Supporting Information:

Nutrient-controlled niche differentiation of western Lake Erie cyanobacterial populations revealed via metatranscriptomic surveys

Matthew J. Harke¹, Timothy W. Davis ${ }^{2}$, Susan B. Watson ${ }^{3}$, Christopher J. Gobler ${ }^{1 *}$
${ }^{1}$ Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY 11794
${ }^{2}$ NOAA Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI 48108
${ }^{3}$ Canadian Centre for Inland Waters, Environment Canada, Burlington, ON, L7R 4A6, Canada
* Corresponding author: christopher.gobler@stonybrook.edu
18 Pages
7 Supplemental Tables
12 Supplemental Figures

Supplemental Tables

A
Latitude
Longitude
Temperature $\left[{ }^{\circ} \mathrm{C}\right]$
Dissolved Oxygen $\left[\mathrm{mg} \mathrm{L}^{-1}\right]$
Secchi depth [m]
DIN $[\mu \mathrm{M}]$
SRP $[\mu \mathrm{M}]$
Microcystis [cells mL^{-1}]

Fv/Fm

in vivo chlorophyll [RFU]
Extracted chlorophyll $\left[\mu \mathrm{g} \mathrm{L}^{-1}\right]$

Phycocyanin [RFU]
Microcystin $\left[\mu \mathrm{g} \mathrm{L}{ }^{-1}\right]$
Table S1 Physical, chemical, and community characterizing parameters measured at each station during September (A) and October (B) transects of the western basin of Lake Erie (Fig 1, Fig S8). Values in parenthesis are the standard deviation between two biological replicates. Values below detection limits are denoted with BD. For SRP, detection limit was $0.00254 \mu \mathrm{M}$.

A	9/12/2013					
	L1	L15	L16	L17	L18	L19
Latitude	41.705450	41.725032	41.710016	41.677711	41.692743	41.672816
Longitude	-83.446490	-83.406564	-83.297111	-83.235626	-83.007609	-82.897967
Temperature [${ }^{\circ} \mathrm{C}$]	23.4	23.6	23.1	23	23.2	23.3
Dissolved Oxygen [$\mathrm{mg} \mathrm{L}^{-1}$]	5.19	6.87	6.62	6.86	7.60	7.17
Secchi depth [m]	0.4	0.4	0.5	0.6	1.7	1.9
DIN $[\mu \mathrm{M}]$	$\begin{aligned} & 27.33 \\ & (0.85) \end{aligned}$	$\begin{aligned} & 10.83 \\ & (0.47) \end{aligned}$	$\begin{gathered} 1.90 \\ (0.04) \end{gathered}$	$\begin{gathered} 1.63 \\ (0.02) \end{gathered}$	$\begin{gathered} 8.83 \\ (0.25) \end{gathered}$	$\begin{gathered} 4.68 \\ (0.27) \end{gathered}$
SRP $[\mu \mathrm{M}]$	1.11 (0.02)	0.44 (0.06)	0.28 (0.07)	0.24 (0.03)	BD	0.20 (0.07)
Microcystis [cells mL^{-1}]	$\begin{aligned} & 29,967 \\ & (6,643) \end{aligned}$	$\begin{aligned} & 51,633 \\ & (7,683) \end{aligned}$	$\begin{aligned} & 51,317 \\ & (5,921) \end{aligned}$	$\begin{gathered} 51,450 \\ (10,765) \end{gathered}$	$\begin{aligned} & 29,433 \\ & (8,171) \end{aligned}$	$\begin{aligned} & 15,900 \\ & (3,518) \end{aligned}$
Fv/Fm	0.30 (0.05)	0.31 (0.04)	0.27 (0.02)	0.35 (0.06)	0.46 (0.01)	0.45 (0.01)
in vivo chlorophyll [RFU]	0.87 (0.07)	1.02 (0.05)	0.77 (0.05)	0.76 (0..08)	0.43 (0.03)	0.32 (0.04)
Extracted chlorophyll [$\mu \mathrm{g} \mathrm{L}^{-1}$]	$\begin{aligned} & 20.01 \\ & (5.51) \end{aligned}$	$\begin{aligned} & 36.45 \\ & (3.01) \end{aligned}$	$\begin{aligned} & 21.86 \\ & (1.36) \end{aligned}$	$\begin{aligned} & 23.04 \\ & (9.52) \end{aligned}$	$\begin{aligned} & 10.32 \\ & (0.40) \end{aligned}$	$\begin{gathered} 8.86 \\ (0.49) \end{gathered}$
APA [$\mathrm{nmol} \mathrm{mL}^{-1} \mathrm{hr}^{-1}$]	0.22 (0.01)	0.28 (0.00)	0.32 (0.01)	0.37 (0.01)	0.81 (0.01)	0.54 (0.01)
Fluoroprobe Bluegreen [$\mu \mathrm{g} \mathrm{L}{ }^{-1}$]	$\begin{aligned} & 21.08 \\ & (2.10) \end{aligned}$	$\begin{aligned} & 34.88 \\ & (6.12) \end{aligned}$	$\begin{aligned} & 22.79 \\ & (0.66) \end{aligned}$	$\begin{aligned} & 23.86 \\ & (1.08) \end{aligned}$	$\begin{aligned} & 14.99 \\ & (0.73) \end{aligned}$	8.22 (0.51)
Phycocyanin [RFU]	$\begin{aligned} & 17.20 \\ & (1.47) \end{aligned}$	$\begin{aligned} & 26.97 \\ & (5.34) \end{aligned}$	$\begin{aligned} & 20.83 \\ & (1.82) \end{aligned}$	$\begin{aligned} & 18.53 \\ & (0.51) \end{aligned}$	$\begin{aligned} & 15.03 \\ & (2.89) \end{aligned}$	$\begin{aligned} & 10.77 \\ & (0.46) \end{aligned}$
Microcystin $\left[\mu \mathrm{g} \mathrm{L}{ }^{-1}\right]$	2.31 (0.76)	6.95 (0.19)	3.87 (0.40)	8.17 (0.69)	0.33 (0.08)	0.82 (0.07)

