
Groovy Cheminformatics
with the Chemistry Development Kit

Ed. 1.4.1-0

Egon L. Willighagen PhD
Long time CDK developer

i

c© E.L. Willighagen 2011

All rights reserved. This book is protected by copyright. No part of this
book may be reproduced in any form or by any means, including photo-
copying, or utilized by any information storage and retrieval system without
written permission from the copyright owner.

Neither the publisher nor the authors are responsible (as a matter of prod-
uct liability, negligence, or otherwise) for any injury resulting from any
material contained herein.

Further information: http://chem-bla-ics.blogspot.com
E.L. Willighagen <egon.willighagen+cdkbook@gmail.com>

ii

Preface

This book is written to help people start developing cheminformatics soft-
ware using the Chemistry Development Kit, also known as the CDK. But
unlike past CDK documentation, I wanted to do something new. This book
is that something new.
The book you now have in your hands is written for CDK 1.4.1. That
means that all code snippets are compiled and tested against this particular
version. That does not mean the scripts are useless for other CDK version.
In fact, the CDK API does not change that often, and it is likely that most
of these scripts work out of the box with other versions too, or at least from
the same series. API changes do happen, of course, and the book has a
chapter on migrating code from older CDK versions to the current version.
But, the importance of all this is that all code compiles against this par-
ticular CDK version. It also means that all output shown in this book is
actually automatically generated with the code shown. This is because each
snippet in this book is actually part of a small Groovy script, BeanShell
script, or Java Application, and when the PDF for this book was gener-
ated, all 94 scripts in the book have been compiled and executed. You will
also observe that the book prepends each code snippet with a small orange
bar, pointing to a file in the source code distribution which will be soon
available from the book homepage. For now, please send me an email to
get a copy of this distribution.
Now, the importance of this is that I want to be able to update the book
with every CDK release. Not just every minor release, but also every bug fix
release. The last should not really require me to change the code snippets,
but it might change the output of the code here and there.
Another aspect of this book is also something new to me: the book is
not Open. You are not allowed to copy it or parts of it; you are also not
allowed to make derivatives. That is fairly new to me. The idea here is
that this book provides support. None of the code examples in this book
are hidden knowledge. Most of it is part of the public documentation
already. Otherwise, most of the answers in this book show up in some
form or another on the mailing list, in some blog, or otherwise. But this
compilation will be closed. At least for now.
Finally, I think that the frequent editions that I plan to make is fairly novel
as well. As I understood, my publisher Lulu.com makes it possible to make

iii

http://www.lulu.com/

an updated release whenever I want; one of the aspects of print-on-demand.
As said, the book will see updates with each CDK release, but I may also
make intermediate releases, adding new chapters with new content. I’ll
have to see how things go.
Therefore, each book will be better than the last. This first edition was not
too extensive, but covered all the basics. This second edition had several
new chapters, in a continued effort to make this book really informative.
In fact, so much had changed, that a new cover seemed a appropriate. The
drawing is made by Josefien Willighagen. This third edition again adds
more content, making it almost twice as thick as the first one.
Have fun, and do let me know if you like to see something added!

Egon Willighagen
egon.willighagen+cdkbook@gmail.com

iv

mailto:egon.willighagen+cdkbook@gmail.com

Contents

1 Introduction 1

2 Atoms, Bonds and Molecules 3
2.1 Atoms . 3

2.1.1 IElement . 3
2.1.2 IIsotope . 4
2.1.3 IAtomType . 5

2.2 Bonds . 6
2.3 Molecules . 7

2.3.1 Iterating over atoms and bonds 8
2.3.2 Neighboring atoms and bonds 9
2.3.3 Molecular Formula 10

2.4 Implicit and Explicit Hydrogens 11
2.5 Chemical Objects . 12
2.6 Rings . 13

3 Salts and other disconnected structures 17
3.1 Salts . 17
3.2 Crystals . 18

4 Paired and unpaired electrons 21
4.1 Lone Pairs . 21
4.2 Unpaired electrons . 22

5 Input/Output 25
5.1 File Format Detection . 25
5.2 Reading from Readers and InputStreams 26

5.2.1 Example: Downloading Domoic Acid from PubChem 27
5.3 Input Validation . 29

5.3.1 Reading modes . 29
5.3.2 Validation . 31

5.4 Gzipped files . 32

v

Contents

5.5 Iterating Readers . 32
5.5.1 MDL SD files . 33
5.5.2 PubChem Compounds XML files 33

5.6 Customizing the Output . 34
5.6.1 Setting Properties 35
5.6.2 Example: creating unit test for atom type perception 36

