an extra hidden state 

that represents all words after the target word. Therefore, simple RNN and LSTM RNN predict 

the POS tag of the target word solely by words before it, whereas bi-directional LSTM RNN 

predicts POS tag of the target word by the words both before and after it.

3.1.3.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU) (Chung et al., 2014) is another way to address the vanishing 

gradient problem. It does not have a forget gate to control the flow of information, so it can 
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access the entire hidden state. It has an update gate U and a reset gate R. The weight of the 

update gate is 𝑊𝑈, the weight of the reset gate is 𝑊𝑅, and the weight of the output layer is 𝑊𝑜. At 

time step t, the cell state of the update gate, reset state, and the hidden state are 𝑈𝑡, 𝑅𝑡, and ℎ𝑡, 

respectively. GRU is calculated using Eqs. (9), (10), (11), and (12):

𝑈𝑡 = 𝜎(𝑊𝑈 ∗ 𝑋𝑡 + 𝑊𝑈,𝑡−1 ∗ ℎ𝑡−1) (9)

𝑅𝑡 = 𝜎(𝑊𝑅 ∗ 𝑋𝑡 + 𝑊𝑅,𝑡−1 ∗ ℎ𝑡−1) (10)

ℎ𝑡
, = 𝑡𝑎𝑛ℎ(𝑊𝑜 + 𝑅𝑡 ∗ 𝑊𝑈,𝑡−1 ∗ ℎ𝑡−1) (11)

ℎ𝑡 = 𝑈𝑡 ∗ ℎ𝑡−1 + (1 − 𝑈𝑡) ∗ ℎ𝑡
, (12)

GRU can take long-term dependencies of words into the POS tagging task by accessing 

hidden states of every word in a sentence. There is also a bi-directional variant of GRU, which 

can use words both before and after a target word to predict its POS category.

3.1.3.4 Attention Mechanism

Attention mechanism can capture long-term dependencies with arbitrary lengths by 

calculating attention scores between all words in two sequences and feed the attention scores to a 

RNN (Hu, 2019). Therefore, it does not suffer from the vanishing gradient problem. LSTM RNN 

and GRU still suffer from the vanishing gradient problem when the dependencies are long 

enough. The attention mechanism predicts the POS tag of a word with its long-term 

dependencies. Attention mechanism shares the same encoder-decoder structure with the encoder-

decoder RNN. The structure of attention mechanism brings its successful application in many 

sequence-to-sequence (Seq2Seq) tasks such as: (1) machine translation (Firat et al., 2016), (2) 

question-and-answering (Lu et al., 2016), and (3) text entailment (Rocktäschel et al., 2015). The 

attention mechanism allows the decoder to access hidden states of the encoder to track back the 

input sequence (Bahdanau et al., 2015). There are many variants of attention mechanisms. For 

example, global attention focuses on all words in the input including each target word, while 

local attention only focuses on words in a certain range (Luong et al., 2015). Two-way attention 

allows bi-directional attention between the source and target (Rocktäschel et al., 2015). This 

property of two-way attention makes it successful in non-sequence-to-sequence tasks as well, 

such as sentiment analysis (Ambartsoumian & Popowich, 2018).

3.1.3.5 Transformer
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Transformer has a similar encoder-decoder structure as the attention mechanism, but it does 

not have an RNN (Vaswani et al., 2017). Transformer, like attention mechanism, can capture 

dependencies in any length. With fewer parameters than the attention mechanism, it is more 

resistant to overfitting. Therefore, transformer can make POS taggers more generalizable. The 

encoder and decoder of the transformer are stacks of multi-head attention layers and feed-

forward layers with some add-and-normal layers. The multi-head attention is the concatenation 

of multiple self-attention matrices. The multi-head attention is used to capture different 

dependencies in a sentence. The first step to calculate the self-attention Z is to calculate: the 

Query Q, Key K, and Value V matrices with the embedding matrix X, the weight of Query 𝑊𝑄, 

the weight of Key 𝑊𝑘, and the weight of Value 𝑊𝑉 [Eqs. (13) to (15)]. 

𝑄 = 𝑋 ∗ 𝑊𝑄 (13)

𝐾 = 𝑋 ∗ 𝑊𝑘 (14)

𝑉 = 𝑋 ∗ 𝑊𝑉 (15)

Then, the self-attention matrix, or one head of the multi-head attention, is calculated by Eq. 

(16):

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄∗𝐾𝑇

√𝑑𝑘
) ∗ 𝑉 (16)

where 𝑑𝑘 is the dimension of Key.

After that, multiple self-attention matrices are concatenated together to form a multi-head 

attention matrix 𝑍𝑚𝑢𝑙𝑡𝑖 [Eq. (17)]. The multi-head attention is then multiplied to a weight matrix 

𝑊𝑜 to get a new attention matrix 𝑍𝑛𝑒𝑤 that captures information from all attention heads [Eq. 

(18)]. 𝑊𝑜 is trained with the matrix 𝑍𝑚𝑢𝑙𝑡𝑖.

𝑍𝑚𝑢𝑙𝑡𝑖 = [𝑍𝑖 , … 𝑍𝑛] (17)

𝑍𝑛𝑒𝑤 = 𝑊𝑜 ∗ 𝑍𝑚𝑢𝑙𝑡𝑖 (18)

3.1.3.6 BERT

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) is a 

language representation model of the transformer. This model was pre-trained on the 

BooksCorpus (Zhu et al., 2015) and the English Wikipedia data. Through pre-training, BERT 

introduces knowledge about general English into the POS tagger. Knowledge about general 

English is helpful to increase the POS tagger’s performance on building codes, because these 
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building codes are written in English. BERT is trained to predict masked words in a sentence and 

decide if the second sentence in a pair of sentences is actually the sentence after the selected 

sentence in the training text or just a randomly selected sentence. The BERT model achieved the 

state-of-the-art performance in 11 NLP tasks with fine-tuning. Information of the different 

available versions of BERT is provided in 

Table 0.1. Large models have more layers, larger hidden states, more heads, and more 

parameters than base models. The fine-tuning of pre-trained models allows the neural network 

model to reach high accuracy on a small dataset (Zhang et al., 2021).

Table 0.1. Available Versions of BERT

Cased Size
Number of 

Layers

Size of 

Hidden 

State

Number of 

Heads

Number of 

Parameters
Comments

Uncased Large 24 1024 16 340M Mask the same word.

Cased Large 24 1024 16 340M Mask the same word.

Uncased Base 12 768 12 110M

Uncased Large 24 1024 16 340M

Cased Base 12 768 12 110M

Cased Large 24 1024 16 340M

Cased Base 12 768 12 110M
Trained on 104 

Languages

Uncased Base 12 768 12 110M
Trained on 102 

Languages

N/A Base 12 768 12 110M Trained on Chinese

3.2 Methodology

To develop a POS tagger tailored to building codes, the authors combined the use of 

multiple state-of-the-art techniques such as error-driven transformational rules, recurrent neural 

networks, dropout layers, and pretrained models. At the core, the proposed POS tagger has two 

main components, a neural network model and a set of error-driven transformational rules. The 

neural network model initially predicts the POS tag of a word. The error-driven transformational 

rules fix errors made by the neural network model. The neural network model has a pre-trained 

model and multiple trainable layers (i.e., bi-directional LSTM-RNN layer, GRU layer, dropout 

layer, and TimeDistribute layer). The pre-trained model brings the general linguistic knowledge 

(i.e., English grammar) into the POS tagger. The authors fine-tuned the pre-trained model on a 

dataset of building codes to customize the pre-trained model with AEC domain knowledge. The 
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bi-directional LSTM-RNN layer and GRU layer capture task-specific information (i.e., how 

building codes were drafted, and AEC terminologies). The dropout layer alleviates overfitting. 

The TimeDistribute layer Outputs the result. A POS tagger search strategy was proposed in this 

chapter’s research to efficiently search for a well-performing POS tagger configuration. 

3.2.1 POS Tagger Architecture

The architecture of the proposed POS tagger is shown in Figure 0.2, which illustrates: (1) an 

overview of the POS tagger components, and (2) how information flows between components. 

The inputted building codes are firstly tagged by the neural network model and afterwards 

processed by the error-driven transformational rules to fix errors made by the neural network 

model. The neural network model has two parts, a pre-trained model and additional trainable 

layers. The pre-trained model uses existing models published by other researchers or 

commercial/non-profit organizations. These were trained on large bodies of corpus. Many widely 

used pre-trained models can be inserted here such as Open AI GPT-2 (Radford et al., 2019), 

BERT (Devlin et al., 2018), and ELMO (Peters et al., 2018). This design allows the comparison 

between different pre-trained models in this context and the selection of the best-performing 

model. Weights of the pre-trained model were locked, which made them untrainable in the 

current context. The untrainable nature of the pre-trained models preserves the cross-domain, 

cross-application and cross-task information they collected in the original training process. On 

top of the pre-trained models, there are trainable layers. Weights of trainable layers will be 

updated in the training process, allowing trainable layers to capture the domain-specific, 

application-specific, and task-specific information in building code POS tagging. The 

architecture of this model allows substitution and therefore comparison between different types 

of neural network layers. The error-driven transformational rules are designed to correct errors of 

a neural network model.
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Figure 0.2. The Architecture of the Proposed POS Tagger

3.2.2 POS Tagger Search Strategy

Grid search is the most comprehensive way to find the optimal combination of pre-trained 

models, trainable layers and the number of training epochs by exhaustively searching every 

possible combination. A global grid search is inefficient, however, because many combinations 

that are unlikely optimal will be attempted. The authors developed a three-step searching strategy 

(Figure 0.3) that can reduce the time in finding the optimal combination by ruling out 

combinations that have low probabilities of being optimal. The first step of this search strategy is 

finding the best performing combination of epochs of training and trainable layers by attempting 

all possible combinations of them while replacing the pre-trained model with a random number 

embedding layer. Because the pre-trained model has been replaced with a random number 

embedding layer to save training time, grid search is made possible and efficient. An embedding 

layer converts text strings to vectors of numbers based on the context of the text string and the 

nature of the embedding layer (e.g., the algorithm used in the layer and the size of the output 

vector). The pre-trained models will be used to instantiate the embedding layer later in the 

proposed method. A random number embedding layer is a type of embedding layer that directly 

maps words to vectors of the random numbers without considering the words’ context. It is much 
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smaller and simpler than the pre-trained models and requires significantly less time to train. In 

this step, the authors intend to find a well performing combination of epochs of training and 

trainable layers in a short timeframe, so the random number embedding layer is used to help 

achieve that. In the second step, the random number embedding layer is substituted with different 

pre-trained models in the locally best-performing combination of number of epochs and trainable 

layers that was identified in the first step. This step is aimed to find a well performing pre-trained 

model. In the last step, the authors increase the number of trainable layers until the accuracy of 

the POS tagger stops increasing, to identify the optimal number of trainable layers. The selection 

of the hyper-parameters ceases when the authors cannot increase the performance of the model 

further in a meaningful way or if the performance is already satisfactory.

Figure 0.3. The Three-step Approach for Efficient Grid Search
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3.3 Experiment

3.3.1 Textual Data

The proposed POS tagger was trained on the POS tagged building codes (PTBC) dataset

(Xue & Zhang, 2019), a dataset that consists of 1,522 POS tagged sentences in Chapters 5 and 10 

of the 2015 International Building Code (IBC). In total, the PTBC dataset has 39,875 tokens. A 

token is the smallest unit in POS tagging, such as a word or a punctuation. For example, the 

word “means” and the period are two tokens in the sentence “The means of egress shall have a 

ceiling height of not less than 7 feet 6 inches.”, which has 18 tokens in total. The split of the 

dataset into training, validation, and testing data is shown in Figure 0.4: 40% of the dataset as 

training data, 10% of the dataset as validation data, and 50% of the dataset as testing data. 

