
NATURAL LANGUAGE PROCESSING-BASED AUTOMATED

INFORMATION EXTRACTION FROM BUILDING CODES TO SUPPORT

AUTOMATED COMPLIANCE CHECKING

by

Xiaorui Xue

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Construction Management Technology

West Lafayette, Indiana

August 2022

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Jiansong Zhang, Chair

Department of Constrution Management Technology

Dr. Yunfeng Chen

Department of Construction Management Technology

Dr. Luciana Debs

Department of Construction Management Technology

Dr. Yi Jiang

Department of Construction Management Technology

Dr. Zeljko M. Torbica

Department of Construction Management Technology

Approved by:

Dr. Kathryne A. Newton

3

To my family…

4

ACKNOWLEDGMENTS

I want to thank my major professor, Dr. Jiansong Zhang for his support and all his help with

this PhD study. I also want to thank Dr. Yunfeng Chen, Dr. Luciana Debs, Dr. Yi Jiang, and Dr.

Zeljko M. Torbica for serving in my committee. I also want to give thanks to members of our

research lab, AutoIC lab. They provide me invaluable help and friendship during my PhD study.

In addition, I want to thank my parents for their support in my life. Without their support, I could

not have gone this far.

The author would like to thank the National Science Foundation (NSF). The material in this

dissertation is based on work supported by the NSF under Grant No. 1827733. Any opinions,

findings, and conclusions or recommendations expressed in this dissertation are those of the

author and do not necessarily reflect the views of the NSF.

Some or all data, models, or code generated or used during this dissertation are available

upon reasonable request.

5

TABLE OF CONTENTS

TABLE OF CONTENTS.. 5

LIST OF TABLES.. 9

LIST OF FIGURES .. 10

ABSTRACT.. 12

1 INTRODUCTION ... 15

1.1 Research Question ... 18

1.2 Significance.. 19

1.3 Purpose Statement.. 19

1.4 Dissertation Structure... 19

1.5 Definitions.. 21

1.6 Assumptions... 23

1.7 Limitations ... 23

1.8 Delimitations.. 24

1.9 Permission to Republish .. 24

2 BUILDING CODES PART-OF-SPEECH TAGGING PERFORMANCE IMPROVEMENT

BY ERROR-DRIVEN TRANSFORMATIONAL RULES ... 26

2.1 Literature Review... 26

2.1.1 Automated Code Compliance Checking .. 26

2.1.2 Information Extraction Systems ... 28

2.1.3 Part-of-Speech (POS) ... 29

2.1.3.1 Rule-based Part-of-Speech Tagger .. 31

2.1.3.2 Machine Learning Part-of-Speech Tagger... 32

2.2 Methodology .. 32

2.2.1 Overview of the Method... 33

2.2.2 Description of Transformational Rules .. 37

2.2.2.1 N-grams Rulesets .. 37

2.2.2.2 Remaining Error Rulesets ... 37

2.2.2.3 Rule Acceptance Test.. 38

2.2.3 Rule Generation .. 38

6

2.2.4 Rule Application... 42

2.3 Experiment... 45

2.4 Results.. 47

2.5 Discussion.. 50

2.6 Contributions to the Body of Knowledge.. 51

2.7 Conclusion ... 52

2.8 Acknowledgement ... 52

3 PART-OF-SPEECH TAGGING OF BUILDING CODES EMPOWERED BY DEEP

LEARNING AND TRANSFORMATIONAL RULES ... 54

3.1 Literature Review... 54

3.1.1 Part-of-Speech (POS) ... 54

3.1.2 Error-driven Transformational Rules ... 56

3.1.3 Recurrent Neural Network.. 56

3.1.3.1 Simple RNN .. 59

3.1.3.2 Long Short-Term Memory .. 59

3.1.3.3 Gated Recurrent Unit .. 60

3.1.3.4 Attention Mechanism .. 61

3.1.3.5 Transformer ... 61

3.1.3.6 BERT... 62

3.2 Methodology .. 63

3.2.1 POS Tagger Architecture.. 64

3.2.2 POS Tagger Search Strategy .. 65

3.3 Experiment... 67

3.3.1 Textual Data.. 67

3.3.2 Step 1: Select the Number of Epochs of Training and the Trainable Layer................. 69

3.3.3 Step 2: Search a Well-performing Pre-trained Model .. 71

3.3.4 Step 3: Search the Optimal Number of Trainable Layers... 73

3.4 Result ... 73

3.4.1 Step 1 Result: Epochs of Training and Trainable Layers Combination 74

3.4.2 Step 2 Result: The Best-performing Pre-trained Model ... 75

3.4.3 Step 3 Result: The Optimal Number of Trainable Layers .. 77

7

3.4.3.1 Effectiveness of Error-driven Transformational Rules. .. 77

3.4.3.2 Effectiveness of GRU.. 81

3.4.3.3 Tagging Example .. 81

3.4.3.4 Impact of Data Split Scenarios.. 81

3.5 Discussion .. 84

3.6 Contributions to the Body of Knowledge .. 85

3.7 Conclusion ... 85

3.8Acknowledgement .. 86

4 REGULATORY INFORMATION TRANSFORMATION RULESET EXPANSION TO

SUPPORT AUTOMATED BUILDING CODE COMPLIANCE CHECKING.......................... 87

4.1 Literature Review... 87

4.1.1 Natural Language Processing ... 87

4.1.2 Part-of-Speech .. 88

4.1.3 Ontology ... 89

4.1.4 Text Similarity Measurements.. 89

4.2 Methodology .. 90

4.2.1 Ruleset Expansion Method ... 95

4.2.2 Feature Enhancement.. 98

4.2.3 Pattern Extraction ... 99

4.3 Experiment... 100

4.3.1 Ruleset Expansion Experiment... 100

4.3.2 Gold Standard Generation .. 102

4.4 Result ... 104

4.5 Discussion .. 107

4.6 Contributions to the Body of Knowledge .. 108

4.7 Conclusion ... 110

4.8 Acknowledgement ... 111

5 SEMI-AUTOMATED GENERATION OF LOGIC RULES FOR TABULAR

INFORMATION IN BUILDING CODES TO SUPPORT AUTOMATED CODE

COMPLIANCE CHECKING... 112

5.1 Literature Review... 112

8

5.1.1 Existing Work in Automated Building Code Compliance Checking 112

5.1.2 Table Processing... 113

5.2 Methodology .. 114

5.2.1 Information Extraction.. 115

5.3 Experiment... 119

5.4 Result ... 121

5.5 Discussion .. 124

5.6 Contributions to the Body of Knowledge .. 125

5.7 Conclusion ... 125

5.8 Acknowledgement ... 126

6 DISCUSSION AND SUGGESTIONS FOR FUTURE RESARCH 127

6.1 Discussion .. 127

6.2 Suggestions for Future Research ... 128

APPENDIX A: PATTERNS USED IN EXPANDED PATTERN MATCHING-BASED RULES

... 129

APPENDIX B: PERMISSION FROM PUBLISHER .. 133

REFERENCE.. 163

9

LIST OF TABLES

Table 0.1. Chapters in the Dissertation... 21

Table 0.1. POS Tags in the Penn Treebank Tagset... 30

Table 0.2. Candidate Rules with High Risk and Low Risk .. 42

Table 0.3. Transformational Rulesets in the Experiment ... 47

Table 0.4. POS Tagging Accuracy After Applying Each Ruleset .. 49

Table 0.1. Available Versions of BERT ... 63

Table 0.2. Summary of the Performance of Models... 74

Table 0.3. Number of Trainable Layers vs. Precision .. 77

Table 0.4. Results of Second Training/Testing Split Method... 83

Table 0.5. Results of Third Training/Testing Split Method.. 84

Table 0.1. Sample Logic Clauses Generated by Annotators .. 103

Table 0.2. Performance of Applying Ruleset Expansion Method .. 106

Table 0.3. Logic Clause-Level Performance .. 106

Table 0.4. Performance on Processing Construction Contract ... 108

Table 0.5. Examples of Contract Sentences and Corresponding Logic Clauses Generated....... 108

Table 0.1. Header and Cell Count of Training Tables .. 119

Table 0.2. Header and Cell Count of Testing Tables.. 120

Table 0.3. Results of Testing .. 122

10

LIST OF FIGURES

Figure 0.1. Relation between Published Chapters and Research Questions................................. 21

Figure 0.1. Error Collection Process... 35

Figure 0.2. Proposed Method.. 36

Figure 0.3. Rule Generation Process... 40

Figure 0.4. Rule Application Process ... 44

Figure 0.5. Textual Data Example .. 46

Figure 0.1. Example Application of a Neural Network POS Tagger ... 58

Figure 0.2. The Architecture of the Proposed POS Tagger .. 65

Figure 0.3. The Three-step Approach for Efficient Grid Search .. 66

Figure 0.4. Split of Training, Validation, and Testing Data ... 68

Figure 0.5. POS Tagger Goal.. 68

Figure 0.6. Models Trained in Step 1 ... 70

Figure 0.7. Models Trained in Step 2 ... 72

Figure 0.8. Two Models Trained in Step 3 ... 73

Figure 0.9. Influence of Epochs of Training and Trainable Layers to Precision.......................... 75

Figure 0.10. Precision, Recall and F1-score of Models with Different Pre-trained Models 76

Figure 0.11. Precision of each Model before and after Applying Transformational Rules.......... 78

Figure 0.12. Training and Testing Accuracy of Models ... 79

Figure 0.13. Comparison with State-of-the-art POS Tagger .. 80

Figure 0.1. Example Logic Clause.. 92

Figure 0.2. Automated Logic Clause Generation ... 93

Figure 0.3. Ruleset Expansion Method... 97

Figure 0.1. Example Table with the Four Types of Cell Components and Title. (Reprinted from

IBC 2015 with permission from the International Code Council.)... 116

Figure 0.2. Example Table in Master Layout 1. (Reprinted from IBC 2015 with Permission from

the International Code Council.)... 117

Figure 0.3. Example Table in Master Layout 2. (Reprinted from IBC 2015 with Permission from

the International Code Council.)... 118

11

Figure 0.4. Table 1006.2.1 from IBC 2015. (Reprinted with Permission from the International

Code Council.) .. 123

12

ABSTRACT

Traditional manual code compliance checking process is a time-consuming, costly, and

error-prone process that has many shortcomings (Zhang & El-Gohary, 2015). Therefore,

automated code compliance checking systems have emerged as an alternative to traditional code

compliance checking. However, computer software cannot directly process regulatory

information in unstructured building code texts. To support automated code compliance

checking, building codes need to be transformed to a computer-processable, structured format. In

particular, the problem that most automated code compliance checking systems can only check a

limited number of building code requirements stands out.

The transformation of building code requirements into a computer-processable, structured

format is a natural language processing (NLP) task that requires highly accurate part-of-speech

(POS) tagging results on building codes beyond the state of the art. To address this need, this

dissertation research was conducted to provide a method to improve the performance of POS

taggers by error-driven transformational rules that revise machine-tagged POS results. The

proposed error-driven transformational rules fix errors in POS tagging results in two steps. First,

error-driven transformational rules locate errors in POS tagging by their context. Second, error-

driven transformational rules replace the erroneous POS tag with the correct POS tag that is

stored in the rule. A dataset of POS tagged building codes, namely the Part-of-Speech Tagged

Building Codes (PTBC) dataset (Xue & Zhang, 2019), was published in the Purdue University

Research Repository (PURR). Testing on the dataset illustrated that the method corrected

71.00% of errors in POS tagging results for building codes. As a result, the POS tagging

accuracy on building codes was increased from 89.13% to 96.85%.

This dissertation research was conducted to provide a new POS tagger that is tailored to

building codes. The proposed POS tagger utilized neural network models and error-driven

transformational rules. The neural network model contained a pre-trained model and one or more

trainable neural layers. The neural network model was trained and fine-tuned on the PTBC (Xue

& Zhang, 2019) dataset, which was published in the Purdue University Research Repository

(PURR). In this dissertation research, a high-performance POS tagger for building codes using

one bidirectional Long-short Term Memory (LSTM) Recurrent Neural Network (RNN) trainable

layer, a BERT-Cased-Base pre-trained model, and 50 epochs of training was discovered. This

13

model achieved 91.89% precision without error-driven transformational rules and 95.11%

precision with error-driven transformational rules, outperforming the otherwise most advanced

POS tagger’s 89.82% precision on building codes in the state of the art.

Other automated information extraction methods were also developed in this dissertation.

Some automated code compliance checking systems represented building codes in logic clauses

and used pattern matching-based rules to convert building codes from natural language text to

logic clauses (Zhang & El-Gohary 2017). A ruleset expansion method that can expand the range

of checkable building codes of such automated code compliance checking systems by expanding

their pattern matching-based ruleset was developed in this dissertation research. The ruleset

expansion method can guarantee: (1) the ruleset’s backward compatibility with the building

codes that the ruleset was already able to process, and (2) forward compatibility with building

codes that the ruleset may need to process in the future. The ruleset expansion method was

validated on Chapters 5 and 10 of the International Building Code 2015 (IBC 2015). The Chapter

10 of IBC 2015 was used as the training dataset and the Chapter 5 of the IBC 2015 was used as

the testing dataset. A gold standard of logic clauses was published in the Logic Clause

Representation of Building Codes (LCRBC) dataset (Xue & Zhang, 2021). Expanded pattern

matching-based rules were published in the dissertation (Appendix A). The expanded ruleset

increased the precision, recall, and f1-score of the logic clause generation at the predicate-level

by 10.44%, 25.72%, and 18.02%, to 95.17%, 96.60%, and 95.88%, comparing to the baseline

ruleset, respectively.

Most of the existing automated code compliance checking research focused on checking

regulatory information that was stored in textual format in building code in text. However, a

comprehensive automated code compliance checking process should be able to check regulatory

information stored in other parts, such as, tables. Therefore, this dissertation research was

conducted to provide a semi-automated information extraction and transformation method for

tabular information processing in building codes. The proposed method can semi-automatically

detect the layouts of tables and store the extracted information of a table in a database.

Automated code compliance checking systems can then query the database for regulatory

information in the corresponding table. The algorithm’s initial implementation accurately

processed 91.67 % of the tables in the testing dataset composed of tables in Chapter 10 of IBC

14

2015. After iterative upgrades, the updated method correctly processed all tables in the testing

dataset.

15

1 INTRODUCTION

A portion of this chapter was previously published in:

Xue, X., Zhang, J. (2020). Building codes part-of-speech tagging performance improvement by

error-driven transformational rules. Journal of Computing in Civil Engineering, 34(5),

04020035. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917

Xue, X., Zhang, J. (2021). Erratum for “Building codes part-of-speech tagging performance

improvement by error-driven transformational rules” by Xiaorui Xue and Jiansong Zhang.

Journal of Computing in Civil Engineering, 35(1), 08220002.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000950

Xue, X., Zhang, J. (2021). Part-of-speech tagging of building codes empowered by deep learning

and transformational rules. Advanced Engineering Informatics, 47(January 2021), 101235.

https://doi.org/10.1016/j.aei.2020.101235

Xue, X., Zhang, J. (2022). Regulatory information transformation ruleset expansion to support

automated building code compliance checking. Automation in Construction, 138(June

2022), 104230. https://doi.org/10.1016/j.autcon.2022.104230

Xue, X., Wu, J., Zhang, J. (2022). Semi-automated generation of logic rules for tabular

information in building codes to support automated code compliance checking. Journal of

Computing in Civil Engineering, 36(1), 04021033. https://doi.org/10.1061/(ASCE)CP.1943-

5487.0001000

Republished with permission of American Society of Civil Engineers, from Building codes part-

of-speech tagging performance improvement by error-driven transformational rules, Xiaorui

Xue, and Jiansong Zhang, 34, 2020; permission conveyed through Copyright Clearance

Center,Inc.

Republished with permission of American Society of Civil Engineers, from Erratum for

“Building codes part-of-speech tagging performance improvement by error-driven

transformational rules” by Xiaorui Xue and Jiansong Zhang, Xiaorui Xue and Jiansong Zhang,

35, 2021; permission conveyed through Copyright Clearance Center,Inc.

Republished with permission of Elsevier Science &Technology Journals, from Part-of-speech

tagging of building codes empowered by deep learning and transformational rules, Xiaorui Xue,

and Jiansong Zhang, 47, 2022; permission conveyed through Copyright Clearance Center,Inc.

Republished with permission of Elsevier Science &Technology Journals, from Regulatory

information transformation ruleset expansion to support automated building code compliance

checking, Xiaorui Xue, and Jiansong Zhang, 138, 2022; permission conveyed through Copyright

Clearance Center,Inc.

Republished with permission of American Society of Civil Engineers, from Semi-automated

generation of logic rules for tabular information in building codes to support automated code

compliance checking, Xiaorui Xue, Jin Wu, and Jiansong Zhang, 36, 2022; permission conveyed

through Copyright Clearance Center,Inc.

16

Author Contribution

The authors confirmed contribution to the paper as follows:

Study conception and design: Xiaorui Xue, Jin Wu, Jiansong Zhang.

Data collection: Xiaorui Xue, Jin Wu, Jiansong Zhang.

Analysis and interpretation of results: Xiaorui Xue, Jin Wu, Jiansong Zhang.

Draft manuscript preparation: Xiaorui Xue, Jin Wu, Jiansong Zhang.

All authors reviewed the results and approved the final version of the manuscript.

Construction industry is regulated by a wide range of building codes. Code compliance

checking to get the approval of a building permit is a crucial step prior to construction. However,

traditional manual code compliance checking is time-consuming and expensive (Zhang & El-

Gohary, 2016). Therefore, the demand to automate code compliance checking emerged. In order

to achieve full automation in code compliance checking, regulatory information in building

codes must be extracted and stored in a computer-processable and structured format to support

automated code compliance checking.

Building codes need to be converted from unstructured natural language to a structured

format that computers are able to process to support automated code compliance checking. Some

automated code compliance checking systems relied on hiring domain experts to perform manual

transformations (İlal & Günaydın, 2017). However, attempts to achieve automated code

compliance checking this way, even with support from government, often ceased after intensive

investment due to high cost of maintaining domain experts’ efforts (Amor & Dimyadi, 2021).

The automated transformation of building code requirements to a computable structured format

is a natural language processing (NLP) task that requires highly accurate part-of-speech (POS)

tagging on building codes. Part-of-speech taggers categorize words according to their syntactic

functions in a sentence (Brill, 1992) and was frequently used as a basic step in NLP-based

architecture, engineering, and construction (AEC) domain research and applications (Kwayu et

al, 2019; Ren & Zhang, 2021; Zhang & El-Gohary, 2013). Existing POS taggers, however, do

not provide sufficient accuracy on building codes, because performance of POS taggers

deteriorates in out-of-domain text (Coden et al., 2005). To better support automated code

compliance checking, the authors proposed the following Natural Language Processing (NLP)-

17

based methods to support automated Information Extraction (IE) from building codes in this

chapter: (1) improving performance of part-of-speech tagging on building codes by error-fixing

rules, (2) part-of-speech tagging of building code by deep learning and error-fixing rules, (3)

generating logic clauses for tabular information in building codes, and (4) pattern matching-

based transformational ruleset expansion method to increase the coverage of building code

transformational rules.

This dissertation research was conducted to improve the performance of POS taggers by

error-driven transformational rules that revise machine tagged POS results. The proposed method

utilizes a syntactic and semantic rule-based, NLP approach combined with a structure that is

inspired by transfer learning. In transfer learning, large models, which are usually trained on

large body of texts on unsupervised tasks, are fine-tuned on small labeled datasets to increase

performance on supervised tasks (Pan & Yang, 2009). This method generates a group of

transformational rulesets, from simple ones to complex ones, that can convert machine taggers’

tagging results to their corresponding human-labeled gold standard. The transformational rules

utilize syntactic and semantic information of domain texts.

Automated building code compliance checking systems were under development for many

years (Dimyadi & Amor, 2013). However, the excessive number of human inputs needed to

convert building codes from natural language to computer understandable codes severely limited

their range of applicable code requirements (İlal & Günaydın, 2017). To address this, automated

code compliance checking systems need to enable an automated regulatory rules conversion.

Accurate POS tagging of building code texts is crucial to support this conversion. Previous

experiments showed that the state-of-the-art generic POS taggers did not perform well on

building codes (Xue & Zhang, 2020). In view of that, this dissertation research was conducted to

provide a new POS tagger tailored to building codes. It utilizes deep learning neural network

model and error-driven transformational rules. The neural network model contains a pre-trained

model and one or more trainable neural layers. The pre-trained model was fine-tuned on Part-of-

speech Tagged Building Codes (PTBC), a POS tagged building codes dataset prepared in this

dissertation research. The fine-tuning of pre-trained model allows the proposed POS tagger to

reach high precision with a small amount of available training data.

One limitation of many existing automated code compliance checking systems/methods is

their limited range of checkable building code requirements. To address that, the state of the art

18

uses pattern matching-based rules to transform building code requirements to computable

formats automatically, but the ruleset was developed and tested only on few chapters of building

code requirements (Zhang & El-Gohary, 2016). An efficient ruleset expansion method is needed

to enlarge its range of checkable building code requirements with low-cost and bring automated

code compliance checking systems closer to full deployment. Expanding an existing regulatory

information transformation ruleset requires less manual effort than developing a new ruleset.

This dissertation research was conducted to provide a method that can expand the range of

checkable code requirements of automated code compliance checking systems without

significant manual effort. The proposed ruleset expansion method takes an iterative approach to

ensure the generality and validity of new pattern matching-based rules and the quality of

information transformation results.

Another limitation of the range of checkable building codes of many existing automated

code compliance checking system is that they mostly focused on and were limited to

automatically processing regulatory information that was stored in the text part of the codes.

Nonetheless, a fully automated method for code compliance checking should be able to examine

regulatory information in other parts of the textual document, such as in tables. This dissertation

research was therefore conducted to provide a semiautomated information extraction and

transformation approach for tabular regulatory information in building codes. The proposed

method can detect table layouts semi-automatically and save extracted table information in a

database. Automated code compliance checking systems can then query this database for

regulatory information in related tables from building codes.

1.1 Research Question

This dissertation research was conducted to answer the research question “How to improve

the automated processing of building codes to better support automated code compliance

checking compared to the state of the art?”

The main research question was divided into two sub-questions:

1. How to improve the performance of POS tagging on building codes compared to the

state of the art?

2. How to expand the range of checkable building code requirements that can be used in

state-of-the-art automated code compliance checking systems?

19

1.2 Significance

The problem addressed in this dissertation research is the lack of full automation in building

code compliance checking. Manual code compliance checking is time-consuming, costly and

error-prone (Zhang & El-Gohary 2015). The average waiting time for obtaining building permit

is more than two months with a minimum cost of hundreds of dollars (Xue & Zhang, 2020).

Productivity of construction industry is also affected by a slow manual code compliance

checking (Ding et al., 2006). Construction industry contributes 4.1% of US economy in 2018 and

2019 (Bureau of Economic Analysis, 2022). However, productivity of the construction industry

has been in stagnation (Bureau of Labor Statistics, 2018). Automated code compliance checking

can reduce errors and improve efficiency in code compliance checking (Zhong et al., 2012).

Non-compliance in building design is expensive to fix and could lead to expensive penalty fines.

1.3 Purpose Statement

The overall purpose of this dissertation research is developing NLP-based automated

information extraction methods to support automated building code compliance checking. For

the four methods proposed in this dissertation, each of them has their own specific purpose as

detailed as follows. The goal of the first two POS tagging methods is to improve the performance

of POS taggers on building codes compared to the state of the art. The third and fourth methods,

the ruleset expansion methods and the tabular information extraction, respectively, aim to

increase the range of checkable building code requirements that can be used in state-of-the-art

automated code compliance checking systems.

1.4 Dissertation Structure

This dissertation consists of six chapters (Table 0.1) and addressed two research questions

(Figure 0.1). Chapter One (i.e., introduction chapter) introduces the motivation behind the

research carried out in this dissertation research and two research questions addressed in this

dissertation research. Chapter Two focuses on improving the accuracy of POS tagging of

existing POS taggers on building codes by using error-driven transformational rules. Chapter

Three then goes beyond the use of existing POS taggers by developing a new building code POS

tagger that combines the use of error-driven transformational rules and a neural network model.

20

A highly accurate POS tagging is important for automated code compliance checking to achieve

full automation because NLP is needed to extract and transform regulatory information from

building codes automatically into a computable format and POS tagging is an important basic

step in NLP. Zhang (2015) described the importance/challenge of the NLP as:

“For the purpose of ACC, a successful information extraction does require

correct understanding of the text source (i.e., textual regulatory documents). This

need of a deep level of NLP makes the problem of automated information

extraction for compliance checking purposes challenging.” (p.11)

POS tagging is an essential first step of many (if not all) NLP processes. Previous works use

generic POS tagger, whose performance is limited on building codes. To push for full

automation, a construction domain specific POS tagger was developed in this dissertation

research.

Chapter Four expands the range of checkable building code requirements of an automated

code compliance checking system by providing a pattern matching-based ruleset expansion

method to expand an existing pattern matching-based ruleset. The pattern matching-based ruleset

utilizes POS tagging information of the building code. Chapter Five expands the range of

checkable building code requirements from textual information to non-textual information by

proposing a tabular information extraction method. Last but not least, Chapter Six, which is the

conclusion chapter, discusses the overall conclusions of the dissertation research.

21

Figure 0.1. Relation between Published Chapters and Research Questions

Table 0.1. Chapters in the Dissertation

Chapter Title

1 Introduction

2
Building codes part-of-speech tagging performance improvement by error-driven

transformational rules

3
Part-of-speech tagging of building codes empowered by deep learning and

transformational rules.

4
Regulatory information transformation ruleset expansion to support automated

building code compliance checking.

5
Semi-automated generation of logic rules for tabular information in building codes

to support automated code compliance checking.

6 Conclusion

1.5 Definitions

A group of concepts and terms are central to this dissertation research. To provide key

information about the dissertation and facilitate understanding to the dissertation research,

definitions of key concepts and terms are provided in this section. For terms and concepts that

are unique to this dissertation research, operational definitions are provided.

22

Automated Code Compliance Checking System (ACCC) system is defined as “a software

that does not modify a building design, but rather assesses a design on the basis of the

configuration of objects, their relations or attributes” automatically (Eastman et al., 2009).

Building Code is defined as “a set of laws enacted by state, county and city governments to

determine the required design and construction standards for home construction” (Findwell,

2020).

Industry Foundation Classes (IFC) is defined as “a standardized, digital description of the

built asset industry.” (buildingSMART International, 2020). The IFC models are defined using

the Standard for Exchange of Product (STEP) method. The IFC specification is drafted in the

EXPRESS data modeling language. The IFC standard is registered as an international standard

(ISO 16739-1:2008). The IFC standard is a vender-neutral, open and platform-independent

standard. (buildingSMART International, 2020).

Building Information Modeling (BIM) is defined as “a digital representation of physical

and functional characteristics of a facility. A BIM is a shared knowledge resource for

information about a facility forming a reliable basis for decisions during its life-cycle; defined as

existing from earliest conception to demolition” by the National Building Information Model

Standard Project Committee. The application of BIM promises the collaboration of stakeholders

in different stage of a building construction project. (National Building Information Model

Standard Project Committee, 2022). The BIM model of a building can be used to plan, design,

construct, and operate the building (Azhar, 2011). In recent years, the term can also be used to

refer to the process of creating digital representation of a built asset (Autodesk Company, 2022).

Natural Language Processing (NLP) is defined as “the subfield of computer science

concerned with using computational techniques to learn, understand, and produce human

language content” (Hirschberg & Christopher, 2015). Natural Language Processing “in a wide

sense to cover any type of computer manipulation of natural language. At one extreme, it could

be as simple as counting word frequencies to compare different writing styles. At the other

extreme, NLP involves “understanding” complete human utterances, at least to the extent of

being able to give useful responses to them.” (Bird et al., 2009). Natural language processing

algorithm can take a rule-based approach or used statistical models (Nadkarni et al., 2011).

Machine Learning (ML) is defined as a “field of study that gives computers the ability to

learn without being explicitly programmed” (Samuel, 1959). Another popular definition of

23

machine learning is “the study of computer algorithms that allow computer programs to

automatically improve through experience” (Mitchell, 1997). Machine learning includes

supervised algorithms that infer the underlying relationship between observed data and targeted

value (label) and unsupervised algorithms that discover hidden patterns in unlabeled dataset

(Awad & Khanna, 2015).

Deep Learning is defined as “computational models that are composed of multiple

processing layers to learn representations of data with multiple levels of abstraction.” (LeCun et

al., 2015). Deep learning algorithms use neural networks with a muti-layer structure (Ciregan et

al., 2012).

Logic Clause is a representation that supports automated logic reasoning (Zhou, 1994).

Recurrent Neural Network (RNN) is a type of network that feed outputs of previous

timesteps to the next step (Staudemeyer & Morris, 2019).

Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) is a type of RNN that

has a cell state to control access to information in previous timesteps (Staudemeyer & Morris,

2019).

