¹ Supporting Information:

- 2 Nutrient-controlled niche differentiation of western
- ³ Lake Erie cyanobacterial populations revealed via
- 4 metatranscriptomic surveys
- 6 Matthew J. Harke¹, Timothy W. Davis², Susan B. Watson³, Christopher J. Gobler^{1*}
- ¹ Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY 11794
- 8 ² NOAA Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI 48108
- ⁹ ³ Canadian Centre for Inland Waters, Environment Canada, Burlington, ON, L7R 4A6, Canada
- 10 * Corresponding author: <u>christopher.gobler@stonybrook.edu</u>
- 11

- 12 18 Pages
- 13 7 Supplemental Tables
- 14 12 Supplemental Figures
- 15

Supplemental Tables 16

17 18 19 Table S1 Physical, chemical, and community characterizing parameters measured at each station during September (A) and

October (B) transects of the western basin of Lake Erie (Fig 1, Fig S8). Values in parenthesis are the standard deviation between two biological replicates. Values below detection limits are denoted with BD. For SRP, detection limit was 0.00254 µM.

20

			9/12/	/2013		
Α	L1	L15	L16	L17	L18	L19
Latitude	41.705450	41.725032	41.710016	41.677711	41.692743	41.672816
Longitude	-83.446490	-83.406564	-83.297111	-83.235626	-83.007609	-82.897967
Temperature [°C]	23.4	23.6	23.1	23	23.2	23.3
Dissolved Oxygen [mg L ⁻¹]	5.19	6.87	6.62	6.86	7.60	7.17
Secchi depth [m]	0.4	0.4	0.5	0.6	1.7	1.9
DIN [µM]	27.33 (0.85)	10.83 (0.47)	1.90 (0.04)	1.63 (0.02)	8.83 (0.25)	4.68 (0.27)
SRP [µM]	1.11 (0.02)	0.44 (0.06)	0.28 (0.07)	0.24 (0.03)	BD	0.20 (0.07)
<i>Microcystis</i> [cells mL ⁻¹]	29,967 (6,643)	51,633 (7,683)	51,317 (5,921)	51,450 (10,765)	29,433 (8,171)	15,900 (3,518)
Fv/Fm	0.30 (0.05)	0.31 (0.04)	0.27 (0.02)	0.35 (0.06)	0.46 (0.01)	0.45 (0.01)
in vivo chlorophyll [RFU]	0.87 (0.07)	1.02 (0.05)	0.77 (0.05)	0.76 (008)	0.43 (0.03)	0.32 (0.04)
Extracted chlorophyll $[\mu g L^{-1}]$	20.01 (5.51)	36.45 (3.01)	21.86 (1.36)	23.04 (9.52)	10.32 (0.40)	8.86 (0.49)
APA [nmol mL ⁻¹ hr ⁻¹]	0.22 (0.01)	0.28 (0.00)	0.32 (0.01)	0.37 (0.01)	0.81 (0.01)	0.54 (0.01)
Fluoroprobe Bluegreen [µg L ⁻¹] Phycocyanin [RFU]	21.08 (2.10) 17.20 (1.47)	34.88 (6.12) 26.97 (5.34)	22.79 (0.66) 20.83 (1.82)	23.86 (1.08) 18.53 (0.51)	14.99 (0.73) 15.03 (2.89)	8.22 (0.51) 10.77 (0.46)
Microcystin [µg L ⁻¹]	2.31 (0.76)	6.95 (0.19)	3.87 (0.40)	8.17 (0.69)	0.33 (0.08)	0.82 (0.07)