Furthermore, the first 90% of the testing data was further used as the training data of the error-

driven transformation rules, which was then tested on the rest of the data. Seven state-of-the-art 

machine taggers were used to tag the textual data, including: (1) the NLTK tagger (Loper & 

Bird, 2002), (2) the spaCy tagger (Explosion AI, 2017), (3) the Standford coreNLP tagger 

(Manning et al., 2014), (4) A Nearly-New Information Extraction System (ANNIE) tagger in the 

General Architecture for Text Engineering (GATE) tool (Cunningham, 2002), (5) the Apache 

OpenNLP tagger (Kottmann et al., 2011), (6) the TreeTagger (Schmid, 1994), and (7) the 

RNNTagger (Schmid, 2019; Schmid, 1994). The seven machine taggers were selected because 

of their high-accuracy, ease of use, and free availability. The most commonly chosen POS tag of 

words by the machine taggers formed the machine-tagged result. Five human annotators then 

independently POS tagged the textual data and the most commonly seen tag was chosen for each 

word. All human annotators are proficient in English and have sufficient background knowledge 

to understand building codes. POS tags of words by the human annotators formed the gold 

standard. In both the machine-tagged result and the gold standard, the most commonly chosen 

POS tag is selected by the highest count, meaning that the POS tag that is selected by the most 

machine taggers or human annotators is selected. For example, if four machine taggers tag the 

word “doorways” as Plural Noun (NNS), one machine tagger tags the word as 3rd person singular 

present verb (VBZ). The most commonly chosen POS tag of the word “doorways” is selected to 

be Plural Noun (NNS), in the machine-tagged result. If there is a tie, the authors break the tie by 

selecting the tag deemed most appropriate. In the generation of the gold standard, the authors
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developed a new labeling method in which human annotators address the differences between 

tagging results of different machine taggers. If all machine taggers tag a word identically, human 

annotators do not need to change the tag by machine taggers. For words that different machine 

taggers select different POS tags, human annotators are presented with all tags assigned by 

machine taggers as options to select from. To account for the risk that a word is not correctly 

tagged by any machine taggers, human annotators are allowed to assign a POS tag outside the 

provided tags as well. Human annotators also can change the POS tag of words that machine 

taggers reached a consensus on. Such changes will need to be discussed and get consensus from 

all human annotators (Xue & Zhang, 2020). The human annotators’ tagging results reached an 

initial inter-annotator agreement of 0.91, which ensured the quality of the gold standard. The 

dataset contains the POS tags given by all seven machine POS taggers and five human 

annotators, the most commonly chosen tag by machine POS taggers and human annotators. In 

this experiment, the proposed POS tagger was trained to tag the textual data as closely as 

possible to the most commonly chosen tag by human annotators (Figure 0.5).

Figure 0.4. Split of Training, Validation, and Testing Data

Figure 0.5. POS Tagger Goal
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3.3.2 Step 1: Select the Number of Epochs of Training and the Trainable Layer

There were two types of trainable layers studied by the authors in this chapter: (1) 

bidirectional LSTM, and (2) bidirectional GRU. The number of epochs of training cannot be 

predicted before training (Chollet, 2017). The authors decided to train the model 15 epochs and 

50 epochs (arbitrarily selected numbers) to analyze the impact of epochs of training on the 

performance of the model. The trainable layers were layers of bidirectional LSTM or 

bidirectional GRU. The size of trainable layers was 128. Between trainable layers, there were 

dropout layers with a dropout rate of 0.4. The authors selected hyper-parameters such as epochs 

of training, trainable layer size, and dropout rate based on past experience in deep learning. 

Neural network models with these hyper-parameters generally perform well on a wide range of 

tasks. Although it is possible to do a more thorough search on hyper-parameters, it is out of the 

scope of the research of this chapter. The random number embedding layer significantly saved 

the training time and allowed grid search in this step. The authors attempted four possible 

combinations (Figure 0.6): (1) one layer of bidirectional GRU model that was trained 15 epochs, 

(2) one layer of bidirectional GRU model that was trained 50 epochs, (3) one layer of 

bidirectional LSTM model that was trained 15 epochs, and (4) one layer of bidirectional LSTM 

model that was trained 50 epochs.
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Figure 0.6. Models Trained in Step 1
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3.3.3 Step 2: Search a Well-performing Pre-trained Model

Although there were multiple potentially well-performing pre-trained models available, the 

authors selected BERT, which had achieved the state-of-the-art performance on multiple NLP 

tasks with little fine-tuning needs (Devlin et al., 2018). The authors tested the eight available 

versions of BERT: (1) BERT-Large, Uncased (Whole Word Masking), (2) BERT-Large, Cased 

(Whole Word Masking), (3) BERT-Base, Uncased, (4) BERT-Large, Uncased, (5) BERT-Base, 

Cased, (6) BERT-Large, Cased, (7) BERT-Base, Multilingual Cased, and (8) BERT-Base, 

Multilingual Uncased. Therefore, eight models were trained in this step, corresponding to the 

eight versions of BERT (Figure 0.7). All of them shared the same trainable layers and were 

trained the same number of epochs.
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Figure 0.7. Models Trained in Step 2
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3.3.4 Step 3: Search the Optimal Number of Trainable Layers

Stacking multiple trainable layers could possibly achieve higher precision by capturing 

more features in the textual data. However, too many trainable layers may lead to overfitting. To 

find the optimal number of trainable layers, the authors decided to increase the number of 

trainable layers and dropout layers until the precision stops increasing. There were two models 

trained in this step: Model 13, which has two bidirectional LSTM layers and Model 14, which 

has three bidirectional LSTM layers (Figure 0.8).

Figure 0.8. Two Models Trained in Step 3

3.4 Result

To find a well-performing combination of epochs of training, pre-trained models, and 

trainable layers to use in the POS tagger, the authors trained 14 models (Table 0.2). The best-

performing POS tagger had a combination of one bi-directional LSTM trainable layer, 
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BERT_Cased_Base pre-trained model, and was trained for 50 epochs. This model (Model 9 in

Table 0.2) reached the highest accuracy after applying transformational rules. The optimization 

of the deep learning component of this POS tagger is out of the scope of the research of this 

chapter, which may be pursued in future research. 

Table 0.2. Summary of the Performance of Models

Model
Before Applying Rules After Applying Rules

Precision Recall F1-score Precision Recall F1-score

1 39.02% 17.91% 19.88% 61.59% 51.94% 43.71%

2 89.67% 87.65% 88.14% 93.68% 93.78% 93.64%

3 36.45% 17.41% 20.37% 61.82% 49.93% 43.62%

4 90.15% 87.76% 88.34% 93.53% 93.44% 93.41%

5 90.57% 88.60% 88.87% 94.98% 94.99% 94.88%

6 91.06% 88.64% 89.01% 94.73% 94.75% 94.63%

7 90.40% 88.37% 88.68% 94.16% 94.32% 94.14%

8 89.29% 87.24% 87.60% 93.50% 93.70% 93.49%

9 91.89% 89.71% 90.06% 95.11% 95.42% 95.20%

10 91.49% 89.32% 89.78% 94.50% 94.70% 94.51%

11 89.70% 87.56% 87.80% 94.23% 94.56% 94.33%

12 87.84% 85.92% 86.12% 93.31% 93.03% 93.04%

13 91.81% 89.81% 90.19% 95.04% 95.32% 95.08%

14 91.43% 89.82% 90.07% 94.64% 94.89% 94.70%

3.4.1 Step 1 Result: Epochs of Training and Trainable Layers Combination

Figure 0.9 demonstrates the influence of the trainable layer and the epochs of training on the 

accuracy of POS tagging. For both trainable layers, increasing the number of epochs can increase 

the precision. However, when the number of epochs was 15, the precision of the bi-directional 

LSTM model was lower than that of the bi-directional GRU model. When the number of epochs 

was 50, the precision of the bi-directional LSTM surpassed that of the bi-directional GRU model. 

This shows that the optimal number of epochs for different pre-trained models could be different.  



75

Figure 0.9. Influence of Epochs of Training and Trainable Layers to Precision

3.4.2 Step 2 Result: The Best-performing Pre-trained Model

The precision, recall, and F1-score of models with different pre-trained models are shown in 

Figure 0.10. All models trained in this step share the same trainable layer and the same number 

of epochs of training (50). The BERT_Base_Cased model achieved the highest precision, recall 

and F1-score. The average precision for models with cased models is 91.04% and that for models 

with uncased models is 89.53% (Figure 0.10). It shows cased information is useful in the POS 

tagging of building codes. The average precision for models with large models is 90.60% and 

that for models with base models (excluding multilingual models) is 91.15%. The two 

multilingual models were excluded in the comparison because there is no large multilingual 

model and the current POS tagging task is not multilingual. It may be counterintuitive because 

larger models generally achieve higher accuracy than smaller models. The authors suggest that 

more training data may be needed to release the full potential of large pre-trained models.
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Figure 0.10. Precision, Recall and F1-score of Models with Different Pre-trained Models
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3.4.3 Step 3 Result: The Optimal Number of Trainable Layers

After the best-performing pre-trained model was identified, the authors started to identify 

the optimal number of trainable layers. Result of this attempt is illustrated in Table 0.3. The 

model with one layer of bidirectional LSTM reached the highest precision. Precision of models 

decreases as the number of layers increases. The authors concluded that more data is needed to 

leverage the power of additional trainable layers.

Table 0.3. Number of Trainable Layers vs. Precision

Layers of Trainable Layers Precision

1 91.49%

2 89.79%

3 87.84%

3.4.3.1 Effectiveness of Error-driven Transformational Rules.

This chapter’s research also confirmed the effectiveness of error-driven transformational rules (

Figure 0.11). The average precision after applying transformational rules is 94.57%. Although 

the precision before applying transformational rules varied with pre-trained models and trainable 

layers, the precision after applying the transformational rules all increased. Moreover, POS 

taggers with higher pre-rule-application precision will also have a higher post-rule-application 

precision. The transformational rules increase the precision of POS tagger by a margin of 4.02%. 

The average training accuracy and testing accuracy of all models that use pre-trained models are 

95.45% and 94.57%, respectively. The average training accuracy of the models was only 0.88% 

higher than their average testing accuracy (

Figure 0.12), which alleviated overfitting concerns. The authors also compared the 

performance of the proposed tagger against the performance of other state-of the-art POS taggers 

on the PTBC dataset (Xue & Zhang, 2020) (Figure 0.13).
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Figure 0.11. Precision of each Model before and after Applying Transformational Rules



79

Figure 0.12. Training and Testing Accuracy of Models
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Figure 0.13. Comparison with State-of-the-art POS Tagger
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3.4.3.2 Effectiveness of GRU

The bi-directional GRU model without BERT can achieve a precision that is comparable to 

bi-directional LSTM model that is enhanced by BERT. A significant amount of training time can 

be saved if there is no pre-trained model to fine-tune. The hardware requirement to fine-tune pre-

trained models is also significantly higher than that of the random embedding layer. Directly 

using the bi-directional GRU model can save training time and cut hardware investment while 

the compromise on the precision of the POS tagger is within an acceptable range.

3.4.3.3 Tagging Example

To validate this POS tagger, the authors compared the POS tagging result of this POS 

tagger to a baseline tagger which is a state-of-the-art generic POS tagger. As an example, the 

baseline tagger incorrectly labeled “horizonal” as a noun. This error may lead to incorrect 

extraction of embedded engineering knowledge in building codes. In contrast, the proposed POS 

tagger correctly labeled the word as an adjective. The automated code compliance checking 

system has a better chance to correctly extract the embedded engineering knowledge in the 

building codes by the proposed POS tagger, compared to the state-of-the-art generic POS 

taggers.

3.4.3.4 Impact of Data Split Scenarios

To analyze the impact of different training/testing data split scenarios on the precision, recall, 

and f1-score, the authors reported the precision, recall, and f1-score of the proposed POS tagger 

on two other training/testing split methods. The second training/testing split method is using: (1) 

60% of the entire dataset as the training dataset of the neural network model, (2) 20% of the 

entire dataset as the validation dataset of the neural network model, (3) 20% of the entire dataset 

as the testing dataset of the neural network model, (4) 80% of the entire dataset as the training 

dataset of the error-driven transformational rules, and (5) 20% of the entire dataset as the testing 

dataset of the error-driven transformational rules (Table 0.4). The third training/testing split 

method is using: (1) 60% of the entire dataset as the training dataset of the neural network model, 

(2) 20% of the entire dataset as the validation dataset of the neural network model, (3) 20% of 

the entre dataset as the testing dataset of the neural network model, (4) 90% of the testing dataset 
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of the neural network model as the training dataset of error-driven transformational rules, and (5) 

10% of the testing dataset of the neural network model as the testing dataset of error-driven 

transformational rules (
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Table 0.5). Results in all training/testing split scenarios showed consistency in: (1) the 

improvements of performance when using error-driven transformational rules, and (2) the 

improvement of performance over the state of the art.