5.7 Line Notations . 38
5.7.1 SMILES . 38

6 Atom types 41
6.1 The CDK atom type model 41

6.1.1 Hybridization Types 43
6.2 Atom type perception . 43

6.2.1 Single atoms . 44
6.2.2 Full molecules . 44
6.2.3 Configuring the Atom 45

6.3 Sybyl atom types . 45

7 Graph Properties 47
7.1 Partitioning . 47
7.2 Spanning Tree . 47
7.3 Graph matrices . 48

7.3.1 Adjacency matrix 49
7.3.2 Distance matrix . 49

7.4 Atom Numbers . 50
7.4.1 Morgan Atom Numbers 50
7.4.2 InChI Atom Numbers 51

8 Missing Information 53
8.1 Reconnecting Atoms . 53
8.2 Missing Hydrogens . 54

8.2.1 Implicit Hydrogens 54
8.2.2 Explicit Hydrogens 55

8.3 2D Coordinates . 55
8.4 Unknown Molecular Formula 56

9 Depiction 59
9.1 Molecules . 59
9.2 Parameters . 61
9.3 Generators . 63

10 Substructure Searching 65
10.1 Exact Search . 65

vi

Contents

10.2 Matching Substructures . 66
10.3 Fingerprints . 67

11 Molecular Properties 71
11.1 Molecular Mass . 71

11.1.1 Implicit Hydrogens 72
11.2 LogP . 72
11.3 Total Polar Surface Area . 73
11.4 Aromaticity . 73

12 InChI 75
12.1 Layers . 76
12.2 Tautomerism . 77
12.3 Parsing InChIs . 78

13 How to install the CDK 81
13.1 Binary Version . 81
13.2 Source Code . 81

13.2.1 Git Repository . 81
13.3 Debian GNU/Linux & Ubuntu 82

14 Writing CDK Applications 83
14.1 A (Very) Basic Java Application 83
14.2 BeanShell . 84
14.3 Groovy . 84

14.3.1 Closures . 85
14.4 Clojure . 87
14.5 Other Languages . 87

14.5.1 Bioclipse . 88
14.5.2 Cinfony . 88
14.5.3 R . 88

15 Documentation 89
15.1 JavaDoc . 89
15.2 Other Sources . 89

15.2.1 Unit tests . 89

16 Migration 91
16.1 CDK 1.2 to 1.4 . 91

16.1.1 Creating objects with an IChemObjectBuilder . . . 91
16.1.2 Implicit hydrogens 92

16.2 CDK 1.0 to 1.2 . 92
16.2.1 MFAnalyser . 93

vii

Contents

16.3 CDK 1.0 to 1.4 . 93

A Atom Type Lists 95
A.1 CDK Atom Types . 96
A.2 Sybyl Atom Types . 99

B Isotope List 101

C CDK Authors 107

List of Scripts 109

Index 112

viii

1. Introduction

Readers of this book will probably know what the Chemistry Development
Kit (CDK) is: An Open-Source Java Library for Chemo- and Bioinformat-
ics [1]. While the CDK project was founded in 2000, the code base origi-
nates from the groundbreaking open source cheminformatics work Christoph
Steinbeck started in 1997 with the JChemPaint [2] and CompChem projects.
This book is not about those past projects, however; it is about the CDK
as it is now. It has evolved enormously over the past 10 years, and got more
and more functionality [3], thanx to the many contributors (see page 107).
Moreover, by now, the CDK has shown its role in many cheminformat-
ics and bioinformatics fields, and you will find that this book cites many
scientific papers that use the CDK.
The goal of this book is to introduce the reader, you, to the wide variety
of functionality available in the library. It will discuss parts of the data
model, basic cheminformatics algorithms, chemical file formats, as well as
some of the applications of the CDK.
During the discussion of the various features, we will also discuss some of the
important cheminformatics concepts. We will discuss bits about chemical
graph theory, computer representation, etc. But the goal of this book is not
to provide an introduction into cheminformatics. For that, various other
books are available [4–7].
As such, this book does require a basic chemical education. It assumes that
you know what atoms are, how they are connected by chemical bonds, and
it assumes some basic computer knowledge. This book is about learning
how to perform cheminformatics tasks using the CDK. But to keep the
required knowledge to a minimum, the examples will be pretty verbose.
Moreover, at the end of the book you can find an appendix containing a
keyword list, where each keyword reflects some cheminformatics concept,
linking to to matching CDK class or method that provides related func-
tionality. As such, a secondary goal of this book is to serve as reference
material for more experienced CDK developers.

1

1. Introduction

References

[1] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, E. Wil-
lighagen, The Chemistry Development Kit (CDK): An Open-Source
Java Library for Chemo- and Bioinformatics, Journal of Chemical In-
formation and Computer Sciences 2003, 43, 493–500.

[2] S. Krause, E. L. Willighagen, C. Steinbeck, JChemPaint - Using the
Collaborative Forces of the Internet to Develop a Free Editor for 2D
Chemical Structures, Molecules 2000, 5, 93–98.

[3] C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, E. L. Willigha-
gen, Recent developments of the chemistry development kit (CDK)
- an open-source java library for chemo- and bioinformatics. Current
pharmaceutical design 2006, 12, 2111–2120.

[4] J. Gasteiger, T. Engel, Chemoinformatics : a textbook (Ed.: J. Gasteiger),
Wiley-VCH, 1st ed., 2003.

[5] A. R. Leach, V. J. Gillet, An introduction to chemoinformatics, Springer,
Rev. Ed, 2007.

[6] J.-L. Faulon, A. Bender, Handbook of Chemoinformatics Algorithms
(Chapman & Hall/CRC Mathematical & Computational Biology), Chap-
man and Hall/CRC, 1st ed., 2010.

[7] J. Wikberg, M. Eklund, E. Willighagen, O. Spjuth, M. Lapins, O. En-
gkvist, J. Alvarsson, Introduction to Pharmaceutical Bioinformatics,
Oakleaf Academic, Stockholm, Sweden, 2010.

2

2. Atoms, Bonds and Molecules

The basic objects in the CDK are the IAtom, IBond and IAtomContainer [1].
The name of the latter is somewhat misleading, as it contains not just
IAtoms but also IBonds. The primary use of the model is the graph-based
representation of molecules, where bonds are edges between two atoms
being the nodes [2].
Before we start, it is important to note that CDK 1.4.1 has an important
convention around object properties: when a property is unset, the object’s
field is set to null. This brings in sources for NullPointerExceptions, but also
allows us to distinguish between, for example, zero and unset formal charge.

2.1. Atoms

The CDK interface IAtom is the underlying data model of atoms. Creating
a new atom is fairly easy. For example, we can create an atom of element
type carbon, as defined by the element’s symbol that we pass as parameter
in the constructor:

Script 2-1: code/CreateAtom1.java

IAtom atom = new Atom("C");

Alternatively, we can also construct a new carbon atom, by passing a carbon
IElement, conveniently provided by the Elements class:

Script 2-2: code/CreateAtom2.java

IAtom atom = new Atom(Elements.CARBON);

A CDK atom has many properties, many of them inherited from the
IElement, IIsotope and IAtomType interfaces. Figure 2.1 shows the inter-
face inheritance specified by the CDK data model.

2.1.1. IElement

The most common property of IElements are their symbol and atomic num-
ber. Because the IAtom extends the IElement, CDK atoms also have these
properties. Therefore, we can set these properties for atoms manually too:

3

2. Atoms, Bonds and Molecules

Figure 2.1.: The IAtom interface extends the IAtomType interface, which
extends the IIsotope interface, which, in turn, extends the
IElement interface.

Script 2-3: code/ElementProperties.groovy

atom.setSymbol("N")

atom.setAtomicNumber(7)

Of course, we can use the matching get methods to recover the properties:

Script 2-4: code/ElementGetProperties.groovy

IAtom atom = new Atom(Elements.CARBON);

println "Symbol: " + atom.getSymbol()

println "Atomic number: " + atom.getAtomicNumber()

which outputs:

Symbol: C

Atomic number: 6

2.1.2. IIsotope

The IIsotope information consists of the mass number, exact mass and nat-
ural abundance:

4

2.1. Atoms

Script 2-5: code/IsotopeProperties.groovy

IAtom atom = new Atom("C");

atom.setMassNumber(13)

atom.setNaturalAbundance(1.07)

atom.setExactMass(13.00335484)

Here too, the complementary get methods are available:

Script 2-6: code/IsotopeGetProperties.groovy

println "Mass number: " + atom.getMassNumber()

println "Natural abundance: " + atom.getNaturalAbundance()

println "Exact mass: " + atom.getExactMass()

giving:

Mass number: 13

Natural abundance: 1.07

Exact mass: 13.00335484

Appendix B lists all isotopes defined in the CDK with a natural abundance
of more then 0.1.