				10/8/2013			
В	LET7	LET6	LET5	LET4	LET3	LET2	LET1
Latitude	41.698889	41.739444	41.766667	41.725556	41.702778	41.670833	41.722778
Longitude	-83.458889	-83.375000	-83.308611	-83.110556	-83.000556	-82.849722	-82.751389
Temperature [°C]	19.8	17.6	18.3	18.8	18.6	18.9	19.4
Dissolved Oxygen [mg L ⁻¹]	10.01	8.41	6.27	6.65	6.27	6.06	6.58
Secchi depth [m]	NA	0.75	1.1	1.8	2.8	1.8	1.2
DIN [µM]	50.14 (1.71)	5.76 (0.08)	1.35 (0.01)	6.54 (0.79)	14.74 (0.70)	1.76 (0.22	3.14 (0.06)
SRP [µM]	1.61 (0.16)	0.19 (0.02)	0.06 (0.01)	BD	0.05 (0.01)	0.07 (0.00)	0.25 (0.01)
Microcystis bioamass [µg L-1]	147	10,812	6,480	1,605	4,139	2,089	3,561
Extracted chlorophyll $[\mu g L^{-1}]$	26.88 (0.86)	24.99 (1.95)	6.85 (0.55)	4.59 (0.58)	3.43 (0.23)	5.26 (0.36)	6.97 (0.21)
Microcystin [µg L ⁻¹]	0.90 (0.21)	1.51 (0.24)	0.91 (0.26)	0.74 (0.19)	0.92 (0.09)	0.78 (0.15)	0.63 (0.24)

Table S2 Nutrient concentrations $[\mu M]$ for each station of the September and October transects of the western basin of Lake Erie. Stations are ordered from west to east as in Figure 1. Values below detection limits are indicated with BD. Detection limits were

23 24 25 26 $0.00697 \ \mu M$ for urea, $0.00254 \ \mu M$ DIP, and $0.00243 \ \mu M$ for DOP. Values represent the average of duplicate samples with

standard deviations in parenthesis.

			9/12/	2013						10/8/201	13		
	L1	L15	L16	L17	L18	L19	LET7	LET6	LET5	LET4	LET3	LET2	LET1
NO _x	24.69	9.53	0.21	0.11	7.11	3.08	40.70	4.91	0.38	5.48	12.50	0.28	0.84
	(0.81)	(0.42)	(0.02)	(0.01)	(0.27)	(0.24)	(1.29)	(0.08)	(0.01)	(0.12)	(0.12)	(0.02)	(0.01)
NH_4	2.64	1.29	1.69	1.52	1.72	1.60	9.44	0.85	0.97	1.06	2.25	1.48	2.30
	(0.04)	(0.05)	(0.02)	(0.01)	(0.03)	(0.04)	(0.42)	(0.00)	(0.03)	(0.08)	(0.82)	(0.24)	(0.07)
Urea	1.60	0.62	1.98	0.18	0.20	0.08	3.61	0.21	BD	1.27	4.53	BD	0.46
	(0.03)	(0.01)	(0.19)	(0.01)	(0.04)	(0.01)	(0.04)	(0.01)		(0.01)	(0.26)		(0.09)
TN	53.79	46.83	45.76	42.57	36.47	25.10	60.88	52.37	27.80	48.44	39.18	23.57	23.99
	(4.58)	(0.44)	(0.66)	(0.95)	(0.23)	(1.83)	(0.13)	(4.92)	(0.46)	(0.54)	(0.01)	(0.36)	(1.78)
TDN	44.61	31.39	28.64	20.02	17.72	11.17	32.52	34.44	13.33	16.31	29.64	10.87	16.32
	(4.26)	(0.19)	(1.06)	(0.20)	(0.39)	(0.14)	(1.99)	(0.93)	(0.99)	(0.06)	(0.36)	(0.68)	(1.05)
DON	19.92	21.86	28.43	19.91	10.61	8.09	BD	29.53	12.94	10.83	17.15	10.59	15.48
	(5.07)	(0.23)	(1.04)	(0.21)	(0.12)	(0.37)		(0.84)	(1.00)	(0.93)	(0.23)	(0.66)	(1.05)
PN	9.18	15.44	17.12	22.55	18.75	13.93	28.36	17.93	14.48	32.13	9.54	12.70	7.68
	(0.32)	(0.25)	(1.72)	(1.15)	(0.16)	(1.96)	(1.86)	(5.84)	(0.53)	(0.60)	(0.34)	(1.04)	(2.84)
SRP	1.11	0.44	0.28	0.24	BD	0.20	1.61	0.19	0.06	BD	0.05	0.07	0.25
	(0.02)	(0.06)	(0.07)	(0.03)		(0.07)	(0.16)	(0.02)	(0.01)		(0.01)	(0.00)	(0.01)
ТР	6.22	6.47	3.58	4.60	1.54	1.27	10.11	4.44	1.85	2.34	2.10	1.98	3.43
	(0.06)	(0.21)	(0.04)	(0.15)	(0.19)	(0.06)	(0.32)	(0.22)	(0.08)	(0.59)	(0.05)	(0.07)	(0.12)
TDP	0.65	1.28	0.49	0.26	0.24	0.17	1.72	1.19	0.41	0.53	0.98	0.52	0.33
	(0.03)	(0.63)	(0.05)	(0.03)	(0.09)	(0.05)	(0.22)	(0.28)	(0.04)	(0.37)	(0.23)	(0.08)	(0.09)
DOP	BD	0.84	0.22	0.03	0.27	BD	0.11	1.00	0.34	0.53	0.94	0.45	0.08
		(0.57)	(0.12)	(0.06)	(0.12)		(0.37)	(0.29)	(0.04)	(0.37)	(0.23)	(0.08)	(0.10)
PP	5.57	5.19	3.09	4.33	1.29	1.10	8.39	3.25	1.44	1.81	1.11	1.47	3.09
	(0.03)	(0.84)	(0.09)	(0.13)	(.010)	(0.01)	(0.54)	(0.50)	(0.11)	(0.96)	(0.28)	(0.01)	(0.21)