Table 0.4. Results of Second Training/Testing Split Method

Model
Before Applying Rules After Applying Rules

Precision Recall F1-score Precision Recall F1-score

1 91.15% 89.39% 89.95% 93.10% 92.80% 92.82%

2 92.86% 91.21% 91.72% 94.82% 94.60% 94.64%

3 77.80% 72.13% 71.64% 83.58% 85.35% 83.37%

4 92.98% 91.20% 91.76% 94.62% 94.25% 94.31%

5 91.97% 90.30% 90.76% 96.04% 95.84% 95.56%

6 92.26% 90.28% 90.84% 96.25% 96.22% 95.99%

7 91.93% 90.32% 90.70% 96.00% 95.94% 95.65%

8 90.49% 89.28% 89.49% 95.85% 95.67% 95.37%

9 93.18% 91.82% 92.18% 96.43% 96.35% 96.08%

10 92.58% 91.17% 91.51% 96.31% 96.27% 96.00%

11 91.70% 89.90% 90.40% 95.79% 95.77% 95.44%

12 89.56% 87.93% 88.28% 95.04% 95.02% 94.70%

13 93.02% 91.65% 92.01% 96.40% 96.22% 95.94%

14 92.90% 91.77% 92.00% 96.83% 96.62% 96.28%
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Table 0.5. Results of Third Training/Testing Split Method

Model
Before Applying Rules After Applying Rules

Precision Recall F1-score Precision Recall F1-score

1 91.17% 89.86% 90.23% 92.48% 92.32% 92.25%

2 92.83% 90.59% 91.27% 93.60% 93.19% 93.32%

3 77.91% 69.31% 69.47% 80.81% 80.24% 78.11%

4 92.88% 90.65% 91.34% 93.25% 92.97% 93.03%

5 92.07% 90.49% 90.90% 95.11% 94.71% 94.85%

6 92.06% 90.01% 90.61% 94.61% 94.27% 94.32%

7 91.62% 90.17% 90.43% 93.18% 92.62% 92.79%

8 90.79% 89.28% 89.61% 93.87% 93.50% 93.59%

9 93.23% 91.47% 91.96% 96.12% 95.70% 95.84%

10 92.25% 90.82% 91.20% 94.73% 94.49% 94.55%

11 91.90% 90.14% 90.51% 95.26% 94.93% 95.06%

12 90.31% 88.79% 89.29% 93.07% 92.62% 92.70%

13 92.83% 91.12% 91.49% 95.99% 95.48% 95.65%

14 92.73% 91.30% 91.60% 95.51% 95.26% 95.32%

3.5 Discussion

Previous POS taggers either took a rule-based approach (Bird, 2009) or used machine 

learning or deep learning algorithm exclusively (Giménez, 2004). The proposed POS tagger 

combine the advantage of rule-based approach and machine learning algorithm. One main 

limitation of the proposed POS tagger is acknowledged: the POS tagger still is not error-free. In 

spite of its improvement over the state of the art, this POS tagger may still not be accurate 

enough to support an error-free extraction of embedded engineering knowledge in building 

codes. Errors in POS tagging may have negative effect on the performance of NLP-based 

automated building code compliance checking systems that leverage it. The authors suggest that 

research to further increase the accuracy of POS taggers is still needed. The authors also plan to 

develop automated code compliance checking systems that have the robustness to tolerate a 

small amount of POS tagging errors.
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3.6 Contributions to the Body of Knowledge

The research of this chapter has contributions in both theory and practice of POS tagging. 

Theoretically, it has two main contributions to the body of knowledge. First, it provides a deep-

learning and rule-based hybrid method to enhance performance of POS taggers on domain-

specific texts. The combination of deep learning neural network models and error-fixing 

transformational rules makes the proposed POS tagger outperform the state-of-the-art POS 

taggers with limited amount of training data. Many current state-of-the-art POS taggers were 

trained on the Penn Treebank (PTB) corpora which has 2,499 articles (each article contains tens, 

if not hundreds, of sentences). This POS tagger was trained on a dataset of only 1,522 sentences. 

Second, the research of this chapter shows the potential of deep learning in automated building 

code information extraction. The promising results of deep learning on the POS tagging of 

building codes paved the way to more applications of deep learning in automated building code 

compliance checking and engineering tasks in the AEC domain in general. In practice, the 

impact of this chapter’s research on the AEC domain could be profound. It provides a more 

accurate POS tagger for building codes comparing to the state of the art, which will help 

automated code compliance checking systems to check more building code requirements 

automatically. The extension of checkable building code requirements could bring automated

code compliance checking systems one step closer to a wide real-world deployment.

3.7 Conclusion

The ability to provide accurate POS tagging results of building codes paves the way to 

automated regulatory information extraction and widens the possible range of applicable code 

requirements of automated code compliance checking systems. The authors proposed a new POS 

tagger to support such systems. This is the first POS tagger that is tailored to building codes. The 

POS tagger gained information on general English by incorporating pre-trained deep learning 

models and captured AEC domain specific knowledge by fine-tuning on a domain-specific 

corpus. The POS tagger directly maps inputted words to POS tags without feature engineering. 

This nature of deep learning allows future domain experts to enhance the performance of this 

POS tagger by directly leveraging more training data. The experiment showed that the bi-

directional GRU model without pre-trained models can reach a high precision that is comparable 
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to the precision of the bi-directional LSTM models with pre-trained models. Using bi-directional 

GRU model can save time and cost to train a POS tagger, without significantly compromising 

precision. Although more training data may help unleash the full potential of pre-trained models 

and further improve performance, the authors were able to achieve a 95.11% precision using one 

bi-directional LSTM trainable layer and BERT_Cased_Base pre-trained model in combination 

with error-driven transformational rules, which significantly increased over the state-of-the-art.
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4.1 Literature Review

4.1.1 Natural Language Processing

Chowdhury defines natural language processing (NLP) as “an area of research and 

application that explores how computers can be used to understand and manipulate natural 

language text or speech to do useful things” (Chowdhury, 2003). NLP includes a wide range of 

tasks, such as (1) information retrieval (Raghavan et al., 2010), (2) information extraction 

(Cowie & Lehnert, 1996), (3) text classification (Zhang et al., 2015), (4) text generation 
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(McKeown, 1985), (5) text summarization (Nenkova & McKeown, 2012), (6) question 

answering (Soares & Parreiras, 2020), (7) machine translation (Koehn, 2009), and (8) speech 

recognition (Povey et al., 2011). There are two main approaches to accomplishing NLP tasks: the 

rule-based approach and the machine learning-based approach (Gali et al., 2008). Rule-based 

NLP systems may require manual effort in rule generation, but usually outperform machine 

learning-based NLP systems in a specific task or in a specific domain (Crowston et al., 2010). 

Machine learning-based NLP systems can be further classified into “shallow” learning systems 

and “deep” learning systems based on the types of machine learning models they use. “Shallow” 

learning systems use traditional machine learning algorithms, such as support vector machines 

(SVMs) or decision trees, and require manual feature engineering. Deep learning systems use 

neural networks and do not require manual feature engineering (Chollet, 2017). There is no lack 

of efforts to use NLP in the AEC domain. For example, Tixier et al. (2016) used NLP to extract 

the reasons for accidents from construction injury reports. Lin et al. (2013) used NLP 

technologies to extract information from BIM. ACC research also uses NLP techniques to 

process building codes, for matching between concepts in building codes and concepts in BIM

(Zhang & El-Gohary, 2019), and for converting building codes to logic clauses that support 

automated reasoning (Zhang & El-Gohary, 2016).

4.1.2 Part-of-Speech

Part-of-speech (POS) of a word represents its lexical and syntactic function in a sentence

(Barzilay & Elhadad, 1999). English words have eight basic POS categories: (1) noun, (2) verb, 

(3) adjective, (4) adverb, (5) pronoun, (6) preposition, (7) conjunction, and (8) interjection (Butte 

College, 2016). The same word may have different POS categories in different contexts. For 

example, the word “run” could be a verb in its simple present tense or past perfect tense 

depending on the context. In NLP systems, words are categorized into more specific POS 

categories to represent text more informatively. For example, the Penn Treebank Corpus 

classifies words into 36 POS categories (Marcus et al., 1993) and the Brown corpus has 179 POS 

categories (Francis & Kucera, 1979). In the development of the Penn Treebank Corpus and the 

Brown Corpus above, human annotators manually assigned words to different POS categories 

according to their understanding of the English language and the contexts of the words. POS 

tagging software, which is commonly called “POS taggers,” could replace annotators’ manual 
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effort in this task. POS taggers automatically determine the POS category of a word using its 

contextual information in an algorithmic manner (Schmid, 1994). POS taggers began with rule-

based taggers that used a set of rules to determine the POS categories of words. These rules can 

be compiled by experts (Bird et al., 2009) or extracted from text algorithmically (Brill, 1992). 

With the development and integration of machine learning, POS taggers shifted to the use of 

statistical models. For example, Giménez and Marquez (2004) used one SVMs model to 

determine POS categories of known words and another SVMs model to predict those of 

unknown words. Brants (2000) developed a POS tagger which uses Hidden Markov Models 

(HMM) to capture dependencies among words and determine the POS categories of words by 

their inter-dependencies. Plank et al. (2016) proposed the use of bi-directional neural networks to 

accomplish multilingual POS tagging. POS tagging is an important early step of many NLP 

systems (Giménez & Marquez, 2004).

4.1.3 Ontology

Ontology is the explicit and formal description of knowledge through relationships among 

concepts in a domain (Gruber, 1993). In 1999, the World Wide Web Consortium (W3C) first 

developed the Resource Description Framework (RDF) language for ontology (Brickley et al., 

1999). Then, it collaborated with the Defense Advanced Research Projects Agency (DARPA) to 

extend the RDF into a more expressive DARPA Agent Markup Language (DAML) (Hendler & 

McGuinness, 2000; Mcguinness et al., 2002). After that, many ontologies emerged, either for a 

specific domain (e.g., medical) (Amos et al., 2020) or for general-purpose (Hepp, 2008). 

Ontology is used to: (1) analyze and reuse domain knowledge, (2) share structured domain 

knowledge among people and software, (3) specify domain assumptions, and (4) distinguish

domain knowledge from operational knowledge (Noy & McGuinness, 2001). 

4.1.4 Text Similarity Measurements

Text similarity is an important benchmark in NLP. There are many ways to measure the 

similarity between text strings (Gomaa & Fahmy, 2013). Text similarity can be measured by 

comparing words or characters in text strings. For example, the Levenshtein Distance

(Levenshtein, 1966; Su et al., 2008) measures the minimum number of single character 
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transformations needed to convert one string to another. In Levenshtein Distance, 0 means two 

strings are identical, and the larger it is, the less similar the two strings are, with no strict upper 

bound. The Jaccard Distance, on the other hand, measures the number of items shared by two 

sets (Kosub, 2019). In the Jaccard distance, 0 means two sets are identical, and 1 means two sets 

share no common items. The Jaro Winkler Similarity (Winkler, 1990) is an extension of the 

Levenshtein Distance. By normalizing the Levenshtein Distance with the length of the text 

string, the Jaro Winkler Similarity ranges from 0 to 1. In the Jaro Winkler Similarity, 0 means 

two text strings are completely different and 1 means two text strings are the same. 

The inability to measure similarity between word meanings is one limitation of measuring 

text similarity at the word and character levels. One potential solution to the problem is 

representing words (and their contexts) as vectors in high-dimensional spaces. Popular text 

vectorization techniques include, for example, Word2Vec (Mikolov et al., 2013), FastText 

(Joulin et al., 2017), and Glove (Pennington et al., 2014). The distance between meanings of two 

words and their contexts can be measured by the cosine distance between the two vectors.

4.2 Methodology

The proposed method expands the range of processable building code requirements by 

adding new pattern matching-based rules to an existing ruleset. The pattern matching-based rules 

capture regulatory information in building codes and convert the captured information to logic 

clauses. The pattern matching-based rules consider both syntactic information, which is provided 

by POS tags (e.g., the word “height” in the phrase “building height” is a noun because it has a 

POS tag “NN”), and sematic information, which is provided by an ontology (e.g., the phrase 

“less than” after an attribute and before a value means that the attribute value must be smaller 

than the specified value, and the phrase “minimum clearance” means the attribute “clearance” 

must be greater than or equal to a specified value). For example, the pattern “subject, 

conjunction, subject” can be used to extract the regulatory information of which two subjects are 

in equivalent status. The conjunction (i.e., and, or) is a label by the POS tagger. Subjects, which 

were labeled as noun by the POS tagger, were further labeled as subjects after feature 

enhancement by the ontology. The pattern matching-based rules regulate how this method 

extracts building code requirements and converts them to logic causes. The logic clauses 
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represent building code requirements in a strict horn clause (HC) format in B-Prolog syntax to 

avoid ambiguity in natural language and facilitate automated reasoning by the logic reasoner.

Each logic clause has a left-hand side and a right-hand side, separated by the delimiter “:-”. 

The left-hand side is the head of the logic clause that represents the subject of compliance 

checking in the logic clause, i.e., the building design component that this code requirement 

governs. The subject of compliance can be an entire building, a component of a building, a 

certain attribute of a building, or an attribute of a building component. The predicates on the 

right-hand side of the delimiter “:-” (i.e., in the body of the logic clause) are conditions that the 

subject of compliance need to meet to comply with the building code requirement. This logic 

clause indicates that if all predicates on the right-hand side of the delimiter “:-” are evaluated to 

True, then the predicate on the left-hand side of the delimiter “:-” will also be evaluated to True. 

In the context of this dissertation research, it means that if the subject of compliance meets all the 

conditions of the corresponding building code requirement, it is then considered to be compliant

with the building code requirement. In the logic clauses, the conjunction relation (i.e., AND) is 

represented as a comma “,” and the disjunction relation (i.e., OR) is represented as a semicolon 

“;”.