2.1.3. IAtomType

Atom types are an important concept in cheminformatics. They describe
some basic facts about that particular atom in some particular configu-
ration. These properties are used in many cheminformatics algorithms,
including adding hydrogens to hydrogen-depleted chemical graphs (see Sec-
tion 8.2.1) and force fields. Chapter 6 provides much more detail on the
atom type infrastructure in the CDK library, and, for example, details how
atom types can be perceived, and how atom type information is set for
atoms.
The IAtomType interface contains fields that relate to atom types. These
properties include formal charge, neighbor count, maximum bond order and
atom type name:

Script 2-7: code/AtomTypeProperties.groovy

atom.setAtomTypeName("C.3")

atom.setFormalCharge(-1)

atom.setMaxBondOrder(IBond.Order.SINGLE)

atom.setFormalNeighbourCount(4)

5

2. Atoms, Bonds and Molecules

2.2. Bonds

The IBond interface of the CDK is an interaction between two or more
IAtoms, extending the IElectronContainer interface. While the most common
application in the CDK originates from graph theory [2], it is not restricted
to that. That said, many algorithms implemented in the CDK expect a
graph theory based model, where each bond connects two, and not more,
atoms.
For example, to create ethanol we write:

Script 2-8: code/Ethanol.groovy

IAtom atom1 = new Atom("C")

IAtom atom2 = new Atom("C")

IAtom atom3 = new Atom("O")

IBond bond1 = new Bond(atom1, atom2, IBond.Order.SINGLE);

IBond bond2 = new Bond(atom2, atom3, IBond.Order.SINGLE);

The CDK has a few bond orders, which we can list with this groovy code:

Script 2-9: code/BondOrders.groovy

IBond.Order.each {

println it

}

which outputs:

SINGLE

DOUBLE

TRIPLE

QUADRUPLE

As you might notice, there is no AROMATIC bond defined. This is deliber-
ate and the CDK allows to define single-double bond order patterns at the
same time as aromaticity information. For example, a kekule structure of
benzene with bonds marked as aromatic can be constructed with:

Script 2-10: code/AromaticBond.groovy

IAtom atom1 = new Atom("C")

IAtom atom2 = new Atom("C")

IAtom atom3 = new Atom("C")

IAtom atom4 = new Atom("C")

IAtom atom5 = new Atom("C")

6

2.3. Molecules

Figure 2.2.: The IMolecule interface extends the IAtomContainer interface.
It does not add any new methods, but just the implied meaning
that an IMolecule is full connected.

IAtom atom6 = new Atom("C")

IBond bond1 = new Bond(atom1, atom2, IBond.Order.SINGLE)

IBond bond2 = new Bond(atom2, atom3, IBond.Order.DOUBLE)

IBond bond3 = new Bond(atom3, atom4, IBond.Order.SINGLE)

IBond bond4 = new Bond(atom4, atom5, IBond.Order.DOUBLE)

IBond bond5 = new Bond(atom5, atom6, IBond.Order.SINGLE)

IBond bond6 = new Bond(atom6, atom1, IBond.Order.DOUBLE)

bond1.setFlag(CDKConstants.ISAROMATIC, true);

bond2.setFlag(CDKConstants.ISAROMATIC, true);

bond3.setFlag(CDKConstants.ISAROMATIC, true);

bond4.setFlag(CDKConstants.ISAROMATIC, true);

bond5.setFlag(CDKConstants.ISAROMATIC, true);

bond6.setFlag(CDKConstants.ISAROMATIC, true);

2.3. Molecules

We already saw in the previous pieces of code how the CDK can be used to
create molecules, and while the above is strictly enough to find all atoms in
the molecule starting with only one of the atoms in the molecule, it often
is more convenient to store all atoms and bonds in a container.

The CDK has two main containers, which are identical in functionality, but
which have different semantics: the IAtomContainer and the IMolecule (see
Figure 2.2. The first is a general container to holds atoms an bonds, while
the IMolecule has the added implication that it is meant that the container
holds a single molecule, of which all atoms are connected to each other via
one or more covalent bonds. It is important to note, however, that the
latter is not enforced.

Adding atoms and bonds is done by the methods addAtom(IAtom) and

7

2. Atoms, Bonds and Molecules

addBond(IBond):

Script 2-11: code/AtomContainerAddAtomsAndBonds.groovy

mol = new AtomContainer();

mol.addAtom(new Atom("C"));

mol.addAtom(new Atom("H"));

mol.addAtom(new Atom("H"));

mol.addAtom(new Atom("H"));

mol.addAtom(new Atom("H"));

mol.addBond(new Bond(mol.getAtom(0), mol.getAtom(1)));

mol.addBond(new Bond(mol.getAtom(0), mol.getAtom(2)));

mol.addBond(new Bond(mol.getAtom(0), mol.getAtom(3)));

mol.addBond(new Bond(mol.getAtom(0), mol.getAtom(4)));

The addBond() method has an alternative which takes three parameters:
the first atom, the second atom, and the bond order. Note that atom
indices follows programmers habits and starts at 0, as you can observe in
the previous example too. This shortens the previous version a bit:

Script 2-12: code/AtomContainerAddAtomsAndBonds2.groovy

mol = new AtomContainer();

mol.addAtom(new Atom("C"));

mol.addAtom(new Atom("H"));

mol.addAtom(new Atom("H"));

mol.addAtom(new Atom("H"));

mol.addAtom(new Atom("H"));

mol.addBond(0,1,IBond.Order.SINGLE);

mol.addBond(0,2,IBond.Order.SINGLE);

mol.addBond(0,3,IBond.Order.SINGLE);

mol.addBond(0,4,IBond.Order.SINGLE);

2.3.1. Iterating over atoms and bonds

The IAtomContainer comes with convenience methods to iterate over atoms
and bonds. Both methods use the Iterable interfaces, and for atoms we do:

Script 2-13: code/CountHydrogens.groovy

int hydrogenCount = 0

for (IAtom atom : mol.atoms()) {

if ("H".equals(atom.getSymbol())) hydrogenCount++

8

2.3. Molecules

}

println "Number of hydrogens: $hydrogenCount"

which returns

Number of hydrogens: 4

And for bonds the equivalent:

Script 2-14: code/CountDoubleBonds.groovy

int doubleBondCount = 0

for (IBond bond : mol.bonds()) {

if (IBond.Order.DOUBLE == bond.getOrder())

doubleBondCount++

}

println "Number of double bonds: $doubleBondCount"

giving

Number of double bonds: 1

2.3.2. Neighboring atoms and bonds

It is quite common that you like to see what atoms are connected to one
particular atom. For example, you may wish to count how many bonds
surround a particular atom. Or, you may want to list all atoms that are
bound to this atom. The IAtomContainer class provides methods for these
use cases. But it should be stressed that these methods do only take into
account explicit hydrogens (see the next section).
Let’s consider ethanol again, given in Script 2-8, and count the number of
neighbors for each atom:

Script 2-15: code/NeighborCount.groovy

for (atom in ethanol.atoms()) {

println atom.getSymbol() +

" " + ethanol.getConnectedAtomsCount(atom)

}

which lists for the three heavy atoms:

C 1

C 2

O 1

Similarly, we can also list all connected atoms:

9

2. Atoms, Bonds and Molecules

Script 2-16: code/ConnectedAtoms.groovy

for (atom in ethanol.atoms()) {

print atom.getSymbol() +

" is connected to "

for (neighbor in ethanol.getConnectedAtomsList(atom)) {

print neighbor.getSymbol() + " "

}

println ""

}

which outputs:

C is connected to C

C is connected to C O

O is connected to C

We can do the same thing for connected bonds:

Script 2-17: code/ConnectedBonds.groovy

for (atom in ethanol.atoms()) {

print atom.getSymbol() +

" has bond(s)"

for (bond in ethanol.getConnectedBondsList(atom)) {

print " " + bond.getOrder()

}

println ""

}

which outputs:

C has bond(s) SINGLE

C has bond(s) SINGLE SINGLE

O has bond(s) SINGLE

2.3.3. Molecular Formula

Getting the molecular formula of a molecule and returning that as a String
is both done with the MolecularFormulaManipulator class:

Script 2-18: code/MFGeneration.groovy

molForm = MolecularFormulaManipulator.getMolecularFormula(

azulene

10

2.4. Implicit and Explicit Hydrogens

)

mfString = MolecularFormulaManipulator.getString(molForm)

println "Azulene: $mfString"

giving:

Azulene: C10H8

The method assumes the atom container has explicit hydrogens (see Sec-
tion 2.4). If your atom container does not have explicit hydrogens, you
should add those first, as explained in Section 8.2.2.