1.6 Assumptions

In this dissertation research, the following assumptions were made. First, different chapters

of the same building code were drafted in a coherent style. Therefore, patterns that exist in one

chapter of building code may also exist in other chapters of the same building code. Second,

structures in building codes were well-defined (Jiang, 2012). Third, building design information

has been comprehensively and accurately extracted from building design documents (i.e.,

Industrial Foundation Classes (IFC) files). The last assumption is that all needed building design

information for code checking was provided in the building design model.

1.7 Limitations

This dissertation research has multiple limitations. First, the conversion of building code

from natural language to a computer-processable format is not perfect yet. Manual refinement of

conversion result is still needed. Second, this dissertation research focuses on compliance

checking of International Building Code 2015. The range of checkable building codes tested in

24

this dissertation research, although improved from the state of the art, is still not comprehensive.

Third, the tabular information extraction method is semi-automated instead of fully automated.

1.8 Delimitations

The scope of this dissertation research is limited to building code in English. Building codes

that are not in English are excluded from this dissertation research.

1.9 Permission to Republish

Contents of this dissertation are based on published papers. Permissions to republish them

in this dissertation are obtained from their corresponding publisher (Appendix B).

Xue, X., Zhang, J. (2020). Building codes part-of-speech tagging performance improvement by

error-driven transformational rules. Journal of Computing in Civil Engineering, 34(5),

04020035. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917

Xue, X., Zhang, J. (2021). Erratum for “Building codes part-of-speech tagging performance

improvement by error-driven transformational rules” by Xiaorui Xue and Jiansong Zhang.

Journal of Computing in Civil Engineering, 35(1), 08220002.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000950

Xue, X., Zhang, J. (2021). Part-of-speech tagging of building codes empowered by deep learning

and transformational rules. Advanced Engineering Informatics, 47(January 2021), 101235.

https://doi.org/10.1016/j.aei.2020.101235

Xue, X., Wu, J., Zhang, J. (2022). Semi-automated generation of logic rules for tabular

information in building codes to support automated code compliance checking. Journal of

Computing in Civil Engineering, 36(1), 04021033. https://doi.org/10.1061/(ASCE)CP.1943-

5487.0001000

Xue, X., Zhang, J. (2022). Regulatory information transformation ruleset expansion to support

automated building code compliance checking. Automation in Construction, 138(June

2022), 104230. https://doi.org/10.1016/j.autcon.2022.104230

Republished with permission of American Society of Civil Engineers, from Building codes part-

of-speech tagging performance improvement by error-driven transformational rules, Xiaorui

Xue, and Jiansong Zhang, 34, 2020; permission conveyed through Copyright Clearance

Center,Inc.

Republished with permission of American Society of Civil Engineers, from Erratum for

“Building codes part-of-speech tagging performance improvement by error-driven

transformational rules” by Xiaorui Xue and Jiansong Zhang, Xiaorui Xue and Jiansong Zhang,

35, 2021; permission conveyed through Copyright Clearance Center,Inc.

25

Republished with permission of Elsevier Science &Technology Journals, from Part-of-speech

tagging of building codes empowered by deep learning and transformational rules, Xiaorui Xue,

and Jiansong Zhang, 47, 2022; permission conveyed through Copyright Clearance Center,Inc.

Republished with permission of Elsevier Science &Technology Journals, from Regulatory

information transformation ruleset expansion to support automated building code compliance

checking, Xiaorui Xue, and Jiansong Zhang, 138, 2022; permission conveyed through Copyright

Clearance Center,Inc.

Republished with permission of American Society of Civil Engineers, from Semi-automated

generation of logic rules for tabular information in building codes to support automated code

compliance checking, Xiaorui Xue, Jin Wu, and Jiansong Zhang, 36, 2022; permission conveyed

through Copyright Clearance Center,Inc.

26

2 BUILDING CODES PART-OF-SPEECH TAGGING PERFORMANCE

IMPROVEMENT BY ERROR-DRIVEN TRANSFORMATIONAL RULES

Xiaorui Xue, S.M.ASCE1; Jiansong Zhang, Ph.D., A.M.ASCE2

A portion of this chapter was previously published by:

Xue, X., Zhang, J. (2020). Building codes part-of-speech tagging performance improvement by

error-driven transformational rules. Journal of Computing in Civil Engineering, 34(5),

04020035. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917

Xue, X., Zhang, J. (2021). Erratum for “Building codes part-of-speech tagging performance

improvement by error-driven transformational rules” by Xiaorui Xue and Jiansong Zhang.

Journal of Computing in Civil Engineering, 35(1), 08220002.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000950

Republished with permission of American Society of Civil Engineers, from Building codes part-

of-speech tagging performance improvement by error-driven transformational rules, Xiaorui

Xue, and Jiansong Zhang, 34, 2020; permission conveyed through Copyright Clearance

Center,Inc.

Republished with permission of American Society of Civil Engineers, from Erratum for

“Building codes part-of-speech tagging performance improvement by error-driven

transformational rules” by Xiaorui Xue and Jiansong Zhang, Xiaorui Xue and Jiansong Zhang,

35, 2021; permission conveyed through Copyright Clearance Center,Inc.

Author Contributions

The authors confirmed contribution to the paper as follows:

1. Study conception and design: Xiaorui Xue, Jiansong Zhang.

2. Data collection: Xiaorui Xue, Jiansong Zhang.

3. Analysis and interpretation of results: Xiaorui Xue, Jiansong Zhang.

4. Draft manuscript preparation: Xiaorui Xue, Jiansong Zhang.

5. All authors reviewed the results and approved the final version of the manuscript.

2.1 Literature Review

2.1.1 Automated Code Compliance Checking

To address the increasing demand in building permits, many researchers and industry

experts introduced new methods of code compliance checking. Their efforts focus on making

code compliance checking paperless, automated and standardized. The structural design

checking using decision table (Fenves, 1966) was one of the first efforts in this domain (İlal &

27

Günaydın, 2017), which led to many attempts to create expert systems for building codes in the

1980s (Dimyadi & Amor, 2013), such as the Standard Interface for Computer Aided Design

(SICAD) (Lopez et al., 1989), the Standards Processing Expert (SPEX) (Delis & Delis, 1995;

Garrett & Fenves, 1987), and the Design Prototypes (Gero, 1990). However, low performance

and high maintenance cost of expert systems in the 1980s limited these attempts only to proofs of

concepts with a lack of actual implementations. An expert system, which uses a vast body of

domain-specific knowledge stored in a computer (Liao, 2005), has limitations such as high

maintenance cost, difficulty in scalability, and the narrow range of applications (Chollet, 2017)

These forerunners’ efforts gave birth to more recent code compliance checking expert systems,

such as BCAider and DesignCheck, in early 2000s (Dimyadi & Amor, 2013). In addition, there

were expert systems that focused on building codes in a specific domain or a limited range of

domains in 1980s and 1990s. For example, the Fire-Code Analyzer (Delis & Delis, 1995)

focused on fire protection related codes in New Zealand, the Life Safety Code Advisor focused

on National Fire Protection Association (NFPA) safety code in the U.S., and the TALLEX

(Sabouni & Al-Mourad, 1997) focused on tall buildings in the United Arab Emirates (UAE).

The rise of building information modeling (BIM) since the 2000s provided new ways for

performing many tasks in the AEC domain such as structural analysis (Ren & Zhang, 2020;

Wong Chong et al., 2020; Wu et al., 2021), fire safety evaluation (Wang et al., 2020), building

energy modeling (Li & Zhang, 2020; Li et al., 2022; Li & Zhang, 2021, Li et al., 2021),

construction management (Akanbi et al., 2020; Zhang & Laddipeerla, 2018), construction

automation (Brissi et al., 2021; Lacny & Zhang, 2022; Wong Chong & Zhang, 2021; Wong

Chong et al., 2022) and civil infrastructure management (Akanbi & Zhang 2022; Guo et al.,

2021). BIM also dramatically changed the way code compliance systems work by providing a

reliable digital representation of buildings (Nguyen & Kim, 2011). For example, Solibri Model

Checker (SMC) started as a BIM validation tool, and it obtained code compliance checking

ability in its later updates (Eastman et al., 2009). Singapore government initiated the

Construction and Real Estate Network (CORENET) project, which allows BIM models, instead

of papers, to be submitted for plan review. The UK government started to require submissions of

BIM for all public projects that are funded by the British Central Government from 2016 (UK

BIM Task Group, 2016). The KbimCode in South Korea was capable of code compliance

28

checking of BIM against building codes, but it needs manual efforts to convert building codes

from natural language to a computer-processable format (Choi & Kim, 2017).

2.1.2 Information Extraction Systems

With BIM as a reliable digital representation of buildings, code compliance checking

systems made great progress over the last two decades. However, they are still far from a wide

real-world deployment. In many current automated code compliance systems, information

extraction and information transformation rely on domain experts’ manual efforts to convert

building codes to a computer-processable format, such as decision tables (Tan et al., 2010),

regulatory knowledge model (Dimyadi et al., 2016), and structured regulatory information

rulesets (İlal & Günaydın, 2017).

Based on existing literature, current code compliance checking systems lack automated

regulatory information extraction and transformation capabilities. By drafting building codes in

computer-checkable logic clauses or rulesets instead of natural language, code compliance

checking systems can bypass the needed information extraction and transformation step and

achieve full automation in an alternative way. However, such a dramatic shift is not expected in a

foreseeable future (Bell et al., 2009; Li et al., 2012). In addition, the large size of existing

building codes creates further challenges in achieving such a transition. In the U.S., local

jurisdictions usually apply customizations and modifications to standard codes published by the

international code council (ICC), which further contribute to the complexity of the body of

building codes. Automated information extraction and transformation are necessary for

automated code compliance systems to function on existing as well as forthcoming building code

versions. Some researchers proposed sematic analysis of building codes through deep learning

for information extraction, but the extracted information failed to convert to checkable rules

(Song et al., 2018). Pattern matching-based natural language processing method, on the other

hand, can generate logic clauses through information extraction and transformation with a high

accuracy (Li et al., 2016; Xu & Cai, 2020; Zhang & El-Gohary, 2015). The pattern matching-

based method of Zhang and El-Gohary (2015) can convert natural language provisions to logic

clauses, and their entire automated code compliance checking method reached a 98.7% recall

and 87.6% precision in non-compliance detection (Zhang & El-Gohary, 2017). However, to

enable real-world applications, the recall must be improved to 100%. The main sources of errors

29

reported by Zhang and El-Gohary (2017) were of two types: limitations of the extraction and

transformation rules, and limitations of the state-of-the-art POS taggers’ performance on building

codes. Reducing/eliminating such errors were expected to further improve the overall non-

compliance detection performance. In this chapter, the authors focus on addressing the

performance of the state-of-the-art POS taggers on building codes, because the extraction and

transformation rules use the POS tagging information and therefore rely on its performance.

2.1.3 Part-of-Speech (POS)

A fully automated code compliance checking system could be an NLP-based system with

an essential information extraction and transformation component. The information extraction

and transformation component utilizes part-of-speech information as well as other

syntactic/semantic information of building codes provisional sentences to convert building codes

from natural language to computer-processable representations. POS tagging is about assigning

the corresponding morphosyntactic category to each word in a sentence (Giménez & Marquez,

2004). As an early step of the discussed automated code compliance checking system, POS

tagging will cascade errors into later steps of the system (Dell’Orletta, 2009) and jeopardize its

final performance. An accurate POS tagging results of building codes is the foundation to

support the high performance of the information extraction and transformation component and

therefore the entire automated code compliance checking system.

POS categories of words are classes of words that share common features (Brill, 1992). In

general, there are eight basic POS categories in English, namely, noun, pronoun, verb, adjective,

adverb, preposition, conjunction and interjection (Butte College, 2016). However, a decent

representation of text for further NLP analysis needs more than just eight POS tags. For example,

singular noun and plural noun are usually separated into two different categories. Among the

commonly used tagsets, Universal tagset has 12 tags (Petrov et al., 2012), Penn Treebank tagset

has 36 tags (Marcus et al., 1993), and Brown tagset has 179 tags (Francis & Kucera, 1979). The

authors decided to use Penn Treebank tagset (Table 0.1) because of its good balance between

information richness and conciseness.

30

Table 0.1. POS Tags in the Penn Treebank Tagset

Tag Description

1 CC Coordinating conjunction

2 CD Cardinal number

3 DT Determiner

4 EX Existential there

5 FW Foreign word

6 IN Preposition or subordinating conjunction

7 JJ Adjective

8 JJR Adjective, comparative

9 JJS Adjective, superlative

10 LS List item marker

11 MD Modal

12 NN Noun, singular or mass

13 NNS Noun, plural

14 NNP Proper noun, singular

15 NNPS Proper noun, plural

16 PDT Predeterminer

17 POS Possessive ending

18 PRP Personal pronoun

19 PRP$ Possessive pronoun

20 RB Adverb

21 RBR Adverb, comparative

22 RBS Adverb, superlative

23 RP Particle

24 SYM Symbol

25 TO to

26 UH Interjection

27 VB Verb, base form

28 VBD Verb, past tense

29 VBG Verb, gerund or present participle

30 VBN Verb, past participle

31 VBP Verb, non-3rd person singular present

32 VBZ Verb, 3rd person singular present

33 WDT Wh-determiner

34 WP Wh-pronoun

35 WP$ Possessive wh-pronoun

36 WRB Wh-adverb

There are multiple ways to get a textual corpus POS tagged. Human annotators can

complete this task with their knowledge in English and understanding of the text. However, the

high cost, low speed and human inconsistency make it rarely used in real-word applications. This

is especially the case if the POS tagging is to support automated extraction and transformation of

31

code requirements for automated compliance checking. In contrast, POS tagging software, or

POS taggers (will be called machine taggers hereafter) are usually used in NLP systems because

of their fast tagging speed, low tagging cost, and free of human inconsistency. Machine taggers

can tag a large amount of text in a short time without human interventions. The large amount of

existing and upcoming building codes and frequent building codes updates require a machine

POS tagging solution to support automated code compliance checking systems. POS taggers

annotate texts according to rules or mathematical models. Correspondingly, there are two main

types of machine POS taggers based on their corresponding annotation methodologies: rule-

based POS taggers and machine learning POS taggers. These rules or models are either

developed by humans or generated by algorithms.

2.1.3.1 Rule-based Part-of-Speech Tagger

Rule-based POS taggers decide POS tags of words based on a set of rules. Rules are

designed to make POS tagging results of texts follow human-labeled results. These rules can be

either hand-crafted by domain experts or generated by algorithms. Domain experts generate rules

based on their understanding of English grammar and the text being tagged. Rules can also be

generated by algorithms. POS taggers with hand-crafted rules are rarely used nowadays. They

usually are not intended for practical use but rather for educational purposes. For example, Bird

et al. (2009) introduced a rule-based tagger with hand-crafted rules for educational purpose.

However, this tagger has a low accuracy and only slightly outperformed a baseline tagger that

tagged all words as “NNS” (plural nouns) (Bird et al., 2009). Development of rule-based POS

taggers stopped because they, even with thousands of hand-crafted rules, fail to reach a

comparable accuracy to that of machine learning taggers. For example, the TAGGIT system

contains more than 3,000 hand-crafted rules and reached a 77% accuracy on Brown corpus

(Greene & Rubin, 1971), whereas the state-of-the-art machine taggers had an accuracy of 87.1%

on Brown corpus which was much higher than the 77% accuracy achieved by TAGGIT (Li et al.,

2012). However, rule-based POS tagger with algorithm-generated rules can achieve a higher

accuracy than rule-based POS taggers with hand-crafted rules (Bird et al., 2009). For example,

Brill (1992) developed the Brill tagger with algorithm-generated rules and claimed his tagger’s

performance “on par with stochastic taggers.”

32

2.1.3.2 Machine Learning Part-of-Speech Tagger

Classification is one main task that machine learning was designed for. POS tagging is a

type of classification task, i.e., classifying words into different POS categories according to its

context and English grammar. Machine learning taggers are built by training machine learning

models on corpus of English texts. Different machine learning models can be used such as

support vector machines (SVM), decision tree, hidden Markov model (HMM), and neural

network.

2.2 Methodology

The authors propose to use transformational rules to address errors in the tagging results of

general POS taggers (i.e., machine taggers trained on general English texts) on building codes to

increase their accuracy on POS tagging of building codes. Instead of training a new POS tagger

from scratch, improving existing taggers can decrease the amount of annotated data needed,

therefore save system development time and effort and potentially achieve higher POS tagging

accuracy. The transformational rules are automatically generated by algorithms with no human

intervention during the generation process execution.

In this chapter, the authors define errors in POS tagging as nonconformities between the

machine-assigned POS tag of a word and that word’s human-labeled tag. For example, machine

taggers make a POS tagging error by tagging the word “can” in the phrase “a steel can,” which is

a noun, as an “auxiliary verb.” Errors are further grouped into types. A type of error subsumes all

appearances of a word in the textual data that have the same correct POS tag and are given the

same incorrectly assigned POS tag by machine taggers. For example, for all occurrences of the

word “can” as a noun, machine taggers may correctly tag them as a noun or incorrectly tag them

as a modal verb or verb. For the occurrences that machine taggers incorrectly tagged the word

“can” as a verb, it is one type of error. For the occurrences that machine taggers incorrectly

tagged the word “can” as a modal verb, it is a different type of error. The proposed method

focuses on decreasing the overall occurrence of errors, not specific types of errors. However,

knowing possible types of errors is helpful to identify sources of errors. Furthermore, POS

tagging errors in building codes textual data show a long-tail distribution. That is, a few types of

errors happen many times and most types of errors only happen few times. In fact, for 1,758

33

types of 31,495 errors in the authors’ data of POS tagged building code where errors were

defined to be the difference between machine tagging results and manually created gold

standard, the top 100 types occurred 20,338 times, which accounted for 64.58% of all errors

(Xue & Zhang, 2020). The uneven distribution of errors implies that a small number of fixes may

eliminate a large portion of errors.

2.2.1 Overview of the Method

The authors’ proposed method divides textual data into two parts, training dataset and

testing dataset. The proposed method has two main components, rule generation component, and

rule application component. The rule generation component uses rule templates to generate

transformational rules. For example, “If the word B after the word A is tagged as X and the word

A is tagged as Y, then change the tag of the word A to Z” is a rule template. All rules that are

generated by the same template form a ruleset. This method allows users to input their

customized templates to generate customized rulesets. The authors provided sample rule

templates in the experiment section. The rule generation component generates rules from simple

rulesets to complex rulesets, from unigrams to n-grams, and from syntax to semantics. Before the

development of each ruleset, the errors in the training set are collected and recorded. A process

flowchart about error collection is shown in Figure 0.1. This process compares machine-

generated tags of words and their corresponding human-labeled tags (from gold standard) in the

training dataset, and records any word whose machine-generated tag is different from its human-

labeled tag. If the machine-generated tag of the word “wood” is JJ (Adjective) and its human-

labeled tag is NN (Noun), this method then records that the word “wood” is incorrectly tagged as

JJ (Adjective) when it should be tagged as NN (Noun). This process is automatically and

algorithmically performed by comparing the machine-assigned POS tag of a word and the

human-labeled POS tag (from gold standard) of the same word, and recording any discrepancy

between them for later steps of this method. After the error collection process, the rule

generation process begins. The rule extraction component collects contextual information of

errors in the training dataset and converts them to candidate transformational rules according to

the template of that ruleset, and filters out unqualified rules. This is also automatically performed

without human intervention. The proposed method will collect POS tags of words before and

after the target word as the contextual information of the collected error. Before the extraction of

34

the next ruleset, rules in the previous ruleset are applied to the training text. After the completion

of rule development, all rulesets are applied to the testing dataset to evaluate the performance of

the developed rules. The method also records remaining errors after each ruleset is applied to the

testing dataset. The steps of this method are shown in Figure 0.2.

35

Figure 0.1. Error Collection Process

36

Figure 0.2. Proposed Method

37

2.2.2 Description of Transformational Rules

The transformational rules fix POS tagging errors in the textual data. The POS tagging

errors in the textual data are gathered by comparing machine tagging results of the textual data to

the human-labeled gold standard. The rules store the word it matches and its contextual

information, including semantic information (e.g., the word before the target word is “egress”)

and syntax information [e.g., the POS tag of the word before the target word is NN (noun)]. The

proposed method utilizes two types of rulesets: n-gram rulesets that consider n-grams

information of words and remaining error rulesets that consider remaining errors in the text.

Rules in the N-grams rulesets also need to meet the rule acceptance criterion, which states that

rules should be risk-controlled in introducing new errors in the training set.

2.2.2.1 N-grams Rulesets

N-gram rulesets are developed through the contextual information of errors in the training

data. This chapter does not differentiate bigram rules from n-gram rules. The authors treated

them unanimously as n-gram rules. For example, “If machine tagger tags the word before

‘pedestrian’ as a noun and tags the token ‘pedestrian’ as an adjective, change POS tag of that

prior word to adjective” is an n-gram rule. Each N-gram rule represents a context in which a

word only has one possible correct POS tag. The context may include the word itself, the

machine-assigned POS tag of the word, and machine-assigned POS tags of the word before and

after a word.

2.2.2.2 Remaining Error Rulesets

After all n-gram rulesets are applied to the training data, a special ruleset is generated by

fixing the n most common errors remaining in the training data. The choice of n is arbitrary. This

special ruleset is special because the generation of rules in this set needs information from the

entire training dataset whereas the generation of n-gram rulesets only need information from one

sentence. The rule of thumb is that the user can choose a larger n when there are more errors in

the training dataset compared to when there are less errors. Different values of n can be tested to

optimize the performance.

38

2.2.2.3 Rule Acceptance Test

To reduce the potential negative effects of transformational rules on the downstream tasks

of the automated code compliance checking system, n-gram rules should be risk controlled in

introducing new errors to the textual data. The rule acceptance test ensures an n-gram rule should

be at a low risk in introducing new errors by making sure that transformational rules only replace

the POS tag of a word with a more commonly used POS tag of the word in the context described

in the rule. If a rule replaces the POS tag of a word from a more commonly used one to a less

commonly used one, the rule is prone to introducing new errors and therefore will be dropped.

Although the introduction of errors could have negative impact on the downstream tasks of the

automated code compliance checking system, it is mathematically true that a rule that fixes more

errors than it introduces can increase the level of accuracy. The increase in POS tagging accuracy

may enhance the performance of downstream tasks of the automated code compliance checking

system and drive the entire system closer to the 100% recall goal. Therefore, if a rule replaces a

rarely used POS tag of a word with a commonly used POS tag of the word, the risk of it

introducing errors is low. The rule meets the rule acceptance criterion and will be kept in the

ruleset. This strict requirement may limit the number of transformational rules generated, but it

ensures a steady improvement of the quality of extracted rules and the rulesets’ performance.

Calculating the accuracy of POS tagging before and after a rule is applied is a possible solution.

However, a rule may overfit the training dataset and its ability to increase the accuracy in the

training dataset does not necessarily lead to the same effect on the testing text. Instead, selecting

a more commonly used POS tag for replacement can leverage syntactic information in the rule

generation process to alleviate overfitting.

2.2.3 Rule Generation

The rule generation processes for each ruleset are similar. A general description of the rule

generation procedure is shown in

Figure 0.3. For each ruleset, the rule generation component collects contextual information

of all errors and their corresponding human-labeled tags in the training dataset. In the second

step, this component coverts collected information of each error into candidate rules by deleting

unnecessary contextual information. For example, if a rule only considers the POS tag of the

39

word before the target word, then only the target word, POS tag of the target word, and POS tag

of the word before the target word will be kept and everything else in the target word’s context

will be deleted.

40

Figure 0.3. Rule Generation Process

41

After that, all candidate rules need to undergo the rule acceptance test. This test clarifies the

ambiguities in the textual data. One main challenge in POS tagging is that the same word may

have different POS tags in different contexts. This test can ensure that a rule changes the POS tag

of the target word to a POS tag that has a low risk to be incorrect.

There are two scenarios that may occur in the generation of rules: (1) a rule replaces a

word’s POS tag with the word’s more commonly used POS tag in the context, or (2) a rule does

not replace a word’s POS tag with the word’s more commonly used POS tag in the context. In

the first scenario, this method will generate one candidate rule to fix all occurrences of this type

of error. The candidate rule can pass the rule acceptance test and be included. In the second

scenario, however, this indicates that the POS tag replacement was inappropriate. The rule

acceptance test will prevent such candidate rules from being used, by comparing the POS tag that

the rule uses to replace the machine-generated POS tag of a word with the word’s commonly

used POS tags in the gold standard. There is less risk in the first scenario than in the second

scenario. Replacing the machine generated tag of a word with the word’s more commonly used

POS tag in the gold standard has low risk in introducing new errors. For example, the word

“accordance” has the most commonly used POS tag NN and a rarely used POS tag IN in the gold

standard and it is more likely to fix an error by replacing the machine generated POS tag with

NN than with IN. In the second scenario, however, there is a high risk. For example, replacing

the tag of “accordance” to IN is more likely to introduce error than replacing it with NN. This

indicates the POS tag in this case is inappropriate and the method will not accept the rule in this

scenario. Table 0.2 shows some example sentences and candidate rules with regard to the above

discussed scenarios. In this chapter, the authors adopted the widely used Penn Treebank POS

tagset, which consists of 36 tags.

42

Table 0.2. Candidate Rules with High Risk and Low Risk

Scenario Sentence Candidate Rule

High

Risk

Each portion of a building shall be individually

classified (Manual tag: VBD, Machine tag: VBN) in (IN)

accordance with Section 302.1.

If the word that is one

position after the word

“classified” is tagged as IN and

the word “classified” is tagged

as VBN, then change the tag of

the word “classified” to VBD.

Handrails within dwelling units are permitted to be

interrupted (Manual tag: VBD, Machine tag: VBN) by (IN)

a newel post at a turn or landing.

If the word that is one

position after the word

“interrupted” is tagged as IN and

the word “interrupted” is tagged

as VBN, then change the tag of

the word “interrupted” to VBD.

Low Risk

The face of an exit sign illuminated (Manual tag: VBN,

Machine tag: VBD) from (IN) an external source shall have

an intensity of not less than 5 footcandles.

If the word that is one

position after the word

“illuminated” is tagged as IN

and the word “illuminated” is

tagged as VBD, then change the

tag of the word “illuminated” to

VBN.

Clear openings of doorways with swinging (Manual

tag: VBG, Machine tag: JJ) doors (NNS) shall be measured

between the face of the door and the stop, with the door

open 90 degrees.

If the word that is one

position after the word

“swinging” is tagged as NNS

and the word “swinging” is

tagged as JJ, then change the tag

of the word “swinging” to VBG.

The decrease in the total number of errors only indicates that a rule solved more errors than

it introduced in the training dataset. It cannot ensure that a rule is general enough to have the

same effect on the testing text. To alleviate potential overfitting, additional syntactic information

about the building codes and English grammar is used in the rule generation. The syntactic

information helps prevent adding a rule that is likely to introduce more errors than it fixes.

2.2.4 Rule Application

In the rule application process (Figure 0.4), the rule application component will apply

transformational rules to the textual data and fix POS tagging errors. For each rule, the rule

application component will search through the entire text and look for words whose contextual

information matches that rule’s conditions. If a word’s contextual information was found to

match that rule’s conditions, the rule application component will replace the machine-generated

tag of that word with the predefined tag in the rule. After the generation of each ruleset, the

developed ruleset is applied to the training dataset to prevent the rule application component

43

from developing different rules that essentially fix the same error. After the generation of all

rulesets, the rulesets are applied to the testing dataset as a whole.

44

Figure 0.4. Rule Application Process

45

2.3 Experiment

To test the performance of the proposed method on domain-specific data, the authors

applied this method to the POS tagged building codes (PTBC) dataset (Xue & Zhang, 2019). It

contains 1,522 POS tagged sentences from Chapters 5 and 10 of the 2015 International Building

Codes (IBC). For each tagged sentence, the dataset provides machine-generated and human-

labeled POS tags of every token. In the formation of the PTBC dataset, the authors collected

textual data by obtaining the Portable Document Format (PDF) version of 2015 IBC and

manually extracted building code text from Chapters 5 and 10. A group of seven state-of-the-art

machine taggers POS tagged the extracted texts. The seven selected POS taggers were: (1) the

NLTK tagger (Loper & Bird, 2002), (2) the spaCy tagger (Explosion AI, 2017), (3) the

Standford coreNLP tagger (Manning et al., 2014), (4) A Nearly-New Information Extraction

System (ANNIE) tagger in the General Architecture for Text Engineering (GATE) tool

(Cunningham, 2002), (5) the Apache OpenNLP tagger (Kottmann et al., 2011), (6) the

TreeTagger (Schmid et al., 2007), and (7) the RNNTagger (Schmid, 2019). These taggers were

chosen because they have high accuracy, are easy to use, and freely available. The most

commonly chosen tag of each word in the extracted text by all the seven taggers formed the

machine tagging results. The authors selected the Penn Treebank POS tagset because it was

commonly used in various domains for NLP tasks and it is balanced between conciseness and

informational richness. Five graduate students labeled textual data without access to others’

tagging results. All of them have proficiency in English and building domain knowledge to

complete the tagging task, which ensures the quality of the textual data annotation. The mostly

commonly chosen tag by them formed the gold standard of POS tagging of the textual data, with

an inter-annotator agreement of 0.91.