27

28

I

29 30 **Table S3** Transcriptomic sequencing results. Alignment results are the number of reads aligning to the *Microcystis aeruginosa*NIES-843 genome using Bowtie2 within RSEM. Each station or treatment has two biological replicates.

Station or Treatment	Number of reads	Aligned 0 times	Aligned exactly 1 time	Aligned >1 time	Overall alignment rate
LET1	27,903,522	24,945,541	1,659,152	1,298,829	10.60%
	27,536,041	24,284,725	1,444,752	1,806,564	11.81%
LET2	36,997,191	26,746,690	4,204,127	6,046,374	27.71%
	29,833,053	22,659,861	2,156,750	5,016,442	24.04%
LET3	28,864,110	23,924,801	2,316,711	2,622,598	17.11%
	28,650,471	23,552,927	2,043,243	3,054,301	17.79%
LET4	35,597,296	21,792,004	4,869,108	8,936,184	38.78%
	27,014,116	19,210,720	3,625,526	4,177,870	28.89%
LET5	25,556,343	17,968,910	4,150,242	3,437,191	29.69%
	25,153,667	18,465,371	3,093,990	3,594,306	26.59%
LET6	31,451,508	20,254,955	4,011,289	7,185,264	35.60%
	33,128,987	32,764,260	191,220	173,507	1.10%
LET7	38,595,755	37,911,204	156,426	528,125	1.77%
	33,928,689	32,938,676	113,686	876,327	2.92%
+P	25,734,772	21,133,075	3,170,522	1,431,175	17.88%
	30,634,245	24,635,004	3,748,488	2,250,753	19.58%
+NH4	36,319,164	29,604,594	4,557,190	2,157,380	18.49%
	32,820,933	26,160,377	4,705,489	1,955,067	20.29%
+Urea	36,497,773	28,856,115	4,602,858	3,038,800	20.94%
	28,528,820	22,765,343	3,605,361	2,158,116	20.20%
Control	33,983,026	27,619,927	4,156,741	2,206,358	18.72%
	37,595,286	30,176,832	4,697,085	2,721,369	19.73%
Initial	32,420,679	25,081,626	4,671,776	2,667,277	22.67%
	32,000,000	24,144,624	5,275,028	2,580,348	24.55%

31

Table S4 Transcriptomic sequencing results. Alignment results are the number of reads aligning to the *Anabaena* sp. PCC7108
genome using Bowtie2 within RSEM. Each station or treatment has two biological replicates.