2.4. Implicit and Explicit Hydrogens

The CDK has two concepts for hydrogens: implicit hydrogens and explicit
hydrogens. Explicit hydrogens are hydrogens that are separate vertices
on the chemical graph. Implicit hydrogens, however, are not, and are at-
tributes of existing vertices.
For example, if we represent methane as a chemical graph, we can define
either a hydrogen-depleted chemical graph with a single carbon atom and
zero bonds, or a graph with one carbon and four hydrogen atoms, and four
bonds connecting the hydrogens to the central carbon. In the latter case,
the hydrogens are explicit, while in the former case we can add those four
hydrogens as implicit hydrogens on these carbon.
The first option in CDK code looks like:

Script 2-19: code/HydrogenDepletedGraph.groovy

molecule = new Molecule();

carbon = new Atom(Elements.CARBON);

carbon.setImplicitHydrogenCount(4);

molecule.addAtom(carbon);

while the alternative look like:

Script 2-20: code/HydrogenExplicitGraph.groovy

molecule = new Molecule();

carbon = new Atom(Elements.CARBON);

molecule.addAtom(carbon);

for (int i=1; i<=4; i++) {

hydrogen = new Atom(Elements.HYDROGEN);

molecule.addAtom(hydrogen);

molecule.addBond(0, i, IBond.Order.SINGLE);

}

11

2. Atoms, Bonds and Molecules

Section 8.2 describes how hydrogens can be added programmatically.

2.5. Chemical Objects

Another interface that must be introduced is the IChemOject as it plays an
key role in the CDK data model. Almost all interfaces used in the data
model inherit from this interface. The IChemObject interface provides a bit
of basic functionality, including support for object identifiers, properties,
and flags.
For example. identifiers are set and retrieved with the setID() and getID()
methods:

Script 2-21: code/ChemObjectIdentifiers.groovy

butane = new Molecule();

butane.setID("cdkbook000000001")

print "ID: " + butane.getID()

If you have more than one identifier, or other properties you like to associate
with objects, you can use the setProperty() and getProperty() methods:

Script 2-22: code/ChemObjectProperties.groovy

butane = new Molecule();

butane.setProperty(

"InChI", "InChI=1/C4H10/c1-3-4-2/h3-4H2,1-2H3"

)

print "InChI: " + butane.getProperty("InChI")

For example, we can use this approach to assign labels to atoms, such as
in this example from substructure searching (see Chapter 10):

Script 2-23: code/AtomLabels.groovy

butane = MoleculeFactory.makeAlkane(4);

butane.atoms().each { atom ->

atom.setProperty("Label", "Molecule")

}

ccc = MoleculeFactory.makeAlkane(3);

ccc.atoms().each { atom ->

atom.setProperty("Label", "Substructure")

}

The CDKConstants class provides a few constants for common properties:

12

2.6. Rings

Script 2-24: code/CDKConstantsProperties.groovy

println "Title: " +

aspirin.getProperty(CDKConstants.TITLE)

println "InChI: " +

aspirin.getProperty(CDKConstants.INCHI)

println "SMILES: " +

aspirin.getProperty(CDKConstants.SMILES)

println "CAS registry number: " +

aspirin.getProperty(CDKConstants.CASRN)

println "COMMENT: " +

aspirin.getProperty(CDKConstants.COMMENT)

println "NAMES: " +

aspirin.getProperty(CDKConstants.NAMES)

outputting:

Title: aspirin

InChI: InChI=1/C9H8O4/c1-6(10)13-8-5-3-2-4-7(8)9(11)12/h...

2-5H,1H3,(H,11,12)

SMILES: CC(=O)Oc1ccccc1C(=O)O

CAS registry number: 50-78-2

COMMENT: Against headaches.

NAMES: 2-(acetyloxy)benzoic acid

A third characteristic of the IChemObject interface is the concept of flags.
Flags are used in the CDK to indicate, for example, if an atom or bond is
aromatic (see Script 2-10) or if an atom is part of a ring:

Script 2-25: code/RingBond.groovy

benzene = MoleculeFactory.makeBenzene();

benzene.bonds().each { bond ->

bond.setFlag(CDKConstants.ISINRING, true)

println "Is ring bond: " +

bond.getFlag(CDKConstants.ISINRING)

}

The next section talks about the CDK data class for rings.

2.6. Rings

One important aspect of molecules is rings, partly because rings can show
interesting chemical phenomena. For example, if the number of π electrons

13

2. Atoms, Bonds and Molecules

Figure 2.3.: The IRing interface extends the IAtomContainer interface and
is used to hold information about rings.

is right, then the ring will become aromatic, as we commonly observer in
phenyl rings, such as in benzene. But, cheminformatics has many other
aspects where one like to know about those rings. For example, 2D coordi-
nate generator (see Section 8.3) requires algorithms to know what the rings
are in a molecule.
Section 7.2 explains what functionality the CDK has to determine a bond
takes part in a ring system. Here, we just introduce the IRing interface,
which extends the more general IAtomContainer as shown in Figure 2.3.
Practically, there is nothing much to say about the IRing interface. One
method it adds, is to get the size of the ring:

Script 2-26: code/Ring.groovy

IRing ring = new Ring(5, "C")

println "Ring size: " + ring.getRingSize()

println "Ring atoms: " + ring.getAtomCount()

println "Ring bonds: " + ring.getBondCount()

But this should be by definition the same as the number as atoms and
bonds:

Ring size: 5

Ring atoms: 5

Ring bonds: 5

References

[1] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, E. Wil-
lighagen, The Chemistry Development Kit (CDK): An Open-Source
Java Library for Chemo- and Bioinformatics, Journal of Chemical In-
formation and Computer Sciences 2003, 43, 493–500.

14

2.6. References

[2] A. T. Balaban, Applications of graph theory in chemistry, Journal of
Chemical Information and Computer Sciences 1985, 25, 334–343.

15

3. Salts and other disconnected
structures

In Section 2.3 we saw how atoms and bonds are contained in the IMolecule
data model. It was mentioned that the molecule object is aimed at con-
nected structures, while IAtomContainer is meant as a general container.
And this is exactly what we need for disconnected structures like salts and
molecular crystal structures.

Functionality to determine if the content of an IAtomContainer is con-
nected, you can use the ConnectivityChecker, as explained in Section 7.1.

3.1. Salts

Salts are one of the most common disconnected structures found in com-
pound databases: a salt is a combination of two or more connected molecules
bound to each other by coulombic interactions. These may be solids.