One manually generated logic clause example as part of the gold standard (see details in 

Section 5.2.2 - Gold Standard Generation) is provided in Figure 0.1. The “Travel_distance” in is 

the subject of compliance and the predicates on the right-hand side describe the building code 

requirement that the “Travel_distance” need to comply with. Each predicate describes one 

condition that the subject needs to satisfy to comply with in the building code requirement 

described in the logic clause. If all of the predicates on the right-hand side are evaluated to true, 

the ACC system will then determine the building design to be in compliance with the 

corresponding building code requirement. More specifically, the predicates 

“from(Travel_distance, Accessible_space), to(Travel_distance, Area_of_refuge)” describe that

the travel distance is measured from the accessible space to the refuge area. The predicate 

“in_accordance_with(Travel_distance_2, section_1017_1)” describes that the travel distance is 

specified in Section 1017.1 of the IBC 2015. The predicates “not greater_than(Travel_distance, 

Travel_distance_2)” require the travel distance from the accessible space to the area of refuge to 

be no greater than the travel distance specified in Section 1017.1 of the IBC 2015. Other 

predicates in the logic clause are required by the strict HC format in B-Prolog syntax for this 
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logic rule to execute. Overall, this logic clause describes the building code requirement that the 

maximum travel distance from an accessible space to an area of refuge should not be greater than 

the travel distance specified in Section 1017.1 of the IBC 2015.

Figure 0.1. Example Logic Clause

In the manual transformation of building code, domain experts complete the transformation 

based on their understanding of building code requirements. In the automated transformation, a 

pattern matching-based regulatory information transformation ruleset is used to complete this 

transformation automatically. To support the matching pattern development in the ruleset, 

building codes undergo feature enhancement by POS tagging and ontology matching (Figure 

0.2).
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Figure 0.2. Automated Logic Clause Generation
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The goal of the research in this chapter is to develop an efficient and effective method to 

extend an existing pattern matching-based regulatory information transformation ruleset. 

Although it is possible to develop a new ruleset from scratch, the authors chose to expand an 

existing ruleset developed by Zhang and El-Gohary (2015), based on the assumption that 

asymptotic full coverage of building codes could be achieved by expanding an existing ruleset. 

In addition, expanding an existing ruleset, instead of generating new rulesets, has the benefits of: 

(1) reducing rule generation workload, and (2) allowing the expanded ruleset to capture patterns 

absent in the training dataset, while maintaining the compatibility of the expanded ruleset with 

the automated building code compliance checking system. The expansion of an existing ruleset 

requires new rules to be added. The added rules must meet certain standards or have certain 

characteristics to realize the two benefit goals above. For example, the amount of effort/time 

spent on new rules development should be significantly less than (e.g., no greater than 20% of) 

the development of the original ruleset. To achieve the first goal, the number of added rules 

should be small. To achieve the second goal, the process of adding new rules needs to be 

selective. The added rules should be valid and general. A rule is valid when it correctly extracts 

the regulatory information it is designed to extract. A rule is considered general when it has been

applied at least twice in the training dataset. The combination of multiple valid and simple 

pattern matching-based rules can be used to represent more complex patterns in building codes. 

The added rules also need to be general to capture patterns that are not in the training data. 

Building codes are legal documents composed by a panel of experts following strict guidelines. 

Therefore, the same patterns may be shared by different chapters of the building code. The 

generality requirement allows pattern matching-based rules to capture common patterns shared 

by different chapters of the same building code, or different building codes. In other words, 

different building codes, or at least different chapters of the same building code, should follow a 

set of common patterns, according to English grammar and the way building codes were 

compiled. The ruleset expansion method proposed in this chapter is designed to ensure the 

generality and validity of added rules. The transformation rule generation and validation are 

manually conducted in the proposed method. However, once the transformation rules are 

generated and validated, they can be used to fully automatically transform building code 

requirements into logic clauses.
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4.2.1 Ruleset Expansion Method

The proposed ruleset expansion method takes an iterative approach to add new rules into an 

existing regulatory information transformation ruleset. The goal of the research in this chapter is 

to develop an efficient method to expand an existing pattern matching-based regulatory 

information transformation ruleset and ensure the generality and expandability of the added 

rules. To achieve this goal, the authors should identify missing regulatory information and 

generate new rules to capture it. There are two approaches to completing this task: (1) identify all 

missed regulatory information and generate corresponding rules in a single pass, or (2) identify 

one piece of missed regulatory information at a time, generate a rule to capture the missed 

information, review the performance of the new rule, modify the new rule, and then proceed to 

the next iteration of identifying missed information. Both approaches can generate a ruleset that 

captures all regulatory information. However, the first approach does not consider the validity 

and generality of the added rules and the interaction among them (i.e., multiple rules may match 

the same regulatory information). The second approach iteratively adds new rules and tests them

before they are eventually added to the ruleset. The second approach has the potential to generate 

more valid and general rules than the first approach. What really distinguishes the first and 

second approaches is the granularity of pattern matching-based rules. The first approach aims to 

extract regulatory information at the chapter level or even at the whole building code level. 

Whereas the second approach extracts regulatory information at the sentence level. Because 

logic clauses are generated at the sentence level, the second approach naturally fits better. In 

addition, the shorter the pattern lengths are, the more flexible they become and the better 

scalability the whole ruleset will have. Patterns may match the whole sentence of a building code

requirement or (most likely) part of a sentence. Data-driven expansion of the existing ruleset is 

also made possible through the second approach, whereas it would not have been possible with 

the first approach. Previous rule-based NLP applications (Abacha & Zweigenbaum, 2011; Bird 

et al., 2009; Zhang et al., 2009) with manually developed rules also supported this point. Testing 

rules one-by-one before they are added to the ruleset is also a more rigorous rule development 

process than generating all the rules and testing them together in one shot. 

Because of the above-mentioned advantages, the ruleset expansion method proposed in the 

research in this chapter takes the second approach, which is shown in 
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Figure 0.3. One candidate pattern matching-based rule is generated to capture missing 

regulatory information one piece at a time, until all the missed regulatory information in the 

training dataset is captured. A version of logic clauses is first generated by the ruleset to identify 

missing regulatory information. If an instance of missing regulatory information is identified in 

this version of logic clauses, a candidate pattern matching-based rule is generated to extract it. 

The candidate pattern matching-based rule will be added to the ruleset if it is proven to be 

general and valid. The generality and validity of the candidate rule are tested by inspecting a new 

version of logic clauses generated by the ruleset when the candidate rule is included. A valid rule 

must correctly extract the information it is designed to extract and does not introduce errors

when it is applied to other parts of the training text. A general rule needs to be able to be applied

at least twice in the training dataset, which means it should be applied at least once outside of the 

sentence it is extracted from. The validity of a rule has a higher priority than its generality. If the 

rule introduces any errors in the training text, it will be modified until it introduces no errors. At 

the same time, the validity of rules will not be sacrificed to make a new rule general. It is 

possible that a pattern appears only once in the training text, and it is still necessary to capture an 

instance of regulatory information. The ruleset expansion process continues until the expanded 

ruleset captures all the regulatory information in the training data.
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Figure 0.3. Ruleset Expansion Method
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4.2.2 Feature Enhancement

The input textual data (building code in plain text) are first enhanced by POS tagging and 

ontology matching, to generate extra features. The enhanced building codes are more informative 

and support more complex operations than the original building codes without extra features. 

Building codes are labeled with information tags in this step. Extra features can provide more 

information about building code expression patterns and, therefore, increase the performance of 

pattern matching-based rules. To understand building codes, it requires knowledge both of the 

English language and of the AEC domain. The feature enhancement makes the ACC system 

better at processing building codes by introducing such knowledge to the ACC system. The 

authors apply POS tagging to generate syntactic features (i.e., for knowledge of the English 

language) and applies ontology matching to introduce AEC domain knowledge in this step.

The ACC system uses POS tagging, which captures the grammatical roles of words in a 

sentence, to generate syntactic features from building code text. The same word in different POS 

categories can have distinct meanings. For example, when the word “run” is a verb, it means an 

action of moving through a space. When the word “run” is a noun, it refers to a physical object. 

Therefore, syntactic features together with semantic features can disambiguate words in building 

codes. For example, when the word “runs” is a noun in the sentence “The extensions of handrails

shall be in the same direction of the flights of stairs at stairways and the ramp runs at ramps” 

(Section 1014.6 of IBC 2015) (International Code Council, 2015), it represents a physical object 

with attributes governed by the building code. However, when the word “runs” is a verb in the 

sentence “Where a partition containing piping runs parallel to the floor joists” (Section 2308.5.8 

of IBC 2015) (International Code Council, 2015), such a possibility can be ruled out. In this 

chapter, the authors used the A Nearly-New Information Extraction System (ANNIE) POS 

tagger in the General Architecture for Text Engineering (GATE) (Cunningham, 2002) with 

proven performance in tagging building codes to generate accurate syntactic features. Such 

external POS taggers, which were trained on a larger body of text and fine-tuned by domain 

experts, can bring additional grammatical knowledge to the ACC system.

The ACC system also uses an ontology to introduce AEC domain knowledge for logic 

clause generation. In manual code compliance checking, reviewers already have domain 

knowledge needed to understand building codes, based on their education, training, and 

experience. However, in ACC systems, such knowledge needs to be explicitly provided. An 
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ontology allows the ACC system to access domain knowledge and apply domain knowledge in 

rule generation. For example, with an ontology, the method can treat “International Fire Code” 

and “automatic sprinkler system” as integral phrases instead of multiple individual words. It also 

makes the method treat “inches” and “feet” as units specifying a numerical constraint, instead of 

regular nouns. In addition, the ontology also supports the disambiguation of vague terms.

The used ontology has two main types of items: (1) essential information, and (2) secondary 

information. Essential information includes: (1) subject of a particular regulatory requirement

(e.g., building), (2) attribute (e.g., building height), (3) comparative relationship (less than, 

greater than), (4) quantity (e.g., value or range of value), (5) quantity unit (e.g., inch, feet), and 

(6) reference to other quantity. Secondary information includes restrictions and exceptions. 

Restrictions mean constraints to subjects and attributes (Dimyadi et al., 2016; Zhang & El-

Gohary, 2015). For example, in the sentence “Exterior exit stairways and ramps serving as an 

element of a required means of egress shall be open on not less than one side, except for required 

structural columns, beams, handrails and guards, (International Code Council, 2015)” “serving as 

an element of a required means of egress” is a constraint to “Exterior exit stairways and ramps.” 

Exceptions are the conditions where a requirement does not apply. The ontology was created and 

tested in a previous study (Zhang & El-Gohary, 2015). With an expansion for this specific task, 

its comprehensiveness is ensured in the context of this application by enumerating all covered 

concepts in the corresponding code requirements. The ontology is also scalable. Similar to the 

ruleset itself, the ontology could also be accumulatively and continuously developed to fulfill the 

need for processing different building codes, until it reaches or asymptotically approaches the 

saturated state where any potentially related concept to building codes is included. It is editable 

in GATE (Cunningham, 2002) or using a plain text editor. Ontology editing tools provide 

support for the scalability of the ontology as the size and complexity of the ontology increases.

4.2.3 Pattern Extraction

There are two approaches to extracting regulatory information from building codes: the top-

down approach, and the bottom-up approach. In the top-down approach, the information 

extraction algorithm constructs a global logic clause framework that matches the overall 

structure of a sentence and fills in the building code requirements into the framework. In the 

bottom-up approach, the information extraction algorithm captures building code requirements at 
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a local level and assembles them into a logic clause. The building codes consist of a lot of long 

and complex sentences with diverse structures. The versatility and complexity of building code 

sentences means developing enough sentence-level frameworks to accommodate all sentences in 

building codes may require a similar amount of manual effort as directly converting building 

codes to logic clauses manually. It is possible that every sentence, or at least every few 

sentences, requires a different framework. The authors propose the use of the bottom-up 

approach. The complex and versatile structures of building code sentences may require many 

complex sentence-level frameworks, but pattern matching-based rules can assemble these 

structures from simple local patterns.

4.3 Experiment

4.3.1 Ruleset Expansion Experiment

The authors tested the effectiveness of the proposed ruleset expansion method by measuring 

its precision, recall, and F1-score in logic clause generation, which in turn tested the generality of 

the original ruleset. Chapter 10 of the International Building Code 2015 (IBC 2015) was selected 

as the training data for the experiment and Chapter 5 of the IBC 2015 was selected as the testing 

data. Zhang and El-Gohary developed the original ruleset based on Chapters 12 and 23 of IBC 

2006 (Zhang & El-Gohary, 2015). The authors used the ruleset expansion method to generate 

new rules based on Chapter 10 of the IBC 2015 and tested the expanded ruleset on Chapter 5 of 

the IBC 2015, in comparison with the original ruleset.

In the first part of the experiment, the original ruleset generated a baseline version of logic 

clauses from the training data. The training data was first pre-processed by a POS tagger and an 

ontology to generate enhanced features. The POS tagger used in the research in this chapter is 

the ANNIE tagger from the GATE tool (Cunningham, 2002). The authors used the ontology 

developed in (Zhang & El-Gohary, 2015) with expansions on Chapters 5 and 10 of the 

International Building Code 2015. After that, the authors used the ruleset expansion method to 

expand the original ruleset. 