The PTBC dataset was split into the training data, which contains 80% of the original

dataset, and the testing data, which contains the remaining 20% of the original dataset. In the

experiment, text is stored in lists of tuples (Figure 0.5). Each sentence is a list of tuples and each

tuple in the list stores the word itself, human generated tag of the word, and machine generated

tag of the word. In this experiment, the authors used possible combinations of contextual

information of mistakenly tagged words in the textual data, to generate templates that rule

generation component can use to extract rules. In total, fourteen templates were used in the

experiment. They are listed in

46

Table 0.3. The rule generation component extracted rules in the same order.

Figure 0.5. Textual Data Example

47

Table 0.3. Transformational Rulesets in the Experiment

Ruleset Description

1 If the word A is tagged as X, then change the tag X to Y.

2 If the word that is one position before the word A is tagged as X and the word A is tagged as Y, then

change the tag of the word A to Z.

3 If the word that is one position after the word A is tagged as X and the word A is tagged as Y, then

change the tag of the word A to Z.

4 If the word that is one position before the word A is word B and the word A is tagged as X, then

change the tag of the word A to Y.

5 If the word that is one position after the word A is word B and the word A is tagged as X, then change

tag of the word A to Y.

6 If the word that is one position after the word A is tagged as X and the tag of the word that is two

positions after word A is Y and the word A is tagged as Z, then change the tag of the word to W.

7 If the word that is one position after the word A is tagged as X and the tag of the word that is two

positions after word A is Y and the word A is tagged as Z, then change the tag of the word A to W.

8 If the word one position before the word A is B, the word two positions before the word A is C, and

the word A is tagged as X, then change the tag of word A to Y.

9 If the word one position after the word A is B, the word two positions after the word A is C, and the

word A is tagged as X, then change the tag of the word A to Y.

10 If the tag of the word that is two positions after word A is X and the word is tagged as Y, then change

the tag of the word A to Z.

11 If the tag of the word that is two positions before word A is X and the word is tagged as Y, then

change the tag of the word A to Z.

12 If the word that is two positions after the word A is B and the word A is tagged as X, then change the

tag of the word A to Y.

13 If the word that is two positions before the word A is B and the word A is tagged as X, then change the

tag of the word A to Y.

14 Fix five most common errors remaining in the training set.

This method was also tested on the freely accessible portion of the Penn Treebank Corpus

in the Natural Language Toolkit (NLTK) to further evaluate the applicability of the proposed

method. The authors used the NLTK tagger to tag the text and collected the machine tagging

results. Gold standard POS tags of the available text provided by the Penn Treebank Corpus

served as the target of transformation. This comparative experiment was conducted in the same

way as the previous experiment on PTBC data.

2.4 Results

In total, on the PTBC data, 671 rules were generated in 14 rulesets. All extracted rules,

when combined, fixed 2,097 out of 3,013 errors in the training dataset and 656 out of 924 errors

in the testing dataset. They increased the tagging accuracy in the training dataset from 90.49% to

97.11% and that in the testing dataset from 89.13% to 96.85%. This 96.85% accuracy in testing

dataset is comparable to the performance of the state-of-the-art POS taggers on general English

corpus. The first three rulesets, which used contexts represented by: (1) the target word itself, (2)

48

POS tag of the word two positions before the target word, and (3) POS tag of the word two

positions after the target word, contained 616 rules (91.80% of all rules). In total, these first three

rulesets fixed 2,042 errors (67.77% of errors) in the training dataset and 553 errors (59.85% of

errors) in the testing dataset.

Accuracy of POS tagging both in the training dataset and in the testing dataset increased

after application of the transformation rules. Before application of any transformational rules, the

training dataset had an accuracy of 90.49% and the testing dataset had an accuracy of 89.13%.

After all rulesets were applied, the training dataset achieved an accuracy of 97.11% and the

testing dataset achieved an accuracy of 96.85%. The overall reduction of errors in the training set

was 69.60% and that in the testing set was 71.00%. The most significant increase in accuracy

happened after the application of the first and second rulesets. After the first ruleset was applied,

accuracy in the training dataset increased from 90.49% to 95.97% and that in the testing dataset

increased from 89.13% to 93.90%. After the second ruleset was applied, accuracy in the training

dataset increased from 95.97% to 96.61% and that in the testing dataset increased from 93.90%

to 95.20%. The number of errors and accuracy after application of each ruleset is provided in

Table 0.4.

49

Table 0.4. POS Tagging Accuracy After Applying Each Ruleset

Ruleset
Training Dataset Testing Dataset

Number of Errors Accuracy Number of Errors Accuracy

1 1277 95.97% 518 93.90%

2 1073 96.61% 408 95.20%

3 971 96.93% 371 95.63%

4 928 97.07% 355 95.82%

5 926 97.08% 355 95.82%

6 918 97.10% 355 95.82%

7 918 97.10% 355 95.82%

8 914 97.11% 353 95.85%

9 902 97.15% 347 95.92%

10 899 97.16% 347 95.92%

11 899 97.16% 347 95.92%

12 899 97.16% 347 95.92%

13 899 97.16% 347 95.92%

14 916 97.11% 268 96.85%

The authors recorded the number of errors each rule fixed to evaluate effectiveness of the

generated rules. Ten rules that fixed the most errors fixed 30.47% errors in the training dataset

and 23.70% errors in the testing dataset, respectively. This distribution confirms the authors’

prediction that a small group of rules can fix a large number of errors. Eight out of ten most

frequently applied rules in the training dataset are unigram rules, and that in the testing dataset is

also eight out of ten. This distribution shows that simple rules are more frequently applied than

complex rules. It may not be necessary to generate over-complex rules for increasing POS

tagging accuracy.

In the development of this method, the authors attempted to lemmatize word in text before

the generation of transformational rules. The authors assumed that mapping multiple words to

their common lemmatized form would improve the coverage of error cases. However, this

generalization did not improve the performance and therefore the authors abandoned this

technique. Word lemmatization didn’t change the number of extracted rules in all rulesets. It is

possible that mapping multiple forms of a word to one may have harmed the diversity of

contextual information representation. The authors concluded that word lemmatization did not

bring benefit to the proposed method.

50

This chapter also included a comparative study that applied the proposed method to

improving NLTK POS tagger’s performance on Penn Treebank Corpus. This cross-comparison

provides a useful benchmark for other researchers to compare this method’s performance on

general English text. In the processing of the Penn Treebank Corpus, the authors noticed that a

non-negligible amount of words in Penn Treebank Corpus, which do not belong to any Penn

Treebank POS tagset, were tagged as ‘-none-’. Pre-processing Penn Treebank Corpus is a

possible way to eliminate this ‘-none-’ tag. However, solving this issue is out of the scope of this

chapter. The authors decided to use the Penn Treebank Corpus and the NLTK tagging results in

this method as is. The authors divided the Penn Treebank Corpus into a training dataset and a

testing dataset with an 80/20 split. NLTK tagger tagged 89.28% of words in the training dataset

correctly and 89.37% of words in the testing dataset correctly. The proposed method then

increased the accuracy of NLTK tagger to 91.58% on the training dataset and to 91.91% in the

testing dataset. This increase in accuracy indicates that the proposed method has the ability of

improving the POS tagging accuracy of general English text as well (in addition to building

codes).

2.5 Discussion

Comparing to previous rule-based POS tagger that used hand crafted rules (Bird, 2009), the

proposed error-driven transformational rules are automatically generated by algorithms. Previous

rule-based POS tagger that used automated generated rules is not for domain-specific text (Brill,

1992). The error-driven transformational rules are applicable to domain-specific text, such as

building codes. Existing machine learning POS taggers require a significant amount of training

data (Giménez, 2004; Brants, 2000). The proposed error-driven transformational rules can be

trained on a limited amount of training data.

Due to the specific type of texts covered in the chapter, the authors suggest that error-driven

transformational rules should only be applied to texts that are in the target domain. A major

potential risk is that transformational rules may introduce errors to the tagging results. This risk

is controlled by the rule acceptance test. This constraint can push the machine labeled result

unidirectionally to the human labeled result.

Research interests of the authors require the use of the PTBC dataset (Xue & Zhang, 2020),

which is a new dataset and not used by other research currently. This method may overfit this

51

particular dataset and lacks the ability to boost tagging accuracy of POS taggers, which are

trained on general English, on general English. The authors conducted a comparative study to

address this concern. Specifically, this method was used to boost the performance of Natural

Language Toolkit (NLTK) tagger on the part of Penn Treebank Corpus that were readily

available in NLTK (Loper & Bird, 2002).

This method does not address unknown words. It requires a word to exist in the training

dataset to generate transformational rules for it. This limitation, however, should not

significantly influence the performance of the error-driven transformational rules, because

generated rules are only to be applied to the text in the target domain (e.g., building codes), in

which the rate of unknow words is expected to be low. The stringent format of the error-driven

transformational rules in the proposed method, while effectively induced rules to improve POS

tagging results, may introduce counter-intuitive tagging results. To alleviate that, future work

may look into different representations of the fixes (e.g., tokens’ roles) in addition to their

original POS tags. In addition, the authors only tested the method on the commonly adopted

Penn Tree bank tag set, how this method will perform when using other tag set will need to be

investigated in the future work.

2.6 Contributions to the Body of Knowledge

This chapter research was conducted to present a new way to obtain domain-specific

English texts POS tagged accurately when there is no POS tagger trained on text in that domain

by error-driven transformational rules. The proposed method can alleviate problems such as, (1)

the lack of POS taggers that are trained on domain-specific English texts, (2) the performance

drops of general POS taggers on domain-specific texts, and (3) the high cost of developing a

large domain-specific corpus needed in training domain-specific POS taggers.

First and foremost, this method provides a possible way for future researchers to get reliable

POS tagged text in a selected domain without the need of a specialized POS tagger. The authors

discovered that simple unigram and bigram rules resolved most errors. Word lemmatization did

not bring observable benefit to this method. For future application of this method, development

time could be saved by avoiding over-complicated rulesets and word lemmatization.

Secondly, this chapter research was conducted to prove that it is possible to boost the

performance of POS taggers that are trained on general English texts on domain-specific English

52

texts with a small set of algorithmically generated rules. The authors used building codes as an

example. These rules can increase the accuracy of POS taggers on building codes from 89.13%

to 96.85% with 671 rules. This significant improvement is achieved by using a small set of

labeled data. The fact that all rulesets transform machine-generated POS tags of words

unidirectionally to their human-annotated tags proved the validity of the rule acceptance

criterion. In addition, the increase in the accuracy in the testing dataset after the application of

the last ruleset supports its exemption from the rule acceptance criterion.

Thirdly, the rules generated in this chapter research can be used to increase the accuracy of

POS tagging results on building codes. If interested researchers use one of the POS taggers

tested, they can directly apply the developed rulesets to improve the POS tagging

results/performance on building codes. The potential risk of introducing more errors were

alleviated by the constraint applied when the rules were derived. This method does not need

experts to generate new rules to be adapted to new domains, but it needs experts to annotate

some training data as gold standard. Last but not least, this method is also applicable to general

English. With a small amount of human-labeled data, it can boost the accuracy of POS taggers

that are trained on general English, on general English.

2.7 Conclusion

This chapter research presented a new method to increase the accuracy of POS taggers, that

were trained on general English texts, on building codes by using error-driven transformational

rules. The authors developed an algorithm to generate these rules and tested the algorithm on the

PTBC dataset (Xue & Zhang, 2019). The experiment shows this method can increase the POS

tagging accuracy on building codes from 89.13% to 96.85%. A comparative test on NLTK and

Penn Treebank Corpus shows that the proposed method can also increase the POS tagging

accuracy on general English texts.

2.8 Acknowledgement

The authors would like to thank the National Science Foundation (NSF). The material in

this chapter is based on work supported by the NSF under Grant No. 1827733. Any opinions,

53

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the NSF.

54

3 PART-OF-SPEECH TAGGING OF BUILDING CODES EMPOWERED

BY DEEP LEARNING AND TRANSFORMATIONAL RULES

Xiaorui Xue, S.M.ASCE1; Jiansong Zhang, Ph.D., A.M.ASCE2

A portion of this chapter was previously published by:

Xue, X., Zhang, J. (2021). Part-of-speech tagging of building codes empowered by deep learning

and transformational rules. Advanced Engineering Informatics, 47(January 2021), 101235.

https://doi.org/10.1016/j.aei.2020.101235

Republished with permission of Elsevier Science &Technology Journals, from Part-of-speech

tagging of building codes empowered by deep learning and transformational rules, Xiaorui Xue,

and Jiansong Zhang, 47, 2022; permission conveyed through Copyright Clearance Center,Inc.

Author Contributions

The authors confirmed contribution to the paper as follows:

Study conception and design: Xiaorui Xue, Jiansong Zhang.

Data collection: Xiaorui Xue, Jiansong Zhang.

Analysis and interpretation of results: Xiaorui Xue, Jiansong Zhang.

Draft manuscript preparation: Xiaorui Xue, Jiansong Zhang.

All authors reviewed the results and approved the final version of the manuscript.

3.1 Literature Review

3.1.1 Part-of-Speech (POS)

A word’s POS category provides its syntactic information in a sentence (Abzianidze & Bos,

2017). In English, there are eight main POS categories: (1) noun, (2) verb, (3) adjective, (4)

adverb, (5) pronoun, (6) preposition, (7) conjunction, and (8) interjection. POS taggers are

systems that automatically assign POS categories to words according to their contextual

information in a sentence (Schmid, 1994). POS taggers have a variety of applications in the AEC

domain. For example, Lee et al. (2020) POS tagged construction contracts to identify missed

contract conditions from the perspective of contractors. However, the reliance on manual feature

55

extraction and manual rule generation creates challenges in large scale applications. Hassan and

Le (2020) used POS tagging to spot contractual requirements from construction contract

documents. However, the Support Vector Machines (SVM) algorithm used to identify

contractual requirements relies on manual feature engineering and may raise the concern of

overfitting. Zhou and El-Gohary (2018) utilized POS tagging information to match design

requirements in energy codes to their corresponding objects in building information models

(BIMs). The matching process takes a four-step approach: First, POS tagging information and

other contextual information of design requirements and BIM objects are collected; Second, the

Word2vec algorithm calculates the vectors of BIM objects and design requirements; Third,

vector similarity algorithm calculates the vector similarity between BIM objects and design

requirements; Fourth, a match is claimed if the vector similarity between a BIM object and a

design requirement is higher than a predefined threshold, which was set arbitrarily to obtain the

highest precision and recall empirically. In this four-step approach, errors could accumulate in

each step, and the concern of overfitting also presents. Therefore, the authors suggest an end-to-

end method that does not rely on manually generated rules or features. Neural network models

could meet the above requirements (Wang et al., 2019).

A simple deep learning model without man-made task-specific features can outperform

most state-of-the-art non-deep learning models even with cherry-picked features, in a wide range

of NLP tasks such as part-of-speech tagging, chunking, named entity recognition, and semantic

role labeling (Collobert et al., 2011). For example, Marques and Lopes (2001) utilized a simple

feed-forward model to decrease the amount of data needed to train a POS tagger. Yu et al. (2017)

used two Convolutional Neural Network (CNN) models to capture morphological information of

character-level n-grams and contextual information of word-level n-grams, which outperformed

simple feed-forward model. Recent developments in deep learning indicated that RNN is the “to-

go” solution for NLP tasks (Chollet, 2017). Pre-trained models were pre-trained on a large body

of text with unsupervised tasks, such as, predicting the next word given all preceding words and

predict if two sentences are from the same article (Devlin et al., 2018). The use of general pre-

trained models helped boost the performance of domain-specific NLP tasks in biology (Lee et

al., 2020), finance, and law (He et al., 2020). It also reduced the amount of labeled data needed

when applying deep learning in domain-specific tasks (Tai et al., 2020; Xue et al., 2022).

56

3.1.2 Error-driven Transformational Rules

Error-driven transformational rules are introduced to boost POS taggers’ accuracy

(Raghavan et al., 2010; Xue & Zhang 2020). The rules are designed to transform the machine-

generated POS tag of a word to its human-labeled gold standard. When the rule generation

algorithm spots a difference between machine-generated POS tags and the human-labeled gold

standard, it records the difference as an error and uses the context of the error (i.e., words and

POS tags of words around the word) to generate a rule to fix the error. The generation of rules is

automated. Rules are reusable once generated. Rules may have the risk to introduce new errors.

The rule generation algorithm controls this risk by dropping rules that have a high risk of

introducing errors.

3.1.3 Recurrent Neural Network

Like any machine learning models including classic ones such as Naïve Bayes, Decision

Tree, Support Vector Machines (SVMs), Random Forest (Cao et al., 2020; Wu et al., 2022;

Zhang et al., 2016), neural networks predict categories of given inputs. In the context of POS

tagging, neural networks predict POS categories of each word in a given input text, according to

the word itself and its context (Figure 0.1). Neural networks learn a relationship between words

and POS tags during their training and use this relationship to predict POS tags of words during

their application. Traditional neural networks consider all words in a sentence to be independent

from each other and do not consider words surrounding them in this prediction task. In contrast,

Recurrent Neural Network (RNN) keeps a vector that represents other words in the sentence

(which is called hidden state) and considers them in the prediction task. RNN processes

sequential information by taking elements in the sequence one by one while maintaining a

representation of all information it has seen so far (Chollet, 2017). RNN is able to process

sentences with arbitrary length (Tang et al., 2015). The way that RNN processes sequential

information gives it the ability to capture semantic meaning of a word based on words

before/after it in the sentences (Young et al., 2018). For example, it is able to differentiate the

meaning of the word “bank” in the phrase “river bank” and “blood bank”. The sequential nature

of RNN makes it widely adopted in many subfields of NLP, such as: (1) information extraction

(Bhutani et al., 2019; Rao & Ke 2018), (2) machine translation (Barone et al., 2017; Vaswani et

57

al., 2018), (3) speech recognition (Chan et al., 2016; Karita et al., 2019), (4) POS tagging (Plank

et al., 2016; Shao et al., 2017), and (5) sentiment analysis (Agarwal et al., 2019; Baktha &

Tripathy, 2017). There is also an RNN encoder-decoder model which has a high accuracy in

sequence-to-sequence tasks (Cho et al., 2014). In this structure, the encoder is an RNN model

that converts a variable-length sequence to a fixed-length vector representation and the decoder

is another RNN model that converts the fixed-length representation to a variable-length

sequence. Neural network models are deterministic when applied (i.e., in making predictions).

One neural network model makes the same prediction result with the same input.

58

Figure 0.1. Example Application of a Neural Network POS Tagger

59

3.1.3.1 Simple RNN

A simple RNN keeps a hidden state that represents all previous words in the sentence.

Therefore, the hidden state allows the simple RNN to take into consideration all words before the

target word in POS tagging. A simple RNN contains an input layer x, a hidden layer h, and an

output layer y (Elman, 1990). The hidden layer has weight 𝑊ℎ and a bias vector 𝑏ℎ. The input

layer has a weight 𝑊𝑖. The output layer has a weight 𝑊𝑜 and a bias vector 𝑏𝑜. In time step t of the

training, the input to the RNN is denoted as 𝑥𝑡, the hidden state is denoted as ℎ𝑡, and the output

is denoted as 𝑌𝑡. The hidden state at the time step t (i. e. , ℎ𝑡) is the sum of: (a) the input of current

step 𝑥𝑡 multiples the weight of the input layer 𝑊𝑖, (b) the hidden state of the last time step ℎ𝑡−1

multiplies its weight 𝑊ℎ, and (c) the bias vector of hidden layers 𝑏ℎ, after some non-linear

transformation [Eq. (1)].

ℎ𝑡 = 𝑓(𝑊𝑖𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏ℎ) (1)

The output at the time step t (𝑖. 𝑒. , 𝑌𝑡) is the sum of: (a) the weights of output layer 𝑊𝑜

multiples the hidden state at this time step ℎ𝑡, and (b) the bias vector of output layer 𝑏𝑜 [Eq. (2)].

𝑌𝑡 = 𝑔(𝑊𝑜ℎ𝑡 + 𝑏𝑜) (2)

In Eqs. (1) and (2), f and g are activation functions that perform non-linear transformations.

Some commonly used activation functions include sigmoid, Tanh, and Rectified Linear Unit

(ReLU) (Glorot et al., 2011; Nwankpa et al., 2018).

Simple RNN suffers from the vanishing gradient problem (Hochreiter, 1998). The hidden

state of a word is influenced more by words near it than words far away. In other words, simple

RNN does not have a “long-term memory”. This problem makes simple RNN difficult to train

and hard to capture long-term dependencies in a sentence. The long-term dependencies between

words are important in POS tagging. Many variations of simple RNN were therefore developed

to solve this problem.

3.1.3.2 Long Short-Term Memory

Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) alleviates the

vanishing gradient problem by having a forget gate layer to decide which words to “remember”

and which words to “forget”. It has a cell state to keep long-term dependencies, so it has “long-

term memory”. The cell state allows LSTM-RNN to use long-term dependencies in POS tagging.

60

LSTM-RNN has an additional forget gate layer f to decide which information to keep or

abandon, and a cell state C to capture long-term dependencies (Sak et al., 2014). The weight of

the forget gate layer is 𝑊𝑓 and its bias vector is 𝑏𝑓. The cell state has a weight 𝑊𝐶 and a bias

vector 𝑏𝐶. LSTM-RNN also has an input layer x. The input layer has a weight 𝑊𝑖 and a bias

vector 𝑏𝑖. The output layer has a weight 𝑊𝑜 and a bias vector 𝑏𝑜. In time step t of the training,

the input to the RNN is denoted as 𝑥𝑡, the hidden state is denoted as ℎ𝑡, the output is denoted as

𝑌𝑡, and the cell state is denoted as 𝐶𝑡, the value to update is denoted as 𝑖𝑡. Input to the neural

network is first fed into the forget gate layer. The forget gate layer generates a vector 𝑓𝑡 to

represent the amount of information to keep, and 𝑓𝑡 is calculated by Eq. (3):

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3)

where 𝜎 is the sigmoid function.

Then, the input layer calculates the candidate cell state by Eq. (4) and Eq. (5):

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4)

𝐶𝑡̃ = tanh(𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (5)

Then, the cell state 𝐶𝑡 is calculated by Eq. (6):

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ (6)

After that, the output layer 𝑌𝑡 and hidden state ℎ𝑡 are calculated by Eq. (7) and Eq. (8),

respectively:

𝑌𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7)

ℎ𝑡 = 𝑌𝑡 ∗ tanh(𝐶𝑡) (8)

There is also a bi-directional variant of LSTM, which can capture information in a sequence

from both directions. Simple RNN and LSTM-RNN have one hidden state that represents all

words before the target word. Bi-directional LSTM-RNN additionally has an extra hidden state

that represents all words after the target word. Therefore, simple RNN and LSTM RNN predict

the POS tag of the target word solely by words before it, whereas bi-directional LSTM RNN

predicts POS tag of the target word by the words both before and after it.

3.1.3.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU) (Chung et al., 2014) is another way to address the vanishing

gradient problem. It does not have a forget gate to control the flow of information, so it can

61

access the entire hidden state. It has an update gate U and a reset gate R. The weight of the

update gate is 𝑊𝑈, the weight of the reset gate is 𝑊𝑅, and the weight of the output layer is 𝑊𝑜. At

time step t, the cell state of the update gate, reset state, and the hidden state are 𝑈𝑡, 𝑅𝑡, and ℎ𝑡,

respectively. GRU is calculated using Eqs. (9), (10), (11), and (12):

𝑈𝑡 = 𝜎(𝑊𝑈 ∗ 𝑋𝑡 + 𝑊𝑈,𝑡−1 ∗ ℎ𝑡−1) (9)

𝑅𝑡 = 𝜎(𝑊𝑅 ∗ 𝑋𝑡 + 𝑊𝑅,𝑡−1 ∗ ℎ𝑡−1) (10)

ℎ𝑡
, = 𝑡𝑎𝑛ℎ(𝑊𝑜 + 𝑅𝑡 ∗ 𝑊𝑈,𝑡−1 ∗ ℎ𝑡−1) (11)

ℎ𝑡 = 𝑈𝑡 ∗ ℎ𝑡−1 + (1 − 𝑈𝑡) ∗ ℎ𝑡
, (12)

GRU can take long-term dependencies of words into the POS tagging task by accessing

hidden states of every word in a sentence. There is also a bi-directional variant of GRU, which

can use words both before and after a target word to predict its POS category.

3.1.3.4 Attention Mechanism

Attention mechanism can capture long-term dependencies with arbitrary lengths by

calculating attention scores between all words in two sequences and feed the attention scores to a

RNN (Hu, 2019). Therefore, it does not suffer from the vanishing gradient problem. LSTM RNN

and GRU still suffer from the vanishing gradient problem when the dependencies are long

enough. The attention mechanism predicts the POS tag of a word with its long-term

dependencies. Attention mechanism shares the same encoder-decoder structure with the encoder-

decoder RNN. The structure of attention mechanism brings its successful application in many

sequence-to-sequence (Seq2Seq) tasks such as: (1) machine translation (Firat et al., 2016), (2)

question-and-answering (Lu et al., 2016), and (3) text entailment (Rocktäschel et al., 2015). The

attention mechanism allows the decoder to access hidden states of the encoder to track back the

input sequence (Bahdanau et al., 2015). There are many variants of attention mechanisms. For

example, global attention focuses on all words in the input including each target word, while

local attention only focuses on words in a certain range (Luong et al., 2015). Two-way attention

allows bi-directional attention between the source and target (Rocktäschel et al., 2015). This

property of two-way attention makes it successful in non-sequence-to-sequence tasks as well,

such as sentiment analysis (Ambartsoumian & Popowich, 2018).

3.1.3.5 Transformer

62

Transformer has a similar encoder-decoder structure as the attention mechanism, but it does

not have an RNN (Vaswani et al., 2017). Transformer, like attention mechanism, can capture

dependencies in any length. With fewer parameters than the attention mechanism, it is more

resistant to overfitting. Therefore, transformer can make POS taggers more generalizable. The

encoder and decoder of the transformer are stacks of multi-head attention layers and feed-

forward layers with some add-and-normal layers. The multi-head attention is the concatenation

of multiple self-attention matrices. The multi-head attention is used to capture different

dependencies in a sentence. The first step to calculate the self-attention Z is to calculate: the

Query Q, Key K, and Value V matrices with the embedding matrix X, the weight of Query 𝑊𝑄,

the weight of Key 𝑊𝑘, and the weight of Value 𝑊𝑉 [Eqs. (13) to (15)].

𝑄 = 𝑋 ∗ 𝑊𝑄 (13)

𝐾 = 𝑋 ∗ 𝑊𝑘 (14)

𝑉 = 𝑋 ∗ 𝑊𝑉 (15)

Then, the self-attention matrix, or one head of the multi-head attention, is calculated by Eq.

(16):

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄∗𝐾𝑇

√𝑑𝑘
) ∗ 𝑉 (16)

where 𝑑𝑘 is the dimension of Key.

After that, multiple self-attention matrices are concatenated together to form a multi-head

attention matrix 𝑍𝑚𝑢𝑙𝑡𝑖 [Eq. (17)]. The multi-head attention is then multiplied to a weight matrix

𝑊𝑜 to get a new attention matrix 𝑍𝑛𝑒𝑤 that captures information from all attention heads [Eq.

(18)]. 𝑊𝑜 is trained with the matrix 𝑍𝑚𝑢𝑙𝑡𝑖.

𝑍𝑚𝑢𝑙𝑡𝑖 = [𝑍𝑖 , … 𝑍𝑛] (17)

𝑍𝑛𝑒𝑤 = 𝑊𝑜 ∗ 𝑍𝑚𝑢𝑙𝑡𝑖 (18)

3.1.3.6 BERT

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) is a

language representation model of the transformer. This model was pre-trained on the

BooksCorpus (Zhu et al., 2015) and the English Wikipedia data. Through pre-training, BERT

introduces knowledge about general English into the POS tagger. Knowledge about general

English is helpful to increase the POS tagger’s performance on building codes, because these

63

building codes are written in English. BERT is trained to predict masked words in a sentence and

decide if the second sentence in a pair of sentences is actually the sentence after the selected

sentence in the training text or just a randomly selected sentence. The BERT model achieved the

state-of-the-art performance in 11 NLP tasks with fine-tuning. Information of the different

available versions of BERT is provided in

Table 0.1. Large models have more layers, larger hidden states, more heads, and more

parameters than base models. The fine-tuning of pre-trained models allows the neural network

model to reach high accuracy on a small dataset (Zhang et al., 2021).

Table 0.1. Available Versions of BERT

Cased Size
Number of

Layers

Size of

Hidden

State

Number of

Heads

Number of

Parameters
Comments

Uncased Large 24 1024 16 340M Mask the same word.

Cased Large 24 1024 16 340M Mask the same word.