A common kitchen example is the table salt sodium chloride. We can
represent this using the following model:

Script 3-1: code/Salt.groovy

salt = new AtomContainer();

sodium = new Atom("Na");

sodium.setFormalCharge(+1);

chloride = new Atom("Cl");

chloride.setFormalCharge(-1);

salt.addAtom(sodium);

salt.addAtom(chloride);

If you prefer a single IAtomContainer to only contain connected atoms,
instead of unbound atoms as in this salt example, you can partition them
into two or more new containers, as explained in Section 7.1.

17

3. Salts and other disconnected structures

Figure 3.1.: The ICrystal and IMolecule interfaces both extends the
IAtomContainer interface.

3.2. Crystals

Of course, the representation given in the previous section is a very basic
model for sodium chloride. A crystal structure would perhaps be a more
accurate description of what you like to represent. In this case, the ICrystal
subclass of the IAtomContainer can be used (see Figure 3.1):

Script 3-2: code/SaltCrystal.groovy

salt = new Crystal();

sodium = new Atom("Na");

sodium.setFormalCharge(+1);

chloride = new Atom("Cl");

chloride.setFormalCharge(-1);

salt.addAtom(sodium);

salt.addAtom(chloride);

If we want to add the crystal structure parameters and crystal structure
coordinates of the atoms, we add can add them too (data taken from [1]):

Script 3-3: code/SaltCrystalParam.groovy

salt = new Crystal();

salt.setA(new Vector3d(5.6402, 0, 0));

salt.setB(new Vector3d(0, 5.6402, 0));

salt.setC(new Vector3d(0, 0, 5.6402));

salt.setZ(4);

sodium = new Atom("Na");

sodium.setFormalCharge(+1);

18

3.2. References

sodium.setFractionalPoint3d(

new Point3d(0, 0, 0)

);

chloride = new Atom("Cl");

chloride.setFormalCharge(-1);

chloride.setFractionalPoint3d(

new Point3d(0.5, 0.5, 0.5)

);

salt.addAtom(sodium);

salt.addAtom(chloride);

References

[1] http://www.ilpi.com/inorganic/structures/nacl/.

19

http://www.ilpi.com/inorganic/structures/nacl/

4. Paired and unpaired electrons

The CDK data model supports more than just the chemical graph. We have
seen atoms and bonds earlier, the bonds being atoms sharing electrons.
Atoms, however, can also have electrons in the valence shell not involved in
bond: free electon (lone) pairs, and unpaired electrons as found in radicals.

But before we look at how we add paired and unpaired electrons, we should
first look at the two principle classes involved in representing these concepts.
Like bonds, a free electron pair and a unpaired electron are bound to the
atom. Depending on the theory used, the exact environment which holds
the electrons can be named differently. For example, they might be referred
to as orbitals, atomic or molecular. The CDK simply refers to the holder
as IElectronContainers, and has several subinterfaces for bonds (IBond),
lone pairs (ILonePair), and unpaired electrons (ISingleElectron), as shown in
Figure 4.1.

4.1. Lone Pairs

Oxygens are atoms with lone pairs: the free electrons that do not take part
in a bond. These lone pairs can be explicitly modeled in the CDK. For
example, this is how we can represent water:

Figure 4.1.: The IBond, ILonePair, and ISingleElectron interfaces all extend
the IElectronContainer interface.

21

4. Paired and unpaired electrons

Script 4-1: code/LonePairOxygen.groovy

IAtom atom1 = new Atom("H")

IAtom atom2 = new Atom("H")

IAtom atom3 = new Atom("O")

IBond bond1 = new Bond(atom1, atom2, IBond.Order.SINGLE)

IBond bond2 = new Bond(atom2, atom3, IBond.Order.SINGLE)

IMolecule water = new Molecule()

water.addAtom(atom1)

water.addAtom(atom2)

water.addAtom(atom3)

water.addBond(bond1)

water.addBond(bond2)

water.addLonePair(new LonePair(atom3))

water.addLonePair(new LonePair(atom3))

And we can the count the number of lone pair on each atom with, for
example, this code:

Script 4-2: code/LonePairCount.groovy

for (atom in water.atoms()) {

println atom.getSymbol() + " has " +

water.getConnectedLonePairsCount(atom) +

" lone pairs"

}

which gives us:

H has 0 lone pairs

H has 0 lone pairs

O has 2 lone pairs

4.2. Unpaired electrons

An unpaired electron on an atom makes that atom a radical. Radicals are
common mass spectroscopy and as the latter is an important use case of
the CDK, unpaired electrons are well-supported in the data model.

We can add an unpaired electron with the addSingleElectron method of the
IAtomContainer class.

22

4.2. Unpaired electrons

Script 4-3: code/HydrogenRadical.groovy

hydrogen = new Atom("H")

radicalElectron =

new SingleElectron(hydrogen)

hydrogenRadical = new Molecule()

hydrogenRadical.addAtom(hydrogen)

hydrogenRadical.addSingleElectron(radicalElectron)

23

5. Input/Output

The CDK has functionality for extracting information from files in many
different file formats. Unfortunately, hardly ever the full format specifica-
tion is supported, but generally the chemical graph and 2D or 3D coordi-
nates are extracted, not uncommonly complemented with formal or partial
charge.

5.1. File Format Detection

Typically, a human is fairly aware about the format of a file. Computer
programs require a fairly accurate method for detecting the chemical format
of a file. To detect the format of a file, the FormatFactory can be used:

Script 5-1: code/GuessFormat.groovy

Reader stringReader = new StringReader(

"<molecule xmlns=’http://www.xml-cml.org/schema’/>"

);

FormatFactory factory = new FormatFactory();

IChemFormat format = factory.guessFormat(stringReader);

System.out.println("Format: " + format.getFormatName());

For example, this script recognizes that a file has the Chemical Markup
Language [1, 2] format:

Format: Chemical Markup Language

To learn if the CDK has a IChemObjectReader or IChemObjectWriter one
can use the methods getReaderClassName() and getWriterClassName() re-
spectively:

Script 5-2: code/HasReaderOrWriter.groovy

Reader stringReader = new StringReader(

"<molecule xmlns=’http://www.xml-cml.org/schema’/>"

);

IChemFormat format = factory.guessFormat(stringReader);

25

5. Input/Output

Table 5.1.: A few of the formats and their readers and writers.

Format Description Reader/Writer

Chemical Markup
Language

XML-based file format that can store
connection tables, atomic properties,
2D and 3D coordinates, crystal struc-
tures, and much more.

CMLReader, CML-
Writer

MDL molfile Text-based format that can stored con-
nection tables, atomic properties like
formal charge, and 2D or 3D coordi-
nates.

MDLV2000Reader,
MDLV2000Writer

MDL SD file Extension of the MDL molfile format to
store a database of molecules and asso-
ciated properties. See Section 5.5.1.

MDLV2000Reader,
SDFWriter

PDB Format used by the Protein Database
which stored 3D geometries or proteins
and protein-ligand complexes. It can
also be used for small molecules.

PDBReader

XYZ Simple format that can store 3D coor-
dinates and optionally partial atomic
charges. It cannot store connectivity
information.