Treatment or Station	Number of	Aligned 0	Aligned exactly	Aligned >1	Overall alignment
Initial (116)	22 420 670	22 201 194	17 012	72 492	
iiiitiai (L10)	32,420,079	32,301,164	47,015	72,402	0.57%
_	31,858,827	31,722,341	60,070	76,416	0.43%
+P	25,734,772	25,686,336	8,500	39,936	0.19%
	30,634,245	30,595,894	10,372	27,979	0.13%
+NH4	36,319,164	36,281,206	11,106	26,852	0.10%
	32,820,933	32,768,476	19,206	33,251	0.16%
+Urea	36,497,773	36,461,942	11,309	24,522	0.10%
	28,528,820	28,503,313	9,030	16,477	0.09%
Control	33,983,026	33,948,716	13,789	20,521	0.10%
	37,595,286	37,547,609	14,757	32,920	0.13%
LET1	27,903,522	27,886,920	5,456	11,146	0.06%
	27,536,041	27,512,968	7,029	16,044	0.08%
LET2	36,997,191	36,979,812	3,135	14,244	0.05%
	29,833,053	29,819,785	2,927	10,341	0.04%
LET3	28,864,110	28,855,616	819	7,675	0.03%
	28,650,471	28,637,702	912	11,857	0.04%
LET4	35,597,296	35,588,672	1,235	7,389	0.02%
	27,014,116	26,996,707	1,388	16,021	0.06%
LET5	25,556,343	25,544,824	1,902	9,617	0.05%
	25,153,667	25,124,403	2,410	26,854	0.12%
LET6	31,451,508	31,439,930	1,088	10,490	0.04%
	33,128,987	32,941,384	122,110	65,493	0.57%
LET7	38,595,755	38,438,228	105,090	52,437	0.41%
	33,928,689	33,756,246	116,697	55,746	0.51%

35

Table S5 Transcriptomic sequencing results. Alignment results are the number of reads aligning to the *Planktothrix agardhii* NIVA-CYA 15 genome using Bowtie2 within RSEM. Each station or treatment has two biological replicates.

Treatment	Number of	Aligned 0	Aligned exactly	Aligned >1	Overall alignment
or Station	Reads	times	1 time	time	rate
Initial (L16)	32,420,679	32,383,565	16,153	20,961	0.11%
	31,858,827	31,827,593	18,704	12,530	0.10%
+P	25,734,772	25,682,548	16,632	35 <i>,</i> 592	0.20%
	30,634,245	30,596,304	18,071	19,870	0.12%
+NH4	36,319,164	36,278,491	22,331	18,342	0.11%
	32,820,933	32,779,619	21,632	19,682	0.13%
+Urea	36,497,773	36,461,668	21,926	14,179	0.10%
	28,528,820	28,500,991	17,992	9,837	0.10%
Control	33,983,026	33,952,384	20,332	10,310	0.09%
	37,595,286	37,549,421	24,755	21,110	0.12%
LET1	27,903,522	27,888,104	10,243	5,175	0.06%
	27,536,041	27,518,397	8,300	9,344	0.06%
LET2	36,997,191	36,960,342	27,142	9,707	0.10%
	29,833,053	29,811,914	14,688	6,451	0.07%
LET3	28,864,110	28,842,315	17,098	4,697	0.08%
	28,650,471	28,627,157	14,574	8,740	0.08%
LET4	35,597,296	35,553,217	40,135	3,944	0.12%
	27,014,116	26,973,973	28,119	12,024	0.15%
LET5	25,556,343	25,516,138	31,521	8,684	0.16%
	25,153,667	25,106,056	22,813	24,798	0.19%
LET6	31,451,508	31,416,940	24,518	10,050	0.11%
	33,128,987	32,222,541	875,006	31,440	2.74%
LET7	38,595,755	37,906,634	664,944	24,177	1.79%
	33,928,689	33,363,190	542,576	22,923	1.67%

40

41

Table S6 Nutrient concentrations [µM] for each treatment for the nutrient amendment experiment. Values in parentheses

42 43 44 represent the standard deviation between biological replicates (n=2). Values below detection limits are denoted with BD. For DOP, detection limit was $0.00243 \ \mu M$.