Uncased Base 12 768 12 110M

Uncased Large 24 1024 16 340M

Cased Base 12 768 12 110M

Cased Large 24 1024 16 340M

Cased Base 12 768 12 110M
Trained on 104

Languages

Uncased Base 12 768 12 110M
Trained on 102

Languages

N/A Base 12 768 12 110M Trained on Chinese

3.2 Methodology

To develop a POS tagger tailored to building codes, the authors combined the use of

multiple state-of-the-art techniques such as error-driven transformational rules, recurrent neural

networks, dropout layers, and pretrained models. At the core, the proposed POS tagger has two

main components, a neural network model and a set of error-driven transformational rules. The

neural network model initially predicts the POS tag of a word. The error-driven transformational

rules fix errors made by the neural network model. The neural network model has a pre-trained

model and multiple trainable layers (i.e., bi-directional LSTM-RNN layer, GRU layer, dropout

layer, and TimeDistribute layer). The pre-trained model brings the general linguistic knowledge

(i.e., English grammar) into the POS tagger. The authors fine-tuned the pre-trained model on a

dataset of building codes to customize the pre-trained model with AEC domain knowledge. The

64

bi-directional LSTM-RNN layer and GRU layer capture task-specific information (i.e., how

building codes were drafted, and AEC terminologies). The dropout layer alleviates overfitting.

The TimeDistribute layer Outputs the result. A POS tagger search strategy was proposed in this

chapter’s research to efficiently search for a well-performing POS tagger configuration.

3.2.1 POS Tagger Architecture

The architecture of the proposed POS tagger is shown in Figure 0.2, which illustrates: (1) an

overview of the POS tagger components, and (2) how information flows between components.

The inputted building codes are firstly tagged by the neural network model and afterwards

processed by the error-driven transformational rules to fix errors made by the neural network

model. The neural network model has two parts, a pre-trained model and additional trainable

layers. The pre-trained model uses existing models published by other researchers or

commercial/non-profit organizations. These were trained on large bodies of corpus. Many widely

used pre-trained models can be inserted here such as Open AI GPT-2 (Radford et al., 2019),

BERT (Devlin et al., 2018), and ELMO (Peters et al., 2018). This design allows the comparison

between different pre-trained models in this context and the selection of the best-performing

model. Weights of the pre-trained model were locked, which made them untrainable in the

current context. The untrainable nature of the pre-trained models preserves the cross-domain,

cross-application and cross-task information they collected in the original training process. On

top of the pre-trained models, there are trainable layers. Weights of trainable layers will be

updated in the training process, allowing trainable layers to capture the domain-specific,

application-specific, and task-specific information in building code POS tagging. The

architecture of this model allows substitution and therefore comparison between different types

of neural network layers. The error-driven transformational rules are designed to correct errors of

a neural network model.

65

Figure 0.2. The Architecture of the Proposed POS Tagger

3.2.2 POS Tagger Search Strategy

Grid search is the most comprehensive way to find the optimal combination of pre-trained

models, trainable layers and the number of training epochs by exhaustively searching every

possible combination. A global grid search is inefficient, however, because many combinations

that are unlikely optimal will be attempted. The authors developed a three-step searching strategy

(Figure 0.3) that can reduce the time in finding the optimal combination by ruling out

combinations that have low probabilities of being optimal. The first step of this search strategy is

finding the best performing combination of epochs of training and trainable layers by attempting

all possible combinations of them while replacing the pre-trained model with a random number

embedding layer. Because the pre-trained model has been replaced with a random number

embedding layer to save training time, grid search is made possible and efficient. An embedding

layer converts text strings to vectors of numbers based on the context of the text string and the

nature of the embedding layer (e.g., the algorithm used in the layer and the size of the output

vector). The pre-trained models will be used to instantiate the embedding layer later in the

proposed method. A random number embedding layer is a type of embedding layer that directly

maps words to vectors of the random numbers without considering the words’ context. It is much

66

smaller and simpler than the pre-trained models and requires significantly less time to train. In

this step, the authors intend to find a well performing combination of epochs of training and

trainable layers in a short timeframe, so the random number embedding layer is used to help

achieve that. In the second step, the random number embedding layer is substituted with different

pre-trained models in the locally best-performing combination of number of epochs and trainable

layers that was identified in the first step. This step is aimed to find a well performing pre-trained

model. In the last step, the authors increase the number of trainable layers until the accuracy of

the POS tagger stops increasing, to identify the optimal number of trainable layers. The selection

of the hyper-parameters ceases when the authors cannot increase the performance of the model

further in a meaningful way or if the performance is already satisfactory.

Figure 0.3. The Three-step Approach for Efficient Grid Search

67

3.3 Experiment

3.3.1 Textual Data

The proposed POS tagger was trained on the POS tagged building codes (PTBC) dataset

(Xue & Zhang, 2019), a dataset that consists of 1,522 POS tagged sentences in Chapters 5 and 10

of the 2015 International Building Code (IBC). In total, the PTBC dataset has 39,875 tokens. A

token is the smallest unit in POS tagging, such as a word or a punctuation. For example, the

word “means” and the period are two tokens in the sentence “The means of egress shall have a

ceiling height of not less than 7 feet 6 inches.”, which has 18 tokens in total. The split of the

dataset into training, validation, and testing data is shown in Figure 0.4: 40% of the dataset as

training data, 10% of the dataset as validation data, and 50% of the dataset as testing data.

Furthermore, the first 90% of the testing data was further used as the training data of the error-

driven transformation rules, which was then tested on the rest of the data. Seven state-of-the-art

machine taggers were used to tag the textual data, including: (1) the NLTK tagger (Loper &

Bird, 2002), (2) the spaCy tagger (Explosion AI, 2017), (3) the Standford coreNLP tagger

(Manning et al., 2014), (4) A Nearly-New Information Extraction System (ANNIE) tagger in the

General Architecture for Text Engineering (GATE) tool (Cunningham, 2002), (5) the Apache

OpenNLP tagger (Kottmann et al., 2011), (6) the TreeTagger (Schmid, 1994), and (7) the

RNNTagger (Schmid, 2019; Schmid, 1994). The seven machine taggers were selected because

of their high-accuracy, ease of use, and free availability. The most commonly chosen POS tag of

words by the machine taggers formed the machine-tagged result. Five human annotators then

independently POS tagged the textual data and the most commonly seen tag was chosen for each

word. All human annotators are proficient in English and have sufficient background knowledge

to understand building codes. POS tags of words by the human annotators formed the gold

standard. In both the machine-tagged result and the gold standard, the most commonly chosen

POS tag is selected by the highest count, meaning that the POS tag that is selected by the most

machine taggers or human annotators is selected. For example, if four machine taggers tag the

word “doorways” as Plural Noun (NNS), one machine tagger tags the word as 3rd person singular

present verb (VBZ). The most commonly chosen POS tag of the word “doorways” is selected to

be Plural Noun (NNS), in the machine-tagged result. If there is a tie, the authors break the tie by

selecting the tag deemed most appropriate. In the generation of the gold standard, the authors

68

developed a new labeling method in which human annotators address the differences between

tagging results of different machine taggers. If all machine taggers tag a word identically, human

annotators do not need to change the tag by machine taggers. For words that different machine

taggers select different POS tags, human annotators are presented with all tags assigned by

machine taggers as options to select from. To account for the risk that a word is not correctly

tagged by any machine taggers, human annotators are allowed to assign a POS tag outside the

provided tags as well. Human annotators also can change the POS tag of words that machine

taggers reached a consensus on. Such changes will need to be discussed and get consensus from

all human annotators (Xue & Zhang, 2020). The human annotators’ tagging results reached an

initial inter-annotator agreement of 0.91, which ensured the quality of the gold standard. The

dataset contains the POS tags given by all seven machine POS taggers and five human

annotators, the most commonly chosen tag by machine POS taggers and human annotators. In

this experiment, the proposed POS tagger was trained to tag the textual data as closely as

possible to the most commonly chosen tag by human annotators (Figure 0.5).

Figure 0.4. Split of Training, Validation, and Testing Data

Figure 0.5. POS Tagger Goal

69

3.3.2 Step 1: Select the Number of Epochs of Training and the Trainable Layer

There were two types of trainable layers studied by the authors in this chapter: (1)

bidirectional LSTM, and (2) bidirectional GRU. The number of epochs of training cannot be

predicted before training (Chollet, 2017). The authors decided to train the model 15 epochs and

50 epochs (arbitrarily selected numbers) to analyze the impact of epochs of training on the

performance of the model. The trainable layers were layers of bidirectional LSTM or

bidirectional GRU. The size of trainable layers was 128. Between trainable layers, there were

dropout layers with a dropout rate of 0.4. The authors selected hyper-parameters such as epochs

of training, trainable layer size, and dropout rate based on past experience in deep learning.

Neural network models with these hyper-parameters generally perform well on a wide range of

tasks. Although it is possible to do a more thorough search on hyper-parameters, it is out of the

scope of the research of this chapter. The random number embedding layer significantly saved

the training time and allowed grid search in this step. The authors attempted four possible

combinations (Figure 0.6): (1) one layer of bidirectional GRU model that was trained 15 epochs,

(2) one layer of bidirectional GRU model that was trained 50 epochs, (3) one layer of

bidirectional LSTM model that was trained 15 epochs, and (4) one layer of bidirectional LSTM

model that was trained 50 epochs.

70

Figure 0.6. Models Trained in Step 1

71

3.3.3 Step 2: Search a Well-performing Pre-trained Model

Although there were multiple potentially well-performing pre-trained models available, the

authors selected BERT, which had achieved the state-of-the-art performance on multiple NLP

tasks with little fine-tuning needs (Devlin et al., 2018). The authors tested the eight available

versions of BERT: (1) BERT-Large, Uncased (Whole Word Masking), (2) BERT-Large, Cased

(Whole Word Masking), (3) BERT-Base, Uncased, (4) BERT-Large, Uncased, (5) BERT-Base,

Cased, (6) BERT-Large, Cased, (7) BERT-Base, Multilingual Cased, and (8) BERT-Base,

Multilingual Uncased. Therefore, eight models were trained in this step, corresponding to the

eight versions of BERT (Figure 0.7). All of them shared the same trainable layers and were

trained the same number of epochs.

72

Figure 0.7. Models Trained in Step 2

73

3.3.4 Step 3: Search the Optimal Number of Trainable Layers

Stacking multiple trainable layers could possibly achieve higher precision by capturing

more features in the textual data. However, too many trainable layers may lead to overfitting. To

find the optimal number of trainable layers, the authors decided to increase the number of

trainable layers and dropout layers until the precision stops increasing. There were two models

trained in this step: Model 13, which has two bidirectional LSTM layers and Model 14, which

has three bidirectional LSTM layers (Figure 0.8).

Figure 0.8. Two Models Trained in Step 3

3.4 Result

To find a well-performing combination of epochs of training, pre-trained models, and

trainable layers to use in the POS tagger, the authors trained 14 models (Table 0.2). The best-

performing POS tagger had a combination of one bi-directional LSTM trainable layer,

74

BERT_Cased_Base pre-trained model, and was trained for 50 epochs. This model (Model 9 in

Table 0.2) reached the highest accuracy after applying transformational rules. The optimization

of the deep learning component of this POS tagger is out of the scope of the research of this

chapter, which may be pursued in future research.

Table 0.2. Summary of the Performance of Models

Model
Before Applying Rules After Applying Rules

Precision Recall F1-score Precision Recall F1-score

1 39.02% 17.91% 19.88% 61.59% 51.94% 43.71%

2 89.67% 87.65% 88.14% 93.68% 93.78% 93.64%

3 36.45% 17.41% 20.37% 61.82% 49.93% 43.62%

4 90.15% 87.76% 88.34% 93.53% 93.44% 93.41%

5 90.57% 88.60% 88.87% 94.98% 94.99% 94.88%

6 91.06% 88.64% 89.01% 94.73% 94.75% 94.63%

7 90.40% 88.37% 88.68% 94.16% 94.32% 94.14%

8 89.29% 87.24% 87.60% 93.50% 93.70% 93.49%

9 91.89% 89.71% 90.06% 95.11% 95.42% 95.20%

10 91.49% 89.32% 89.78% 94.50% 94.70% 94.51%

11 89.70% 87.56% 87.80% 94.23% 94.56% 94.33%

12 87.84% 85.92% 86.12% 93.31% 93.03% 93.04%

13 91.81% 89.81% 90.19% 95.04% 95.32% 95.08%

14 91.43% 89.82% 90.07% 94.64% 94.89% 94.70%

3.4.1 Step 1 Result: Epochs of Training and Trainable Layers Combination

Figure 0.9 demonstrates the influence of the trainable layer and the epochs of training on the

accuracy of POS tagging. For both trainable layers, increasing the number of epochs can increase

the precision. However, when the number of epochs was 15, the precision of the bi-directional

LSTM model was lower than that of the bi-directional GRU model. When the number of epochs

was 50, the precision of the bi-directional LSTM surpassed that of the bi-directional GRU model.

This shows that the optimal number of epochs for different pre-trained models could be different.

75

Figure 0.9. Influence of Epochs of Training and Trainable Layers to Precision

3.4.2 Step 2 Result: The Best-performing Pre-trained Model

The precision, recall, and F1-score of models with different pre-trained models are shown in

Figure 0.10. All models trained in this step share the same trainable layer and the same number

of epochs of training (50). The BERT_Base_Cased model achieved the highest precision, recall

and F1-score. The average precision for models with cased models is 91.04% and that for models

with uncased models is 89.53% (Figure 0.10). It shows cased information is useful in the POS

tagging of building codes. The average precision for models with large models is 90.60% and

that for models with base models (excluding multilingual models) is 91.15%. The two

multilingual models were excluded in the comparison because there is no large multilingual

model and the current POS tagging task is not multilingual. It may be counterintuitive because

larger models generally achieve higher accuracy than smaller models. The authors suggest that

more training data may be needed to release the full potential of large pre-trained models.

76

Figure 0.10. Precision, Recall and F1-score of Models with Different Pre-trained Models

77

3.4.3 Step 3 Result: The Optimal Number of Trainable Layers

After the best-performing pre-trained model was identified, the authors started to identify

the optimal number of trainable layers. Result of this attempt is illustrated in Table 0.3. The

model with one layer of bidirectional LSTM reached the highest precision. Precision of models

decreases as the number of layers increases. The authors concluded that more data is needed to

leverage the power of additional trainable layers.

Table 0.3. Number of Trainable Layers vs. Precision

Layers of Trainable Layers Precision

1 91.49%

2 89.79%

3 87.84%

3.4.3.1 Effectiveness of Error-driven Transformational Rules.

This chapter’s research also confirmed the effectiveness of error-driven transformational rules (

Figure 0.11). The average precision after applying transformational rules is 94.57%. Although

the precision before applying transformational rules varied with pre-trained models and trainable

layers, the precision after applying the transformational rules all increased. Moreover, POS

taggers with higher pre-rule-application precision will also have a higher post-rule-application

precision. The transformational rules increase the precision of POS tagger by a margin of 4.02%.

The average training accuracy and testing accuracy of all models that use pre-trained models are

95.45% and 94.57%, respectively. The average training accuracy of the models was only 0.88%

higher than their average testing accuracy (

Figure 0.12), which alleviated overfitting concerns. The authors also compared the

performance of the proposed tagger against the performance of other state-of the-art POS taggers

on the PTBC dataset (Xue & Zhang, 2020) (Figure 0.13).

78

Figure 0.11. Precision of each Model before and after Applying Transformational Rules

79

Figure 0.12. Training and Testing Accuracy of Models

80

Figure 0.13. Comparison with State-of-the-art POS Tagger

81

3.4.3.2 Effectiveness of GRU

The bi-directional GRU model without BERT can achieve a precision that is comparable to

bi-directional LSTM model that is enhanced by BERT. A significant amount of training time can

be saved if there is no pre-trained model to fine-tune. The hardware requirement to fine-tune pre-

trained models is also significantly higher than that of the random embedding layer. Directly

using the bi-directional GRU model can save training time and cut hardware investment while

the compromise on the precision of the POS tagger is within an acceptable range.

3.4.3.3 Tagging Example

To validate this POS tagger, the authors compared the POS tagging result of this POS

tagger to a baseline tagger which is a state-of-the-art generic POS tagger. As an example, the

baseline tagger incorrectly labeled “horizonal” as a noun. This error may lead to incorrect

extraction of embedded engineering knowledge in building codes. In contrast, the proposed POS

tagger correctly labeled the word as an adjective. The automated code compliance checking

system has a better chance to correctly extract the embedded engineering knowledge in the

building codes by the proposed POS tagger, compared to the state-of-the-art generic POS

taggers.

3.4.3.4 Impact of Data Split Scenarios

To analyze the impact of different training/testing data split scenarios on the precision, recall,

and f1-score, the authors reported the precision, recall, and f1-score of the proposed POS tagger

on two other training/testing split methods. The second training/testing split method is using: (1)

60% of the entire dataset as the training dataset of the neural network model, (2) 20% of the

entire dataset as the validation dataset of the neural network model, (3) 20% of the entire dataset

as the testing dataset of the neural network model, (4) 80% of the entire dataset as the training

dataset of the error-driven transformational rules, and (5) 20% of the entire dataset as the testing

dataset of the error-driven transformational rules (Table 0.4). The third training/testing split

method is using: (1) 60% of the entire dataset as the training dataset of the neural network model,

(2) 20% of the entire dataset as the validation dataset of the neural network model, (3) 20% of

the entre dataset as the testing dataset of the neural network model, (4) 90% of the testing dataset

82

of the neural network model as the training dataset of error-driven transformational rules, and (5)

10% of the testing dataset of the neural network model as the testing dataset of error-driven

transformational rules (

83

Table 0.5). Results in all training/testing split scenarios showed consistency in: (1) the

improvements of performance when using error-driven transformational rules, and (2) the

improvement of performance over the state of the art.

Table 0.4. Results of Second Training/Testing Split Method

Model
Before Applying Rules After Applying Rules

Precision Recall F1-score Precision Recall F1-score

1 91.15% 89.39% 89.95% 93.10% 92.80% 92.82%

2 92.86% 91.21% 91.72% 94.82% 94.60% 94.64%

3 77.80% 72.13% 71.64% 83.58% 85.35% 83.37%

4 92.98% 91.20% 91.76% 94.62% 94.25% 94.31%

5 91.97% 90.30% 90.76% 96.04% 95.84% 95.56%

6 92.26% 90.28% 90.84% 96.25% 96.22% 95.99%

7 91.93% 90.32% 90.70% 96.00% 95.94% 95.65%

8 90.49% 89.28% 89.49% 95.85% 95.67% 95.37%

9 93.18% 91.82% 92.18% 96.43% 96.35% 96.08%

10 92.58% 91.17% 91.51% 96.31% 96.27% 96.00%

11 91.70% 89.90% 90.40% 95.79% 95.77% 95.44%

12 89.56% 87.93% 88.28% 95.04% 95.02% 94.70%

13 93.02% 91.65% 92.01% 96.40% 96.22% 95.94%

14 92.90% 91.77% 92.00% 96.83% 96.62% 96.28%

84

Table 0.5. Results of Third Training/Testing Split Method

Model
Before Applying Rules After Applying Rules

Precision Recall F1-score Precision Recall F1-score

1 91.17% 89.86% 90.23% 92.48% 92.32% 92.25%

2 92.83% 90.59% 91.27% 93.60% 93.19% 93.32%

3 77.91% 69.31% 69.47% 80.81% 80.24% 78.11%

4 92.88% 90.65% 91.34% 93.25% 92.97% 93.03%

5 92.07% 90.49% 90.90% 95.11% 94.71% 94.85%

6 92.06% 90.01% 90.61% 94.61% 94.27% 94.32%

7 91.62% 90.17% 90.43% 93.18% 92.62% 92.79%

8 90.79% 89.28% 89.61% 93.87% 93.50% 93.59%

9 93.23% 91.47% 91.96% 96.12% 95.70% 95.84%

10 92.25% 90.82% 91.20% 94.73% 94.49% 94.55%

11 91.90% 90.14% 90.51% 95.26% 94.93% 95.06%

12 90.31% 88.79% 89.29% 93.07% 92.62% 92.70%

13 92.83% 91.12% 91.49% 95.99% 95.48% 95.65%

14 92.73% 91.30% 91.60% 95.51% 95.26% 95.32%

3.5 Discussion

Previous POS taggers either took a rule-based approach (Bird, 2009) or used machine

learning or deep learning algorithm exclusively (Giménez, 2004). The proposed POS tagger

combine the advantage of rule-based approach and machine learning algorithm. One main

limitation of the proposed POS tagger is acknowledged: the POS tagger still is not error-free. In

spite of its improvement over the state of the art, this POS tagger may still not be accurate

enough to support an error-free extraction of embedded engineering knowledge in building

codes. Errors in POS tagging may have negative effect on the performance of NLP-based

automated building code compliance checking systems that leverage it. The authors suggest that

research to further increase the accuracy of POS taggers is still needed. The authors also plan to

develop automated code compliance checking systems that have the robustness to tolerate a

small amount of POS tagging errors.

85

3.6 Contributions to the Body of Knowledge

The research of this chapter has contributions in both theory and practice of POS tagging.

Theoretically, it has two main contributions to the body of knowledge. First, it provides a deep-

learning and rule-based hybrid method to enhance performance of POS taggers on domain-

specific texts. The combination of deep learning neural network models and error-fixing

transformational rules makes the proposed POS tagger outperform the state-of-the-art POS

taggers with limited amount of training data. Many current state-of-the-art POS taggers were

trained on the Penn Treebank (PTB) corpora which has 2,499 articles (each article contains tens,

if not hundreds, of sentences). This POS tagger was trained on a dataset of only 1,522 sentences.

Second, the research of this chapter shows the potential of deep learning in automated building

code information extraction. The promising results of deep learning on the POS tagging of

building codes paved the way to more applications of deep learning in automated building code

compliance checking and engineering tasks in the AEC domain in general. In practice, the

impact of this chapter’s research on the AEC domain could be profound. It provides a more

accurate POS tagger for building codes comparing to the state of the art, which will help

automated code compliance checking systems to check more building code requirements

automatically. The extension of checkable building code requirements could bring automated

code compliance checking systems one step closer to a wide real-world deployment.

3.7 Conclusion

The ability to provide accurate POS tagging results of building codes paves the way to

automated regulatory information extraction and widens the possible range of applicable code

requirements of automated code compliance checking systems. The authors proposed a new POS

tagger to support such systems. This is the first POS tagger that is tailored to building codes. The

POS tagger gained information on general English by incorporating pre-trained deep learning

models and captured AEC domain specific knowledge by fine-tuning on a domain-specific

corpus. The POS tagger directly maps inputted words to POS tags without feature engineering.

This nature of deep learning allows future domain experts to enhance the performance of this

POS tagger by directly leveraging more training data. The experiment showed that the bi-

directional GRU model without pre-trained models can reach a high precision that is comparable

86

to the precision of the bi-directional LSTM models with pre-trained models. Using bi-directional

GRU model can save time and cost to train a POS tagger, without significantly compromising

precision. Although more training data may help unleash the full potential of pre-trained models

and further improve performance, the authors were able to achieve a 95.11% precision using one

bi-directional LSTM trainable layer and BERT_Cased_Base pre-trained model in combination

with error-driven transformational rules, which significantly increased over the state-of-the-art.

3.8Acknowledgement

The authors would like to thank the National Science Foundation (NSF). The material in

this chapter is based on work supported by the NSF under Grant No. 1827733. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the NSF.

87

4 REGULATORY INFORMATION TRANSFORMATION RULESET

EXPANSION TO SUPPORT AUTOMATED BUILDING CODE

COMPLIANCE CHECKING

Xiaorui Xue, S.M.ASCE1; Jiansong Zhang, Ph.D., A.M.ASCE2

A portion of this chapter was previously published by:

Xue, X., Zhang, J. (2022). Regulatory information transformation ruleset expansion to support

automated building code compliance checking. Automation in Construction, 138(June

2022), 104230. https://doi.org/10.1016/j.autcon.2022.104230

Republished with permission of Elsevier Science &Technology Journals, from Regulatory

information transformation ruleset expansion to support automated building code compliance

checking, Xiaorui Xue, and Jiansong Zhang, 138, 2022; permission conveyed through Copyright

Clearance Center,Inc.

Author Contributions

The authors confirmed contribution to the paper as follows:

Study conception and design: Xiaorui Xue, Jiansong Zhang.

Data collection: Xiaorui Xue, Jiansong Zhang.

Analysis and interpretation of results: Xiaorui Xue, Jiansong Zhang.

Draft manuscript preparation: Xiaorui Xue, Jiansong Zhang.

All authors reviewed the results and approved the final version of the manuscript.

4.1 Literature Review

4.1.1 Natural Language Processing

Chowdhury defines natural language processing (NLP) as “an area of research and

application that explores how computers can be used to understand and manipulate natural

language text or speech to do useful things” (Chowdhury, 2003). NLP includes a wide range of

tasks, such as (1) information retrieval (Raghavan et al., 2010), (2) information extraction

(Cowie & Lehnert, 1996), (3) text classification (Zhang et al., 2015), (4) text generation

88

(McKeown, 1985), (5) text summarization (Nenkova & McKeown, 2012), (6) question

answering (Soares & Parreiras, 2020), (7) machine translation (Koehn, 2009), and (8) speech

recognition (Povey et al., 2011). There are two main approaches to accomplishing NLP tasks: the

rule-based approach and the machine learning-based approach (Gali et al., 2008). Rule-based

NLP systems may require manual effort in rule generation, but usually outperform machine

learning-based NLP systems in a specific task or in a specific domain (Crowston et al., 2010).

Machine learning-based NLP systems can be further classified into “shallow” learning systems

and “deep” learning systems based on the types of machine learning models they use. “Shallow”

learning systems use traditional machine learning algorithms, such as support vector machines

(SVMs) or decision trees, and require manual feature engineering. Deep learning systems use

neural networks and do not require manual feature engineering (Chollet, 2017). There is no lack

of efforts to use NLP in the AEC domain. For example, Tixier et al. (2016) used NLP to extract

the reasons for accidents from construction injury reports. Lin et al. (2013) used NLP

technologies to extract information from BIM. ACC research also uses NLP techniques to

process building codes, for matching between concepts in building codes and concepts in BIM

(Zhang & El-Gohary, 2019), and for converting building codes to logic clauses that support

automated reasoning (Zhang & El-Gohary, 2016).

4.1.2 Part-of-Speech

Part-of-speech (POS) of a word represents its lexical and syntactic function in a sentence

(Barzilay & Elhadad, 1999). English words have eight basic POS categories: (1) noun, (2) verb,

(3) adjective, (4) adverb, (5) pronoun, (6) preposition, (7) conjunction, and (8) interjection (Butte

College, 2016). The same word may have different POS categories in different contexts. For

example, the word “run” could be a verb in its simple present tense or past perfect tense

depending on the context. In NLP systems, words are categorized into more specific POS

categories to represent text more informatively. For example, the Penn Treebank Corpus

classifies words into 36 POS categories (Marcus et al., 1993) and the Brown corpus has 179 POS

categories (Francis & Kucera, 1979). In the development of the Penn Treebank Corpus and the

Brown Corpus above, human annotators manually assigned words to different POS categories

according to their understanding of the English language and the contexts of the words. POS

tagging software, which is commonly called “POS taggers,” could replace annotators’ manual

89

effort in this task. POS taggers automatically determine the POS category of a word using its

contextual information in an algorithmic manner (Schmid, 1994). POS taggers began with rule-

based taggers that used a set of rules to determine the POS categories of words. These rules can

be compiled by experts (Bird et al., 2009) or extracted from text algorithmically (Brill, 1992).

With the development and integration of machine learning, POS taggers shifted to the use of

statistical models. For example, Giménez and Marquez (2004) used one SVMs model to

determine POS categories of known words and another SVMs model to predict those of

unknown words. Brants (2000) developed a POS tagger which uses Hidden Markov Models

(HMM) to capture dependencies among words and determine the POS categories of words by

their inter-dependencies. Plank et al. (2016) proposed the use of bi-directional neural networks to

accomplish multilingual POS tagging. POS tagging is an important early step of many NLP

systems (Giménez & Marquez, 2004).

4.1.3 Ontology

Ontology is the explicit and formal description of knowledge through relationships among

concepts in a domain (Gruber, 1993). In 1999, the World Wide Web Consortium (W3C) first

developed the Resource Description Framework (RDF) language for ontology (Brickley et al.,

1999). Then, it collaborated with the Defense Advanced Research Projects Agency (DARPA) to

extend the RDF into a more expressive DARPA Agent Markup Language (DAML) (Hendler &

McGuinness, 2000; Mcguinness et al., 2002). After that, many ontologies emerged, either for a

specific domain (e.g., medical) (Amos et al., 2020) or for general-purpose (Hepp, 2008).

Ontology is used to: (1) analyze and reuse domain knowledge, (2) share structured domain

knowledge among people and software, (3) specify domain assumptions, and (4) distinguish

domain knowledge from operational knowledge (Noy & McGuinness, 2001).