XYZReader,
XYZWriter

String readerClass = format.getReaderClassName();

String writerClass = format.getWriterClassName();

System.out.println("Reader: " + readerClass);

System.out.println("Writer: " + writerClass);

It reports:

Reader: org.openscience.cdk.io.CMLReader

Writer: org.openscience.cdk.io.CMLWriter

5.2. Reading from Readers and InputStreams

Many input readers in the CDK allow reading from a Java Reader class, but
all are required to also read from an InputStream. The difference between
these two Java classes is that the Reader is based on a character stream,
while an InputStream is based on an byte stream. For some readers this
difference is crucial: processing an XML based format, such as CML and
XML formats used by PubChem should be read from an InputStream, not
a Reader.

26

5.2. Reading from Readers and InputStreams

For other formats, it does not matter. This allows, for example, to read a
file easily from a string with a StringReader (mind the newlines indicated
by ’\n’):

Script 5-3: code/InputFromStringReader.groovy

String bf3 = "4\n" +

"Bortrifluorid\n" +

"B 0.0000 0.0000 0.0000\n" +

"F 1.0000 0.0000 0.0000\n" +

"F -0.5000 -0.8660 0.0000\n" +

"F -0.5000 0.8660 0.0000\n";

reader = new XYZReader(

new StringReader(bf3)

)

chemfile = reader.read(new NNChemFile())

mol = ChemFileManipulator.getAllAtomContainers(chemfile)

.get(0)

println "Atom count: $mol.atomCount"

But besides reading XML files correctly, the support for InputStream also
allows reading files directly from the internet and from gziped files (see
Section 5.4).

5.2.1. Example: Downloading Domoic Acid from PubChem

As an example, below will follow a small script that takes a PubChem
compound identifier (CID) and downloads the corresponding ASN.1 XML
file, parses it and counts the number of atoms:

Script 5-4: code/PubChemDownload.groovy

cid = 5282253

reader = new PCCompoundXMLReader(

new URL(

"http://pubchem.ncbi.nlm.nih.gov/summary/" +

"summary.cgi?cid=$cid&disopt=SaveXML"

).newInputStream()

)

mol = reader.read(new NNMolecule())

println "CID: " + mol.getProperty("PubChem CID")

println "Atom count: $mol.atomCount"

It reports:

27

5. Input/Output

CID: 5282253

Atom count: 43

PubChem ASN.1 files come with an extensive list of molecular properties.
These are stored as properties on the molecule object and can be retrieved
using the getProperties() method, or, using the Groovy bean formalism:

Script 5-5: code/PubChemDownloadProperties.groovy

mol.properties.each {

line = "" + it

println line

}

which lists the properties for the earlier downloaded domoic acid:

PubChem CID=5282253

Compound Complexity=510

Fingerprint (SubStructure Keys)=00000371E072380000000000...

000000000000000000016000000000000000000000000000000000...

1E00100800000D28C18004020802C00200880220D2080000000020...

00000808818800080A001200812004400004D000988003BC7F020E...

8000

IUPAC Name (Allowed)=(2S,3S,4S)-3-(carboxymethyl)-4-[(1Z...

,3E,5R)-5-carboxy-1-methyl-hexa-1,3-dienyl]pyrrolidine...

-2-carboxylic acid

IUPAC Name (CAS-like Style)=(2S,3S,4S)-4-[(2Z,4E,6R)-6-c...

arboxyhepta-2,4-dien-2-yl]-3-(carboxymethyl)-2-pyrroli...

dinecarboxylic acid

IUPAC Name (Preferred)=(2S,3S,4S)-4-[(2Z,4E,6R)-6-carbox...

yhepta-2,4-dien-2-yl]-3-(carboxymethyl)pyrrolidine-2-c...

arboxylic acid

IUPAC Name (Systematic)=(2S,3S,4S)-3-(2-hydroxy-2-oxoeth...

yl)-4-[(2Z,4E,6R)-6-methyl-7-oxidanyl-7-oxidanylidene-...

hepta-2,4-dien-2-yl]pyrrolidine-2-carboxylic acid

IUPAC Name (Traditional)=(2S,3S,4S)-3-(carboxymethyl)-4-...

[(1Z,3E,5R)-5-carboxy-1-methyl-hexa-1,3-dienyl]proline

InChI (Standard)=InChI=1S/C15H21NO6/c1-8(4-3-5-9(2)14(19...

)20)11-7-16-13(15(21)22)10(11)6-12(17)18/h3-5,9-11,13,...

16H,6-7H2,1-2H3,(H,17,18)(H,19,20)(H,21,22)/b5-3+,8-4-...

/t9-,10+,11-,13+/m1/s1

InChIKey (Standard)=VZFRNCSOCOPNDB-AOKDLOFSSA-N

Log P (XLogP3-AA)=-1.3

28

5.3. Input Validation

Mass (Exact)=311.136887

Molecular Formula=C15H21NO6

Molecular Weight=311.33034

SMILES (Canonical)=CC(C=CC=C(C)C1CNC(C1CC(=O)O)C(=O)O)C(...

=O)O

SMILES (Isomeric)=C[C@H](/C=C/C=C(/C)\textbackslash[C@H]...

1CN[C@@H]([C@H]1CC(=O)O)C(=O)O)C(=O)O

Topological (Polar Surface Area)=124

Weight (MonoIsotopic)=311.136887

5.3. Input Validation

The history of the CDK project has seen many bug reports about problems
which in fact turned out to be problems with in the input file. While the
general perception seems to be that because files could be written, the
content must be consistent.
However, this is a strong misconception. There are several problems found
in chemical files in the wild. A first common problem is that the file is
not conform the syntax of the specification. An example here can be that
at places where a number is expected, something else is given; not uncom-
monly, this is caused by incorrect use of whitespace.
A second problem is that the file looks perfectly reasonable, but that the
software that wrote the file used conventions and extensions that are not
supported by the reading software. A common example is the use of the
D and T symbols, for deuterium and tritium in MDL molfiles, where the
specification does not allow that.
A third problem is that most chemical file formats do not disallow incorrect
chemical graphs. For example, formats often allow to bind an atom to itself,
which will cause problems when analyzing this graph. These problems are
much more rare, though.

5.3.1. Reading modes

The IChemObjectReader has a feature that allows setting a validating mode,
which has two values:

Script 5-6: code/ReadingModes.groovy

IChemObjectReader.Mode.each {

println it

}

returning:

29

5. Input/Output

RELAXED

STRICT

The STRICT mode follows the exact format specification. There RELAXED
mode allows for a few common extensions, such as the support for the T
and D element types. For example, let’s consider this file:

CDK

3 2 0 0 0 0 0 0 0 0999 V2000

2.5369 -0.1550 0.0000 O 0 0 0 0 0 0 0 0 0 0 0 0

3.0739 0.1550 0.0000 D 1 0 0 0 0 0 0 0 0 0 0 0

2.0000 0.1550 0.0000 T 1 0 0 0 0 0 0 0 0 0 0 0

1 2 1 0 0 0 0

1 3 1 0 0 0 0

M ISO 2 2 2 3 3

M END

If we read this file with:

Script 5-7: code/ReadStrict.groovy

reader = new MDLV2000Reader(

new File("data/t.mol").newReader(),

Mode.STRICT

);

water = reader.read(new Molecule());

println "atom count: $water.atomCount"

we get this exception:

Invalid element type. Must be an existing element, or on...

e in: A, Q, L, LP, *.