First, the authors identified missing regulatory information and updated the original ruleset 

with a candidate pattern matching-based rule to capture the missing regulatory information. For 

example, the original ruleset did not have enough patterns to extract all the essential information 
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for requirements that are described using negation together with a past participle verb, so a 

corresponding pattern and candidate rule was added. The expanded ruleset also includes all rules 

in the original ruleset. The authors added 64 new rules to the original ruleset, a much smaller 

number compared to the 306 rules already in the original ruleset. Two of the 64 new rules were 

developed to extract missed regulatory information in the example type mentioned above. One 

rule with the pattern “modal verb, negation, base form verb, [adjective, past participle verb, past 

tense verb]” was generated to extract the regulatory requirement of a subject. This rule can 

process building code requirement sentences like “A basement (candidate subject) provided with 

one exit shall (modal verb) not (negation) be (base form verb) located (past participle verb) more 

than one story below grade plane” (Section 1006.3.2.2 of IBC 2015) (International Code 

Council, 2015), and “The area of a Group F-2 or S-2 building (candidate subject) no more than 

one story in height shall (modal verb) not (negation) be (base form verb) limited (past participle 

verb) where the building is surrounded and adjoined by public ways or yards not less than 60 feet 

in width” (Section 507.3 of IBC 2015) ) (International Code Council, 2015). The first subject is 

extracted by identifying the first subject candidate to the left of (not necessarily immediately next 

to) the relationship. This arrangement makes pattern matching flexible. The rule is both general 

and valid, because it was applied twice in the training dataset and correctly extracted the 

regulatory information it was designed to extract. Another pattern “candidate subject, 

preposition, comparative relation, value, unit” was generated to extract the quantitative 

regulatory requirement of a subject. This rule can process building code requirement sentences 

like, “The ladder or steps shall not encroach into the required dimensions of the window well 

(candidate subject) by (preposition) more than (comparative relation) 6 (value) inches (unit).” 

(Section 1030.5.2 of IBC 2015) ) (International Code Council, 2015). Only the “of” relationship 

between “the required dimension” and “the window well” was extracted by the original ruleset. 

The newly added rule was not general in current training dataset (i.e., it was applied only once in 

the training dataset), but it was still valid, because it correctly extracted the regulatory 

information it was designed to extract. Although the rule was not general, it was still needed to 

capture an instance of regulatory information. Therefore, it was still added to the ruleset. The 

complete set of the 64 rules can be found in Appendix A. In the second part of the experiment, 

the expanded ruleset was tested on Chapter 5 of the IBC 2015 to automatically convert building 
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codes to logic clauses. The automatically generated logical clauses were compared against a gold 

standard. 

4.3.2 Gold Standard Generation

Chapters 10 and 5 of the IBC 2015 were transformed into logic clauses by three annotators 

semi-automatically to create a gold standard of information transformation and logic clause 

generation. All three annotators have background AEC knowledge to understand building codes, 

and necessary skills to transform building codes into logic clauses. The authors provided the 

annotators a clear annotation protocol, a brief training section before annotation, and machine-

generated logic clauses for reference during their annotation. They worked independently 

without access to the logic clauses generated by other annotators. However, they were presented 

with the machine-generated logic clauses, which could help annotators align with the rule 

generation mechanism of pattern matching-based rules, achieve higher inter-annotator 

agreement, and reduce rule generation time. It also ensures the compatibility of human-generated 

logic clauses with the automated code compliance checking system. 

Annotators were required to use the exact words that came from the building code in their 

generated logic clauses. For example, if the building code uses the word “exterior” for exterior 

walls, annotators must also use the word “exterior” in their generated logic clauses to represent 

exterior wall, rather than using “external wall” or other names. Therefore, the problem that 

annotators may use different words for the same meaning is prevented. The product of the 

manual transformation process was three versions of logic clauses, with each version

independently and manually generated by one of the annotators. After that, annotators reviewed 

each other’s work and collectively generated the final gold standard. All annotators agreed that 

the gold standard represents the meaning of building codes accurately and approved it. 

To evaluate the quality of human-generated logic clauses, the authors measured the 

similarity between the logic clauses generated by different annotators. Because annotators 

transformed the same building code, they should generate similar logic clauses. A high similarity 

among human-generated logic clauses of different annotators indicates a high quality of the logic 

clause generation. The authors chose to measure logic clause similarity by comparing characters 

and words at the string level in the research in this chapter. While text vectorization and cosine 

similarity measure the meaning-wise similarity of natural language text, because the logic 
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clauses generated in the research in this chapter are not in natural language and the similarity 

measurement focuses on the existence of logic clause components rather than the meaning of the

logic clauses, vectorization of text and cosine similarity were therefore not used. The authors

measured the similarity among logic clauses in two different ways: (1) the Levenshtein Distance 

and the Jaro Winkler Similarity were used to measure the character-level similarity between the 

human-generated logic clauses; and (2) the Jaccard Distance was used to measure the predicate-

level similarity between the human-generated logic clauses. For example, the Levenshtein 

Distance, the Jaccard Distance, and the Jaro Winkler Similarity between the two sample logic 

clauses in Table 0.1 were 14, 0.67, and 0.97, respectively. Overall, annotators reached an average 

Levenshtein Distance of 6.88, an average Jaccard Distance of 0.63, and an average Jaro Winkler 

Similarity of 0.99. 

Table 0.1. Sample Logic Clauses Generated by Annotators

Building Code 

Sentence
Logic Clause 1 Logic Clause 2

The maximum 

width of a 

swinging door 

leaf shall be 48 

inches (1219 

mm) nominal.

compliance_width_of_swinging_door_leaf257(Swi

nging_door_leaf):-

width(Width),swinging_door_leaf(Swinging_door_l

eaf),has(Swinging_door_leaf,Width),less_than_or_

equal_to(Width,quantity(48,inches)).

compliance_width_of_swinging_door

_leaf257(Swinging_door_leaf):-

width(Width),swinging_door_leaf(Sw

inging_door_leaf),has(Swinging_door

_leaf,Width),equal_to(Width,quantity

(48,inches)).

Because text similarity is task-specific, there was no universally applicable standard for it. 

Instead, NLP researchers developed their own metrics according to the needs of tasks

(Penumatsa et al., 2006; Rekabsaz et al., 2017). The 6.88 Levenshtein Distance seems high, but it 

does not consider the length of the text string. If the length of text string is considered, the 0.99

Jaro Winkler Similarity proves that human-generated logic clauses are similar at the character

level. The 0.63 Jaccard Distance is relatively low. It indicates a significant number of predicates 

are different in human-generated logic clauses. However, the difference could be overstated

because the Jaccard Distance requires two predicates to be completely identical in order to be 

considered the same. If two predicates are off by even one character, they are still considered 

different and accounted for in the Jaccard Distance. Combining the use of all three measures 

illustrates that human-generated logic clauses are similar in general. If two predicates are 
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different, they usually only differ by a few characters. Measurement results using the three

metrics show that the three annotators reached a reasonable alignment and the quality of the gold 

standard was good (Cahyono, 2019; Kloo et al., 2019).

4.4 Result

To evaluate the performance of the ruleset expansion method, the machine-generated logic 

clauses were compared against the human-generated gold standard. The closer the machine-

generated logic clauses are to the gold standard, the better the pattern matching-based rules are,

and therefore, the better performance the ruleset expansion method is deemed to have. Predicates 

in logic clauses can be further broken down into predicate elements (i.e., predicate names or 

predicate arguments). For example, the predicate “has(Stairway, Clear_width)” is formed by 

three elements, “has,” “Stairway,” and “Clear_width.” Therefore, the authors calculated both 

predicate-level performance and predicate element-level performance of the ruleset expansion 

method. In the predicate-level performance, the minimum unit of measurement is a predicate. In 

the predicate element-level performance, the minimum unit of measurement is a word or phrase. 

For example, if the gold standard is “considered_by(Code_change_proposals, 

International_fire_code_development_committee),” and the machine-generated logic clause is 

“considered_by(Designation_f, International_fire_code_development_committee).” The 

predicate-level performance treats this predicate as one incorrect predicate. The predicate 

element-level performance treats this predicate as three elements, two of which are correct and 

one is incorrect. Because of the phenomenon that predicates could be partially correct, predicate 

element-level accuracy could provide a more accurate evaluation regarding the performance of 

the ruleset expansion method and pattern matching-based rules.

The performance of the expanded pattern matching-based regulatory information 

transformation ruleset is summarized in Table 0.2. The performance was measured at the 

predicate level and the predicate element level. The experiment focuses on logic clauses about 

quantitative requirements because the original ruleset focused on quantitative requirements. In 

the research in this chapter, sentences of building code provisions and generated logic clauses 

have a one-to-many mapping relationship. Patterns, on the other hand, can match the whole 

sentence or part of a sentence. Regulatory information that spans over multiple sentences is 

represented by multiple logic clauses. The original ruleset filters quantitative and non-
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quantitative requirements automatically. Therefore, there is no completely missed logic clause. 

The logic clauses generated that were not in the gold standard were counted as false positives. 

The logic clauses generated that functioned in the same way as those in the gold standard were 

counted as true positives. The logic clause-level performance is reported in Table 0.3. The 

predicate element-level performance was higher than the predicate-level performance, which 

indicates some predicates were partially correct. Through error analysis, the authors recognized 

four main sources of errors:

1. The partially correct predicates. After reviewing machine-generated logic clauses 

and the gold standard, the authors found that a significant portion of predicates in machine-

generated logic clauses were partially correct. For example, when the correct predicate in the 

gold standard is “surrounded_by(Buildings,Public_ways),” the expanded ruleset generated a 

partially correct predicate “surrounded_by(Chapter_9,Public_ways).” Future development 

about pattern matching-based rules could focus more on capturing the correct elements in 

predicates.

2. The flexibility of B-Prolog logic clauses and the ambiguity of natural language. 

The flexibility of B-Prolog logic clauses and the inherent ambiguity of natural language left a 

room of interpretation to the annotators. In other words, it was possible to represent the same 

building code requirement in different predicates. For example, one annotator translated the 

“minimum fire resistant rating of 1 hour” to “greater_than(Minimum_fire_resistance_rating, 

quantity(1, hour)).” Another annotator translated the same phrase to “equal to 

(Minimum_fire_resistance_rating, quantity(1, hour)).” One annotator considered that fire 

resistant rating of a subject should be greater than the minimum fire-resistant rating, which is 

1 h. Another annotator considered that this phrase means the minimum fire-resistant rating of 

a subject should be 1 h. Therefore, the precision of the rule generation was affected. A viable 

solution to increase inter-annotator agreement may include more detailed and stricter

annotation guidelines.

3. The patterns and terminologies unseen in Chapter 10. Although most regulatory 

information patterns in Chapter 5 were captured in Chapter 10, a small amount of regulatory 

information patterns were missed. The authors attributed missed building code requirements 

to unseen patterns or unique terminologies in Chapter 5. Chapter 5 and Chapter 10 of the IBC 

2015 focus on different topics (i.e., general building height and area, and means of egress, 
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respectively), so some terminologies in Chapter 5 did not occur in Chapter 10. For example, 

the erroneous predicate “unobstructed_to(Be,Room)” was generated instead of 

“unobstructed_to(Room)” due to a pattern that did not occur in Chapter 10. Such error will 

need to be addressed by accumulatively expanding the training dataset.

4. The backward compatibility requirement. The generality and validity 

requirements of the ruleset expansion method ensures the quality of the generated logic 

clauses and shows a promising future that pattern matching rule-based regulatory information 

extraction can potentially capture all building code requirements with a sufficiently 

comprehensive set of rules. However, the compatibility requirement also forbade the removal 

of any existing rule, which led to some false positives. In the future, the flexibility of 

modifying existing rules may need to be tested.

Table 0.2. Performance of Applying Ruleset Expansion Method

Training Testing

Predicate level Predicate element level Predicate level Predicate element level

Before1 After2 Before1 After2 Before1 After2 Before1 After2

Precision 84.35% 96.31% 87.90% 98.33% 86.17% 95.17% 90.03% 97.48%

Recall 79.00% 98.38% 81.78% 99.39% 76.84% 96.60% 81.77% 98.65%

F1-score 81.59% 97.34% 84.73% 98.86% 81.24% 95.88% 85.70% 98.06%

1 Performance of the original ruleset, which is the ruleset before the application of the ruleset expansion method.

2 Performance of the expanded ruleset, which is the ruleset after the application of the ruleset expansion method.

Table 0.3. Logic Clause-Level Performance

Training Testing

Before1 After2 Before1 After2

Precision 89.86% 100.00% 93.81% 100.00%

Recall 98.27% 99.68% 96.81% 97.98%

F1-score 93.87% 99.84% 95.29% 98.98%

1 Performance of the original ruleset, which is the ruleset before the application of the ruleset expansion method.

2 Performance of the expanded ruleset, which is the ruleset after the application of the ruleset expansion method.
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4.5 Discussion

Despite all the development and advancement of automated code compliance checking 

systems, existing ACC systems still heavily rely on domain experts to extract building code 

requirements and formalize them into a computer-processable format (Zhong et al., 2012; Zhang 

& El-gohary, 2015), such as decision tables (Tan et al., 2010), knowledge models (Dimyadi et 

al., 2016), or structured rulesets (İlal et al., 2017). The research in this chapter builds upon 

cutting-edge semantic NLP-based information extraction and transformation approach (Zhang & 

EL-Gohary, 2013; Zhang & El-Gohary, 2015; Zhang, 2015) and expands previous efforts to 

support automated regulatory information extraction from a wide range of building codes with 

little marginal cost.