4.1.4 Text Similarity Measurements

Text similarity is an important benchmark in NLP. There are many ways to measure the

similarity between text strings (Gomaa & Fahmy, 2013). Text similarity can be measured by

comparing words or characters in text strings. For example, the Levenshtein Distance

(Levenshtein, 1966; Su et al., 2008) measures the minimum number of single character

90

transformations needed to convert one string to another. In Levenshtein Distance, 0 means two

strings are identical, and the larger it is, the less similar the two strings are, with no strict upper

bound. The Jaccard Distance, on the other hand, measures the number of items shared by two

sets (Kosub, 2019). In the Jaccard distance, 0 means two sets are identical, and 1 means two sets

share no common items. The Jaro Winkler Similarity (Winkler, 1990) is an extension of the

Levenshtein Distance. By normalizing the Levenshtein Distance with the length of the text

string, the Jaro Winkler Similarity ranges from 0 to 1. In the Jaro Winkler Similarity, 0 means

two text strings are completely different and 1 means two text strings are the same.

The inability to measure similarity between word meanings is one limitation of measuring

text similarity at the word and character levels. One potential solution to the problem is

representing words (and their contexts) as vectors in high-dimensional spaces. Popular text

vectorization techniques include, for example, Word2Vec (Mikolov et al., 2013), FastText

(Joulin et al., 2017), and Glove (Pennington et al., 2014). The distance between meanings of two

words and their contexts can be measured by the cosine distance between the two vectors.

4.2 Methodology

The proposed method expands the range of processable building code requirements by

adding new pattern matching-based rules to an existing ruleset. The pattern matching-based rules

capture regulatory information in building codes and convert the captured information to logic

clauses. The pattern matching-based rules consider both syntactic information, which is provided

by POS tags (e.g., the word “height” in the phrase “building height” is a noun because it has a

POS tag “NN”), and sematic information, which is provided by an ontology (e.g., the phrase

“less than” after an attribute and before a value means that the attribute value must be smaller

than the specified value, and the phrase “minimum clearance” means the attribute “clearance”

must be greater than or equal to a specified value). For example, the pattern “subject,

conjunction, subject” can be used to extract the regulatory information of which two subjects are

in equivalent status. The conjunction (i.e., and, or) is a label by the POS tagger. Subjects, which

were labeled as noun by the POS tagger, were further labeled as subjects after feature

enhancement by the ontology. The pattern matching-based rules regulate how this method

extracts building code requirements and converts them to logic causes. The logic clauses

91

represent building code requirements in a strict horn clause (HC) format in B-Prolog syntax to

avoid ambiguity in natural language and facilitate automated reasoning by the logic reasoner.

Each logic clause has a left-hand side and a right-hand side, separated by the delimiter “:-”.

The left-hand side is the head of the logic clause that represents the subject of compliance

checking in the logic clause, i.e., the building design component that this code requirement

governs. The subject of compliance can be an entire building, a component of a building, a

certain attribute of a building, or an attribute of a building component. The predicates on the

right-hand side of the delimiter “:-” (i.e., in the body of the logic clause) are conditions that the

subject of compliance need to meet to comply with the building code requirement. This logic

clause indicates that if all predicates on the right-hand side of the delimiter “:-” are evaluated to

True, then the predicate on the left-hand side of the delimiter “:-” will also be evaluated to True.

In the context of this dissertation research, it means that if the subject of compliance meets all the

conditions of the corresponding building code requirement, it is then considered to be compliant

with the building code requirement. In the logic clauses, the conjunction relation (i.e., AND) is

represented as a comma “,” and the disjunction relation (i.e., OR) is represented as a semicolon

“;”.

One manually generated logic clause example as part of the gold standard (see details in

Section 5.2.2 - Gold Standard Generation) is provided in Figure 0.1. The “Travel_distance” in is

the subject of compliance and the predicates on the right-hand side describe the building code

requirement that the “Travel_distance” need to comply with. Each predicate describes one

condition that the subject needs to satisfy to comply with in the building code requirement

described in the logic clause. If all of the predicates on the right-hand side are evaluated to true,

the ACC system will then determine the building design to be in compliance with the

corresponding building code requirement. More specifically, the predicates

“from(Travel_distance, Accessible_space), to(Travel_distance, Area_of_refuge)” describe that

the travel distance is measured from the accessible space to the refuge area. The predicate

“in_accordance_with(Travel_distance_2, section_1017_1)” describes that the travel distance is

specified in Section 1017.1 of the IBC 2015. The predicates “not greater_than(Travel_distance,

Travel_distance_2)” require the travel distance from the accessible space to the area of refuge to

be no greater than the travel distance specified in Section 1017.1 of the IBC 2015. Other

predicates in the logic clause are required by the strict HC format in B-Prolog syntax for this

92

logic rule to execute. Overall, this logic clause describes the building code requirement that the

maximum travel distance from an accessible space to an area of refuge should not be greater than

the travel distance specified in Section 1017.1 of the IBC 2015.

Figure 0.1. Example Logic Clause

In the manual transformation of building code, domain experts complete the transformation

based on their understanding of building code requirements. In the automated transformation, a

pattern matching-based regulatory information transformation ruleset is used to complete this

transformation automatically. To support the matching pattern development in the ruleset,

building codes undergo feature enhancement by POS tagging and ontology matching (Figure

0.2).

93

Figure 0.2. Automated Logic Clause Generation

en
erated

u
m
an

attern

atc

h
in
g

ased

u
les

attern

atc

h
in
g

ased

eg
u
lato

r

In
fo
rm

atio
n

ran

sfo
rm

atio
n

u
leset

o
n
tain

s

o
g
ic

lau

se

en
erates

n
am

ig
u
o
u
s

o
m
p
u
ta

le

u
ild
in
g

o
d
e

ep
resen

tatio
n

eatu

re
n
h
an
c
em

en
t

ro
c
esses

S

ag
g
in
g
 an

d

n
to
lo
g

atc
h
in
g

o
m
p
leted

u
to
m
atic

all

u
ild
in
g

o
d
e

94

The goal of the research in this chapter is to develop an efficient and effective method to

extend an existing pattern matching-based regulatory information transformation ruleset.

Although it is possible to develop a new ruleset from scratch, the authors chose to expand an

existing ruleset developed by Zhang and El-Gohary (2015), based on the assumption that

asymptotic full coverage of building codes could be achieved by expanding an existing ruleset.

In addition, expanding an existing ruleset, instead of generating new rulesets, has the benefits of:

(1) reducing rule generation workload, and (2) allowing the expanded ruleset to capture patterns

absent in the training dataset, while maintaining the compatibility of the expanded ruleset with

the automated building code compliance checking system. The expansion of an existing ruleset

requires new rules to be added. The added rules must meet certain standards or have certain

characteristics to realize the two benefit goals above. For example, the amount of effort/time

spent on new rules development should be significantly less than (e.g., no greater than 20% of)

the development of the original ruleset. To achieve the first goal, the number of added rules

should be small. To achieve the second goal, the process of adding new rules needs to be

selective. The added rules should be valid and general. A rule is valid when it correctly extracts

the regulatory information it is designed to extract. A rule is considered general when it has been

applied at least twice in the training dataset. The combination of multiple valid and simple

pattern matching-based rules can be used to represent more complex patterns in building codes.

The added rules also need to be general to capture patterns that are not in the training data.

Building codes are legal documents composed by a panel of experts following strict guidelines.

Therefore, the same patterns may be shared by different chapters of the building code. The

generality requirement allows pattern matching-based rules to capture common patterns shared

by different chapters of the same building code, or different building codes. In other words,

different building codes, or at least different chapters of the same building code, should follow a

set of common patterns, according to English grammar and the way building codes were

compiled. The ruleset expansion method proposed in this chapter is designed to ensure the

generality and validity of added rules. The transformation rule generation and validation are

manually conducted in the proposed method. However, once the transformation rules are

generated and validated, they can be used to fully automatically transform building code

requirements into logic clauses.

95

4.2.1 Ruleset Expansion Method

The proposed ruleset expansion method takes an iterative approach to add new rules into an

existing regulatory information transformation ruleset. The goal of the research in this chapter is

to develop an efficient method to expand an existing pattern matching-based regulatory

information transformation ruleset and ensure the generality and expandability of the added

rules. To achieve this goal, the authors should identify missing regulatory information and

generate new rules to capture it. There are two approaches to completing this task: (1) identify all

missed regulatory information and generate corresponding rules in a single pass, or (2) identify

one piece of missed regulatory information at a time, generate a rule to capture the missed

information, review the performance of the new rule, modify the new rule, and then proceed to

the next iteration of identifying missed information. Both approaches can generate a ruleset that

captures all regulatory information. However, the first approach does not consider the validity

and generality of the added rules and the interaction among them (i.e., multiple rules may match

the same regulatory information). The second approach iteratively adds new rules and tests them

before they are eventually added to the ruleset. The second approach has the potential to generate

more valid and general rules than the first approach. What really distinguishes the first and

second approaches is the granularity of pattern matching-based rules. The first approach aims to

extract regulatory information at the chapter level or even at the whole building code level.

Whereas the second approach extracts regulatory information at the sentence level. Because

logic clauses are generated at the sentence level, the second approach naturally fits better. In

addition, the shorter the pattern lengths are, the more flexible they become and the better

scalability the whole ruleset will have. Patterns may match the whole sentence of a building code

requirement or (most likely) part of a sentence. Data-driven expansion of the existing ruleset is

also made possible through the second approach, whereas it would not have been possible with

the first approach. Previous rule-based NLP applications (Abacha & Zweigenbaum, 2011; Bird

et al., 2009; Zhang et al., 2009) with manually developed rules also supported this point. Testing

rules one-by-one before they are added to the ruleset is also a more rigorous rule development

process than generating all the rules and testing them together in one shot.

Because of the above-mentioned advantages, the ruleset expansion method proposed in the

research in this chapter takes the second approach, which is shown in

96

Figure 0.3. One candidate pattern matching-based rule is generated to capture missing

regulatory information one piece at a time, until all the missed regulatory information in the

training dataset is captured. A version of logic clauses is first generated by the ruleset to identify

missing regulatory information. If an instance of missing regulatory information is identified in

this version of logic clauses, a candidate pattern matching-based rule is generated to extract it.

The candidate pattern matching-based rule will be added to the ruleset if it is proven to be

general and valid. The generality and validity of the candidate rule are tested by inspecting a new

version of logic clauses generated by the ruleset when the candidate rule is included. A valid rule

must correctly extract the information it is designed to extract and does not introduce errors

when it is applied to other parts of the training text. A general rule needs to be able to be applied

at least twice in the training dataset, which means it should be applied at least once outside of the

sentence it is extracted from. The validity of a rule has a higher priority than its generality. If the

rule introduces any errors in the training text, it will be modified until it introduces no errors. At

the same time, the validity of rules will not be sacrificed to make a new rule general. It is

possible that a pattern appears only once in the training text, and it is still necessary to capture an

instance of regulatory information. The ruleset expansion process continues until the expanded

ruleset captures all the regulatory information in the training data.

97

Figure 0.3. Ruleset Expansion Method

98

4.2.2 Feature Enhancement

The input textual data (building code in plain text) are first enhanced by POS tagging and

ontology matching, to generate extra features. The enhanced building codes are more informative

and support more complex operations than the original building codes without extra features.

Building codes are labeled with information tags in this step. Extra features can provide more

information about building code expression patterns and, therefore, increase the performance of

pattern matching-based rules. To understand building codes, it requires knowledge both of the

English language and of the AEC domain. The feature enhancement makes the ACC system

better at processing building codes by introducing such knowledge to the ACC system. The

authors apply POS tagging to generate syntactic features (i.e., for knowledge of the English

language) and applies ontology matching to introduce AEC domain knowledge in this step.

The ACC system uses POS tagging, which captures the grammatical roles of words in a

sentence, to generate syntactic features from building code text. The same word in different POS

categories can have distinct meanings. For example, when the word “run” is a verb, it means an

action of moving through a space. When the word “run” is a noun, it refers to a physical object.

Therefore, syntactic features together with semantic features can disambiguate words in building

codes. For example, when the word “runs” is a noun in the sentence “The extensions of handrails

shall be in the same direction of the flights of stairs at stairways and the ramp runs at ramps”

(Section 1014.6 of IBC 2015) (International Code Council, 2015), it represents a physical object

with attributes governed by the building code. However, when the word “runs” is a verb in the

sentence “Where a partition containing piping runs parallel to the floor joists” (Section 2308.5.8

of IBC 2015) (International Code Council, 2015), such a possibility can be ruled out. In this

chapter, the authors used the A Nearly-New Information Extraction System (ANNIE) POS

tagger in the General Architecture for Text Engineering (GATE) (Cunningham, 2002) with

proven performance in tagging building codes to generate accurate syntactic features. Such

external POS taggers, which were trained on a larger body of text and fine-tuned by domain

experts, can bring additional grammatical knowledge to the ACC system.

The ACC system also uses an ontology to introduce AEC domain knowledge for logic

clause generation. In manual code compliance checking, reviewers already have domain

knowledge needed to understand building codes, based on their education, training, and

experience. However, in ACC systems, such knowledge needs to be explicitly provided. An

99

ontology allows the ACC system to access domain knowledge and apply domain knowledge in

rule generation. For example, with an ontology, the method can treat “International Fire Code”

and “automatic sprinkler system” as integral phrases instead of multiple individual words. It also

makes the method treat “inches” and “feet” as units specifying a numerical constraint, instead of

regular nouns. In addition, the ontology also supports the disambiguation of vague terms.

The used ontology has two main types of items: (1) essential information, and (2) secondary

information. Essential information includes: (1) subject of a particular regulatory requirement

(e.g., building), (2) attribute (e.g., building height), (3) comparative relationship (less than,

greater than), (4) quantity (e.g., value or range of value), (5) quantity unit (e.g., inch, feet), and

(6) reference to other quantity. Secondary information includes restrictions and exceptions.

Restrictions mean constraints to subjects and attributes (Dimyadi et al., 2016; Zhang & El-

Gohary, 2015). For example, in the sentence “Exterior exit stairways and ramps serving as an

element of a required means of egress shall be open on not less than one side, except for required

structural columns, beams, handrails and guards, (International Code Council, 2015)” “serving as

an element of a required means of egress” is a constraint to “Exterior exit stairways and ramps.”

Exceptions are the conditions where a requirement does not apply. The ontology was created and

tested in a previous study (Zhang & El-Gohary, 2015). With an expansion for this specific task,

its comprehensiveness is ensured in the context of this application by enumerating all covered

concepts in the corresponding code requirements. The ontology is also scalable. Similar to the

ruleset itself, the ontology could also be accumulatively and continuously developed to fulfill the

need for processing different building codes, until it reaches or asymptotically approaches the

saturated state where any potentially related concept to building codes is included. It is editable

in GATE (Cunningham, 2002) or using a plain text editor. Ontology editing tools provide

support for the scalability of the ontology as the size and complexity of the ontology increases.

4.2.3 Pattern Extraction

There are two approaches to extracting regulatory information from building codes: the top-

down approach, and the bottom-up approach. In the top-down approach, the information

extraction algorithm constructs a global logic clause framework that matches the overall

structure of a sentence and fills in the building code requirements into the framework. In the

bottom-up approach, the information extraction algorithm captures building code requirements at

100

a local level and assembles them into a logic clause. The building codes consist of a lot of long

and complex sentences with diverse structures. The versatility and complexity of building code

sentences means developing enough sentence-level frameworks to accommodate all sentences in

building codes may require a similar amount of manual effort as directly converting building

codes to logic clauses manually. It is possible that every sentence, or at least every few

sentences, requires a different framework. The authors propose the use of the bottom-up

approach. The complex and versatile structures of building code sentences may require many

complex sentence-level frameworks, but pattern matching-based rules can assemble these

structures from simple local patterns.

4.3 Experiment

4.3.1 Ruleset Expansion Experiment

The authors tested the effectiveness of the proposed ruleset expansion method by measuring

its precision, recall, and F1-score in logic clause generation, which in turn tested the generality of

the original ruleset. Chapter 10 of the International Building Code 2015 (IBC 2015) was selected

as the training data for the experiment and Chapter 5 of the IBC 2015 was selected as the testing

data. Zhang and El-Gohary developed the original ruleset based on Chapters 12 and 23 of IBC

2006 (Zhang & El-Gohary, 2015). The authors used the ruleset expansion method to generate

new rules based on Chapter 10 of the IBC 2015 and tested the expanded ruleset on Chapter 5 of

the IBC 2015, in comparison with the original ruleset.

In the first part of the experiment, the original ruleset generated a baseline version of logic

clauses from the training data. The training data was first pre-processed by a POS tagger and an

ontology to generate enhanced features. The POS tagger used in the research in this chapter is

the ANNIE tagger from the GATE tool (Cunningham, 2002). The authors used the ontology

developed in (Zhang & El-Gohary, 2015) with expansions on Chapters 5 and 10 of the

International Building Code 2015. After that, the authors used the ruleset expansion method to

expand the original ruleset.

First, the authors identified missing regulatory information and updated the original ruleset

with a candidate pattern matching-based rule to capture the missing regulatory information. For

example, the original ruleset did not have enough patterns to extract all the essential information

101

for requirements that are described using negation together with a past participle verb, so a

corresponding pattern and candidate rule was added. The expanded ruleset also includes all rules

in the original ruleset. The authors added 64 new rules to the original ruleset, a much smaller

number compared to the 306 rules already in the original ruleset. Two of the 64 new rules were

developed to extract missed regulatory information in the example type mentioned above. One

rule with the pattern “modal verb, negation, base form verb, [adjective, past participle verb, past

tense verb]” was generated to extract the regulatory requirement of a subject. This rule can

process building code requirement sentences like “A basement (candidate subject) provided with

one exit shall (modal verb) not (negation) be (base form verb) located (past participle verb) more

than one story below grade plane” (Section 1006.3.2.2 of IBC 2015) (International Code

Council, 2015), and “The area of a Group F-2 or S-2 building (candidate subject) no more than

one story in height shall (modal verb) not (negation) be (base form verb) limited (past participle

verb) where the building is surrounded and adjoined by public ways or yards not less than 60 feet

in width” (Section 507.3 of IBC 2015)) (International Code Council, 2015). The first subject is

extracted by identifying the first subject candidate to the left of (not necessarily immediately next

to) the relationship. This arrangement makes pattern matching flexible. The rule is both general

and valid, because it was applied twice in the training dataset and correctly extracted the

regulatory information it was designed to extract. Another pattern “candidate subject,

preposition, comparative relation, value, unit” was generated to extract the quantitative

regulatory requirement of a subject. This rule can process building code requirement sentences

like, “The ladder or steps shall not encroach into the required dimensions of the window well

(candidate subject) by (preposition) more than (comparative relation) 6 (value) inches (unit).”

(Section 1030.5.2 of IBC 2015)) (International Code Council, 2015). Only the “of” relationship

between “the required dimension” and “the window well” was extracted by the original ruleset.

The newly added rule was not general in current training dataset (i.e., it was applied only once in

the training dataset), but it was still valid, because it correctly extracted the regulatory

information it was designed to extract. Although the rule was not general, it was still needed to

capture an instance of regulatory information. Therefore, it was still added to the ruleset. The

complete set of the 64 rules can be found in Appendix A. In the second part of the experiment,

the expanded ruleset was tested on Chapter 5 of the IBC 2015 to automatically convert building

102

codes to logic clauses. The automatically generated logical clauses were compared against a gold

standard.

4.3.2 Gold Standard Generation

Chapters 10 and 5 of the IBC 2015 were transformed into logic clauses by three annotators

semi-automatically to create a gold standard of information transformation and logic clause

generation. All three annotators have background AEC knowledge to understand building codes,

and necessary skills to transform building codes into logic clauses. The authors provided the

annotators a clear annotation protocol, a brief training section before annotation, and machine-

generated logic clauses for reference during their annotation. They worked independently

without access to the logic clauses generated by other annotators. However, they were presented

with the machine-generated logic clauses, which could help annotators align with the rule

generation mechanism of pattern matching-based rules, achieve higher inter-annotator

agreement, and reduce rule generation time. It also ensures the compatibility of human-generated

logic clauses with the automated code compliance checking system.

Annotators were required to use the exact words that came from the building code in their

generated logic clauses. For example, if the building code uses the word “exterior” for exterior

walls, annotators must also use the word “exterior” in their generated logic clauses to represent

exterior wall, rather than using “external wall” or other names. Therefore, the problem that

annotators may use different words for the same meaning is prevented. The product of the

manual transformation process was three versions of logic clauses, with each version

independently and manually generated by one of the annotators. After that, annotators reviewed

each other’s work and collectively generated the final gold standard. All annotators agreed that

the gold standard represents the meaning of building codes accurately and approved it.

To evaluate the quality of human-generated logic clauses, the authors measured the

similarity between the logic clauses generated by different annotators. Because annotators

transformed the same building code, they should generate similar logic clauses. A high similarity

among human-generated logic clauses of different annotators indicates a high quality of the logic

clause generation. The authors chose to measure logic clause similarity by comparing characters

and words at the string level in the research in this chapter. While text vectorization and cosine

similarity measure the meaning-wise similarity of natural language text, because the logic

103

clauses generated in the research in this chapter are not in natural language and the similarity

measurement focuses on the existence of logic clause components rather than the meaning of the

logic clauses, vectorization of text and cosine similarity were therefore not used. The authors

measured the similarity among logic clauses in two different ways: (1) the Levenshtein Distance

and the Jaro Winkler Similarity were used to measure the character-level similarity between the

human-generated logic clauses; and (2) the Jaccard Distance was used to measure the predicate-

level similarity between the human-generated logic clauses. For example, the Levenshtein

Distance, the Jaccard Distance, and the Jaro Winkler Similarity between the two sample logic

clauses in Table 0.1 were 14, 0.67, and 0.97, respectively. Overall, annotators reached an average

Levenshtein Distance of 6.88, an average Jaccard Distance of 0.63, and an average Jaro Winkler

Similarity of 0.99.

Table 0.1. Sample Logic Clauses Generated by Annotators

Building Code

Sentence
Logic Clause 1 Logic Clause 2

The maximum

width of a

swinging door

leaf shall be 48

inches (1219

mm) nominal.

compliance_width_of_swinging_door_leaf257(Swi

nging_door_leaf):-

width(Width),swinging_door_leaf(Swinging_door_l

eaf),has(Swinging_door_leaf,Width),less_than_or_

equal_to(Width,quantity(48,inches)).

compliance_width_of_swinging_door

_leaf257(Swinging_door_leaf):-

width(Width),swinging_door_leaf(Sw

inging_door_leaf),has(Swinging_door

_leaf,Width),equal_to(Width,quantity

(48,inches)).

Because text similarity is task-specific, there was no universally applicable standard for it.

Instead, NLP researchers developed their own metrics according to the needs of tasks

(Penumatsa et al., 2006; Rekabsaz et al., 2017). The 6.88 Levenshtein Distance seems high, but it

does not consider the length of the text string. If the length of text string is considered, the 0.99

Jaro Winkler Similarity proves that human-generated logic clauses are similar at the character

level. The 0.63 Jaccard Distance is relatively low. It indicates a significant number of predicates

are different in human-generated logic clauses. However, the difference could be overstated

because the Jaccard Distance requires two predicates to be completely identical in order to be

considered the same. If two predicates are off by even one character, they are still considered

different and accounted for in the Jaccard Distance. Combining the use of all three measures

illustrates that human-generated logic clauses are similar in general. If two predicates are

104

different, they usually only differ by a few characters. Measurement results using the three

metrics show that the three annotators reached a reasonable alignment and the quality of the gold

standard was good (Cahyono, 2019; Kloo et al., 2019).

4.4 Result

To evaluate the performance of the ruleset expansion method, the machine-generated logic

clauses were compared against the human-generated gold standard. The closer the machine-

generated logic clauses are to the gold standard, the better the pattern matching-based rules are,

and therefore, the better performance the ruleset expansion method is deemed to have. Predicates

in logic clauses can be further broken down into predicate elements (i.e., predicate names or

predicate arguments). For example, the predicate “has(Stairway, Clear_width)” is formed by

three elements, “has,” “Stairway,” and “Clear_width.” Therefore, the authors calculated both

predicate-level performance and predicate element-level performance of the ruleset expansion

method. In the predicate-level performance, the minimum unit of measurement is a predicate. In

the predicate element-level performance, the minimum unit of measurement is a word or phrase.

For example, if the gold standard is “considered_by(Code_change_proposals,

International_fire_code_development_committee),” and the machine-generated logic clause is

“considered_by(Designation_f, International_fire_code_development_committee).” The

predicate-level performance treats this predicate as one incorrect predicate. The predicate

element-level performance treats this predicate as three elements, two of which are correct and

one is incorrect. Because of the phenomenon that predicates could be partially correct, predicate

element-level accuracy could provide a more accurate evaluation regarding the performance of

the ruleset expansion method and pattern matching-based rules.

The performance of the expanded pattern matching-based regulatory information

transformation ruleset is summarized in Table 0.2. The performance was measured at the

predicate level and the predicate element level. The experiment focuses on logic clauses about

quantitative requirements because the original ruleset focused on quantitative requirements. In

the research in this chapter, sentences of building code provisions and generated logic clauses

have a one-to-many mapping relationship. Patterns, on the other hand, can match the whole

sentence or part of a sentence. Regulatory information that spans over multiple sentences is

represented by multiple logic clauses. The original ruleset filters quantitative and non-

105

quantitative requirements automatically. Therefore, there is no completely missed logic clause.

The logic clauses generated that were not in the gold standard were counted as false positives.

The logic clauses generated that functioned in the same way as those in the gold standard were

counted as true positives. The logic clause-level performance is reported in Table 0.3. The

predicate element-level performance was higher than the predicate-level performance, which

indicates some predicates were partially correct. Through error analysis, the authors recognized

four main sources of errors:

1. The partially correct predicates. After reviewing machine-generated logic clauses

and the gold standard, the authors found that a significant portion of predicates in machine-

generated logic clauses were partially correct. For example, when the correct predicate in the

gold standard is “surrounded_by(Buildings,Public_ways),” the expanded ruleset generated a

partially correct predicate “surrounded_by(Chapter_9,Public_ways).” Future development

about pattern matching-based rules could focus more on capturing the correct elements in

predicates.

2. The flexibility of B-Prolog logic clauses and the ambiguity of natural language.

The flexibility of B-Prolog logic clauses and the inherent ambiguity of natural language left a

room of interpretation to the annotators. In other words, it was possible to represent the same

building code requirement in different predicates. For example, one annotator translated the

“minimum fire resistant rating of 1 hour” to “greater_than(Minimum_fire_resistance_rating,

quantity(1, hour)).” Another annotator translated the same phrase to “equal to

(Minimum_fire_resistance_rating, quantity(1, hour)).” One annotator considered that fire

resistant rating of a subject should be greater than the minimum fire-resistant rating, which is

1 h. Another annotator considered that this phrase means the minimum fire-resistant rating of

a subject should be 1 h. Therefore, the precision of the rule generation was affected. A viable

solution to increase inter-annotator agreement may include more detailed and stricter

annotation guidelines.

3. The patterns and terminologies unseen in Chapter 10. Although most regulatory

information patterns in Chapter 5 were captured in Chapter 10, a small amount of regulatory

information patterns were missed. The authors attributed missed building code requirements

to unseen patterns or unique terminologies in Chapter 5. Chapter 5 and Chapter 10 of the IBC

2015 focus on different topics (i.e., general building height and area, and means of egress,

106

respectively), so some terminologies in Chapter 5 did not occur in Chapter 10. For example,

the erroneous predicate “unobstructed_to(Be,Room)” was generated instead of

“unobstructed_to(Room)” due to a pattern that did not occur in Chapter 10. Such error will

need to be addressed by accumulatively expanding the training dataset.

4. The backward compatibility requirement. The generality and validity

requirements of the ruleset expansion method ensures the quality of the generated logic

clauses and shows a promising future that pattern matching rule-based regulatory information

extraction can potentially capture all building code requirements with a sufficiently

comprehensive set of rules. However, the compatibility requirement also forbade the removal

of any existing rule, which led to some false positives. In the future, the flexibility of

modifying existing rules may need to be tested.