B	10/8/2013						
	LET7	LET6	LET5	LET4	LET3	LET2	LET1
Latitude	41.698889	41.739444	41.766667	41.725556	41.702778	41.670833	41.722778
Longitude	-83.458889	-83.375000	-83.308611	-83.110556	-83.000556	-82.849722	-82.751389
Temperature [${ }^{\circ} \mathrm{C}$]	19.8	17.6	18.3	18.8	18.6	18.9	19.4
Dissolved Oxygen [$\mathrm{mg} \mathrm{L}^{-1}$]	10.01	8.41	6.27	6.65	6.27	6.06	6.58
Secchi depth [m]	NA	0.75	1.1	1.8	2.8	1.8	1.2
DIN $[\mu \mathrm{M}]$	$\begin{aligned} & 50.14 \\ & (1.71) \end{aligned}$	$\begin{gathered} 5.76 \\ (0.08) \end{gathered}$	$\begin{gathered} 1.35 \\ (0.01) \end{gathered}$	$\begin{gathered} 6.54 \\ (0.79) \end{gathered}$	$\begin{aligned} & 14.74 \\ & (0.70) \end{aligned}$	$\begin{gathered} 1.76 \\ (0.22 \end{gathered}$	$\begin{gathered} 3.14 \\ (0.06) \end{gathered}$
SRP $[\mu \mathrm{M}]$	1.61 (0.16)	0.19 (0.02)	0.06 (0.01)	BD	0.05 (0.01)	0.07 (0.00)	0.25 (0.01)
Microcystis bioamass [$\mu \mathrm{g} \mathrm{L}{ }^{-1}$]	147	10,812	6,480	1,605	4,139	2,089	3,561
Extracted chlorophyll [$\mu \mathrm{g} \mathrm{L}^{-1}$]	$\begin{aligned} & 26.88 \\ & (0.86) \end{aligned}$	$\begin{aligned} & 24.99 \\ & (1.95) \end{aligned}$	$\begin{gathered} 6.85 \\ (0.55) \end{gathered}$	$\begin{gathered} 4.59 \\ (0.58) \end{gathered}$	$\begin{gathered} 3.43 \\ (0.23) \end{gathered}$	$\begin{gathered} 5.26 \\ (0.36) \end{gathered}$	$\begin{gathered} 6.97 \\ (0.21) \end{gathered}$
Microcystin $\left[\mu \mathrm{g} \mathrm{L}{ }^{-1}\right]$	0.90 (0.21)	1.51 (0.24)	0.91 (0.26)	0.74 (0.19)	0.92 (0.09)	0.78 (0.15)	0.63 (0.24)

21

22

Table S2 Nutrient concentrations $[\mu \mathrm{M}]$ for each station of the September and October transects of the western basin of Lake Erie. Stations are ordered from west to east as in Figure 1. Values below detection limits are indicated with BD. Detection limits were $0.00697 \mu \mathrm{M}$ for urea, $0.00254 \mu \mathrm{M}$ DIP, and $0.00243 \mu \mathrm{M}$ for DOP. Values represent the average of duplicate samples with standard deviations in parenthesis.