	Initial (Station L16)	Control	+P	+NH₄	+Urea
NO _x	0.21 (0.02)	0.19 (0.06)	0.23 (0.05)	0.14 (0.02)	0.16 (0.06)
NH_4	1.69 (0.02)	1.25 (0.19)	1.42 (0.40)	1.23 (0.10)	1.11 (0.10)
Urea	1.98 (0.19)	0.36 (0.09)	0.11 (0.03)	0.30 (0.14)	0.28 (0.04)
TN	45.76 (0.66)	40.07 (1.38)	38.92 (2.14)	46.38 (3.65)	42.33 (5.54)
TDN	28.64 (1.06)	19.14 (2.43)	20.98 (0.47)	21.79 (1.36)	19.13 (1.66)
DON	28.43 (1.04)	18.95 (2.44)	20.75 (0.49)	21.65 (1.35)	18.97 (1.62)
PN	17.12 (1.72)	20.94 (2.78)	17.94 (2.17)	24.59 (3.46)	23.21 (4.69)
SRP	0.28 (0.07)	0.22 (0.07)	0.25 (0.03)	0.17 (0.09)	0.19 (0.01)
ТР	3.58 (0.04)	5.17 (0.99)	4.98 (0.51)	3.56 (0.37)	5.16 (1.18)
TDP	0.49 (0.05)	0.75 (0.64)	0.30 (0.24)	0.46 (0.28)	0.38 (0.17)
DOP	0.22 (0.12)	0.57 (0.65)	BD	0.29 (0.31)	BD
PP	3.09 (0.09)	4.42 (0.78)	4.68 (0.45)	3.10 (0.37)	4.78 (1.19)

45

46 47 Table S7 The number of significantly differentially expressed genes for Microcystis within each functional category relative to the control.

Category	+P	+NH4	+Urea
Amino acid biosynthesis	6	2	4
Biosynthesis of cofactors, prosthetic groups, and carriers	6	8	7
Cell envelope	5	9	3
Cellular processes	3	6	12
Central intermediary metabolism	4	2	1
Energy metabolism	32	7	14
Fatty acid, phospholipid and sterol metabolism	8	2	2
Photosynthesis and respiration	53	42	29
Purines, pyrimidines, nucleosides, and nucleotides	12	4	3
Regulatory functions	35	12	9
DNA replication, restriction, modification, recombination, and repair	16	5	6
Transcription	6	7	6
Translation	22	38	53
Transport and binding proteins	51	18	12
Unknown	150	52	54
RNA	0	0	0
Other categories	489	179	158
Hypothetical	377	167	131

49 Supplemental Figures

Figure S1 Composite of MODIS Cyanobacterial Index images from the NOAA Experimental Lake Erie Harmful Algal Bloom
Bulletin (http://www.glerl.noaa.gov/res/Centers/HABS/lake_erie_hab/lake_erie_hab.html) for 2013. Grey indicates cloud cover
or missing data. Black represents no cyanobacteria detected. Colored pixels indicate the presence of cyanobacteria. Cooler colors
(blue and purple) indicate low concentrations and warmer colors (red, orange, and yellow) indicate high concentrations.

Figure S2 A) The number of significant differentially expressed genes for *Microcystis* at each station relative to station LET7
and B) relative to the control after 48hr. incubation. Blue denotes increases in transcript abundance and yellow denotes decrease in transcript abundance. Stations are ordered from west to east as appearing in Figure 1.

59

61 Figure S3 Heat map of genes involved in nitrogen transport and metabolism and their significant differential expression at each station relative to LET7 and under each treatment relative to the control for *Microcystis*. Values are the log₂ fold change in gene expression. Blue colors correspond to a decrease in transcript abundance while red colors correspond to an increase in transcript abundance. White denotes no difference from the reference condition.