Table 0.2. Performance of Applying Ruleset Expansion Method

Training Testing

Predicate level Predicate element level Predicate level Predicate element level

Before1 After2 Before1 After2 Before1 After2 Before1 After2

Precision 84.35% 96.31% 87.90% 98.33% 86.17% 95.17% 90.03% 97.48%

Recall 79.00% 98.38% 81.78% 99.39% 76.84% 96.60% 81.77% 98.65%

F1-score 81.59% 97.34% 84.73% 98.86% 81.24% 95.88% 85.70% 98.06%

1 Performance of the original ruleset, which is the ruleset before the application of the ruleset expansion method.

2 Performance of the expanded ruleset, which is the ruleset after the application of the ruleset expansion method.

Table 0.3. Logic Clause-Level Performance

Training Testing

Before1 After2 Before1 After2

Precision 89.86% 100.00% 93.81% 100.00%

Recall 98.27% 99.68% 96.81% 97.98%

F1-score 93.87% 99.84% 95.29% 98.98%

1 Performance of the original ruleset, which is the ruleset before the application of the ruleset expansion method.

2 Performance of the expanded ruleset, which is the ruleset after the application of the ruleset expansion method.

107

4.5 Discussion

Despite all the development and advancement of automated code compliance checking

systems, existing ACC systems still heavily rely on domain experts to extract building code

requirements and formalize them into a computer-processable format (Zhong et al., 2012; Zhang

& El-gohary, 2015), such as decision tables (Tan et al., 2010), knowledge models (Dimyadi et

al., 2016), or structured rulesets (İlal et al., 2017). The research in this chapter builds upon

cutting-edge semantic NLP-based information extraction and transformation approach (Zhang &

EL-Gohary, 2013; Zhang & El-Gohary, 2015; Zhang, 2015) and expands previous efforts to

support automated regulatory information extraction from a wide range of building codes with

little marginal cost.

In the experiment of the regulatory information transformation ruleset expansion, the

proposed method was tested for expanding the range of checkable building code requirements to

new chapters of building codes, which are in different domains/topics of the building code from

which the original ruleset was initially developed. To further evaluate the robustness of the

expanded ruleset, the authors also tested it on processing construction contracts, a fundamentally

different type of construction documents compared to building codes. Nine free and openly

available construction contracts or construction contract templates were collected. In total, 185

sentences were extracted from these contracts. The expanded ruleset was then executed to

convert the extracted sentences in construction contracts to logic clauses. The performance of the

expanded ruleset is illustrated in Table 0.4. Examples of contract contents and corresponding

logic clauses generated are shown in Table 0.5. The results show the robustness of the expanded

ruleset is promising (although not perfect) for processing construction documents beyond the

original intent of building codes.

108

Table 0.4. Performance on Processing Construction Contract

Predicate level Predicate element level

Precision 90.52% 97.20%

Recall 92.92% 98.42%

F1-score 91.70% 97.81%

Table 0.5. Examples of Contract Sentences and Corresponding Logic Clauses Generated
Contract sentence Logic clause

Two copies of the Contract

Documents shall be signed by the

Owner and the Contractor.

(Montrose County, 2018)

compliance_Owner3(Owner):-

number_prep(Number),copies(Copies),has(Copies,Number),contract_do

cuments(Contract_Documents),has(Contract_Documents,Copies),owner

(Owner);contractor(Owner)),signed_by(Contract_Documents,Owner),eq

ual_to(Number,quantity(2,one)).

Contractor shall maintain in a safe

place at the Property one record

copy of all drawings, specifications,

addenda, written amendments, and

the like in good order and annotated

to show all changes made during

construction, which will be

delivered to Owner upon

completion of the Work.

(Legaltemplates, 2022)

compliance_Number1(Number):-

maintain_in(Contractor,Safe_place),contractor(Contractor),safe_place(S

afe_place),at(Safe_place,Property),property(Property),number_prep(Nu

mber),record_copy(Record_copy),has(Record_copy,Number),drawings(

Drawings),has(Drawings,Record_copy),like_in(Like,Good_order),like(

Like),good_order(Good_order),to_show(Good_order,Changes),changes(

Changes),made_during(Changes,Construction),construction(Constructio

n),delivered_to(Good_order,Owner),owner(Owner),upon(Owner,Compl

etion),completion(Completion),work(Work),has(Work,Completion),equ

al_to(Number,quantity(1,one)),associated(Safe_place,Good_order).

If the final amount of the

ALLOWANCE work is less than

the ALLOWANCE line item

amount listed in the Agreement, a

credit will be issued to Owner after

all billings related to this particular

line item ALLOWANCE work

have been received by Contractor.

(Building Advisor, 2019)

compliance_Final_amount7(Final_amount):-

final_amount(Final_amount),if(Final_amount),allowance_work(ALLO

WANCE_work),has(ALLOWANCE_work,Final_amount),allowance_li

ne_item_amount(ALLOWANCE_line_item_amount),listed_in(ALLOW

ANCE_line_item_amount,Agreement),agreement(Agreement),credit(Cr

edit),owner(Owner),issued_to(Credit,Owner),after(Owner,Billings),billi

ngs(Billings),related_to(Billings,This_particular_line_item_ALLOWAN

CE_work),this_particular_line_item_allowance_work(This_particular_li

ne_item_ALLOWANCE_work),received_by(This_particular_line_item

_ALLOWANCE_work,Contractor),contractor(Contractor),less_than(Fin

al_amount,quantity(1,ALLOWANCE_line_item_amount)).

4.6 Contributions to the Body of Knowledge

This chapter’s research contributes to the body of knowledge in four main ways. First, it

proves the feasibility of expanding the range of checkable building code requirements by

109

expanding an existing regulatory information transformation ruleset. The authors expanded the

range of checkable building code requirements of an automated code compliance checking

system to cover Chapter 5 and Chapter 10 of the IBC 2015. This expansion was achieved by 64

new rules. It shows that different chapters of the IBC share similar patterns, and the number of

new pattern matching-based rules needed to expand the range of checkable code requirements is

small. Second, the research in this chapter was conducted to provide a new ruleset expansion

method. This method ensures the quality of added pattern matching-based rules and, therefore,

the quality of logic clauses generated by the pattern matching-based rules. In a previous study,

three hundred and six rules were developed to cover two chapters of building code. In

comparison, only sixty-four new rules were developed to cover two new chapters of building

code. It shows that the marginal cost of expanding the range of checkable building code

requirements is low. It provides a workable and low-cost method to expand the range of

checkable code requirements of ACC systems. The cost of expanding the range of checkable

building codes by expanding an existing regulatory information transformation ruleset could

further decrease in the future as the number of existing rules increases, because building codes

share similar patterns and the number of unseen patterns in new building codes could decrease as

existing pattern matching-based rules cover more patterns in building codes. Future researchers

and developers can adopt this method to expand the range of checkable code requirements of the

ACC system and bring the ACC system to full deployment in the AEC industry. While the

research in this chapter has a main focus on processing building codes, the testing results of

transforming construction contracts show that the proposed ruleset expansion method is

potentially robust in processing different types of construction documents. Third, the research in

this chapter also generated a dataset of building codes in logic clauses. This dataset can facilitate

other regulatory information transformation research, such as machine learning-based logic

clause generation. Last but not least, the research in this chapter facilities the adoption of ACC in

the AEC industry. With an expanded range of checkable code requirements, the utility of ACC is

enhanced. ACC can reduce the time, cost, and human-errors in code compliance checking and

encourages the AEC industry to shift towards a digital paradigm.

110

4.7 Conclusion

The research in this chapter was conducted to provide a ruleset expansion method that can

expand the range of checkable code requirements of ACC systems to different chapters of the

IBC, which can potentially be applied to other codes beyond the IBC and other construction

documents such as contracts. The proposed method takes an iterative approach to ensure the

generality and validity of the added pattern matching-based rules and the generated logic clauses.

Experimental results on Chapters 5 and 10 of IBC 2015 showed the expanded ruleset generated

logic clauses with 95.17% predicate-level precision, 96.60% predicate-level recall, and 95.88%

predicate-level F1-score. This performance proved the effectiveness of the ruleset expansion

method and the expanded ruleset. Through error analysis, the authors attributed the remaining

errors to the flexibility of B-Prolog language, the ambiguity in natural language, missed building

code requirement patterns, and the compatibility requirement. The authors also suggested

solutions to further increase the performance of the ruleset expansion method, such as expanding

the training dataset and providing stricter annotation guidelines. The research in this chapter also

generated a dataset of logic clauses. This dataset has the potential to facilitate research on

different regulatory information transformation approaches, such as machine learning-based

logic clause generation. The research findings in this chapter can be used to build fully

automated building code compliance checking systems with wider code requirements coverage

than the state of the art. The demonstrated decreasing marginal cost of transformation rule

development and high predicate-level performance renders the rule-based processing of building

code requirements promising to bring fully automated building code compliance checking to

real-world applications. Future research is needed to discover the boundary of the theoretical

“superset” of common patterns used in building code transformation rules, for guiding the

practical implementation of the demonstrated rule-based processing of building code

requirements in real ACC systems. Furthermore, the successful demonstration of such processing

in construction contracts in the research in this chapter helps open the door to rule-based

processing of a variety of textual documents in the AEC industry, to support future automation

and AI applications in the AEC industry in general.

111

4.8 Acknowledgement

The authors would like to thank the National Science Foundation (NSF). The material in

this chapter is based on work supported by the NSF under Grant No. 1827733. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the NSF.

112

5 SEMI-AUTOMATED GENERATION OF LOGIC RULES FOR

TABULAR INFORMATION IN BUILDING CODES TO SUPPORT

AUTOMATED CODE COMPLIANCE CHECKING

Xiaorui Xue, S.M.ASCE1; Jin Wu, S.M.ASCE2; Jiansong Zhang, Ph.D., A.M.ASCE3

A portion of this chapter was previously published by:

Xue, X., Wu, J., Zhang, J. (2022). Semi-automated generation of logic rules for tabular

information in building codes to support automated code compliance checking. Journal of

Computing in Civil Engineering, 36(1), 04021033. https://doi.org/10.1061/(ASCE)CP.1943-

5487.0001000

Republished with permission of American Society of Civil Engineers, from Semi-automated

generation of logic rules for tabular information in building codes to support automated code

compliance checking, Xiaorui Xue, Jin Wu, and Jiansong Zhang, 36, 2022; permission conveyed

through Copyright Clearance Center,Inc.

Author Contributions

The authors confirmed contribution to the paper as follows:

Study conception and design: Xiaorui Xue, Jin Wu, Jiansong Zhang.

Data collection: Xiaorui Xue, Jin Wu, Jiansong Zhang.

Analysis and interpretation of results: Xiaorui Xue, Jin Wu, Jiansong Zhang.

Draft manuscript preparation: Xiaorui Xue, Jin Wu, Jiansong Zhang.

All authors reviewed the results and approved the final version of the manuscript.

5.1 Literature Review

5.1.1 Existing Work in Automated Building Code Compliance Checking

From a historical perspective, the traditional building code compliance checking process, or

building plan review, is a laborious, time-consuming, and error-prone process that demands

automation (Alghamdi et al., 2017; Lee et al., 2018; Preidel & Borrmann, 2017). The automation

of the code compliance checking process can significantly cut its cost, time, and manual efforts.

In the manual code compliance checking process, designers need to wait a long time for building

authorities to issue a building permit or ask for further modifications to the design documents,

and may have to modify design documents multiple cycles. The plan review process may last a

113

few months (City of San Clemente, 2019). On the other hand, automated code compliance

checking systems can return compliance checking results in a much shorter time with a limited

need for manual input. Thus, automated building code compliance checking is faster and cheaper

than the traditional manual code compliance checking approach.

The automated code compliance checking systems emerged in the 1960s when Fenves

introduced decision tables to check the design of steel structures (Fenves, 1966). Systems for

checking different aspects of building design were then developed over the years. For example,

Pauwels et al. (2011) implemented a sematic rule checking environment to check the acoustic

performance of buildings. Tan et al. (2010) provided a series of decision tables to check the

design of building envelopes. Getuli et al. (2017) developed a BIM-based workflow that checks

against the compliance of Italian construction safety and health code. Malsane et al. (2015)

suggested an Industry Foundation Class (IFC)-powered, object-oriented approach to check

against fire codes in England and Wales. Bus et al. (2019) developed an ontology-based system

to achieve automated compliance checking of semantic rules in French fire safety and

accessibility codes. However, existing automated code compliance checking systems only check

a limited set of code rules and, according to the authors’ literature review, never automatically

processed building code requirements in tables.

5.1.2 Table Processing

The demand to extract information from documents that are not in plain textual formats,

such as tables and images that are hard for machines to process, is urgent (Correa & Zander,

2017). Most existing methods take a two-step approach to extract tabular information: (1) table

detection, and (2) table sub-structure identification (i.e., cells, rows, columns) (Paliwal et al.,

2019). Challenges in tabular information extraction include: (1) reliance on the context of tables

to interpret tables, (2) document indexing, (3) database curation, and (4) abbreviation of phases

(Shmanina et al., 2016). Table detection algorithms can construct table hierarchies in two

approaches: top-down and bottom-up. In the top-down approach, the algorithm first identifies

tables in documents and then slice identified tables into components. On the contrary, in the

bottom-up approach, the algorithm first identifies components of tables and then assembles the

components to tables (Krüpl & Herzog, 2006). Different technologies were developed to process

table information for various purposes. For example, Vasileiadis et al. (2017) developed a rule-

114

based, bottom-up tabular information extraction system for access by visually impaired people.

Buitelaar et al. (2006) published an ontology-based table processing method to extract

information from webpages as part of a multi-modal dialog system. Shafait and Smith (2010)

used Optical Character Recognition (OCR) technology to process tables with different layouts

for analyzing tables in heterogeneous documents. Qasim et al. (2019) treated the table detection

problem as a graph problem and generated a Graph Neural Network to detect the structure of

tables, which was successfully tested on public table detection datasets (e.g., UW3, UNLV, and

ICDAR 2013). Sinha et al. (2019) used OCR to localize tables in Piping and Instrumentation

Diagrams (P&IDs) and used regular expressions to enhance the accuracy of text extraction.

Although most researchers treated table detection and table structure identification as two

separate steps, Paliwal et al. (2019) proposed TableNet, a neural network with an encoder-

decoder structure, to detect table existence and identify table structure in one unified step jointly.

Although existing table processing methods reached high accuracy on their respective domains,

they did not touch upon automation of processing tables in building codes, and data from such

tables were still manually interpreted and processed.

5.2 Methodology

In this chapter, the authors proposed a semi-automated table processing method for tables in

building codes. The proposed method takes a two-step approach to process tabular information in

building codes: (1) tabular information extraction, and (2) information conversion to databases.

The developed method needs to be robust over a wide range of tables, i.e., to be able to process

tables in an unseen format. The tabular information extraction method needs to extract building

code requirements from tables in building codes and store the extracted information in a

structured format. The extraction process needs to reach a very high precision to meet the 100%

recall goal of noncompliance detection in automated code compliance checking (Salama & El-

Gohary, 2016). The format to store extracted building code requirements needs to support easy

information access and processing to ensure the performance of the automated code compliance

checking system. Integrated methods that directly convert building code tables to logic rules and

store these rules in automated code compliance checking system are the most straightforward

and intuitive method to process building code requirements from tables. However, state-of-the-

art integrated methods lack robustness in processing tables in different layouts and the manual

115

effort to maintain integrated methods may not be less than the effort in the manual encoding of

building codes per se. The diverse layouts of tables may require customized methods for each

table. Frequent updates of building codes will therefore require constant method updates. To

address that, the authors proposed the separation of information extraction from rule generation

to increase the robustness and reduce the maintenance need of the method.

5.2.1 Information Extraction

The proposed method takes a semi-automated approach to extract tabular information from

building codes. Users need to collect tables from building codes in digital format and provide

them together with some structural information of these input tables. The method then processes

one table at a time. Structural information of tables helps the information extraction method

identify the layout of the table. For tables with different layouts, the underlying relationships

between cells are different. For example, some tables use a single cell to store an entry of

building code requirement, and some tables use an entire row to store an entry of building code

requirement. Layouts of tables implicitly specify how tables store building code requirements.

One type of table, for example, uses a cell and its corresponding row header and column header

to represent one requirement to buildings. Another type of table uses all cells in a row and their

corresponding column headers to represent one requirement to buildings. The proposed method

uses structural information provided by the users to automatically distinguish layouts of tables

and uncover underlying relationships and information inferred by layouts.

The authors took an iterative approach to develop the sub-algorithms in the tabular

information extraction algorithm, i.e., the sub-algorithms are continuously improved until they

can correctly extract all tabular information from training data. The basic unit of a table is the

cell. Cells can be classified into four types: (1) row header, (2) column header, (3) footnote, and

(4) content (Figure 0.1). The four types of cells form the body of a table. The finished algorithm

can recognize the cell type and connect the information in each cell (e.g., texts, numbers). As a

result, the authors developed: (1) a header detection sub-algorithm to recognize the boundaries of

cells for each type, (2) a table layout detection sub-algorithm to distinguish layouts of tables, and

(3) two information transformation sub-algorithms to connect contents in the cells.

116

Figure 0.1. Example Table with the Four Types of Cell Components and Title. (Reprinted

from IBC 2015 with permission from the International Code Council.)

The header detection sub-algorithm uses the structural information of the table to detect

information components. The algorithm requires three inputs from the user for locations of row

headers, column headers, and footnotes, respectively. Users then provide: (1) the number of

columns used for row headers X1, (2) the number of rows used for column headers X2, and (3)

the number of columns used for footnotes X3. There may be no footnotes (i.e., zero for X3) or

row headers (i.e., zero for X1). The header detection sub-algorithm can then automatically

identify the locations of different contents and split the table into different information

components according to inputs from the user.

After that, the layout detection sub-algorithm distinguishes the layouts of the tables based

on their structural information. Tables in building codes have diverse layouts. The authors

identified two master layouts based on how the information is organized in a table. Tables with

row headers are considered to be in Master Layout One: a single cell is used to store an entry of

building code requirement (Figure 0.2). Tables without row headers are considered to be in

Master Layout Two: a row of cells is used to store an entry of building code requirement (Figure

0.3). Master layouts ensure the robustness of this algorithm and simplify the information

extraction process. The layout detection sub-algorithm can classify all tables in building codes

117

into these two master layouts depending on whether a table has a row header or not. The authors

kept the algorithm simple to ensure the robustness of the entire table information processing.

Figure 0.2. Example Table in Master Layout 1. (Reprinted from IBC 2015 with Permission from

the International Code Council.)

118

Figure 0.3. Example Table in Master Layout 2. (Reprinted from IBC 2015 with Permission from

the International Code Council.)

The end product of this step is a database that stores information from the table. The

information conversion sub-algorithm connects information in different components of a table

and inserts connected information into the database. Each master layout has a customized

information conversion sub-algorithm. Customized information conversion sub-algorithm

ensures the correct extraction of information inferred by the layout of tables. Tables in the same

master layout use the same information conversion sub-algorithm. For tables in the same master

layout, variations exist, such as having or not having a column for footnotes, having or not

having a different number of rows in the column header. The information transformation sub-

algorithms are sufficiently robust to process such variations of tables in the same master layout.

The sub-algorithm for the Master Layout One, which is for tables that use a single cell to

store an entry of building code requirement, connects the cell, its corresponding row header and

119

column header, and its corresponding footnote (if exists) together and generates a command to

insert the entry of building code requirement into the database. The sub-algorithm for the Master

Layout Two, which is for tables that use an entire row to store an entry of building code

requirement, connects each cell in the row with its corresponding column header and generates a

command to insert the entry of building code requirement into the database. Once a command is

generated, both sub-algorithms execute the command to insert building code requirements into

the database.

5.3 Experiment

The header detection sub-algorithm, the layout detection sub-algorithm, and two

information conversion sub-algorithms were developed based on tables (

Table 0.1) in Chapter 5 of IBC 2015 and were tested on tables in Chapter 10 (Table 0.2) of

IBC 2015. Inputs of the developed algorithms were digital tables. Digital tables left less space

for errors comparing to tables collected as scanned images. The authors manually inspected the

extraction results by the algorithm to examine their performance.

Table 0.1. Header and Cell Count of Training Tables

Table

Index
Heading

Number of

Headers

Number of

Contents

504.3
ALLOWABLE BUILDING HEIGHT IN FEET ABOVE GRADE

PLANE
39 120

504.4 ALLOWABLE NUMBER OF STORIES ABOVE GRADE PLANE 102 455

506.2
ALLOWABLE AREA FACTOR (At = NS, S1, S13R, or SM, as

applicable) IN SQUARE FEET
124 612

508.4 REQUIRED SEPARATION OF OCCUPANCIES (HOURS) 41 200

509 INCIDENTAL USES 2 34

120

Table 0.2. Header and Cell Count of Testing Tables

Table Index Heading
Number of

Headers

Number of

Contents

1004.1.2
MAXIMUM FLOOR AREA ALLOWANCES PER

OCCUPANT
2 54

1006.2.1
SPACES WITH ONE EXIT OR EXIT ACCESS

DOORWAY
20 52

1006.3.1
MINIMUM NUMBER OF EXITS OR ACCESS TO

EXITS PER STORY
2 6

1006.3.2(1)
STORIES WITH ONE EXIT OR ACCESS TO ONE

EXIT FOR R-2 OCCUPANCIES
4 8

1006.3.2(2)
STORIES WITH ONE EXIT OR ACCESS TO ONE

EXIT FOR OTHER OCCUPANCIES
7 18

1010.1.4.1(1)
MAXIMUM DOOR SPEED MANUAL REVOLVING

DOORS
2 10

1010.1.4(2)
MAXIMUM DOOR SPEED AUTOMATIC OR

POWER-OPERATED REVOLVING DOORS
2 24

1017.2 EXIT ACCESS TRAVEL DISTANCE 13 20

1020.1 CORRIDOR FIRE-RESISTANCE RATING 11 18

1020.2 MINIMUM CORRIDOR WIDTH 2 14

1029.6.2
CAPACITY FOR AISLES FOR SMOKE-

PROTECTED ASSEMBLY
11 20

1029.12.2.1
SMOKE-PROTECTED ASSEMBLY AISLE

ACCESSWAYS
16 32

121

After that, the information conversion sub-algorithm injected the extracted information

into databases. The authors used the SQLite database in the implementation of information

conversion sub-algorithms (Sqlite Consortium, 2000). Each table was stored in a separate

database. Two information conversion sub-algorithms were developed for the two master

layouts. The layout detection sub-algorithm selects which information conversion algorithm to

use. The information conversion algorithm generates an SQLite insertion command based on the

syntax of SQLite and the layout of the table being processed.

5.4 Result

The testing results are presented in Table 0.3. The results showed that the proposed method

provided the correct results on eleven testing tables and failed in one. Correctly processed tables

are the tables that are correctly converted to databases by the proposed method. The results can

be verified manually using queries on the database. The failed table was Table 1006.2.1 (Figure

0.4). Therefore, the proposed method processed 91.67% of the tables in the testing dataset

correctly. The reason that the proposed method failed to provide correct results in Table 1006.2.1

was that this table had four levels of column headers. No table in Chapter 5 of 2015 IBC (i.e.,

training data) had more than two levels of column headers. The authors then updated the

developed algorithm to accommodate tables with different levels of column headers. The

updated algorithm was then tested on all testing tables again. The updated algorithm provided

correct results on all tables.

122

Table 0.3. Results of Testing

Table Index Heading
Trained

Algorithms

Updated

Algorithms

1004.1.2
MAXIMUM FLOOR AREA ALLOWANCES PER

OCCUPANT
Success Success

1006.2.1 SPACES WITH ONE EXIT OR EXIT ACCESS DOORWAY Fail Success

1006.3.1
MINIMUM NUMBER OF EXITS OR ACCESS TO EXITS

PER STORY
Success Success

1006.3.2(1)
STORIES WITH ONE EXIT OR ACCESS TO ONE EXIT

FOR R-2 OCCUPANCIES
Success Success

1006.3.2(2)
STORIES WITH ONE EXIT OR ACCESS TO ONE EXIT

FOR OTHER OCCUPANCIES
Success Success

1010.1.4.1(1)
MAXIMUM DOOR SPEED MANUAL REVOLVING

DOORS
Success Success

1010.1.4(2)
MAXIMUM DOOR SPEED AUTOMATIC OR POWER-

OPERATED REVOLVING DOORS
Success Success

1017.2 EXIT ACCESS TRAVEL DISTANCE Success Success

1020.1 CORRIDOR FIRE-RESISTANCE RATING Success Success

1020.2 MINIMUM CORRIDOR WIDTH Success Success

1029.6.2
CAPACITY FOR AISLES FOR SMOKE-PROTECTED

ASSEMBLY
Success Success

1029.12.2.1 SMOKE-PROTECTED ASSEMBLY AISLE ACCESSWAYS Success Success

123

Figure 0.4. Table 1006.2.1 from IBC 2015. (Reprinted with Permission from the International

Code Council.)

124

The following experiment was further conducted to test if the information extraction sub-

algorithm correctly preserved the information inferred by the layout of tables and correctly

extracted building code requirements in the cells. The accuracy of the algorithm was tested by

checking if the generated database returns the correct results when queried. Correct results were

where the corresponding value of a building code requirement in tables can be successfully

returned by the query. For example, when the database for Table 1006.2.1 is queried for the

maximum occupant load of space of occupancy Type B, it should return 49. The authors queried

every entry in the generated databases for every table in the testing dataset and reviewed the

returned values of every query. In 100% of cases, the query returned correct results. The

generated database preserves all information inferred by the layout of the tables. Another reason

for the 100% accuracy is the authors used digital tables, instead of scanned tables, as inputs to

the information extraction sub-algorithm. Errors in recognizing the content of scanned tables

were therefore prevented. For example, the algorithm did not suffer from errors in OCR.

5.5 Discussion

In the past decade, automated code compliance checking domain developed at a fast pace.

However, limited range of checkable codes hinders wide-spread application of automated code

compliance checking systems. No construction industry practitioner will likely use automated

code compliance checking systems that require them to manually check part of building codes.

After an intense literature review, the authors found that no previous automated code compliance

checking research targeted building code requirements in a tabular format, i.e., regulations

associated with tables. However, almost all building codes store a large amount of building code

requirements in table format. Automated code compliance checking systems that do not cover

building code requirements in tables cannot achieve the goal of making automated code

compliance checking systems with full coverage (Salama & El-gohary, 2016). The research in

this chapter expanded the range of checkable building code requirements of automated code

compliance checking systems to tables in building code and facilitates the industry adoption of

automated code compliance checking systems.

The following limitations of the building codes tabular information processing method are

acknowledged. First, the proposed method requires digital tables as inputs and manual

conversion or third-party software to process tables from hard copy or images into digital tables.

125

Future versions of the proposed method should incorporate the processing of scanned tables, e.g.,

using OCR functions. Second, the proposed method requires manual inputs in layout detection.

The proposed method cannot detect layouts of tables without such inputs from users in spite of

the fact that such inputs are minimal. The authors propose to develop a fully automated layout

detection algorithm for tables in building codes in the future work.

5.6 Contributions to the Body of Knowledge

The research in this chapter was conducted to provide a new method to extend the range of

checkable building code requirements of automated building code compliance checking systems

to cover tables in building codes. The contributions to the body of knowledge are four-fold. First,

the extension of checkable building code requirements to tables proves the feasibility of

checking non-textual building code requirements in a semi-automated way. Second, the research

in this chapter could help incorporate more building code requirement details into fully

automated code compliance checking systems in a more efficient way, comparing to the state of

the art. With an enlarged range of checkable building code requirements, an automated code

compliance checking system can provide more value to its users, which could lead to a wider

adoption of automated building code compliance checking and synergistically facilitating the

adoption of BIM. Third, the authors enhanced the robustness of automated code compliance

checking systems. By storing database and generating logic rules on the go, automated code

compliance checking systems will benefit from a smaller rule set which has better

maintainability comparing to a larger one. Last but not least, the authors calculated that 1,542

logic rules can be generated from tables in the training and test datasets, sourced from 17 tables

in two chapters of IBC 2015, which has 35 chapters in total. After interpolation, the authors

estimated that the proposed method can help complete about 26,985 new rules with tabular

information for IBC 2015. The proposed method can therefore significantly expand the range of

checkable building code requirements of ACC systems.

5.7 Conclusion

This proposed method in this chapter incorporated tabular information in building codes

into automated code compliance checking systems. The initial tabular information extraction

126

method achieved a 91.67% success rate on tables in the testing dataset. The updated information

extraction method could successfully process all tables in the testing dataset and correctly

preserved information inferred by the layout of tables. The proposed method still requires minor

human input, which the authors will further address in the future work.

5.8 Acknowledgement

The authors would like to thank the National Science Foundation (NSF). The material in

this chapter is based on work supported by the NSF under Grant No. 1827733. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the NSF.

127

6 DISCUSSION AND SUGGESTIONS FOR FUTURE RESARCH

6.1 Discussion

This dissertation research is innovative in many ways when compared to the state of the art.

NLP research nowadays mostly focused on creating larger and larger machine learning models to

exceed state-of-the-art performance on generic datasets (Devlin et al., 2019). This dissertation

research successfully addressed a domain-specific NLP task of information extraction from

building codes by combining both deep learning and rule-based approaches. (1) The first

research question, “How to improve the performance of POS tagging on building codes

compared to the state of the art?” was addressed by performing a domain-specific POS tagging

of building codes with a new POS tagging method (in Chapter Three). The proposed POS tagger

combined error-driven transformational rules (which is illustrated in Chapter Two) and a neural

network model. (2) Chapter Four and Chapter Five addressed the research question of “How to

expand the range of checkable building code requirements that can be used in state-of-the-art

automated code compliance checking systems?” Chapter Four provided a ruleset expansion

method that can expand the range of checkable building code requirements while incurring a

minimum amount of marginal cost. While earlier automated code compliance checking research

has concentrated solely on building code requirements in textual format, this dissertation

research presented a mechanism for extracting regulatory information from building code tables

(in Chapter Five).