	9/12/2013						10/8/2013						
	L1	L15	L16	L17	L18	L19	LET7	LET6	LET5	LET4	LET3	LET2	LET1
NO_{x}	$\begin{aligned} & 24.69 \\ & (0.81) \end{aligned}$	$\begin{gathered} 9.53 \\ (0.42) \end{gathered}$	$\begin{gathered} 0.21 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.11 \\ (0.01) \end{gathered}$	$\begin{gathered} 7.11 \\ (0.27) \end{gathered}$	$\begin{gathered} 3.08 \\ (0.24) \end{gathered}$	$\begin{aligned} & 40.70 \\ & (1.29) \end{aligned}$	$\begin{gathered} 4.91 \\ (0.08) \end{gathered}$	$\begin{gathered} 0.38 \\ (0.01) \end{gathered}$	$\begin{gathered} 5.48 \\ (0.12) \end{gathered}$	$\begin{aligned} & 12.50 \\ & (0.12) \end{aligned}$	$\begin{gathered} 0.28 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.84 \\ (0.01) \end{gathered}$
NH_{4}	$\begin{gathered} 2.64 \\ (0.04) \end{gathered}$	$\begin{gathered} 1.29 \\ (0.05) \end{gathered}$	$\begin{gathered} 1.69 \\ (0.02) \end{gathered}$	$\begin{gathered} 1.52 \\ (0.01) \end{gathered}$	$\begin{gathered} 1.72 \\ (0.03) \end{gathered}$	$\begin{gathered} 1.60 \\ (0.04) \end{gathered}$	$\begin{gathered} 9.44 \\ (0.42) \end{gathered}$	$\begin{gathered} 0.85 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.97 \\ (0.03) \end{gathered}$	$\begin{gathered} 1.06 \\ (0.08) \end{gathered}$	$\begin{gathered} 2.25 \\ (0.82) \end{gathered}$	$\begin{gathered} 1.48 \\ (0.24) \end{gathered}$	$\begin{gathered} 2.30 \\ (0.07) \end{gathered}$
Urea	$\begin{gathered} 1.60 \\ (0.03) \end{gathered}$	$\begin{gathered} 0.62 \\ (0.01) \end{gathered}$	$\begin{gathered} 1.98 \\ (0.19) \end{gathered}$	$\begin{gathered} 0.18 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.20 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.01) \end{gathered}$	$\begin{gathered} 3.61 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.21 \\ (0.01) \end{gathered}$	BD	$\begin{gathered} 1.27 \\ (0.01) \end{gathered}$	$\begin{gathered} 4.53 \\ (0.26) \end{gathered}$	BD	$\begin{gathered} 0.46 \\ (0.09) \end{gathered}$
TN	$\begin{aligned} & 53.79 \\ & (4.58) \end{aligned}$	$\begin{aligned} & 46.83 \\ & (0.44) \end{aligned}$	$\begin{aligned} & 45.76 \\ & (0.66) \end{aligned}$	$\begin{aligned} & 42.57 \\ & (0.95) \end{aligned}$	$\begin{aligned} & 36.47 \\ & (0.23) \end{aligned}$	$\begin{aligned} & 25.10 \\ & (1.83) \end{aligned}$	$\begin{aligned} & 60.88 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 52.37 \\ & (4.92) \end{aligned}$	$\begin{aligned} & 27.80 \\ & (0.46) \end{aligned}$	$\begin{aligned} & 48.44 \\ & (0.54) \end{aligned}$	$\begin{aligned} & 39.18 \\ & (0.01) \end{aligned}$	$\begin{aligned} & 23.57 \\ & (0.36) \end{aligned}$	$\begin{aligned} & 23.99 \\ & (1.78) \end{aligned}$
TDN	$\begin{aligned} & 44.61 \\ & (4.26) \end{aligned}$	$\begin{aligned} & 31.39 \\ & (0.19) \end{aligned}$	$\begin{aligned} & 28.64 \\ & (1.06) \end{aligned}$	$\begin{aligned} & 20.02 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 17.72 \\ & (0.39) \end{aligned}$	$\begin{aligned} & 11.17 \\ & (0.14) \end{aligned}$	$\begin{aligned} & 32.52 \\ & (1.99) \end{aligned}$	$\begin{aligned} & 34.44 \\ & (0.93) \end{aligned}$	$\begin{aligned} & 13.33 \\ & (0.99) \end{aligned}$	$\begin{aligned} & 16.31 \\ & (0.06) \end{aligned}$	$\begin{aligned} & 29.64 \\ & (0.36) \end{aligned}$	$\begin{aligned} & 10.87 \\ & (0.68) \end{aligned}$	$\begin{aligned} & 16.32 \\ & (1.05) \end{aligned}$
DON	$\begin{aligned} & 19.92 \\ & (5.07) \end{aligned}$	$\begin{aligned} & 21.86 \\ & (0.23) \end{aligned}$	$\begin{aligned} & 28.43 \\ & (1.04) \end{aligned}$	$\begin{aligned} & 19.91 \\ & (0.21) \end{aligned}$	$\begin{aligned} & 10.61 \\ & (0.12) \end{aligned}$	$\begin{gathered} 8.09 \\ (0.37) \end{gathered}$	BD	$\begin{aligned} & 29.53 \\ & (0.84) \end{aligned}$	$\begin{aligned} & 12.94 \\ & (1.00) \end{aligned}$	$\begin{aligned} & 10.83 \\ & (0.93) \end{aligned}$	$\begin{aligned} & 17.15 \\ & (0.23) \end{aligned}$	$\begin{aligned} & 10.59 \\ & (0.66) \end{aligned}$	$\begin{aligned} & 15.48 \\ & (1.05) \end{aligned}$