In the experiment of the regulatory information transformation ruleset expansion, the 

proposed method was tested for expanding the range of checkable building code requirements to 

new chapters of building codes, which are in different domains/topics of the building code from 

which the original ruleset was initially developed. To further evaluate the robustness of the 

expanded ruleset, the authors also tested it on processing construction contracts, a fundamentally 

different type of construction documents compared to building codes. Nine free and openly 

available construction contracts or construction contract templates were collected. In total, 185 

sentences were extracted from these contracts. The expanded ruleset was then executed to 

convert the extracted sentences in construction contracts to logic clauses. The performance of the 

expanded ruleset is illustrated in Table 0.4. Examples of contract contents and corresponding 

logic clauses generated are shown in Table 0.5. The results show the robustness of the expanded 

ruleset is promising (although not perfect) for processing construction documents beyond the 

original intent of building codes.
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Table 0.4. Performance on Processing Construction Contract

Predicate level Predicate element level

Precision 90.52% 97.20%

Recall 92.92% 98.42%

F1-score 91.70% 97.81%

Table 0.5. Examples of Contract Sentences and Corresponding Logic Clauses Generated
Contract sentence Logic clause

Two copies of the Contract 

Documents shall be signed by the 

Owner and the Contractor.

(Montrose County, 2018)

compliance_Owner3(Owner):-

number_prep(Number),copies(Copies),has(Copies,Number),contract_do

cuments(Contract_Documents),has(Contract_Documents,Copies),owner

(Owner);contractor(Owner)),signed_by(Contract_Documents,Owner),eq

ual_to(Number,quantity(2,one)).

Contractor shall maintain in a safe 

place at the Property one record 

copy of all drawings, specifications, 

addenda, written amendments, and 

the like in good order and annotated 

to show all changes made during 

construction, which will be 

delivered to Owner upon 

completion of the Work.

(Legaltemplates, 2022)

compliance_Number1(Number):-

maintain_in(Contractor,Safe_place),contractor(Contractor),safe_place(S

afe_place),at(Safe_place,Property),property(Property),number_prep(Nu

mber),record_copy(Record_copy),has(Record_copy,Number),drawings(

Drawings),has(Drawings,Record_copy),like_in(Like,Good_order),like(

Like),good_order(Good_order),to_show(Good_order,Changes),changes(

Changes),made_during(Changes,Construction),construction(Constructio

n),delivered_to(Good_order,Owner),owner(Owner),upon(Owner,Compl

etion),completion(Completion),work(Work),has(Work,Completion),equ

al_to(Number,quantity(1,one)),associated(Safe_place,Good_order).

If the final amount of the 

ALLOWANCE work is less than 

the ALLOWANCE line item 

amount listed in the Agreement, a 

credit will be issued to Owner after 

all billings related to this particular 

line item ALLOWANCE work 

have been received by Contractor.

(Building Advisor, 2019)

compliance_Final_amount7(Final_amount):-

final_amount(Final_amount),if(Final_amount),allowance_work(ALLO

WANCE_work),has(ALLOWANCE_work,Final_amount),allowance_li

ne_item_amount(ALLOWANCE_line_item_amount),listed_in(ALLOW

ANCE_line_item_amount,Agreement),agreement(Agreement),credit(Cr

edit),owner(Owner),issued_to(Credit,Owner),after(Owner,Billings),billi

ngs(Billings),related_to(Billings,This_particular_line_item_ALLOWAN

CE_work),this_particular_line_item_allowance_work(This_particular_li

ne_item_ALLOWANCE_work),received_by(This_particular_line_item

_ALLOWANCE_work,Contractor),contractor(Contractor),less_than(Fin

al_amount,quantity(1,ALLOWANCE_line_item_amount)).

4.6 Contributions to the Body of Knowledge

This chapter’s research contributes to the body of knowledge in four main ways. First, it 

proves the feasibility of expanding the range of checkable building code requirements by 
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expanding an existing regulatory information transformation ruleset. The authors expanded the 

range of checkable building code requirements of an automated code compliance checking 

system to cover Chapter 5 and Chapter 10 of the IBC 2015. This expansion was achieved by 64 

new rules. It shows that different chapters of the IBC share similar patterns, and the number of 

new pattern matching-based rules needed to expand the range of checkable code requirements is 

small. Second, the research in this chapter was conducted to provide a new ruleset expansion 

method. This method ensures the quality of added pattern matching-based rules and, therefore, 

the quality of logic clauses generated by the pattern matching-based rules. In a previous study, 

three hundred and six rules were developed to cover two chapters of building code. In 

comparison, only sixty-four new rules were developed to cover two new chapters of building 

code. It shows that the marginal cost of expanding the range of checkable building code 

requirements is low. It provides a workable and low-cost method to expand the range of 

checkable code requirements of ACC systems. The cost of expanding the range of checkable 

building codes by expanding an existing regulatory information transformation ruleset could 

further decrease in the future as the number of existing rules increases, because building codes 

share similar patterns and the number of unseen patterns in new building codes could decrease as 

existing pattern matching-based rules cover more patterns in building codes. Future researchers 

and developers can adopt this method to expand the range of checkable code requirements of the 

ACC system and bring the ACC system to full deployment in the AEC industry. While the 

research in this chapter has a main focus on processing building codes, the testing results of 

transforming construction contracts show that the proposed ruleset expansion method is 

potentially robust in processing different types of construction documents. Third, the research in 

this chapter also generated a dataset of building codes in logic clauses. This dataset can facilitate 

other regulatory information transformation research, such as machine learning-based logic 

clause generation. Last but not least, the research in this chapter facilities the adoption of ACC in 

the AEC industry. With an expanded range of checkable code requirements, the utility of ACC is 

enhanced. ACC can reduce the time, cost, and human-errors in code compliance checking and 

encourages the AEC industry to shift towards a digital paradigm.
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4.7 Conclusion

The research in this chapter was conducted to provide a ruleset expansion method that can 

expand the range of checkable code requirements of ACC systems to different chapters of the 

IBC, which can potentially be applied to other codes beyond the IBC and other construction 

documents such as contracts. The proposed method takes an iterative approach to ensure the 

generality and validity of the added pattern matching-based rules and the generated logic clauses. 

Experimental results on Chapters 5 and 10 of IBC 2015 showed the expanded ruleset generated 

logic clauses with 95.17% predicate-level precision, 96.60% predicate-level recall, and 95.88% 

predicate-level F1-score. This performance proved the effectiveness of the ruleset expansion 

method and the expanded ruleset. Through error analysis, the authors attributed the remaining 

errors to the flexibility of B-Prolog language, the ambiguity in natural language, missed building 

code requirement patterns, and the compatibility requirement. The authors also suggested 

solutions to further increase the performance of the ruleset expansion method, such as expanding

the training dataset and providing stricter annotation guidelines. The research in this chapter also 

generated a dataset of logic clauses. This dataset has the potential to facilitate research on 

different regulatory information transformation approaches, such as machine learning-based 

logic clause generation. The research findings in this chapter can be used to build fully 

automated building code compliance checking systems with wider code requirements coverage 

than the state of the art. The demonstrated decreasing marginal cost of transformation rule 

development and high predicate-level performance renders the rule-based processing of building 

code requirements promising to bring fully automated building code compliance checking to 

real-world applications. Future research is needed to discover the boundary of the theoretical 

“superset” of common patterns used in building code transformation rules, for guiding the 

practical implementation of the demonstrated rule-based processing of building code 

requirements in real ACC systems. Furthermore, the successful demonstration of such processing 

in construction contracts in the research in this chapter helps open the door to rule-based 

processing of a variety of textual documents in the AEC industry, to support future automation 

and AI applications in the AEC industry in general.
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5.1 Literature Review

5.1.1 Existing Work in Automated Building Code Compliance Checking

From a historical perspective, the traditional building code compliance checking process, or 

building plan review, is a laborious, time-consuming, and error-prone process that demands

automation (Alghamdi et al., 2017; Lee et al., 2018; Preidel & Borrmann, 2017). The automation 

of the code compliance checking process can significantly cut its cost, time, and manual efforts. 

In the manual code compliance checking process, designers need to wait a long time for building 

authorities to issue a building permit or ask for further modifications to the design documents, 

and may have to modify design documents multiple cycles. The plan review process may last a 
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few months (City of San Clemente, 2019). On the other hand, automated code compliance 

checking systems can return compliance checking results in a much shorter time with a limited 

need for manual input. Thus, automated building code compliance checking is faster and cheaper 

than the traditional manual code compliance checking approach. 

The automated code compliance checking systems emerged in the 1960s when Fenves 

introduced decision tables to check the design of steel structures (Fenves, 1966). Systems for 

checking different aspects of building design were then developed over the years. For example, 

Pauwels et al. (2011) implemented a sematic rule checking environment to check the acoustic 

performance of buildings. Tan et al. (2010) provided a series of decision tables to check the 

design of building envelopes. Getuli et al. (2017) developed a BIM-based workflow that checks 

against the compliance of Italian construction safety and health code. Malsane et al. (2015)

suggested an Industry Foundation Class (IFC)-powered, object-oriented approach to check 

against fire codes in England and Wales. Bus et al. (2019) developed an ontology-based system 

to achieve automated compliance checking of semantic rules in French fire safety and 

accessibility codes. However, existing automated code compliance checking systems only check 

a limited set of code rules and, according to the authors’ literature review, never automatically 

processed building code requirements in tables.

5.1.2 Table Processing

The demand to extract information from documents that are not in plain textual formats, 

such as tables and images that are hard for machines to process, is urgent (Correa & Zander, 

2017). Most existing methods take a two-step approach to extract tabular information: (1) table 

detection, and (2) table sub-structure identification (i.e., cells, rows, columns) (Paliwal et al., 

2019). Challenges in tabular information extraction include: (1) reliance on the context of tables 

to interpret tables, (2) document indexing, (3) database curation, and (4) abbreviation of phases 

(Shmanina et al., 2016). Table detection algorithms can construct table hierarchies in two 

approaches: top-down and bottom-up. In the top-down approach, the algorithm first identifies 

tables in documents and then slice identified tables into components. On the contrary, in the 

bottom-up approach, the algorithm first identifies components of tables and then assembles the 

components to tables (Krüpl & Herzog, 2006). Different technologies were developed to process 

table information for various purposes. For example, Vasileiadis et al. (2017) developed a rule-
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based, bottom-up tabular information extraction system for access by visually impaired people. 

Buitelaar et al. (2006) published an ontology-based table processing method to extract 

information from webpages as part of a multi-modal dialog system. Shafait and Smith (2010)

used Optical Character Recognition (OCR) technology to process tables with different layouts 

for analyzing tables in heterogeneous documents. Qasim et al. (2019) treated the table detection 

problem as a graph problem and generated a Graph Neural Network to detect the structure of 

tables, which was successfully tested on public table detection datasets (e.g., UW3, UNLV, and 

ICDAR 2013). Sinha et al. (2019) used OCR to localize tables in Piping and Instrumentation 

Diagrams (P&IDs) and used regular expressions to enhance the accuracy of text extraction. 

Although most researchers treated table detection and table structure identification as two 

separate steps, Paliwal et al. (2019) proposed TableNet, a neural network with an encoder-

decoder structure, to detect table existence and identify table structure in one unified step jointly. 

Although existing table processing methods reached high accuracy on their respective domains, 

they did not touch upon automation of processing tables in building codes, and data from such 

tables were still manually interpreted and processed. 

5.2 Methodology

In this chapter, the authors proposed a semi-automated table processing method for tables in 

building codes. The proposed method takes a two-step approach to process tabular information in 

building codes: (1) tabular information extraction, and (2) information conversion to databases. 

The developed method needs to be robust over a wide range of tables, i.e., to be able to process 

tables in an unseen format. The tabular information extraction method needs to extract building 

code requirements from tables in building codes and store the extracted information in a 

structured format. The extraction process needs to reach a very high precision to meet the 100% 

recall goal of noncompliance detection in automated code compliance checking (Salama & El-

Gohary, 2016). The format to store extracted building code requirements needs to support easy 

information access and processing to ensure the performance of the automated code compliance 

checking system. Integrated methods that directly convert building code tables to logic rules and 

store these rules in automated code compliance checking system are the most straightforward 

and intuitive method to process building code requirements from tables. However, state-of-the-

art integrated methods lack robustness in processing tables in different layouts and the manual 
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effort to maintain integrated methods may not be less than the effort in the manual encoding of 

building codes per se. The diverse layouts of tables may require customized methods for each 

table. Frequent updates of building codes will therefore require constant method updates. To 

address that, the authors proposed the separation of information extraction from rule generation 

to increase the robustness and reduce the maintenance need of the method. 