Information extraction methods from building codes in order to further expand the range of

checkable building code requirements of automated code compliance checking systems is a

future research direction. The findings of this dissertation research can be employed in

automated code compliance checking systems to identify nonconformities in building designs.

Possible customers of automated building code compliance checking systems supported by the

methods and technologies presented in this dissertation research include authorities having

jurisdictions that oversee plan review and permit issuance and building designers who want to

double-check their designs before submitting them to the government agencies. This dissertation

research’s findings can help reduce the duration of code compliance checking from weeks or

months to seconds. The productivity of the AEC industry overall can benefit as the speed of

128

compliance checking increases. Construction productivity will be improved as construction

projects’ overall duration (i.e., spanning its life cycle starting from planning and design) is

shortened. While this dissertation research cannot currently offer fully automated code

compliance checking, which involves generating code compliance checking results without any

user intervention, it can still help plan reviewers speed up the code compliance checking process

significantly. In many states, building construction cannot begin without first acquiring a

building permit. Automated code compliance checking can shorten the time between submitting

a building design and receiving a building permit and therefore can reduce the project’s overall

duration and lower construction costs significantly (e.g., by reducing cooperative overhead).

6.2 Suggestions for Future Research

The dissertation research points to serval directions of future research, including:

1. Further improving POS tagging accuracy on building codes. As an early step of NLP-

based information extraction for automated code compliance checking systems, errors in

POS tagging will cascade to future steps of code checking. In this dissertation research,

the author reached an accuracy of 96.85% on the PTBC dataset, which advanced the

state of the art. However, there is still space for improvement. Therefore, to ensure the

best performance of code checking, POS tagging accuracy of building codes still needs

to be improved in future research.

2. Identifying previously unknown patterns in POS tagging error fixing. The error-driven

transformational rules fixed more than 60% errors that are made by POS taggers.

However, 40% of errors still remained unfixed. The error-driven transformational rules

used unigram and bigram in patterns, which were not able to fix all errors. Future

research could focus on more complex patterns with more features, such as longer

patterns and skip-gram patterns, which have the potential to fix the remaining errors.

3. Achieving automated cell classification in tabular information extraction. The proposed

method still required some manual effort in cell classification. To achieve full

automation in tabular information extraction, automated cell classification needs to be

investigated in future research.

129

APPENDIX A: PATTERNS USED IN EXPANDED PATTERN

MATCHING-BASED RULES

1. [complementary subject, candidate subject, candidate compliance checking attribute], inter

clause boundary relation, [complementary subject, candidate subject, candidate

compliance checking attribute], indicating “part_of” or “belongs_to” relation by the term

"of", [complementary subject, candidate subject, candidate compliance checking attribute],

Conjunctive Term, [complementary subject, candidate subject, candidate compliance

checking attribute].

2. candidate subject, preposition, complementary subject, inter clause boundary relation,

candidate subject, adjective, preposition, candidate subject.

3. [candidate subject, complementary subject, comparative relation], inter clause boundary

relation, gerund or present participle verb, [candidate subject, complementary subject,

comparative relation].

4. [complementary subject, candidate subject, candidate compliance checking attribute], past

participle verb, comparative relation, value, unit, conjunctive term, comparative relation,

value, unit.

5. complementary subject, modal verb, base form verb, value, unit, comparative relation,

comparative relation, conjunctive term, value, unit, adjective, preposition, candidate

subject.

6. [complementary subject, candidate subject, candidate compliance checking attribute],

modal verb, negation, base form verb, comparative relation, value, unit, preposition,

complementary subject.

7. [candidate subject, complementary subject, comparative relation], gerund or present

participle verb, inter clause boundary relation, [candidate subject, complementary subject,

comparative relation].

8. [candidate subject, complementary subject], inter clause boundary relation, [candidate

subject, complementary subject], inter clause boundary relation

9. [candidate subject, complementary subject], slash “/”, [candidate subject, complementary

subject].

10. candidate compliance checking attribute, indicating “part_of” or “belongs_to” relation by

the term “of”, for each, candidate subject.

11. candidate subject, relation verb, inter clause boundary relation, candidate subject

12. candidate compliance checking attribute, modal verb, base form verb, negation,

comparative relation, candidate compliance checking attribute.

13. value, complementary subject, preposition, for each, value, unit, indicating “part_of” or

“belongs_to” relation by the term “of”, candidate compliance checking attribute.

14. [candidate subject, complementary subject, candidate compliance checking attribute],

preposition, for each..

15. [complementary subject, candidate subject, candidate compliance checking attribute],

[non-3rd person singular present verb, modal verb, base form verb],possessive subject

restriction, value,[complementary subject, candidate subject, candidate compliance

checking attribute].

16. [complementary subject, candidate subject, candidate compliance checking attribute],

[non-3rd person singular present verb, base form verb, 3rd person singular present verb],

130

comparative relation, value, [complementary subject, candidate subject, candidate

compliance checking attribute].

17. [candidate subject, complementary subject, comparative relation], inter clause boundary

relation, conjunctive term, [candidate subject, complementary subject, comparative

relation].

18. complementary subject, preposition, complementary subject, modal verb, negation, base

form verb, candidate compliance checking attribute.

19. [complementary subject, candidate subject, candidate compliance checking attribute],

indicating “part_of” or “belongs_to” relation by the term “of”, complementary subject,

non-3rd person singular present verb,3rd person singular present verb, negation,

comparative relation, value, unit.

20. [candidate subject, complementary subject, candidate compliance checking attribute], for

“with” or “with in” relation, [candidate subject, complementary subject, candidate

compliance checking attribute].

21. base form verb, preposition, [candidate subject, complementary subject, candidate

compliance checking attribute.

22. candidate subject, modal verb, negation, base form verb, candidate subject.

23. [candidate subject, candidate compliance checking attribute], relation verb,

[complementary subject, candidate compliance checking attribute], inter clause boundary

relation, complementary subject.

24. [candidate subject, complementary subject, comparative relation], indicating “part_of” or

“belongs_to” relation by the term “of”, for each, [candidate subject, complementary subject,

comparative relation].

25. complementary subject, character, cardinal number.

26. [candidate subject, candidate compliance checking attribute], indicating “part_of” or

“belongs_to” relation by the term “of”, value, unit, adjective.

27. candidate compliance checking attribute, gerund or present participle verb, inter clause

boundary relation, [candidate subject, complementary subject, comparative relation,

candidate compliance checking attribute].

28. [complementary subject, candidate subject, candidate compliance checking attribute],

preposition, [complementary subject, candidate subject, candidate compliance checking

attribute], [preposition, the word “to”], [complementary subject, candidate subject,

candidate compliance checking attribute].

29. complementary subject, modal verb, base form verb, preposition, candidate subject, value.

30. candidate compliance checking attribute, modal verb, negation, base form verb, the word

“to”, candidate subject.

31. [complementary subject, candidate subject, candidate compliance checking attribute],

relation verb, value, unit, conjunctive term, value, unit.

32. complementary subject, modal verb, base form verb, negation, comparative relation, value,

unit, preposition, candidate compliance checking attribute.

33. candidate compliance checking attribute, conjunctive term, past participle verb, candidate

compliance checking attribute.

34. [candidate subject, complementary subject, candidate compliance checking attribute,

comparative relation], 3rd person singular present verb, past participle verb.

35. [complementary subject, candidate compliance checking attribute], modal verb, base form

verb, relation verb, [complementary subject, candidate subject, candidate compliance

131

checking attribute.

36. candidate subject, modal verb, negation, base form verb, candidate compliance checking

attribute.

37. preposition, value, unit, candidate subject.

38. modal verb, negation, base form verb, [adjective, past participle verb, past tense verb]

39. value, unit, preposition, candidate subject.

40. preposition, value, unit, indicating “part_of” or “belongs_to” relation by the term “of”,

candidate subject.

41. relation verb, candidate compliance checking attribute, indicating “part_of” or “belongs_to”

relation by the term “of”, cardinal number, conjunctive term, comparative adjective.

42. preposition, past participle verb, candidate compliance checking attribute.

43. complementary subject, the word “to”, value, complementary subject.

44. negation, comparative relation, value, slash “/”, unit, candidate compliance checking

attribute.

45. candidate subject, possessive subject restriction.

46. complementary subject, candidate compliance checking attribute.

47. preposition, value, unit, candidate subject, indicating “part_of” or “belongs_to” relation by

the term “of”, candidate compliance checking attribute.

48. complementary subject, modal verb, possessive subject restriction, complementary subject.

49. complementary subject, candidate subject, candidate compliance checking attribute], value,

conjunctive term, comparative adjective, [complementary subject, candidate subject,

candidate compliance checking attribute].

50. adjective, indicating “part_of” or “belongs_to” relation by the term “of”, [candidate subject,

complementary subject, candidate compliance checking attribute].

51. preposition, value, unit, preposition, candidate compliance checking attribute.

52. candidate compliance checking attribute, indicating “part_of” or “belongs_to” relation by

the term “of”, value, unit, the word “to”, value, unit.

53. [candidate subject, complementary subject, candidate compliance checking attribute,

comparative relation], indicating “part_of” or “belongs_to” relation by the term “of’,

gerund or present participle verb, [candidate subject, complementary subject, candidate

compliance checking attribute, comparative relation].

54. comparative relation, value, [candidate subject, complementary subject].

55. [candidate subject, complementary subject, candidate compliance checking attribute,

comparative relation], indicating “part_of” or “belongs_to” relation by the term “of”,

comparative adjective, [candidate subject, complementary subject, candidate compliance

checking attribute, comparative relation].

56. complementary subject, candidate subject, candidate compliance checking attribute],

negation, comparative relation, value, [complementary subject, candidate subject,

candidate compliance checking attribute].

57. candidate subject, gerund or present participle verb, candidate compliance checking

attribute, indicating “part_of” or “belongs_to” relation by the term “of”, comparative

relation, value.

58. negation, comparative relation, value, indicating “part_of” or “belongs_to” relation by the

term “of”, candidate compliance checking attribute, indicating “part_of” or “belongs_to”

relation by the term “of”, complementary subject.

59. candidate compliance checking attribute, modal verb, base form verb, past participle verb.

132

60. negation, comparative relation, value, indicating “part_of” or “belongs_to” relation by the

term “of”, candidate compliance checking attribute.

61. candidate compliance checking attribute, 3rd person singular present verb, negation,

comparative relation, value, unit.

62. candidate subject, comparative relation, value, preposition, complementary subject.

63. negation, possessive subject restriction, comparative relation, value, unit, indicating

“part_of” or “belongs_to” relation by the term “of”, candidate compliance checking

attribute.

64. candidate subject, preposition, comparative relation, value, unit.

Note: brackets means words in multiple patterns can be fit into the slot of the pattern.

133

APPENDIX B: PERMISSION FROM PUBLISHER

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

REFERENCE

Abacha, A., & Zweigenbaum, P. (2011). Automatic extraction of semantic relations between medical

entities: A rule based approach. Journal of Biomedical Semantics, 2(5), 1-11.

https://doi.org/S4.10.1186/2041-1480-2-S5-S4

Abzianidze, L., & Bos, J. (2017). Towards universal semantic tagging. Proceedings of the IWCS

2017-12th International Conference on Computational Semantics- Short papers, Association for

Computational Linguistics, 1-9. https://doi.org/10.48550/arXiv.1709.10381

Agarwal, A., Yadav, A., & Vishwakarma, D. K. (2019). Multimodal sentiment analysis via RNN

variants. Proceedings of the 2019 IEEE International Conference on Big Data, Cloud

Computing, Data Science & Engineering (BCD), Institute of Electrical and Electronics

Engineers,19-23. https://doi.org/10.1109/BCD.2019.8885108

Akanbi, T., & Zhang, J. (2022). Framework for developing IFC-based 3D documentation from

2D bridge drawings. Journal of Computing in Civil Engineering, 36(1), 04021031.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000986

Akanbi, T., Zhang, J., & Lee, Y. C. (2020). Data-driven reverse engineering algorithm

development method for developing interoperable quantity takeoff algorithms using IFC-

based BIM. Journal of Computing in Civil Engineering, 34(5).

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000909

Alghamdi, A., Sulaiman, M., Alghamdi, A., Alhosan, M., Mastali, M., & Zhang, J. (2017). Building

accessibility code compliance verification using game simulations in virtual reality. Proceedings

of Computing in Civil Engineering 2017, American Society of Civil Engineers, 262-270.

https://doi.org/10.1061/9780784480830.033

Ambartsoumian, A., & Popowich, F. (2018). Self-attention: A better building block for sentiment

analysis neural network classifiers. Proceedings of the 9th Workshop on Computational

Approaches to Subjectivity, Sentiment and Social Media Analysis, Association for Computational

Linguistics, 130-139. https://doi.org/10.18653/v1/W18-6219

Amor, R., & Dimyadi, J. (2021). The promise of automated compliance checking. Developments in

the Built Environment, 5(March 2021), 100039. https://doi.org/10.1016/j.dibe.2020.100039

Amos, L., Anderson, D., Brody, S., Ripple, A., & Humphreys, B. L. (2020). Umls users and uses: A

current overview. Journal of the American Medical Informatics Association, 27(10), 1606-1611.

https://doi.org/10.1093/jamia/ocaa084

Autodesk Company. (2022, March 23). What is BIM?. Autodesk Company.

https://www.autodesk.com/industry/aec/bim

Awad, M., & Khanna, R. (2015). Efficient learning machines: Theories, concepts, and applications

for engineers and system designers, Springer Nature. https://doi.org/10.1007/978-1-4302-5990-9

Azhar, S. (2011). Building information modeling (BIM): trends, benefits, risks, and challenges for

the AEC industry. Leadership and Management in Engineering, 11(3), 241-252.

https://doi.org/10.1061/(ASCE)LM.1943-5630.0000127

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align

and translate, Proceedings of the 3rd International Conference on Learning Representationsal,

OpenReview, 1-15. https://doi.org/10.48550/arXiv.1409.0473

Baktha, K., & Tripathy, B. (2017). Investigation of Recurrent Neural Networks in the field of

sentiment analysis. Proceedings of the 2017 International Conference on Communication and

164

Signal Processing (ICCSP), Institute of Electrical and Electronics Engineers, 2047-2050.

https://doi.org/10.1109/ICCSP.2017.8286763

Barone, A. V. M., Helcl, J., Sennrich, R., Haddow, B., & Birch, A. (2017). Deep architectures

for neural machine translation. Proceedings of the Second Conference on Machine

Translation, Association for Computational Linguistics, 99-107.

https://doi.org/10.18653/v1/W17-4710

Barzilay, R., & Elhadad, M. (1999). Using lexical chains for text summarization. Proceedings of

the Advances in automatic text summarization, Association for Computational Linguistics,

111-121. https://aclanthology.org/W97-0703

Bell, H., Bjorkhaug, L., & Hjelseth, E. (May 25th, 2022). Standardized computable rules.

Standard.no, http://www.standard.no/no/Fagomrader/Bygg-og-anlegg/Digital-

byggeprosess/Digitale-regelsjekkere

Bhutani, N., Suhara, Y., Tan, W.C., Halevy, A., & Jagadish, H. (2019). Open information

extraction from question-answer pairs. Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), Association for Computational

Linguistics, 2294-2350. https://doi.org/10.18653/v1/N19-1239

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with python. O'Reilly

Media, Inc. https://doi.org/10.5555/1717171

Brants, T. (2000). TNT: A statistical Partpart-of-Speech speech tagger. Proceedings of the sixth

conference on Applied Natural Language Processing, Association for Computational

Linguistics, 224-231. https://doi.org/10.3115/974147.974178

Brickley, D., Guha, R. V., & Layman, A. (1999). Resource Description Framework (RDF)

schema specification. Encyclopedia of Database Systems. Springer.

https://doi.org/10.1007/978-0-387-39940-9_1319

Brill, E. (1992). A simple rule-based Partpart-of-Speech speech tagger. Proceedings of the third

conference on Applied Natural Language Processing, Association for Computational

Linguistics,152-155. https://doi.org/10.3115/974499.974526

Brissi, S. G., Chong, O. W., Debs, L., & Zhang, J. (2021). A review on the interactions of robotic

systems and lean principles in offsite construction. Journal of Engineering, Construction

and Architectural Management. https://doi.org/10.1108/ECAM-10-2020-0809

Building Advisor. (2015, June 6). Model Construction Contract. Building advisor.

https://buildingadvisor.com/project-management/contracts/model-construction-contract_1

BuildingSMART International. (2019, Juauary 13). Industry Foundation Classes (IFC).

BuildingSMART International. https://www.buildingsmart.org/standards/bsi-

standards/industry-foundation-classes

Buitelaar, P., Cimiano, P., Racioppa, S., & Siegel, M. (2006). Ontology-based information

extraction with SOBA. Proceedings of the International Conference on Language Resources

and Evaluation (LREC), European Language Resources Association (ELRA), 2321-2324.

http://www.lrec-conf.org/proceedings/lrec2006/pdf/93.pdf

Bureau of Economic Analysis. (2022, June 29). BEA Industry Facts-Construction. Bureau of

Economic Analysis. https://apps.bea.gov/industry/factsheet/factsheet.html#23

Bureau of Labor Statistics. (2018, January 1). Measuring productivity growth in construction.

Bureau of Labor Statistics. https://www.bls.gov/opub/mlr/2018/article/measuring-

productivity-growth-in-construction.htm

165

Bus, N., Roxin, A., Picinbono, G., & Fahad, M. (2019). Towards French smart building code:

Compliance checking based on semantic rules, Proceedings of the 6th Linked Data in

Architecture and Construction Workshop, 6-15. https://doi.org/10.48550/arXiv.1910.00334

Butte College (2009, Septempter 11). The Eight Parts parts of Speechspeech. Butte College,

http://www.butte.edu/departments/cas/tipsheets/grammar/parts_of_speech.html

Cahyono, S. (2019). Comparison of document similarity measurements in scientific writing using

Jaro-Winkler distance method and paragraph vector method. Proceedings of the IOP Conference

Series: Materials Science and Engineering, IOP Publishing, 1-9.

https://doi.org/052016.10.1088/1757-899X/662/5/052016

Calijorne Soares, M. A., & Parreiras, F. S. (2020). A literature review on question answering

techniques, paradigms and systems. Journal of King Saud University - Computer and

Information Sciences, 32(6), 635-646. https://doi.org/10.1016/j.jksuci.2018.08.005

Cao, L., Li, Y., Zhang, J., Jiang, Y., Han, Y., & Wei, J. (2020). Electrical load prediction of

healthcare buildings through single and ensemble learning. Journal of Energy Reports, 6,

2751-2767. https://doi.org/10.1016/j.egyr.2020.10.005

Chan, W., Jaitly, N., Le, Q., & Vinyals, O. (2016). Listen, attend and spell: A neural network for

large vocabulary conversational speech recognition. Proceedings of the 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Institute of Electrical and

Electronics Engineers, 4960-4964. https://doi.org/10.1109/ICASSP.2016.7472621

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y.

(2014). Learning phrase representations using RNN encoder-decoder for statistical machine

translation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), Association for Computational Linguistics, 1724–1734.

https://doi.org/10.3115/v1/D14-1179

Choi, J., & Kim, I. (2017). A methodology of building code checking system for building permission

based on openBIM. Proceedings of the International Symposium on Automation and Robotics in

Construction, Vilnius Gediminas Technical University, Department of Construction Economics,

1-6. https://doi.org/10.22260/ISARC2017/0131

Chollet, F. (2017). Deep learning with python. Manning Publications.

https://doi.org/10.5555/3203489

Chowdhury, G. G. (2003). Natural Language Processing. Annual Review of Information Science And

Technology, 37(1), 51-89. https://doi.org/10.1002/aris.1440370103

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of Gated Recurrent

Neural Networks on sequence modeling, Proceedings of the NIPS 2014 Deep Learning and

Representation Learning Workshop, 1-9. https://doi.org/10.48550/arXiv.1412.3555

Ciregan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image

classification. Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern

Recognition, Institute of Electrical and Electronics Engineers, 3642-3649.

https://doi.org/10.1109/CVPR.2012.6248110

City of San Clemente (2019, March 5). Ordinance No.1668. City of San Clemente, https://www.san-

clemente.org/Home/ShowDocument?id=50617

Coden, A. R., Pakhomov, S. V., Ando, R. K., Duffy, P. H., & Chute, C. G. (2005). Domain-specific

language models and lexicons for tagging. Journal of Biomedical Informatics, 38(6), 422-430.

https://doi.org/10.1016/j.jbi.2005.02.009

166

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural

Language Processing (almost) from scratch. Journal of Machine Learning Research, 12(Aug),

2493-2537. https://doi.org/10.5555/1953048.2078186

Correa, A., & Zander, P. (2017). Unleashing tabular content to open data: A survey on PDF table

extraction methods and tools. Proceedings of the 18th Annual International Conference on

Digital Government Research, Association for Computational Linguistics, 54-63.

https://doi.org/10.1145/3085228.3085278

Cowie, J., & Lehnert, W. (1996). Information Extraction. Commun, 39(1), 80–91.

https://doi.org/10.1145/234173.234209

Crowston, K., Liu, X., & Allen, E. E. (2010). Machine learning and rule‐based automated coding

of qualitative data. Proceedings of the American Society for Information Science and

Technology, Association for Information Science and Technology, 1-2.

https://doi.org/10.1002/meet.1450470132

Cunningham, H. (2002). GATE, a general architecture for text engineering. Computers and the

Humanities, 36(2), 223-254. https://doi.org/10.1023/A:1014348124664

Delis, E. A., & Delis, A. (1995). Automatic fire-code checking using expert-system technology.

Journal of Computing in Civil Engineering, 9(2), 141-156.

https://doi.org/10.1061/(ASCE)0887-3801(1995)9:2(141)

Dell’Orletta, F. (2009). Ensemble system for Partpart-of-Speech speech tagging. Evaluation of

NLP and Speech Tools for Italian, 9(2009) , 1-8.

https://corpusitaliano.it/static/documents/POSILC.pdf

Devlin, J., Chang, M.W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep

bidirectional transformers for language understanding. Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), Association for Computational

Linguistics, 4171–4186. https://doi.org/10.18653/v1/N19-1423

Dimyadi, J., & Amor, R. (2013). Automated building code compliance checking–where is it at?

Proceedings of the 19th International CIB World Building Congress, Queensland University

of Technology, 1-14. https://doi.org/10.13140/2.1.4920.4161

Dimyadi, J., Clifton, C., Spearpoint, M., & Amor, R. (2016). Computerizing regulatory

knowledge for building engineering design. Journal of Computing in Civil Engineering,

30(5), C4016001. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000572

Ding, L., Drogemuller, R., Rosenman, M., Marchant, D., & Gero, J. (2006). Automating code

checking for building designs-DesignCheck. Clients Driving Innovation: Moving Ideas into

Practice, Cooperative Research Centre (CRC) for Construction Innovation, 1-16.

https://ro.uow.edu.au/engpapers/4842/

Eastman, C., Lee, J., Jeong, Y., & Lee, J. (2009). Automatic rule-based checking of building

designs. Automation in Construction, 18(8), 1011-1033.

https://doi.org/10.1016/j.autcon.2009.07.002

Elman, J. L. (1990). Finding structure in time. Cognitive science, 14(2), 179-211.

https://doi.org/10.1016/0364-0213(90)90002-E

Explosion AI (2022, June 17). Spacy-industrial-strength Natural Language Processing in python.

Explosion AI, https://spacy.io/

Fenves, S. J. (1966). Tabular decision logic for structural design. Journal of the Structural

Division, 92(6), 473-490. https://doi.org/ 0.1061/JSDEAG.0001567

167

Findwell (2020 March 17). Building Code. Findwell. https://www.findwell.com/real-estate-

dictionary/definition/building-code

Firat, O., Cho, K., & Bengio, Y. (2016). Multi-way, multilingual neural machine translation with

a shared attention mechanism. Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

Association for Computational Linguistics, 866–875. https://doi.org/10.18653/v1/N16-1101

Francis, W. N., & Kucera, H. (1979, July 1). Brown corpus manual. Brown University.

http://korpus.uib.no/icame/manuals/BROWN/INDEX.HTM

Gali, K., Surana, H., Vaidya, A., Shishtla, P. M., & Sharma, D. M. (2008) Aggregating machine

learning and rule based heuristics for Named Entity Recognition. Proceedings of the IJCNLP-08

Workshop on Named Entity Recognition for South and South East Asian Languages. Association

for Computational Linguistics, 25-32. https://www.aclweb.org/anthology/I08-5005

Garrett, J. H., & Fenves, S. J. (1987). A knowledge-based standards processor for structural

component design. Engineering with computers, 2(4), 219-238.

https://doi.org/0.1007/BF01276414

Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design. AI magazine,

11(4), 26-26. https://doi.org/10.1609/aimag.v11i4.854

Getuli, V., Ventura, S. M., Capone, P., & Ciribini, A. L. (2017). BIM-based code checking for

construction health and safety. Procedia Engineering, 196(2017), 454-461.

https://doi.org/10.1016/j.proeng.2017.07.224

Giménez, J., & Marquez, L. (2004). Fast and accurate Partpart-of-Speech speech tagging: The SVM

approach revisited. Recent Advances in Natural Language Processing III, John Benjamins

Publishing Company, 153-162. https://doi.org/10.1075/cilt.260.17gim

Glorot, X., Bordes, A., & Bengio, Y. Deep sparse Rectifier Neural Networks. Proceedings of

Fourteenth International Conference on Artificial Intelligence and Statistics, MIT Press, 315-

323. https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf

Gomaa, W. H., & Fahmy, A. A. (2013). A survey of text similarity approaches. International Journal

of Computer Applications, 68(13), 13-18. https://doi.org/10.5120/11638-7118

Greene, B. B., & Rubin, G. M. (1971). Automatic grammatical tagging of English. Department of

Linguistics, Brown University. https://books.google.com/books?id=VznTygAACAAJ

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge

acquisition, 5(2), 199-221. https://doi.org/10.1006/knac.1993.1008

Guo, X., Tian, C., Chen, Y., & Zhang, J. (2022). Case study of building information modeling

implementation in infrastructure projects. Journal of Transportation Research Record,

2676(2), 663-679. https://doi.org/10.1177%2F03611981211045060

Hassan, F. U., & Le, T. (2020). Automated requirements identification from construction contract

documents using Natural Language Processing. Journal of Legal Affairs and Dispute Resolution

in Engineering and Construction, 12(2), 04520009. https://doi.org/10.1061/(ASCE)LA.1943-

4170.0000379

He, B., Zhou, D., Xiao, J., Liu, Q., Yuan, N. J., & Xu, T. (2020). BERT-MK: Integrating graph

contextualized knowledge into pre-trained language models. Findings of the Association for

Computational Linguistics: EMNLP 2020, Association for Computational Linguistics, 2281-

2290. https://doi.org/10.18653/v1/2020.findings-emnlp.207

Hendler, J., & McGuinness, D. L. (2000). The DARPA agent markup language. IEEE Intelligent

Systems, 15(6) , 67-73. https://doi.org/10.1109/5254.895864

168

Hepp, M. (2008). Goodrelations: An ontology for describing products and services offers on the web.