PN	$\begin{gathered} 9.18 \\ (0.32) \end{gathered}$	$\begin{aligned} & 15.44 \\ & (0.25) \end{aligned}$	$\begin{aligned} & 17.12 \\ & (1.72) \end{aligned}$	$\begin{aligned} & 22.55 \\ & (1.15) \end{aligned}$	$\begin{aligned} & 18.75 \\ & (0.16) \end{aligned}$	$\begin{aligned} & 13.93 \\ & (1.96) \end{aligned}$	$\begin{aligned} & 28.36 \\ & (1.86) \end{aligned}$	$\begin{aligned} & 17.93 \\ & (5.84) \end{aligned}$	$\begin{aligned} & 14.48 \\ & (0.53) \end{aligned}$	$\begin{aligned} & 32.13 \\ & (0.60) \end{aligned}$	$\begin{gathered} 9.54 \\ (0.34) \end{gathered}$	$\begin{aligned} & 12.70 \\ & (1.04) \end{aligned}$	$\begin{gathered} 7.68 \\ (2.84) \end{gathered}$
SRP	$\begin{gathered} 1.11 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.44 \\ (0.06) \end{gathered}$	$\begin{gathered} 0.28 \\ (0.07) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.03) \end{gathered}$	BD	$\begin{gathered} 0.20 \\ (0.07) \end{gathered}$	$\begin{gathered} 1.61 \\ (0.16) \end{gathered}$	$\begin{gathered} 0.19 \\ (0.02) \end{gathered}$	$\begin{gathered} 0.06 \\ (0.01) \end{gathered}$	BD	$\begin{gathered} 0.05 \\ (0.01) \end{gathered}$	$\begin{gathered} 0.07 \\ (0.00) \end{gathered}$	$\begin{gathered} 0.25 \\ (0.01) \end{gathered}$
TP	$\begin{gathered} 6.22 \\ (0.06) \end{gathered}$	$\begin{gathered} 6.47 \\ (0.21) \end{gathered}$	$\begin{gathered} 3.58 \\ (0.04) \end{gathered}$	$\begin{gathered} 4.60 \\ (0.15) \end{gathered}$	$\begin{gathered} 1.54 \\ (0.19) \end{gathered}$	$\begin{gathered} 1.27 \\ (0.06) \end{gathered}$	$\begin{aligned} & 10.11 \\ & (0.32) \end{aligned}$	$\begin{gathered} 4.44 \\ (0.22) \end{gathered}$	$\begin{gathered} 1.85 \\ (0.08) \end{gathered}$	$\begin{gathered} 2.34 \\ (0.59) \end{gathered}$	$\begin{gathered} 2.10 \\ (0.05) \end{gathered}$	$\begin{gathered} 1.98 \\ (0.07) \end{gathered}$	$\begin{gathered} 3.43 \\ (0.12) \end{gathered}$
TDP	$\begin{gathered} 0.65 \\ (0.03) \end{gathered}$	$\begin{gathered} 1.28 \\ (0.63) \end{gathered}$	$\begin{gathered} 0.49 \\ (0.05) \end{gathered}$	$\begin{gathered} 0.26 \\ (0.03) \end{gathered}$	$\begin{gathered} 0.24 \\ (0.09) \end{gathered}$	$\begin{gathered} 0.17 \\ (0.05) \end{gathered}$	$\begin{gathered} 1.72 \\ (0.22) \end{gathered}$	$\begin{gathered} 1.19 \\ (0.28) \end{gathered}$	$\begin{gathered} 0.41 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.53 \\ (0.37) \end{gathered}$	$\begin{gathered} 0.98 \\ (0.23) \end{gathered}$	$\begin{gathered} 0.52 \\ (0.08) \end{gathered}$	$\begin{gathered} 0.33 \\ (0.09) \end{gathered}$
DOP	BD	$\begin{gathered} 0.84 \\ (0.57) \end{gathered}$	$\begin{gathered} 0.22 \\ (0.12) \end{gathered}$	$\begin{gathered} 0.03 \\ (0.06) \end{gathered}$	$\begin{gathered} 0.27 \\ (0.12) \end{gathered}$	BD	$\begin{gathered} 0.11 \\ (0.37) \end{gathered}$	$\begin{gathered} 1.00 \\ (0.29) \end{gathered}$	$\begin{gathered} 0.34 \\ (0.04) \end{gathered}$	$\begin{gathered} 0.53 \\ (0.37) \end{gathered}$	$\begin{gathered} 0.94 \\ (0.23) \end{gathered}$	$\begin{gathered} 0.45 \\ (0.08) \end{gathered}$	$\begin{gathered} 0.08 \\ (0.10) \end{gathered}$
PP	$\begin{gathered} 5.57 \\ (0.03) \end{gathered}$	$\begin{gathered} 5.19 \\ (0.84) \end{gathered}$	$\begin{gathered} 3.09 \\ (0.09) \end{gathered}$	$\begin{gathered} 4.33 \\ (0.13) \end{gathered}$	$\begin{gathered} 1.29 \\ (.010) \end{gathered}$	$\begin{gathered} 1.10 \\ (0.01) \end{gathered}$	$\begin{gathered} 8.39 \\ (0.54) \end{gathered}$	$\begin{gathered} 3.25 \\ (0.50) \end{gathered}$	$\begin{gathered} 1.44 \\ (0.11) \end{gathered}$	$\begin{gathered} 1.81 \\ (0.96) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.28) \end{gathered}$	$\begin{gathered} 1.47 \\ (0.01) \end{gathered}$	$\begin{gathered} 3.09 \\ (0.21) \end{gathered}$