		Log ₂ Fold Change		
-3.09		0		3.37
LET1 LET2 LET3 LET4 LET5 LET6	+P +NH4 +Urea	Gene Symbol		Product
		Gene Symbol amt1 amt1 cphB cphB cphA cynS gdhA glnA glnA glnA glnA glsF gltB gltD nadB narB natC nirA nrtA nrtA nrtB nrtC ntcA pipX speA ureE	MAE Number 25850 26840 26850 27820 40020 40010 29150 27450 27450 27460 10370 8260 9050 19270 57460 29110 7560 14900 36480 53960 300 18410 14400 14790 14780 1830 55930 46810 41100	Product amino acid ABC-transporter permease protein amino-acid ABC-transporter ATP-binding protein amino-acid ABC-transporter permease protein amino acid adenylation ammonium tranport protein ammonium/methylammonium permease cvanophycinase cvanophycinase cvanophycinase cvanophycin synthetase cvanate hydratase glutamate dehydrogenase (NADP+) glutamate-ammonia ligase glutamate-ammonia ligase glutamate-ammonia ligase nitrogen regulatory protein P-II ferredoxin-dependent glutamate synthase NADH-dependent glutamate synthase large subunit NADH-dependent glutamate synthase small subunit L-aspartate oxidase ferredoxin-nitrate reductase amino acid transport system permease protein ferredoxin-nitrite reductase ABC transporter nitrate-binding protein nitrate/nitrite transport system ATP-binding protein global nitrogen regulatory protein Ycf28 PII interaction protein X arginine decarboxylase urease accessory protein E
		ureG urtA urtC	24230 6220 6200	urease accessory protein G ABC-type urea transport system substrate-binding protein urea transport system permease protein

65

Figure S4 Heat map of genes involved in phosphorus transport and metabolism and their significant differential expression at
each station relative to LET7 and under each treatment relative to the control for *Microcystis*. Values are the log₂ fold change in
gene expression. Blue colors correspond to a decrease in transcript abundance while red colors correspond to an increase in
transcript abundance. White denotes no difference from the reference condition.

	Log ₂ Fo	ld Change		
-3.74	C)		6.87
LET1 LET2 LET3 LET4 LET6 LET6	+P +NH4 +Urea	Gene Symbol	MAE Number	Product
		ppk1 pstC pstA pstS pstB2 pstB pstA pstC pstS sphX phoX phoH phnZ phoU ppny	1300 9270 16640 18290 18310 18340 18350 18360 18370 18380 18390 30190 43330 52210 52660 53740	polyphosphate kinase phosphate transport system permease protein alkaline phosphatase phosphate transport system permease protein phosphate transport ATP-binding protein phosphate transport ATP-binding protein phosphate transport ATP-binding protein phosphate transport system permease protein phosphate ABC transporter permease phosphate-binding periplasmic protein phosphate transport system substrate-binding protein alkaline phosphatase phoH like protein metal dependent phosphohydrolase HD region phosphate transport system regulatory protein

71

Figure S5 Heat map of transposase genes and their significant differential expression at each station relative to LET7 for *Microcystis*. Values are the log_2 fold change in gene expression. Blue colors correspond to a decrease in transcript abundance while red colors correspond to an increase in transcript abundance. White denotes no difference from the reference condition.