5.2.1 Information Extraction

The proposed method takes a semi-automated approach to extract tabular information from 

building codes. Users need to collect tables from building codes in digital format and provide 

them together with some structural information of these input tables. The method then processes 

one table at a time. Structural information of tables helps the information extraction method 

identify the layout of the table. For tables with different layouts, the underlying relationships 

between cells are different. For example, some tables use a single cell to store an entry of 

building code requirement, and some tables use an entire row to store an entry of building code 

requirement. Layouts of tables implicitly specify how tables store building code requirements. 

One type of table, for example, uses a cell and its corresponding row header and column header 

to represent one requirement to buildings. Another type of table uses all cells in a row and their 

corresponding column headers to represent one requirement to buildings. The proposed method 

uses structural information provided by the users to automatically distinguish layouts of tables 

and uncover underlying relationships and information inferred by layouts.

The authors took an iterative approach to develop the sub-algorithms in the tabular 

information extraction algorithm, i.e., the sub-algorithms are continuously improved until they 

can correctly extract all tabular information from training data. The basic unit of a table is the 

cell. Cells can be classified into four types: (1) row header, (2) column header, (3) footnote, and 

(4) content (Figure 0.1). The four types of cells form the body of a table. The finished algorithm 

can recognize the cell type and connect the information in each cell (e.g., texts, numbers). As a 

result, the authors developed: (1) a header detection sub-algorithm to recognize the boundaries of 

cells for each type, (2) a table layout detection sub-algorithm to distinguish layouts of tables, and

(3) two information transformation sub-algorithms to connect contents in the cells. 
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Figure 0.1. Example Table with the Four Types of Cell Components and Title. (Reprinted 

from IBC 2015 with permission from the International Code Council.)

The header detection sub-algorithm uses the structural information of the table to detect 

information components. The algorithm requires three inputs from the user for locations of row 

headers, column headers, and footnotes, respectively. Users then provide: (1) the number of 

columns used for row headers X1, (2) the number of rows used for column headers X2, and (3) 

the number of columns used for footnotes X3. There may be no footnotes (i.e., zero for X3) or 

row headers (i.e., zero for X1). The header detection sub-algorithm can then automatically 

identify the locations of different contents and split the table into different information 

components according to inputs from the user.  

After that, the layout detection sub-algorithm distinguishes the layouts of the tables based 

on their structural information. Tables in building codes have diverse layouts. The authors 

identified two master layouts based on how the information is organized in a table. Tables with 

row headers are considered to be in Master Layout One: a single cell is used to store an entry of 

building code requirement (Figure 0.2). Tables without row headers are considered to be in 

Master Layout Two: a row of cells is used to store an entry of building code requirement (Figure 

0.3). Master layouts ensure the robustness of this algorithm and simplify the information 

extraction process. The layout detection sub-algorithm can classify all tables in building codes 
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into these two master layouts depending on whether a table has a row header or not. The authors 

kept the algorithm simple to ensure the robustness of the entire table information processing. 

Figure 0.2. Example Table in Master Layout 1. (Reprinted from IBC 2015 with Permission from 

the International Code Council.)



118

Figure 0.3. Example Table in Master Layout 2. (Reprinted from IBC 2015 with Permission from 

the International Code Council.)

The end product of this step is a database that stores information from the table. The 

information conversion sub-algorithm connects information in different components of a table 

and inserts connected information into the database. Each master layout has a customized 

information conversion sub-algorithm. Customized information conversion sub-algorithm 

ensures the correct extraction of information inferred by the layout of tables. Tables in the same 

master layout use the same information conversion sub-algorithm. For tables in the same master 

layout, variations exist, such as having or not having a column for footnotes, having or not 

having a different number of rows in the column header. The information transformation sub-

algorithms are sufficiently robust to process such variations of tables in the same master layout. 

The sub-algorithm for the Master Layout One, which is for tables that use a single cell to 

store an entry of building code requirement, connects the cell, its corresponding row header and 
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column header, and its corresponding footnote (if exists) together and generates a command to 

insert the entry of building code requirement into the database. The sub-algorithm for the Master 

Layout Two, which is for tables that use an entire row to store an entry of building code 

requirement, connects each cell in the row with its corresponding column header and generates a 

command to insert the entry of building code requirement into the database. Once a command is 

generated, both sub-algorithms execute the command to insert building code requirements into 

the database.

5.3 Experiment

The header detection sub-algorithm, the layout detection sub-algorithm, and two 

information conversion sub-algorithms were developed based on tables (

Table 0.1) in Chapter 5 of IBC 2015 and were tested on tables in Chapter 10 (Table 0.2) of 

IBC 2015. Inputs of the developed algorithms were digital tables. Digital tables left less space 

for errors comparing to tables collected as scanned images. The authors manually inspected the 

extraction results by the algorithm to examine their performance. 

Table 0.1. Header and Cell Count of Training Tables

Table 

Index
Heading

Number of 

Headers

Number of 

Contents

504.3
ALLOWABLE BUILDING HEIGHT IN FEET ABOVE GRADE 

PLANE
39 120

504.4 ALLOWABLE NUMBER OF STORIES ABOVE GRADE PLANE 102 455

506.2
ALLOWABLE AREA FACTOR (At = NS, S1, S13R, or SM, as 

applicable) IN SQUARE FEET
124 612

508.4 REQUIRED SEPARATION OF OCCUPANCIES (HOURS) 41 200

509 INCIDENTAL USES 2 34
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Table 0.2. Header and Cell Count of Testing Tables

Table Index Heading
Number of 

Headers

Number of 

Contents

1004.1.2
MAXIMUM FLOOR AREA ALLOWANCES PER 

OCCUPANT
2 54

1006.2.1
SPACES WITH ONE EXIT OR EXIT ACCESS 

DOORWAY
20 52

1006.3.1
MINIMUM NUMBER OF EXITS OR ACCESS TO 

EXITS PER STORY
2 6

1006.3.2(1)
STORIES WITH ONE EXIT OR ACCESS TO ONE 

EXIT FOR R-2 OCCUPANCIES
4 8

1006.3.2(2)
STORIES WITH ONE EXIT OR ACCESS TO ONE 

EXIT FOR OTHER OCCUPANCIES
7 18

1010.1.4.1(1)
MAXIMUM DOOR SPEED MANUAL REVOLVING 

DOORS
2 10

1010.1.4(2)
MAXIMUM DOOR SPEED AUTOMATIC OR 

POWER-OPERATED REVOLVING DOORS
2 24

1017.2 EXIT ACCESS TRAVEL DISTANCE 13 20

1020.1 CORRIDOR FIRE-RESISTANCE RATING 11 18

1020.2 MINIMUM CORRIDOR WIDTH 2 14

1029.6.2
CAPACITY FOR AISLES FOR SMOKE-

PROTECTED ASSEMBLY
11 20

1029.12.2.1
SMOKE-PROTECTED ASSEMBLY AISLE 

ACCESSWAYS
16 32
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After that, the information conversion sub-algorithm injected the extracted information 

into databases. The authors used the SQLite database in the implementation of information 

conversion sub-algorithms (Sqlite Consortium, 2000). Each table was stored in a separate 

database. Two information conversion sub-algorithms were developed for the two master 

layouts. The layout detection sub-algorithm selects which information conversion algorithm to 

use. The information conversion algorithm generates an SQLite insertion command based on the 

syntax of SQLite and the layout of the table being processed. 

5.4 Result

The testing results are presented in Table 0.3. The results showed that the proposed method 

provided the correct results on eleven testing tables and failed in one. Correctly processed tables 

are the tables that are correctly converted to databases by the proposed method. The results can 

be verified manually using queries on the database. The failed table was Table 1006.2.1 (Figure 

0.4). Therefore, the proposed method processed 91.67% of the tables in the testing dataset 

correctly. The reason that the proposed method failed to provide correct results in Table 1006.2.1

was that this table had four levels of column headers. No table in Chapter 5 of 2015 IBC (i.e., 

training data) had more than two levels of column headers. The authors then updated the 

developed algorithm to accommodate tables with different levels of column headers. The 

updated algorithm was then tested on all testing tables again. The updated algorithm provided 

correct results on all tables. 
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Table 0.3. Results of Testing

Table Index Heading
Trained

Algorithms

Updated 

Algorithms

1004.1.2
MAXIMUM FLOOR AREA ALLOWANCES PER 

OCCUPANT
Success Success

1006.2.1 SPACES WITH ONE EXIT OR EXIT ACCESS DOORWAY Fail Success

1006.3.1
MINIMUM NUMBER OF EXITS OR ACCESS TO EXITS 

PER STORY
Success Success

1006.3.2(1)
STORIES WITH ONE EXIT OR ACCESS TO ONE EXIT 

FOR R-2 OCCUPANCIES
Success Success

1006.3.2(2)
STORIES WITH ONE EXIT OR ACCESS TO ONE EXIT 

FOR OTHER OCCUPANCIES
Success Success

1010.1.4.1(1)
MAXIMUM DOOR SPEED MANUAL REVOLVING 

DOORS
Success Success

1010.1.4(2)
MAXIMUM DOOR SPEED AUTOMATIC OR POWER-

OPERATED REVOLVING DOORS
Success Success

1017.2 EXIT ACCESS TRAVEL DISTANCE Success Success

1020.1 CORRIDOR FIRE-RESISTANCE RATING Success Success

1020.2 MINIMUM CORRIDOR WIDTH Success Success

1029.6.2
CAPACITY FOR AISLES FOR SMOKE-PROTECTED 

ASSEMBLY
Success Success

1029.12.2.1 SMOKE-PROTECTED ASSEMBLY AISLE ACCESSWAYS Success Success
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Figure 0.4. Table 1006.2.1 from IBC 2015. (Reprinted with Permission from the International 

Code Council.)
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The following experiment was further conducted to test if the information extraction sub-

algorithm correctly preserved the information inferred by the layout of tables and correctly 

extracted building code requirements in the cells. The accuracy of the algorithm was tested by 

checking if the generated database returns the correct results when queried. Correct results were 

where the corresponding value of a building code requirement in tables can be successfully 

returned by the query. For example, when the database for Table 1006.2.1 is queried for the 

maximum occupant load of space of occupancy Type B, it should return 49. The authors queried 

every entry in the generated databases for every table in the testing dataset and reviewed the 

returned values of every query. In 100% of cases, the query returned correct results. The 

generated database preserves all information inferred by the layout of the tables. Another reason 

for the 100% accuracy is the authors used digital tables, instead of scanned tables, as inputs to 

the information extraction sub-algorithm. Errors in recognizing the content of scanned tables 

were therefore prevented. For example, the algorithm did not suffer from errors in OCR.

5.5 Discussion

In the past decade, automated code compliance checking domain developed at a fast pace. 

However, limited range of checkable codes hinders wide-spread application of automated code 

compliance checking systems. No construction industry practitioner will likely use automated 

code compliance checking systems that require them to manually check part of building codes. 

After an intense literature review, the authors found that no previous automated code compliance 

checking research targeted building code requirements in a tabular format, i.e., regulations 

associated with tables. However, almost all building codes store a large amount of building code 

requirements in table format. Automated code compliance checking systems that do not cover 

building code requirements in tables cannot achieve the goal of making automated code 

compliance checking systems with full coverage (Salama & El-gohary, 2016). The research in 

this chapter expanded the range of checkable building code requirements of automated code 

compliance checking systems to tables in building code and facilitates the industry adoption of 

automated code compliance checking systems. 

The following limitations of the building codes tabular information processing method are 

acknowledged. First, the proposed method requires digital tables as inputs and manual 

conversion or third-party software to process tables from hard copy or images into digital tables. 
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Future versions of the proposed method should incorporate the processing of scanned tables, e.g., 

using OCR functions. Second, the proposed method requires manual inputs in layout detection. 

The proposed method cannot detect layouts of tables without such inputs from users in spite of 

the fact that such inputs are minimal. The authors propose to develop a fully automated layout 

detection algorithm for tables in building codes in the future work. 

5.6 Contributions to the Body of Knowledge

The research in this chapter was conducted to provide a new method to extend the range of 

checkable building code requirements of automated building code compliance checking systems 

to cover tables in building codes. The contributions to the body of knowledge are four-fold. First, 

the extension of checkable building code requirements to tables proves the feasibility of 

checking non-textual building code requirements in a semi-automated way. Second, the research 

in this chapter could help incorporate more building code requirement details into fully 

automated code compliance checking systems in a more efficient way, comparing to the state of 

the art. With an enlarged range of checkable building code requirements, an automated code 

compliance checking system can provide more value to its users, which could lead to a wider 

adoption of automated building code compliance checking and synergistically facilitating the 

adoption of BIM. Third, the authors enhanced the robustness of automated code compliance 

checking systems. By storing database and generating logic rules on the go, automated code 

compliance checking systems will benefit from a smaller rule set which has better 

maintainability comparing to a larger one. Last but not least, the authors calculated that 1,542 

logic rules can be generated from tables in the training and test datasets, sourced from 17 tables 

in two chapters of IBC 2015, which has 35 chapters in total. After interpolation, the authors

estimated that the proposed method can help complete about 26,985 new rules with tabular 

information for IBC 2015. The proposed method can therefore significantly expand the range of 

checkable building code requirements of ACC systems.