Station or					
Treatment	Number of reads	Aligned 0 times	Aligned exactly $\mathbf{1}$ time	Aligned $>\mathbf{1}$ time	Overall alignment rate
LET1	$27,903,522$	$24,945,541$	$1,659,152$	$1,298,829$	10.60%
	$27,536,041$	$24,284,725$	$1,444,752$	$1,806,564$	11.81%
LET2	$36,997,191$	$26,746,690$	$4,204,127$	$6,046,374$	27.71%
	$29,833,053$	$22,659,861$	$2,156,750$	$5,016,442$	24.04%
LET3	$28,864,110$	$23,924,801$	$2,316,711$	$2,622,598$	17.11%
	$28,650,471$	$23,552,927$	$2,043,243$	$3,054,301$	17.79%
LET4	$35,597,296$	$21,792,004$	$4,869,108$	$8,936,184$	38.78%
	$27,014,116$	$19,210,720$	$3,625,526$	$4,177,870$	28.89%
LET5	$25,556,343$	$17,968,910$	$4,150,242$	$3,437,191$	29.69%
	$25,153,667$	$18,465,371$	$3,093,990$	$3,594,306$	26.59%
LET6	$31,451,508$	$20,254,955$	$4,011,289$	$7,185,264$	35.60%
	$33,128,987$	$32,764,260$	191,220	173,507	1.10%
LET7	$38,595,755$	$37,911,204$	156,426	528,125	1.77%
	$33,928,689$	$32,938,676$	113,686	876,327	2.92%
+P	$25,734,772$	$21,133,075$	$3,170,522$	$1,431,175$	17.88%
	$30,634,245$	$24,635,004$	$3,748,488$	$2,250,753$	19.58%
+NH4	$36,319,164$	$29,604,594$	$4,557,190$	$2,157,380$	18.49%
	$32,820,933$	$26,160,377$	$4,705,489$	$1,955,067$	20.29%
+Urea	$36,497,773$	$28,856,115$	$4,602,858$	$3,038,800$	20.94%
Control	$28,528,820$	$22,765,343$	$3,605,361$	$2,158,116$	20.20%
	$33,983,026$	$27,619,927$	$4,156,741$	$2,206,358$	18.72%
Initial	$37,595,286$	$30,176,832$	$4,697,085$	$2,721,369$	19.73%
	$32,420,679$	$25,081,626$	$4,671,776$	$2,667,277$	22.67%
	$32,000,000$	$24,144,624$	$5,275,028$	$2,580,348$	24.55%