	-2	-		
-6.5	5 0		7.25	
		<u> </u>		
MAE Number	Transposase Family		MAE Number	Transposase Family
400	ISL3		34110	
740	18605		34130	
1110	IS605		34140	
2300	IS605		36260	IS605
3050			36520	IS605
3060			37900	18605
3360	10005		30010	12002
4420	18605		38460	19605
5180	15605		40360	IS605
5590	15605		41670	IS605
5730	10000		41880	IS605
6030			42010	IS605
6490			42050	IS605
8960			42280	IS605
10020			42410	IS605
10180	18605		42420	IS605
10580	ISL3		42450	18605
10690			42460	15605
11620	151 3/204/100/1006/1165		42570	15605
11740	13605		42650	15605
11860	18605		43110	10000
13960	18605		43630	IS605
13990	IS605		44500	IS605
15350	IS605		44690	ISL3
16010	IS605		44880	IS605
16470			45270	IS605
16540	IS605		45350	101.0
17140	18605		45420	ISL3
17710	15605		49970	15605
19570	18605		50670	13003
19800	18663		50750	18605
22400	IS66		51110	IS605
22840	IS605		51830	IS605
23110	IS605		53420	IS605
23170	IS605		53530	IS605
23420	10005		53540	IS605
23510	18605		54620	IS605
26000	18605		54820	IS605
26440	15005		55310	18605
27080	IS605		55520	
27220	15110		57040	19605
27330			60050	IS605
29430	IS605		60130	IS605
29610	IS605		60150	IS605
29680			60350	ISL3
30340			60850	IS605
32230			62010	IS605
32300			62170	ISL3
32500			62630	IS605
33490			62800	18605
33620			62940	10005
00020			03090	12002

Log₂ Fold Change

Figure S6 Cyanobacterial abundance during the October transect of the western basin of Lake Erie for the three genera discussed. Stations are ordered from west to east as appearing in Figure 1.

80

Figure S7 The number of significant differentially expressed genes in *Planktothrix agaradhii* NIVA-CYA 15 relative to station
LET7 (A), relative to the control (B), and relative to the initial (C). Blue denotes an increase in transcript abundance and yellow
denotes a decrease in transcript abundance. Stations are ordered from west to east as appearing in Figure 1.

Figure S8 The number of significant differentially expressed genes in *Anabaena* sp. PCC7108 relative to station LET7 (A),
relative to the control (B), and relative to the initial (C). Blue denotes an increase in transcript abundance and yellow denotes a
decrease in transcript abundance. Stations are ordered from west to east as appearing in Figure 1.

- 90 Figure S9 Heat map of transposase genes and their significant differential expression relative to the control for Microcystis.
- 91 92 Values are the log₂ fold change in gene expression. Blue colors correspond to a decrease in transcript abundance while red colors
 - correspond to an increase in transcript abundance. White denotes no difference from the reference condition.

95 96 97 98 **Figure S10** Heat map of genes involved in DNA replication, restriction, modification, recombination, and repair and their significant differential expression at each station relative to LET7 and under each treatment relative to the control for *Microcystis*. Values are the \log_2 fold change in gene expression. Blue colors correspond to a decrease in transcript abundance while red colors correspond to an increase in transcript abundance. White denotes no difference from the reference condition.

	Log ₂ Fo	old Change	
1.0782		0	1 6716
-1.0782		0	1.0710
LET6 LET4 LET3 LET3 LET2	+P +NH4 +Urea	MAE Number	Product
		2360 2480 4450 8090 10280 13000 13870 14620 18110 19880 20800 21630 25180 28300 28520 33690 33970 38670 39060 42270 46790 52930 53850	SNF2 helicase homolog DNA replication and repair protein RecF DNA gyrase subunit A single-strand-DNA-specific exonuclease holliday junction DNA helicase RuvA putative helicase probable DNA methyltransferase DNA polymerase beta domain DNA polymerase l mutator MutT homolog transcription-repair coupling factor DNA mismatch repair protein formamidopyrimidine-DNA glycosylase DNA repair protein RecN DNA repair protein RecO putative modulator of DNA gyrase excinuclease ABC subunit A DNA polymerase III beta subunit single-stranded DNA-binding protein DNA mismatch repair protein MutL recombination protein RecR holliday junction DNA helicase RuvB chromosome partitioning protein
		56630 59890	DNA topoisomerase I DNA gyrase subunit A

99

101 102 Figure S11 Community analysis via Metaphlan displaying the average % abundance across two biological replicates for the nutrient enrichment experiments.

103

104 Figure S12 The number of significant differentially expressed transposase genes from Harke, M. J., & Gobler, C. J. (2013). Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and

104 105 106 growth on organic matter. PLoS ONE, 8(7), e69834. doi: 10.1371/journal.pone.0069834.