However, if we read the file in RELAXED mode with this code:

Script 5-8: code/ReadRelaxed.groovy

reader = new MDLV2000Reader(

new File("data/t.mol").newReader(),

Mode.RELAXED

);

water = reader.read(new Molecule());

println "atom count: $water.atomCount"

the files will be read as desired:

atom count: 3

30

5.3. Input Validation

5.3.2. Validation

When a file is being read in RELAXED mode, it is possible to get error mes-
sages. This functionality is provided by the IChemObjectReaderErrorHandler
support in IChemObjectReader. For example, we can define this custom er-
ror handler:

Script 5-9: code/CustomErrorHandler.groovy

class ErrorHandler

implements IChemObjectReaderErrorHandler {

public void handleError(String message) {

println message;

};

public void handleError(String message,

Exception exception)

{

println message + "\n -> " +

exception.getMessage();

};

public void handleError(String message,

int row, int colStart, int colEnd)

{

print "location: " + row + ", " +

colStart + "-" + colEnd + ": ";

println message;

};

public void handleError(String message,

int row, int colStart, int colEnd,

Exception exception)

{

print "location: " + row + ", " +

colStart + "-" + colEnd + ": "

println message + "\n -> " +

exception.getMessage()

};

}

and use that when reading a file:

Script 5-10: code/ReadErrorHandler.groovy

reader = new MDLV2000Reader(

new File("data/t.mol").newReader(),

31

5. Input/Output

Mode.RELAXED

);

reader.setErrorHandler(new ErrorHandler());

water = reader.read(new Molecule());

we get these warnings via the handler interface:

location: 6, 32-35: Invalid element type. Must be an exi...

sting element, or one in: A, Q, L, LP, *.

location: 7, 32-35: Invalid element type. Must be an exi...

sting element, or one in: A, Q, L, LP, *.

5.4. Gzipped files

Some remote databases gzip their data files to reduce download sized. The
Protein Brookhaven Database (PDB) is such a database. Fortunately, Java
has a simple API to work with gziped files, using the GZIPInputStream:

Script 5-11: code/PDBCoordinateExtraction.groovy

reader = new PDBReader(

new GZIPInputStream(

new URL(

"http://www.pdb.org/pdb/files/1CRN.pdb.gz"

).openStream()

)

);

crambin = reader.read(new ChemFile());

for (container in

ChemFileManipulator.getAllAtomContainers(

crambin

)) {

for (atom in container.atoms()) {

println atom.point3d;

}

}

5.5. Iterating Readers

By default, the CDK readers read structures into memory. This is fine when
it is a relatively small model. It no longer works for large files, such as 1GB

32

5.5. Iterating Readers

MDLSDfiles [3]. To allow processing of such large files, the CDK can take
advantage from the fact that these SD files are basically a concatenation of
MDL molfiles. Therefore, one can use an iterating reader to process each
individual molecule one by one.

5.5.1. MDL SD files

MDL SD files can be processed using the IteratingMDLReader, for example,
to generate a SMILES for each structure:

Script 5-12: code/IteratingMDLReaderDemo.groovy

iterator = new IteratingMDLReader(

new File("data/test6.sdf").newReader(),

DefaultChemObjectBuilder.getInstance()

)

while (iterator.hasNext()) {

IMolecule mol = iterator.next()

formula = MolecularFormulaManipulator.getMolecularFormula(mol)

println MolecularFormulaManipulator.getString(formula)

}

Which outputs the molecular formula for the three entries in the file:

C19Br2N2O6

C20N2O5S

C17N2O6S

5.5.2. PubChem Compounds XML files

Similarly, PubChem Compounds XML files can be processed taking advan-
tage of a XML pull library, which is nicely hidden behind the same iterator
interface as used for parsing MDL SD files. Iterating over a set of com-
pounds is fairly straightforward with the IteratingPCCompoundXMLReader
class:

Script 5-13: code/PubChemCompoundsXMLDemo.groovy

iterator = new IteratingPCCompoundXMLReader(

new File("data/aceticAcids38.xml").newReader(),

DefaultChemObjectBuilder.getInstance()

)

while (iterator.hasNext()) {

IMolecule mol = iterator.next()

33

5. Input/Output

formula = MolecularFormulaManipulator

.getMolecularFormula(mol)

println MolecularFormulaManipulator.getString(formula)

}

Which outputs the molecular formula for the three entries in the aceti-
cAcids38.xml file:

C2H4O2

C2H3O2

C2H3HgO2

5.6. Customizing the Output

An interesting feature of file IO in the CDK is that it is customizable.
Before I will give all the details, let’s start with a simple example: creating
a Gaussian input file for optimizing the structure of methane, and let’s
start with an XYZ file, that is, with ‘methane.xyz’:

5

methane

C 0.25700 -0.36300 0.00000

H 0.25700 0.72700 0.00000

H 0.77100 -0.72700 0.89000

H 0.77100 -0.72700 -0.89000

H -0.77100 -0.72700 0.00000

The output will look something like:

%nprocl=5

b3lyp/6-31g* opt

Job started on Linux cluster on 20041010.

0 1

C 0 0.257 -0.363 0.0

H 0 0.257 0.727 0.0

H 0 0.771 -0.727 0.89

H 0 0.771 -0.727 -0.89

H 0 -0.771 -0.727 0.0

The writer used the default IO options in the above example. So, the next
step is to see which options the writer allows. To get a list of options for a
certain IO class in one does something along the lines:

34

5.6. Customizing the Output

Script 5-14: code/ListIOOptions.java

IChemObjectWriter writer = new GaussianInputWriter();

for (IOSetting setting : writer.getIOSettings()) {

System.out.println("[" + setting.getName() + "]");

System.out.println("Option: " + setting.getQuestion());

System.out.println(

"Current value: " + setting.getSetting()

);

}

which results in the following output:

[Basis]

Option: Which basis set do you want to use?

Current value: 6-31g

[Method]

Option: Which method do you want to use?

Current value: b3lyp

[Command]

Option: What kind of job do you want to perform?

Current value: energy calculation

[Comment]

Option: What comment should be put in the file?

Current value: Created with CDK (http://cdk.sf.net/)

[OpenShell]

Option: Should the calculation be open shell?

Current value: false

[ProcessorCount]

Option: How many processors should be used by Gaussian?

Current value: 1

[UseCheckPointFile]

Option: Should a check point file be saved?

Current value: false

[Memory]

Option: How much memory do you want to use?