Proceedings of the International Conference on Knowledge Engineering and Knowledge

Management, Springer, 329-346. https://doi.org/10.1007/978-3-540-87696-0_29

Hirschberg, J., & Christopher, M. (2015). Advances in Natural Language Processing. Science,

349(6245), 261-266. https://doi.org/10.1126/science.aaa8685

Hochreiter, S. (1998). The vanishing gradient problem during learning Recurrent Neural Nets

and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 6(02), 107-116. https://doi.org/10.1142/S0218488598000094

Hu, D. (2019). An introductory survey on attention mechanisms in NLP problems. SAI

Intelligent Systems Conference, Springer, 432-448. https://doi.org/10.1007/978-3-030-

29513-4_31

İlal, S. M., & Günaydın, H. M. (2017). Computer representation of building codes for automated

compliance checking. Automation in Construction, 82(October 2017), 43-58.

https://doi.org/10.1016/j.autcon.2017.06.018

International Code Council (2015). International Building Code, International Code Council,

https://codes.iccsafe.org/content/IBC2015

Jiang, J. (2012). Information extraction from text. Mining text data, Springer US, 11-41.

https://doi.org/10.1007/978-1-4614-3223-4_2

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., & Mikolov, T. (2017). Fasttext. Zip:

Compressing text classification models. https://doi.org/10.48550/arXiv.1612.03651

Karita, S., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Soplin, N. E. Y.,

Yamamoto, R., & Wang, X. (2019). A comparative study on transformer vs RNN in speech

applications. Proceedings of the 2019 IEEE Automatic Speech Recognition and

Understanding Workshop (ASRU), Institute of Electrical and Electronics Engineers, 449-

456. https://doi.org/10.1109/ASRU46091.2019.9003750

Kloo, I., Dabkowski, M. F., & Huddleston, S. H. (2019). Improving record linkage for counter-

threat finance intelligence with dynamic jaro-winkler thresholds. Proceedings of the 2019

Winter Simulation Conference (WSC), Institute of Electrical and Electronics Engineers,

2467-2478. https://doi.org/10.1109/WSC40007.2019.9004945

Koehn, P. (2009). Statistical machine translation, ACM Computing Surveys, 40(3), 1-49.

https://doi.org/10.1145/1380584.1380586

Kosub, S. (2019). A note on the triangle inequality for the Jaccard distance. Pattern Recognition

Letters, 120(1 April 2019), 36-38. https://doi.org/10.1016/j.patrec.2018.12.007

Kottmann, J., Margulies, B., Ingersoll, G., Drost, I., Kosin, J., Baldridge, J., Goetz, T., Morton,

T., Silva, W., & Autayeu, A. (2004, April 22). Apache OpenNLP, Apache Foundation,

https://opennlp.apache.org

Krüpl, B., & Herzog, M. (2006). Visually guided bottom-up table detection and segmentation in

web documents. Proceedings of the 15th International Conference on World Wide Web,

Association for Computing Machinery, 933-934. https://doi.org/10.1145/1135777.1135951

Kwayu, K. M., Kwigizile, V., Zhang, J., & Oh, J. S. (2020). Semantic n-gram feature analysis

and machine learning–based classification of drivers’ hazardous actions at signal-controlled

intersections. Journal of Computing in Civil Engineering, 34(4), 04020015.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000895

Lacny, C., & Zhang, J. (2022, March). Computer vision-based geometry mapping and matching

of building elements for construction robotic applications. Proceedings of the Construction

169

Research Congress 2020, American Society of Civil Engineers, 541-549.

https://doi.org/10.1061/9780784483961.057

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

https://doi.org/10.1038/nature14539

Lee, J., Ham, Y., Yi, J.S., & Son, J. (2020). Effective risk positioning through automated

identification of missing contract conditions from the contractor’s perspective based on fidic

contract cases. Journal of Management in Engineering, 36(3), 05020003.

https://doi.org/10.1061/(ASCE)ME.1943-5479.0000757

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A pre-trained

biomedical language representation model for biomedical text mining. Bioinformatics, 36(4),

1234-1240. https://doi.org/10.1093/bioinformatics/btz682

Lee, Y.C., Ghannad, P., Dimyadi, J., Lee, J.K., Solihin, W., & Zhang, J. (2020). A comparative

analysis of five rule-based model checking platforms. Proceedings of the Construction Research

Congress 2020, American Society of Civil Engineers, 1127-1136.

https://doi.org/10.1061/9780784482865.119

Lee, Y.C., Ghannad, P., Shang, N., Eastman, C., & Barrett, S. (2018). Graphical scripting approach

integrated with speech recognition for BIM-based rule checking. Proceedings of the

Construction Research CSongress 2018, American Society of Civil Engineers, 262-272.

https://doi.org/10.1061/9780784481264.026

Legaltemplates (2020, November 23). Free construction contract template. Legaltemplates,

https://legaltemplates.net/form/lt/construction-contract-agreement

Levenshtein, V. I. (1965). Binary codes capable of correcting deletions, insertions, and reversals.

Soviet Physics Doklady, 10(8), 707-710.

https://ui.adsabs.harvard.edu/abs/1966SPhD...10..707L/abstract

Li, H., & Zhang, J. (2022). IFC-based information extraction and analysis of HVAC objects to

support building energy modeling. Proceedings of the 39th International Symposium on

Automation and Robotics in Construction (ISARC 2022), I.A.A.R.C., iaarc.org., 159-166.

Li, H., & Zhang, J. Interoperability between BIM and BEM using IFC. (2020). Proceedings of

the Construction Research Congress 2020, American Society of Civil Engineers, 630-637.

https://doi.org/10.1061/9780784483893.078

Li, H., Zhang, J., Xue, X., Debs, L., Chang, S., Qu, M., Sparking, A., & Goldwasser, D. (2022).

Issues in bi-directional interoperability between BIM and BEM. Proceedings of the

Construction Research Congress, American Society of Civil Engineers, 1355-1364.

https://doi.org/10.1061/9780784483961.142

Li, S., Cai, H., & Vineet, R. K. (2016). Integrating Natural Language Processing and spatial

reasoning for utility compliance checking. Journal of Construction Engineering and

Management, 142(12),04016074. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001199

Li, S., Graça, J. V., & Taskar, B. (2012) Wiki-ly supervised Partpart-of-Speech speech tagging.

Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning, Association for Computational

Linguistics, 1389-1398. https://doi.org/10.5555/2390948.2391106

Li, Y., Cao, L., Zhang, J., Jiang, Y., & Han, Y. (2021). Development of an energy-oriented layout

planning framework for healthcare facilities. Proceedings of the 2021 ASCE International

Conference on Computing in Civil Engineering, American Society of Civil Engineers, 1016-

1023. https://doi.org/10.1061/9780784483893.125

170

Liao, S.H. (2005). Expert system methodologies and applications-a decade review from 1995 to

2004. Expert Systems with Applications, 28(1), 93-103.

https://doi.org/10.1016/j.eswa.2004.08.003

Lin, J.R., Hu, Z., & Zhang, J. (2013). BIM oriented intelligent data mining and representation.

Proceedings of the 30th CIB W78 International Conference on Applications of IT in the AEC

Industry, Queensland University of Technology, 280-289. https://itc.scix.net/pdfs/w78-2013-

paper-112.pdf

Loper, E., & Bird, S. (2004). NLTK: The natural language toolkit. Proceedings of the ACL

Interactive Poster and Demonstration Sessions, Association for Computational Linguistics,

1-4. https://aclanthology.org/P04-3031

Lopez, L., Elam, S., & Reed, K. (1989). Software concept for checking engineering designs for

conformance with codes and standards. Engineering with Computers, 5(2), 63-78.

https://doi.org/10.1007/BF01199070

Lu, J., Yang, J., Batra, D., & Parikh, D. (2016). Hierarchical question-image co-attention for

visual question answering. Advances In Neural Information Processing Systems, Curran

Associates Inc., 289-297. https://doi.org/10.5555/3157096.3157129

Luong, M.T., Pham, H., & Manning, C. D. (2015). Effective approaches to Attention-based

neural machine translation. Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, Association for Computational Linguistics, 1412–1421.

https://doi.org/10.18653/v1/D15-1166

Malsane, S., Matthews, J., Lockley, S., Love, P. E. , & Greenwood, D. (2015). Development of

an object model for automated compliance checking. Automation in Construction,

49(January 2015), 51-58. https://doi.org/ 10.1016/j.autcon.2014.10.004

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014). The

Stanford CoreNLP Natural Language Processing toolkit. Proceedings of the 52nd annual

meeting of the Association for Computational Linguistics: system demonstrations,

Association for Computational Linguistics, 55-60. https://doi.org/10.3115/v1/P14-5010

Marcus, M., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated corpus of

English: The Penn Treebank. Computational Linguistics, 19(2), 313-330.

https://doi.org/10.5555/972470.972475

Marques, N. C., & Lopes, G. P. (2001). Tagging with small training corpora, Advances in

Intelligent Data Analysis. Springer, 63-72. https://doi.org/10.1007/3-540-44816-0_7

Mcguinness, D. L., Fikes, R., Hendler, J., & Stein, L. A. (2002). Daml+oil: An ontology

language for the semantic web. IEEE Intelligent Systems, 17(5), 72-80.

https://doi.org/10.1109/MIS.2002.1039835

McKeown, K. (1985). Text generation, Cambridge University Press, Cambridge.

https://doi.org/10.1017/CBO9780511620751

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean, J. (2013). Distributed representations

of words and phrases and their compositionality. Proceedings of the 26th International

Conference on Neural Information Processing Systems - Volume 2, Curran Associates Inc.,

3111–3119. https://doi.org/10.5555/2999792.2999959

Mitchell, T. M. (1997). Machine Learning, McGraw-Hill, Inc,. https://doi.org/10.5555/541177

Montrose County. (2018, April 24). Construction Contract. Montrose County,

https://www.montrosecounty.net/DocumentCenter/View/823/Sample-Construction-Contract

171

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural Language Processing:

An introduction. Journal of the American Medical Informatics Association, 18(5), 544-551.

https://doi.org/ 10.1136/amiajnl-2011-000464

National Building Information Model Standard Project Committee. (2022, May 27). Frequently

asked questions about the national BIM standard-United States. National Building

Information Model Standard Project Committee.

https://www.nationalbimstandard.org/faqs#faq1

Nenkova, A., & McKeown, K. (2012). A survey of text summarization techniques. Mining Text

Data, Springer US, 43-76. https://doi.org/10.1007/978-1-4614-3223-4_3

Nguyen, T.H., & Kim, J.L (2011). Building code compliance checking using BIM technology.

Proceedings of the 2011 Winter Simulation Conference (WSC), Institute of Electrical and

Electronics Engineers, 3395-3400. https://doi.org/10.1109/WSC.2011.6148035

Noy, N. F., & McGuinness, D. L. (2012, June 24). Ontology development 101: A guide to creating

your first ontology. Stanford Knowledge Systems Laboratory,

http://www.ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison

of trends in practice and research for deep learning. Proceedings of the INCCST 2020: 2nd

International Conference on Computational Sciences and Technologies, Mehran University of

Engineering and Technology, 124-133. https://doi.org/10.48550/arXiv.1811.03378

Paliwal, S. S., Vishwanath, D., Rahul, R., Sharma, M., & Vig, L. (2019). Tablenet: Deep learning

model for end-to-end table detection and tabular data extraction from scanned document images.

Proceedings of the 2019 International Conference on Document Analysis and Recognition

(ICDAR), Institute of Electrical and Electronics Engineers, 128-133.

https://doi.org/0.1109/ICDAR.2019.00029

Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. IEEE Transactions on knowledge and

data engineering, 22(10), 1345-1359. https://doi.org/10.1109/TKDE.2009.191

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J., De Meyer, R., Van de Walle, R., & Van

Campenhout, J. (2011). A semantic rule checking environment for building performance

checking. Automation in Construction, 20(5), 506-518.

https://doi.org/10.1016/j.autcon.2010.11.017

Pennington, J., Socher, R., & Manning, C. D. (2001). Glove: Global vectors for word representation.

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), Association for Computational Linguistics, 1532-1543.

https://doi.org/10.3115/v1/D14-1162

Penumatsa, P., Ventura, M., Graesser, A. C., Louwerse, M., Hu, X., Cai, Z., & Franceschetti, D. R.

(2006). The right threshold value: What is the right threshold of cosine measure when using

latent semantic analysis for evaluating student answers? International Journal on Artificial

Intelligence Tools, 15(05), 767-777. https://doi.org/10.1142/S021821300600293X

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018).

Deep contextualized word representations. Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), Association for Computational Linguistics, 2227–2237.

https://doi.org/10.18653/v1/N18-1202

Petrov, S., Das, D., & McDonald, R. (2012). A universal Partpart-of-Speech speech tagset.

Proceedings of the Eighth International Conference on Language Resources and Evaluation

172

(LREC'12). European Language Resources Association (ELRA), 2089–2096.

https://aclanthology.org/L12-1115/

Plank, B., Søgaard, A., & Goldberg, Y. (2016). Multilingual Partpart-of-Speech speech tagging with

bidirectional long short-term memory models and auxiliary loss. Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Association

for Computational Linguistics, 412–418. https://doi.org/10.18653/v1/P16-2067

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,

Motlicek, P., Qian, & Y., Schwarz, P. (2011). The Kaldi speech recognition toolkit. Proceedings

of the IEEE 2011 Workshop on Automatic Speech Recognition and Understanding, Association

for Computational Linguistics, 1-4. https://doi.org/10.1109/ASRU17718.2011

Preidel, C., & Borrmann, A. (2017). Refinement of the visual code checking language for an

automated checking of building information models regarding applicable regulations.

Computing in Civil Engineering 2017, American Society of Civil Engineers, 157-165.

https://doi.org/10.1061/9780784480823.020

Qasim, S. R., Mahmood, H., & Shafait, F. (2019). Rethinking table recognition using graph

neural networks. Proceedings of the 2019 International Conference on Document Analysis

and Recognition (ICDAR), Institute of Electrical and Electronics Engineers,142-147.

https://doi.org/10.1109/ICDAR.2019.00031

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019, February 14).

Language models are unsupervised multitask learners. OpenAI blog,

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

Raghavan, P., Schütze, H., & Manning, C. D. (2010). Christopher D. Manning, Prabhakar

Raghavan, and Hinrich Schütze: Introduction to information retrieval. Information Retrieval,

39(2), 192-195. https://doi.org/10.1007/s10791-009-9115-y

Rao, X., & Ke, Z. (2018). Hierarchical RNN for information extraction from lawsuit documents.

Proceedings of the International MultiConference of Engineers and Computer Scientists

2018, International Association of Engineers, 1-5.

https://doi.org/10.48550/arXiv.1804.09321

Rekabsaz, N., Lupu, M., & Hanbury, A. (2016). Exploration of a threshold for similarity based

on uncertainty in word embedding. Proceedings of the European Conference on Information

Retrieval, Springer, 396-409. https://doi.org/10.1007/978-3-319-56608-5_31

Ren, R., & Zhang, J. (2020). Comparison of BIM interoperability applications at different

structural analysis stages. Proceedings of the Construction Research Congress

2020, American Society of Civil Engineers, 537-545.

https://doi.org/10.1061/9780784482865.057

Ren, R., & Zhang, J. (2021). Semantic rule-based construction procedural information extraction

to guide jobsite sensing and monitoring. Journal of Computing in Civil Engineering, 35(6),

04021026. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000971

Rocktäschel, T., Grefenstette, E., Hermann, K. M., Kočiský, T., & Blunsom, P. (2015).

Reasoning about entailment with neural attention. Proceedings of the 4th International

Conference on Learning Representations, 1-9. https://doi.org/10.48550/arXiv.1509.06664

Sabouni, A., & Al-Mourad, O. (1997). Quantitative knowledge based approach for preliminary

design of tall buildings. Artificial intelligence in Engineering, 11(2), 143-154.

https://doi.org/10.1016/S0954-1810(96)00023-4

173

Sak, H., Senior, A. W., & Beaufays, F. (2014). Long Short-Term memory Recurrent Neural

Network architectures for large scale acoustic modeling.

https://doi.org/10.48550/arXiv.1402.1128

Salama, D. M., & El-Gohary, N. M. (2016). Semantic text classification for supporting

automated compliance checking in construction. Journal of Computing in Civil Engineering,

30(1), 04014106. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000301

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210

Schmid, H. (1994). Part-of-Speech speech tagging with neural networks. Proceedings of the 15th

conference on Computational linguistics-Volume 1, Association for Computational

Linguistics, 172-176. https://doi.org/10.3115/991886.991915

Schmid, H. (2019). Deep learning-based morphological taggers and lemmatizers for annotating

historical texts. Proceedings of the 3rd International Conference on Digital Access to

Textual Cultural Heritage, Association for Computational Linguistics, 133-137.

https://doi.org/10.1145/3322905

Schmid, H., Baroni, M., Zanchetta, E., & Stein, A. (2014). The enriched tree tagger system.

Proceedings of the Evaluation of NLP and Speech Tools for Italian 2007, Springer.

http://hdl.handle.net/11572/70059

Shafait, F., & Smith, R. (2010). Table detection in heterogeneous documents. Proceedings of the 9th

IAPR International Workshop on Document Analysis Systems, Association for Computational

Linguistics, 65-72. https://doi.org/10.1145/1815330.1815339

Shao, Y., Hardmeier, C., Tiedemann, J.,& Nivre, J. (2017). Character-based joint segmentation and

POS tagging for Chinese using bidirectional RNN-CRF. Proceedings of the Eighth International

Joint Conference on Natural Language Processing (Volume 1: Long Papers), Association for

Computational Linguistics, 173–183. https://aclanthology.org/I17-1018

Shmanina, T., Zukerman, I., Cheam, A. L., Bochynek, T., & Cavedon, L. (2016). A corpus of tables

in full-text biomedical research publications. Proceedings of the Fifth Workshop on Building and

Evaluating Resources for Biomedical Text Mining (BioTxtM2016), Association for

Computational Linguistics, 70-79. https://aclanthology.org/W16-5108

Sinha, A., Bayer, J., & Bukhari, S. S. (2019) Table localization and field value extraction in piping

and instrumentation diagram images. Proceedings of the 2019 International Conference on

Document Analysis and Recognition Workshops (ICDARW), Institute of Electrical and

Electronics Engineers, 26-31. https://doi.org/10.1109/ICDARW.2019.00010

Song, J., Kim, J., & Lee, J.K. (2018). NLP and deep learning-based analysis of building regulations

to support automated rule checking system. Proceedings of the International Symposium on

Automation and Robotics in Construction, The International Association for Automation and

Robotics in Construction, 1-7. https://doi.org/10.22260/ISARC2018/0080

Sqlite Consortium. (2000, August 17). Sqlite home page. Sqlite Consortium,

https://www.sqlite.org/index.htm

Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM-a tutorial into long short-term

memory Recurrent Neural Networks. https://doi.org/10.48550/arXiv.1909.09586

Su, Z., Ahn, B., Eom, K., Kang, M., Kim, J., & Kim, M. (2008). Plagiarism detection using the

levenshtein distance and smith-waterman algorithm. Proceedings of the 2008 3rd International

Conference on Innovative Computing Information and Control, American Society of Civil

Engineers, 569-569. https://doi.org/10.1109/ICICIC.2008.422

174

Tai, W., Kung, H., Dong, X. L., Comiter, M., & Kuo, C.F. (2020). ExBERT: Extending pre-trained

models with domain-specific vocabulary under constrained training resources. Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing: Findings,

American Society of Civil Engineers, 1433-1439. https://doi.org/10.18653/v1/2020.findings-

emnlp.129.

Tan, X., Hammad, A., & Fazio, P. (2010). Automated code compliance checking for building

envelope design. Journal of Computing in Civil Engineering, 24(2), 203-211,

https://doi.org/10.1061/(ASCE)0887-3801(2010)24:2(203)

Tang, D., Qin, B., & Liu, T. (2015).Document modeling with Gated Recurrent Neural Network for

sentiment classification. Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing, Association for Computational Linguistics, 1422-1432.

https://doi.org/10.18653/v1/D15-1167

Tixier, A. J.P., Hallowell, M. R., Rajagopalan, B., & Bowman, D. (2016). Automated content

analysis for construction safety: A Natural Language Processing system to extract precursors

and outcomes from unstructured injury reports. Automation in Construction, 62(February

2016) , 45-56 .https://doi.org/10.1016/j.autcon.2015.11.001

UK BIM Task Group (2019, October, 2). BIM level 2 frequently asked questions. UK BIM Task

Group. https://bim-level2.org/en/faqs/

Vasileiadis, M., Kaklanis, N., Votis, K., & Tzovaras, D. (2004). Extraction of tabular data from

document images. Proceedings of the 14th Web for All Conference on The Future of

Accessible Work, Association for Computational Linguistics, 1-2.

https://doi.org/10.1145/3058555.3058581

Vaswani, A., Bengio, S., Brevdo, E., Chollet, F., Gomez, A. N., Gouws, S., Jones, L., Kaiser, Ł.,

Kalchbrenner, N., & Parmar, N. (2018). Tensor2tensor for neural machine translation.

Proceedings of the 13th Conference of the Association for Machine Translation in the

Americas, Association for Machine Translation in the Americas, 193–199.

https://aclanthology.org/W18-1819

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &

Polosukhin, I. (2007). Attention is all you need. Advances in Neural Information Processing

Systems, Curran Associates Inc, 5998-6008. https://doi.org/10.5555/3295222.3295349

Wang, J., Chen, Y., Hao, S., Peng, X., & Hu, L. (2019). Deep learning for sensor-based activity

recognition: A survey. Pattern Recognition Letters, 119(1 March 2019), 3-11.

https://doi.org/10.1016/j.patrec.2018.02.010

Wang, J., Mu, L., Zhang, J., Zhou, X., & Li, J. (2020). On intelligent fire drawings review based

on building information modeling and knowledge graph. Proceedings of the Construction

Research Congress 2020, American Society of Civil Engineers, 812-820.

https://doi.org/10.1061/9780784482865.086

Winkler, W. E. (1990, Juanary 1). String comparator metrics and enhanced decision rules in the

fellegi-sunter model of record linkage. Institute of Education Sciences,

https://eric.ed.gov/?id=ED325505

Wong Chong, O., & Zhang, J. (2021). Logic representation and reasoning for automated BIM

analysis to support automation in offsite construction. Automation in

Construction, 129(September 2021), 103756. https://doi.org/10.1016/j.autcon.2021.103756

Wong Chong, O., Baker, C., Afsari, K., Zhang, J. & Roach, M. (2020). Integration of BIM

processes in architectural design, structural analysis, and detailing: current status and

175

limitations. Proceedings of the Construction Research Congress 2020, American Society of

Civil Engineers, 1203-1212. https://doi.org/10.1016/j.autcon.2021.103756

Wong Chong, O., Zhang, J., Voyles, R.M., & Min, B. (2022). A BIM-based approach to simulate

construction robotics in the assembly process of wood frames to support offsite construction

automation. Automation in Construction, 137(May 2022), 104194.

https://doi.org/10.1061/(ASCE)CO.1943-7862.0001853

Wu, J., Akanbi, T., & Zhang, J. (2022). Constructing invariant signatures for AEC objects to

support BIM-based analysis automation through object classification. Journal of Computing

in Civil Engineering, 36(4), 04022008. https://doi.org/10.1061/(ASCE)CP.1943-

5487.0001012

Wu, J., Sadraddin, H.L., Ren, R., Zhang, J., & Shao, X. (2021). Invariant signatures of

architecture, engineering, and construction objects to support BIM interoperability between

architectural design and structural analysis. Journal of Construction Engineering and

Management, 147(1), 04020148. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001943

Xu, X., & Cai, H. (2020). Semantic approach to compliance checking of underground utilities.

Automation in Construction, 109(January 2020), 103006.

https://doi.org/10.1016/j.autcon.2019.103006

Xue, X., & Zhang, J. (2019). Part-of-Speech speech tagged building codes (PTBC).

https://doi.org/10.4231/Y0ZQ-4946

Xue, X., & Zhang, J. (2020). Building codes Partp-of-Speech speech tagging performance

improvement by error-driven transformational rules. Journal of Computing in Civil Engineering,

34(5), 04020035. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000917

Xue, X., & Zhang, J. (2020). Evaluation of seven Partpart-of-Speech speech taggers in tagging

building codes: Identifying the best performing tagger and common sources of errors.

Proceedings of the Construction Research Congress 2020, American Society of Civil Engineers,

1-9. https://doi.org/10.1061/9780784482865.053

Xue, X., & Zhang, J. (2021). Erratum for “Building codes Partpart-of-Speech speech tagging

performance improvement by error-driven transformational rules” by Xiaorui Xue and Jiansong

Zhang. Journal of Computing in Civil Engineering, 35(1), 08220002.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000950

Xue, X., & Zhang, J. (2021). Logic clause representation of building codes dataset.

https://doi.org/10.4231/XPJS-0G48

Xue, X., & Zhang, J. (2021). Part-of-Speech speech tagging of building codes empowered by deep

learning and transformational rules. Advanced Engineering Informatics, 47(January 2021),

101235. https://doi.org/10.1016/j.aei.2020.101235

Xue, X., & Zhang, J. (2022). Regulatory information transformation ruleset expansion to support

automated building code compliance checking. Automation in Construction, 138(June 2022),

104230. https://doi.org/10.1016/j.autcon.2022.104230

Xue, X., Hou, Y., & Zhang, J. (2022). Automated construction contract summarization using natural

language processing and deep learning. Proceedings of the 39th International Symposium on

Automation and Robotics in Construction (ISARC 2022), I.A.A.R.C., iaarc.org., 459-466.

Xue, X., Wu, J., & Zhang, J. (2022). Semi-automated generation of logic rules for tabular

information in building codes to support automated code compliance checking. Journal of

Computing in Civil Engineering, 36(1), 04021033. https://doi.org/10.1061/(ASCE)CP.1943-

5487.0001000

176

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based

Natural Language Processing. Proceedings of the IEEE Computational intelligenCe magazine,

13(3), 55-75. https://doi.org/10.1109/MCI.2018.2840738

Yu, X., Faleńska, A., & Vu, N. T. (2017). A general-purpose tagger with Convolutional Neural

Networks. Proceedings of the First Workshop on Subword and Character Level Models in NLP,

Association for Computational Linguistics, 24–129. https://doi.org/10.18653/v1/W17-4118

Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2021). Dive into Deep Learning.

https://doi.org/10.48550/arXiv.2106.11342

Zhang, C., Zhang, X., Jiang, W., Shen, Q., & Zhang, S. (2009). Rule-based extraction of spatial

relations in natural language text. Proceedings of the 2009 International Conference on

Computational Intelligence and Software Engineering, Institute of Electrical and Electronics

Engineers, 1-4. https://doi.org/10.1109/CISE.2009.5363900

Zhang, J. (2015). Automated code compliance checking in the construction domain using semantic

Natural Language Processing and logic-based reasoning. [Doctoral dissertation, University of

Illinois at Urbana-Champaign]. IDEALS. http://hdl.handle.net/2142/89207

Zhang, J., & El-Gohary, N. (2013). Handling sentence complexity in information extraction for

automated compliance checking in construction. Proceedings of the CIB W78 2013, Conseil

International du Bâtiment (CIB), 770-780. https://eres.scix.net/pdfs/w78-2013-paper-89.pdf

Zhang, J., & El-Gohary, N. M. (2015). Automated extraction of information from Building

Information Models into a semantic logic-based representation. Proceedings of the 2015

International Workshop on Computing in Civil Engineering, American Society of Civil

Engineers, 173-180. https://doi.org/10.1061/9780784479247.022

Zhang, J., & El-Gohary, N. M. (2015). Automated information transformation for automated

regulatory compliance checking in construction. Journal of Computing in Civil Engineering,

29(4), B4015001. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000427

Zhang, J., & El-Gohary, N. M. (2016). Extending Building Information Models semiautomatically

using semantic Natural Language Processing techniques. Journal of Computing in Civil

Engineering, 30(6), C4016004. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000536

Zhang, J., & El-Gohary, N. M. (2016). Semantic NLP-based information extraction from

construction regulatory documents for automated compliance checking. Journal of Computing in

Civil Engineering, 30(2), 04015014. https://doi.org/04015014.10.1061/(ASCE)CP.1943-

5487.0000346

Zhang, J., & El-Gohary, N. M. (2017). Integrating semantic NLP and logic reasoning into a unified

system for fully-automated code checking. Automation in Construction, 73(January 2017) , 45-

57. https://doi.org/10.1016/j.autcon.2016.08.027

Zhang, J., & El-Gohary, N. M. (2017). Semantic-based logic representation and reasoning for

automated regulatory compliance checking. Journal of Computing in Civil Engineering, 31(1),

04016037. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000583

Zhang, J., & Laddipeerla, S. (2018). A feasibility study of IFC-based BIM 4D simulation using

commercial systems to support construction planning in the U.S. Proceedings of the 54th

Construction International Conference Annual International Conference, Construction

International Conference, 441-448.

http://ascpro0.ascweb.org/archives/cd/2018/paper/CPRT119002018.pdf

Zhang, J., Kwigizile, V., & Oh, S. (2016). Automated hazardous action category classification using

natural language processing and machine learning techniques. Proceedings of the 16th COTA

177

International Conference of Transportation Professionals, 1579-1590.

https://doi.org/10.1061/9780784479896.144

Zhang, R., & El-Gohary, N. M. (2020). A machine-learning approach for semantic matching of

building codes and Building Information Models (BIMs) for supporting automated code

checking. Proceedings of the International Congress and Exhibition Sustainable Civil

Infrastructures, Springer. 64-73. https://doi.org/10.1007/978-3-030-34216-6_5

Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional networks for text

classification. Proceedings of the 28th International Conference on Neural Information

Processing Systems - Volume 1, MIT Press, 649–657. https://doi.org/10.5555/2969239.2969312

Zhong, B. T., Ding, L. Y., Luo, H. B., Zhou, Y., Hu, Y. Z., & Hu, H. M. (2012). Ontology-based

semantic modeling of regulation constraint for automated construction quality compliance

checking. Automation in Construction, 28(December 2012), 58-70.

https://doi.org/10.1016/j.autcon.2012.06.006

Zhou, N.F. (2014, Feburary 23). B-prolog user’s manual. Afany Software. http://www.picat-

lang.org/bprolog/download/manual.pdf

Zhou, P., & El-Gohary, N. (2018). Automated matching of design information in BIM to

regulatory information in energy codes. Proceedings of the Construction Research

Congress 2018, American Society of Civil Engineers, 75-85.

https://doi.org/10.1061/9780784481264.008

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler, S. (2015).

Aligning books and movies: Towards story-like visual explanations by watching movies

and reading books. Proceedings of the IEEE international conference on computer vision,

Institute of Electrical and Electronics Engineers, 19-27.

https://doi.org/10.1109/ICCV.2015.11