Station or

LET1

LET2

LET3

LET4

LET5

LET6

LET7
$+P$
$+\mathrm{NH} 4$
+Urea

Initial

Table S3 Transcriptomic sequencing results. Alignment results are the number of reads aligning to the Microcystis aeruginosa NIES-843 genome using Bowtie2 within RSEM. Each station or treatment has two biological replicates.

Table S4 Transcriptomic sequencing results. Alignment results are the number of reads aligning to the Anabaena sp. PCC7108 genome using Bowtie 2 within RSEM. Each station or treatment has two biological replicates.

Treatment or Station	Number of Reads	Aligned $\mathbf{0}$ times	Aligned exactly $\mathbf{1}$ time	Aligned $>\mathbf{1}$ time	Overall alignment rate
Initial (L16)	$32,420,679$	$32,301,184$	47,013	72,482	0.37%
	$31,858,827$	$31,722,341$	60,070	76,416	0.43%
+P	$25,734,772$	$25,686,336$	8,500	39,936	0.19%
	$30,634,245$	$30,595,894$	10,372	27,979	0.13%
+NH4	$36,319,164$	$36,281,206$	11,106	26,852	0.10%
	$32,820,933$	$32,768,476$	19,206	33,251	0.16%
+Urea	$36,497,773$	$36,461,942$	11,309	24,522	0.10%
	$28,528,820$	$28,503,313$	9,030	16,477	0.09%
Control	$33,983,026$	$33,948,716$	13,789	20,521	0.10%
	$37,595,286$	$37,547,609$	14,757	32,920	0.13%
LET1	$27,903,522$	$27,886,920$	5,456	11,146	0.06%
	$27,536,041$	$27,512,968$	7,029	16,044	0.08%
LET2	$36,997,191$	$36,979,812$	3,135	14,244	0.05%
	$29,833,053$	$29,819,785$	2,927	10,341	0.04%
LET3	$28,864,110$	$28,855,616$	819	7,675	0.03%
	$28,650,471$	$28,637,702$	912	11,857	0.04%
LET4	$35,597,296$	$35,588,672$	1,235	7,389	0.02%
	$27,014,116$	$26,996,707$	1,388	16,021	0.06%
LET5	$25,556,343$	$25,544,824$	1,902	9,617	0.05%
	$25,153,667$	$25,124,403$	2,410	26,854	0.12%
LET6	$31,451,508$	$31,439,930$	1,088	10,490	0.04%
	$33,128,987$	$32,941,384$	122,110	65,493	0.57%
LET7	$38,595,755$	$38,438,228$	105,090	52,437	0.41%
	$33,928,689$	$33,756,246$	116,697	55,746	0.51%

Treatment or Station	Number of Reads	Aligned 0 times	Aligned exactly 1 time	Aligned >1 time	Overall alignment rate
Initial (L16)	$32,420,679$	$32,383,565$	16,153	20,961	0.11%
	$31,858,827$	$31,827,593$	18,704	12,530	0.10%
+P	$25,734,772$	$25,682,548$	16,632	35,592	0.20%
	$30,634,245$	$30,596,304$	18,071	19,870	0.12%
+NH4	$36,319,164$	$36,278,491$	22,331	18,342	0.11%
	$32,820,933$	$32,779,619$	21,632	19,682	0.13%
+Urea	$36,497,773$	$36,461,668$	21,926	14,179	0.10%
	$28,528,820$	$28,500,991$	17,992	9,837	0.10%
Control	$33,983,026$	$33,952,384$	20,332	10,310	0.09%
	$37,595,286$	$37,549,421$	24,755	21,110	0.12%
LET1	$27,903,522$	$27,888,104$	10,243	5,175	0.06%
	$27,536,041$	$27,518,397$	8,300	9,344	0.06%
LET2	$36,997,191$	$36,960,342$	27,142	9,707	0.10%
	$29,833,053$	$29,811,914$	14,688	6,451	0.07%
LET3	$28,864,110$	$28,842,315$	17,098	4,697	0.08%
	$28,650,471$	$28,627,157$	14,574	8,740	0.08%
LET4	$35,597,296$	$35,553,217$	40,135	3,944	0.12%
	$27,014,116$	$26,973,973$	28,119	12,024	0.15%
LET5	$25,556,343$	$25,516,138$	31,521	8,684	0.16%
	$25,153,667$	$25,106,056$	22,813	24,798	0.19%
LET6	$31,451,508$	$31,416,940$	24,518	10,050	0.11%
	$33,128,987$	$32,222,541$	875,006	31,440	2.74%
LET7	$38,595,755$	$37,906,634$	664,944	24,177	1.79%
	$33,928,689$	$33,363,190$	542,576	22,923	1.67%

Table S5 Transcriptomic sequencing results. Alignment results are the number of reads aligning to the Planktothrix agardhii NIVA-CYA 15 genome using Bowtie2 within RSEM. Each station or treatment has two biological replicates.

	Initial (Station L16)	Control	$+\mathbf{P}$	$+\mathbf{N H}_{4}$	+Urea
	$0.21(0.02)$	$0.19(0.06)$	$0.23(0.05)$	$0.14(0.02)$	$0.16(0.06)$
NO_{x}	$1.69(0.02)$	$1.25(0.19)$	$1.42(0.40)$	$1.23(0.10)$	$1.11(0.10)$
NH_{4}	$1.98(0.19)$	$0.36(0.09)$	$0.11(0.03)$	$0.30(0.14)$	$0.28(0.04)$
Urea	$45.76(0.66)$	$40.07(1.38)$	$38.92(2.14)$	$46.38(3.65)$	$42.33(5.54)$
TN	$28.64(1.06)$	$19.14(2.43)$	$20.98(0.47)$	$21.79(1.36)$	$19.13(1.66)$
TDN	$28.43(1.04)$	$18.95(2.44)$	$20.75(0.49)$	$21.65(1.35)$	$18.97(1.62)$
DON	$17.12(1.72)$	$20.94(2.78)$	$17.94(2.17)$	$24.59(3.46)$	$23.21(4.69)$
PN	$0.28(0.07)$	$0.22(0.07)$	$0.25(0.03)$	$0.17(0.09)$	$0.19(0.01)$
SRP	$3.58(0.04)$	$5.17(0.99)$	$4.98(0.51)$	$3.56(0.37)$	$5.16(1.18)$
TP	$0.49(0.05)$	$0.75(0.64)$	$0.30(0.24)$	$0.46(0.28)$	$0.38(0.17)$
TDP	$0.22(0.12)$	$0.57(0.65)$	$B D$	$0.29(0.31)$	BD
DOP	$3.09(0.09)$	$4.42(0.78)$	$4.68(0.45)$	$3.10(0.37)$	$4.78(1.19)$
PP					

Table S6 Nutrient concentrations $[\mu \mathrm{M}]$ for each treatment for the nutrient amendment experiment. Values in parentheses represent the standard deviation between biological replicates $(\mathrm{n}=2)$. Values below detection limits are denoted with BD. For DOP, detection limit was $0.00243 \mu \mathrm{M}$.