5.7 Conclusion

This proposed method in this chapter incorporated tabular information in building codes 

into automated code compliance checking systems. The initial tabular information extraction 
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method achieved a 91.67% success rate on tables in the testing dataset. The updated information 

extraction method could successfully process all tables in the testing dataset and correctly 

preserved information inferred by the layout of tables. The proposed method still requires minor 

human input, which the authors will further address in the future work.
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6 DISCUSSION AND SUGGESTIONS FOR FUTURE RESARCH

6.1 Discussion

This dissertation research is innovative in many ways when compared to the state of the art. 

NLP research nowadays mostly focused on creating larger and larger machine learning models to 

exceed state-of-the-art performance on generic datasets (Devlin et al., 2019). This dissertation 

research successfully addressed a domain-specific NLP task of information extraction from 

building codes by combining both deep learning and rule-based approaches. (1) The first 

research question, “How to improve the performance of POS tagging on building codes 

compared to the state of the art?” was addressed by performing a domain-specific POS tagging 

of building codes with a new POS tagging method (in Chapter Three). The proposed POS tagger 

combined error-driven transformational rules (which is illustrated in Chapter Two) and a neural 

network model. (2) Chapter Four and Chapter Five addressed the research question of “How to 

expand the range of checkable building code requirements that can be used in state-of-the-art 

automated code compliance checking systems?” Chapter Four provided a ruleset expansion 

method that can expand the range of checkable building code requirements while incurring a 

minimum amount of marginal cost. While earlier automated code compliance checking research 

has concentrated solely on building code requirements in textual format, this dissertation 

research presented a mechanism for extracting regulatory information from building code tables 

(in Chapter Five). 

Information extraction methods from building codes in order to further expand the range of 

checkable building code requirements of automated code compliance checking systems is a 

future research direction. The findings of this dissertation research can be employed in 

automated code compliance checking systems to identify nonconformities in building designs. 

Possible customers of automated building code compliance checking systems supported by the 

methods and technologies presented in this dissertation research include authorities having 

jurisdictions that oversee plan review and permit issuance and building designers who want to 

double-check their designs before submitting them to the government agencies. This dissertation 

research’s findings can help reduce the duration of code compliance checking from weeks or 

months to seconds. The productivity of the AEC industry overall can benefit as the speed of 
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compliance checking increases. Construction productivity will be improved as construction 

projects’ overall duration (i.e., spanning its life cycle starting from planning and design) is 

shortened. While this dissertation research cannot currently offer fully automated code 

compliance checking, which involves generating code compliance checking results without any 

user intervention, it can still help plan reviewers speed up the code compliance checking process 

significantly. In many states, building construction cannot begin without first acquiring a 

building permit. Automated code compliance checking can shorten the time between submitting 

a building design and receiving a building permit and therefore can reduce the project’s overall 

duration and lower construction costs significantly (e.g., by reducing cooperative overhead).

6.2 Suggestions for Future Research

The dissertation research points to serval directions of future research, including:

1. Further improving POS tagging accuracy on building codes. As an early step of NLP-

based information extraction for automated code compliance checking systems, errors in 

POS tagging will cascade to future steps of code checking. In this dissertation research, 

the author reached an accuracy of 96.85% on the PTBC dataset, which advanced the 

state of the art. However, there is still space for improvement. Therefore, to ensure the 

best performance of code checking, POS tagging accuracy of building codes still needs 

to be improved in future research.

2. Identifying previously unknown patterns in POS tagging error fixing. The error-driven 

transformational rules fixed more than 60% errors that are made by POS taggers. 

However, 40% of errors still remained unfixed. The error-driven transformational rules 

used unigram and bigram in patterns, which were not able to fix all errors. Future 

research could focus on more complex patterns with more features, such as longer 

patterns and skip-gram patterns, which have the potential to fix the remaining errors.

3. Achieving automated cell classification in tabular information extraction. The proposed 

method still required some manual effort in cell classification. To achieve full 

automation in tabular information extraction, automated cell classification needs to be 

investigated in future research.
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APPENDIX A: PATTERNS USED IN EXPANDED PATTERN 

MATCHING-BASED RULES

1. [complementary subject, candidate subject, candidate compliance checking attribute], inter 

clause boundary relation, [complementary subject, candidate subject, candidate 

compliance checking attribute], indicating “part_of” or “belongs_to” relation by the term 

"of", [complementary subject, candidate subject, candidate compliance checking attribute], 

Conjunctive Term, [complementary subject, candidate subject, candidate compliance 

checking attribute].

2. candidate subject, preposition, complementary subject, inter clause boundary relation, 

candidate subject, adjective, preposition, candidate subject.

3. [candidate subject, complementary subject, comparative relation], inter clause boundary 

relation, gerund or present participle verb, [candidate subject, complementary subject, 

comparative relation].

4. [complementary subject, candidate subject, candidate compliance checking attribute], past 

participle verb, comparative relation, value, unit, conjunctive term, comparative relation, 

value, unit.

5. complementary subject, modal verb, base form verb, value, unit, comparative relation, 

comparative relation, conjunctive term, value, unit, adjective, preposition, candidate 

subject.

6. [complementary subject, candidate subject, candidate compliance checking attribute], 

modal verb, negation, base form verb, comparative relation, value, unit, preposition, 

complementary subject.

7. [candidate subject, complementary subject, comparative relation], gerund or present 

participle verb, inter clause boundary relation, [candidate subject, complementary subject, 

comparative relation].

8. [candidate subject, complementary subject], inter clause boundary relation, [ candidate 

subject, complementary subject], inter clause boundary relation

9. [candidate subject, complementary subject], slash “/”, [candidate subject, complementary 

subject].

10. candidate compliance checking attribute, indicating “part_of” or “belongs_to” relation by 

the term “of”, for each, candidate subject.

11. candidate subject, relation verb, inter clause boundary relation, candidate subject

12. candidate compliance checking attribute, modal verb, base form verb, negation, 

comparative relation, candidate compliance checking attribute.

13. value, complementary subject, preposition, for each, value, unit, indicating “part_of” or 

“belongs_to” relation by the term “of”, candidate compliance checking attribute.

14. [candidate subject, complementary subject, candidate compliance checking attribute], 

preposition, for each..

15. [complementary subject, candidate subject, candidate compliance checking attribute], 

[non-3rd person singular present verb, modal verb, base form verb],possessive subject 

restriction, value,[complementary subject, candidate subject, candidate compliance 

checking attribute].

16. [complementary subject, candidate subject, candidate compliance checking attribute], 

[non-3rd person singular present verb, base form verb, 3rd person singular present verb], 
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comparative relation, value, [complementary subject, candidate subject, candidate 

compliance checking attribute].

17. [candidate subject, complementary subject, comparative relation], inter clause boundary 

relation, conjunctive term, [candidate subject, complementary subject, comparative 

relation].

18. complementary subject, preposition, complementary subject, modal verb, negation, base 

form verb, candidate compliance checking attribute.

19. [complementary subject, candidate subject, candidate compliance checking attribute], 

indicating “part_of” or “belongs_to” relation by the term “of”, complementary subject, 

non-3rd person singular present verb,3rd person singular present verb, negation, 

comparative relation, value, unit.

20. [candidate subject, complementary subject, candidate compliance checking attribute], for 

“with” or “with in” relation, [candidate subject, complementary subject, candidate 

compliance checking attribute].

21. base form verb, preposition, [candidate subject, complementary subject, candidate 

compliance checking attribute.

22. candidate subject, modal verb, negation, base form verb, candidate subject.

23. [candidate subject, candidate compliance checking attribute], relation verb, 

[complementary subject, candidate compliance checking attribute], inter clause boundary 

relation, complementary subject.

24. [candidate subject, complementary subject, comparative relation], indicating “part_of” or 

“belongs_to” relation by the term “of”, for each, [candidate subject, complementary subject, 

comparative relation].

25. complementary subject, character, cardinal number.

26. [candidate subject, candidate compliance checking attribute], indicating “part_of” or 

“belongs_to” relation by the term “of”, value, unit, adjective.

27. candidate compliance checking attribute, gerund or present participle verb, inter clause 

boundary relation, [candidate subject, complementary subject, comparative relation, 

candidate compliance checking attribute].

28. [complementary subject, candidate subject, candidate compliance checking attribute], 

preposition, [complementary subject, candidate subject, candidate compliance checking 

attribute], [preposition, the word “to”], [complementary subject, candidate subject, 

candidate compliance checking attribute].

29. complementary subject, modal verb, base form verb, preposition, candidate subject, value.

30. candidate compliance checking attribute, modal verb, negation, base form verb, the word 

“to”, candidate subject.

31. [complementary subject, candidate subject, candidate compliance checking attribute], 

relation verb, value, unit, conjunctive term, value, unit.

32. complementary subject, modal verb, base form verb, negation, comparative relation, value, 

unit, preposition, candidate compliance checking attribute.

33. candidate compliance checking attribute, conjunctive term, past participle verb, candidate 

compliance checking attribute.

34. [candidate subject, complementary subject, candidate compliance checking attribute, 

comparative relation], 3rd person singular present verb, past participle verb.

35. [complementary subject, candidate compliance checking attribute], modal verb, base form 

verb, relation verb, [complementary subject, candidate subject, candidate compliance 
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checking attribute.

36. candidate subject, modal verb, negation, base form verb, candidate compliance checking 

attribute.

37. preposition, value, unit, candidate subject.

38. modal verb, negation, base form verb, [adjective, past participle verb, past tense verb]

39. value, unit, preposition, candidate subject.

40. preposition, value, unit, indicating “part_of” or “belongs_to” relation by the term “of”, 

candidate subject.

41. relation verb, candidate compliance checking attribute, indicating “part_of” or “belongs_to” 

relation by the term “of”, cardinal number, conjunctive term, comparative adjective.

42. preposition, past participle verb, candidate compliance checking attribute.

43. complementary subject, the word “to”, value, complementary subject.

44. negation, comparative relation, value, slash “/”, unit, candidate compliance checking 

attribute.

45. candidate subject, possessive subject restriction.

46. complementary subject, candidate compliance checking attribute.

47. preposition, value, unit, candidate subject, indicating “part_of” or “belongs_to” relation by 

the term “of”, candidate compliance checking attribute.

48. complementary subject, modal verb, possessive subject restriction, complementary subject.

49. complementary subject, candidate subject, candidate compliance checking attribute], value,

conjunctive term, comparative adjective, [complementary subject, candidate subject, 

candidate compliance checking attribute].

50. adjective, indicating “part_of” or “belongs_to” relation by the term “of”, [candidate subject, 

complementary subject, candidate compliance checking attribute].

51. preposition, value, unit, preposition, candidate compliance checking attribute.

52. candidate compliance checking attribute, indicating “part_of” or “belongs_to” relation by 

the term “of”, value, unit, the word “to”, value, unit.

53. [candidate subject, complementary subject, candidate compliance checking attribute, 

comparative relation], indicating “part_of” or “belongs_to” relation by the term “of’, 

gerund or present participle verb, [candidate subject, complementary subject, candidate 

compliance checking attribute, comparative relation].

54. comparative relation, value, [candidate subject, complementary subject].

55. [candidate subject, complementary subject, candidate compliance checking attribute, 

comparative relation], indicating “part_of” or “belongs_to” relation by the term “of”, 

comparative adjective, [candidate subject, complementary subject, candidate compliance 

checking attribute, comparative relation].

56. complementary subject, candidate subject, candidate compliance checking attribute], 

negation, comparative relation, value, [complementary subject, candidate subject, 

candidate compliance checking attribute].

57. candidate subject, gerund or present participle verb, candidate compliance checking 

attribute, indicating “part_of” or “belongs_to” relation by the term “of”, comparative 

relation, value.

58. negation, comparative relation, value, indicating “part_of” or “belongs_to” relation by the 

term “of”, candidate compliance checking attribute, indicating “part_of” or “belongs_to” 

relation by the term “of”, complementary subject.

59. candidate compliance checking attribute, modal verb, base form verb, past participle verb.
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60. negation, comparative relation, value, indicating “part_of” or “belongs_to” relation by the 

term “of”, candidate compliance checking attribute.

61. candidate compliance checking attribute, 3rd person singular present verb, negation, 

comparative relation, value, unit.

62. candidate subject, comparative relation, value, preposition, complementary subject.

63. negation, possessive subject restriction, comparative relation, value, unit, indicating 

“part_of” or “belongs_to” relation by the term “of”, candidate compliance checking 

attribute.

64. candidate subject, preposition, comparative relation, value, unit.

Note: brackets means words in multiple patterns can be fit into the slot of the pattern.
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