Category	+P	+NH4	+Urea
Amino acid biosynthesis	6	2	4
Biosynthesis of cofactors, prosthetic groups, and carriers	6	8	7
Cell envelope	5	9	3
Cellular processes	3	6	12
Central intermediary metabolism	4	2	1
Energy metabolism	32	7	14
Fatty acid, phospholipid and sterol metabolism	8	2	2
Photosynthesis and respiration	53	42	29
Purines, pyrimidines, nucleosides, and nucleotides	12	4	3
Regulatory functions	35	12	9
DNA replication, restriction, modification, recombination, and repair	16	5	6
Transcription	6	7	6
Translation	22	38	53
Transport and binding proteins	51	18	12
Unknown	150	52	54
RNA	0	0	0
Other categories	489	179	158
Hypothetical	377	167	131

Supplemental Figures

Figure S1 Composite of MODIS Cyanobacterial Index images from the NOAA Experimental Lake Erie Harmful Algal Bloom Bulletin (http://www.glerl.noaa.gov/res/Centers/HABS/lake_erie_hab/lake_erie_hab.html) for 2013. Grey indicates cloud cover or missing data. Black represents no cyanobacteria detected. Colored pixels indicate the presence of cyanobacteria. Cooler colors (blue and purple) indicate low concentrations and warmer colors (red, orange, and yellow) indicate high concentrations.

56 57

Figure S2 A) The number of significant differentially expressed genes for Microcystis at each station relative to station LET7 and B) relative to the control after 48 hr . incubation. Blue denotes increases in transcript abundance and yellow denotes decrease in transcript abundance. Stations are ordered from west to east as appearing in Figure 1.

Figure S3 Heat map of genes involved in nitrogen transport and metabolism and their significant differential expression at each station relative to LET7 and under each treatment relative to the control for Microcystis. Values are the $\log _{2}$ fold change in gene expression. Blue colors correspond to a decrease in transcript abundance while red colors correspond to an increase in transcript abundance. White denotes no difference from the reference condition.

Log 2 Fold Change			
-3.09	0		

Gene Symbol	MAE Number	Product
	25850	amino acid ABC -transporter permease protein
	26840	amino-acid ABC-transporter ATP-binding protein
	26850	amino-acid ABC-transporter permease protein
	27820	amino acid adenvlation
amt1	40020	ammonium tranport protein
amt1	40010	ammonium/methylammonium permease
cphB	29150	cvanophycinase
cphB	27450	cyanophycinase
cphA	27460	cvanophycin svnthetase
cyns	10370	cvanate hydratase
adhA	8260	glutamate dehvdrogenase (NADP+)
glnA	9050	glutamate-ammonia ligase
9 ln A	19270	glutamate-ammonia ligase
alnB	57460	nitrogen regulatory protein P-II
glsF	29110	ferredoxin-dependent glutamate synthase
altB	7560	NADH-dependent glutamate synthase large subunit
altD	14900	NADH-dependent glutamate synthase small subunit
nadB	36480	L-aspartate oxidase
narB	53960	ferredoxin-nitrate reductase
natC	300	amino acid transport system permease protein
nirA	18410	ferredoxin-nitrite reductase
nrtA	14800	ABC transporter nitrate-binding protein
nrtB	14790	nitrate/nitrite transport svstem permease protein
nitC	14780	nitrate/nitrite transport svstem ATP-bindina protein
$n t c A$	1830	global nitrogen requlatory protein Ycf28
pipX	55930	Pll interaction protein X
speA	46810	arginine decarboxvlase
ureE	41100	urease accessory protein E
ureG	24230	urease accessory protein G
urtA	6220	ABC-type urea transport system substrate-binding protein
urtC	6200	urea transport system permease protein

Figure S4 Heat map of genes involved in phosphorus transport and metabolism and their significant differential expression at each station relative to LET7 and under each treatment relative to the control for Microcystis. Values are the $\log _{2}$ fold change in gene expression. Blue colors correspond to a decrease in transcript abundance while red colors correspond to an increase in transcript abundance. White denotes no difference from the reference condition.

Log $_{2}$ Fold Change					
-3.74			0		6.87
			Gene Symbol	MAE Number	Product
			ppk1	1300	polyphosphate kinase
			pstC	9270	phosphate transport system permease protein
				16640	alkaline phosphatase
			pstA	18290	phosphate transport system permease protein
			pstS	18310	phosphate-binding periplasmic protein
			pstB2	18340	phosphate transport ATP-binding protein
			pstB	18350	phosphate transport ATP-binding protein
			pstA	18360	phosphate transport system permease protein
			pstC	18370	phosphate ABC transporter permease
			pstS	18380	phosphate-binding periplasmic protein
			sphX	18390	phosphate transport svstem substrate-binding protein
			phoX	30190	alkaline phosphatase
			phoH	43330	phoH like protein
			phnZ	52210	metal dependent phosphohydrolase HD region
			phoU	52660	phosphate transport system requlatory protein
			ppx	53740	exopolyphosphatase

Figure S5 Heat map of transposase genes and their significant differential expression at each station relative to LET7 for Microcystis．Values are the $\log _{2}$ fold change in gene expression．Blue colors correspond to a decrease in transcript abundance while red colors correspond to an increase in transcript abundance．White denotes no difference from the reference condition．

MAE Number Transposase Family

山山山山
MAE Number Transposase Family

\square		\square
	34110	
34130		

IS605
IS605
IS605

IS605
IS605
IS605

ISL3

ISL3／204／100／1096／1165
IS605
IS605
IS605
IS605
IS605
IS605
IS605
｜S605
IS605
IS605
IS66
IS605
IS605
IS605
IS605
IS605
IS605
｜SL3／204／100／1096／1165
IS605
IS110
IS605
IS605

36260			
36520			

IS605
IS605
IS605
IS605

S605
S605

$$
\begin{aligned}
& \text { IS605 } \\
& \text { IS605 }
\end{aligned}
$$

IS605

IS605

IS605
S605

IS605

S605

IS605

$+1$

ISL3
ISL3
｜S605
ISL3
IS605
is605

IS605

IS605
IS605
IS605

IS605

IS605
IS605
IS605
IS605
IS605

IS605

IS605
IS605
ISL3
IS605
IS605
ISL3
IS605
IS605
IS605

78 79

Figure S6 Cyanobacterial abundance during the October transect of the western basin of Lake Erie for the three genera discussed. Stations are ordered from west to east as appearing in Figure 1.

80

81

Figure S7 The number of significant differentially expressed genes in Planktothrix agaradhii NIVA-CYA 15 relative to station LET7 (A), relative to the control (B), and relative to the initial (C). Blue denotes an increase in transcript abundance and yellow denotes a decrease in transcript abundance. Stations are ordered from west to east as appearing in Figure 1.

86 87

Figure S8 The number of significant differentially expressed genes in Anabaena sp. PCC7108 relative to station LET7 (A), relative to the control (B), and relative to the initial (C). Blue denotes an increase in transcript abundance and yellow denotes a decrease in transcript abundance. Stations are ordered from west to east as appearing in Figure 1.

Figure S9 Heat map of transposase genes and their significant differential expression relative to the control for Microcystis. Values are the $\log _{2}$ fold change in gene expression. Blue colors correspond to a decrease in transcript abundance while red colors correspond to an increase in transcript abundance. White denotes no difference from the reference condition.

Figure S10 Heat map of genes involved in DNA replication, restriction, modification, recombination, and repair and their significant differential expression at each station relative to LET7 and under each treatment relative to the control for Microcystis. Values are the $\log _{2}$ fold change in gene expression. Blue colors correspond to a decrease in transcript abundance while red colors correspond to an increase in transcript abundance. White denotes no difference from the reference condition.

$\log _{2}$ Fold Change

-1.0782	0	1.6716

MAE Number
Product
2360
2480
4450
8090
10280
13000
13870
14620
18110
19880
20800
21630
25180
28300
28520
33690
33970
38670
39060
42270
46790
52930
53850
56630
59890

SNF2 helicase homolog DNA replication and repair protein RecF DNA gvrase subunit A sinale-strand-DNA-specific exonuclease hollidav iunction DNA helicase RuvA putative helicase probable DNA methyltransferase DNA polymerase beta domain DNA polymerase I mutator MutT homolog transcription-repair coupling factor DNA mismatch repair protein formamidopyrimidine-DNA alycosylase DNA repair protein RecN DNA repair protein RecO putative modulator of DNA avrase excinuclease $A B C$ subunit A DNA polymerase III beta subunit single-stranded DNA-bindina protein DNA mismatch repair protein MutL recombination protein RecR hollidav iunction DNA helicase RuvB chromosome partitioning protein DNA topoisomerase I DNA gyrase subunit A

Figure S12 The number of significant differentially expressed transposase genes from Harke, M. J., \& Gobler, C. J. (2013). Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLoS ONE, 8(7), e69834. doi: 10.1371/journal.pone. 0069834.
\square Increase \square Decrease

Figure S11 Community analysis via Metaphlan displaying the average \% abundance across two biological replicates for the nutrient enrichment experiments.