Current value: unset

5.6.1. Setting Properties

The IO settings system allows interactive setting of these options, but a
perfectly fine alternative is to use a Java Properties object.
Consider the following source code:

35

5. Input/Output

Script 5-15: code/PropertiesSettings.java

// the custom settings

Properties customSettings = new Properties();

customSettings.setProperty("Basis", "6-31g*");

customSettings.setProperty("Command",

"geometry optimization");

customSettings.setProperty("Comment",

"Job started on Linux cluster on 20041010.");

customSettings.setProperty("ProcessorCount", "5");

PropertiesListener listener = new PropertiesListener(

customSettings

);

// create the writer

GaussianInputWriter writer = new GaussianInputWriter(

new FileWriter(new File("methane.gin"))

);

writer.addChemObjectIOListener(listener);

XYZReader reader = new XYZReader(

new FileReader(new File("data/methane.xyz"))

);

// convert the file

ChemFile content = (ChemFile)reader.read(new ChemFile());

IMolecule molecule = content.getChemSequence(0).

getChemModel(0).getMoleculeSet().getMolecule(0);

writer.write(molecule);

writer.close();

The PropertiesListener takes a Properties class as parameter in its construc-
tor. Therefore, the properties are defined by the customSettings variable in
the first few lines. The PropertiesListener listener is the instantiated with
the customizations as constructor parameter.
The output writer, specified to write to the ‘methane.gin’ file, is created
after which the ChemObjectIOListener is set. Only by setting this listener,
the output will be customized with the earlier defined properties. The rest
of the code reads a molecule from an XYZ file and writes the content to
the created Gaussian Input file.

5.6.2. Example: creating unit test for atom type
perception

We saw earlier an example for reading files directly from PubChem (see
Section 5.2.1). This can be conveniently used to create CDK source code,

36

5.6. Customizing the Output

for example, for use in unit tests for the atom type perception code (see
Section 6.2). But because we do not want 2D and 3D coordinates being set
in the source code, we disable those options:

Script 5-16: code/AtomTypeUnitTest.groovy

cid = 3396560

mol = reader.read(new Molecule())

stringWriter = new StringWriter();

CDKSourceCodeWriter writer =

new CDKSourceCodeWriter(stringWriter);

customSettings = new Properties();

customSettings.setProperty("write2DCoordinates", "false");

customSettings.setProperty("write3DCoordinates", "false");

writer.addChemObjectIOListener(

new PropertiesListener(

customSettings

)

)

writer.write(mol);

writer.close();

println stringWriter.toString();

This results in this source code:

{

IChemObjectBuilder builder = DefaultChemObjectBuilder....

getInstance();

IMolecule mol = builder.newInstance(IMolecule.class);

IAtom a1 = builder.newInstance(IAtom.class,"P");

a1.setFormalCharge(0);

mol.addAtom(a1);

IAtom a2 = builder.newInstance(IAtom.class,"O");

a2.setFormalCharge(0);

mol.addAtom(a2);

IAtom a3 = builder.newInstance(IAtom.class,"O");

a3.setFormalCharge(0);

mol.addAtom(a3);

IAtom a4 = builder.newInstance(IAtom.class,"C");

a4.setFormalCharge(0);

mol.addAtom(a4);

IAtom a5 = builder.newInstance(IAtom.class,"H");

a5.setFormalCharge(0);

mol.addAtom(a5);

IAtom a6 = builder.newInstance(IAtom.class,"H");

a6.setFormalCharge(0);

mol.addAtom(a6);

IAtom a7 = builder.newInstance(IAtom.class,"H");

a7.setFormalCharge(0);

37

5. Input/Output

mol.addAtom(a7);

IAtom a8 = builder.newInstance(IAtom.class,"H");

a8.setFormalCharge(0);

mol.addAtom(a8);

IAtom a9 = builder.newInstance(IAtom.class,"H");

a9.setFormalCharge(0);

mol.addAtom(a9);

IBond b1 = builder.newInstance(IBond.class,a1, a2, IBo...

nd.Order.SINGLE);

mol.addBond(b1);

IBond b2 = builder.newInstance(IBond.class,a1, a3, IBo...

nd.Order.DOUBLE);

mol.addBond(b2);

IBond b3 = builder.newInstance(IBond.class,a1, a4, IBo...

nd.Order.SINGLE);

mol.addBond(b3);

IBond b4 = builder.newInstance(IBond.class,a1, a5, IBo...

nd.Order.SINGLE);

mol.addBond(b4);

IBond b5 = builder.newInstance(IBond.class,a2, a9, IBo...

nd.Order.SINGLE);

mol.addBond(b5);

IBond b6 = builder.newInstance(IBond.class,a4, a6, IBo...

nd.Order.SINGLE);

mol.addBond(b6);

IBond b7 = builder.newInstance(IBond.class,a4, a7, IBo...

nd.Order.SINGLE);

mol.addBond(b7);

IBond b8 = builder.newInstance(IBond.class,a4, a8, IBo...

nd.Order.SINGLE);

mol.addBond(b8);

}

5.7. Line Notations

Another common input mechanism in cheminformatics is the line notation.
Several line notations have been proposed, including the WiswesserLineNotation
(WLN) [4] and the SybylLineNotation (SLN) [5], but the most popular is
SMILES [6]. There is a Open Standard around this format called OpenSMILES,
available at http://www.opensmiles.org/.

5.7.1. SMILES

The CDK can both read and write SMILES, or at least a significant subset
of the line notation. You can parse a SMILES into a IAtomContainer with
the SmilesParser. The constructor of the parser takes an IChemObjectBuilder
because it needs to know what CDK interface implementation it must use

38

http://www.opensmiles.org/

5.7. References

to create classes. This example uses the DefaultChemObjectBuilder:

Script 5-17: code/ReadSMILES.groovy

sp = new SmilesParser(

DefaultChemObjectBuilder.getInstance()

)

mol = sp.parseSmiles("CC(=O)OC1=CC=CC=C1C(=O)O")

println "Aspirin has ${mol.atomCount} atoms."

Telling us the number of (non-hydrogen) atoms in aspirin:

Aspirin has 13 atoms.

Writing of SMILES goes in a similar way. But I do like to point out that
by default the SMILESGenerator does not use the convention to use lower
case element symbols for aromatic atoms. To trigger that, you should use
the setUseAromaticityFlag method:

Script 5-18: code/WriteSMILES.groovy

generator = new SmilesGenerator()

mol = MoleculeFactory.makePhenylAmine()

smiles = generator.createSMILES(mol)

println "Ph-NH2 -> $smiles"

generator.setUseAromaticityFlag(true);

smiles = generator.createSMILES(mol)

println "Ph-NH2 -> $smiles"

showing the different output without and with that option set:

Ph-NH2 -> NC1=CC=CC=C1

Ph-NH2 -> Nc1ccccc1

Of course, this does require that aromaticity has been perceived, as ex-
plained in Section 11.4.

References

[1] P. Murray-Rust, H. S. Rzepa, Chemical Markup, XML, and the World-
wide Web. 1. Basic Principles, J. Chem. Inf. Model. 1999, 39, 928–
942.

[2] E. L. Willighagen, Processing CML conventions in Java, Internet Jour-
nal of Chemistry 2001, 4, 4+.

39

5. Input/Output

[3] A. Dalby, J. G. Nourse, W. D. Hounshell, A. K. I. Gushurst, D. L.
Grier, B. A. Leland, J. Laufer, Description of several chemical struc-
ture file formats used by computer programs developed at Molecular
Design Limited, Journal of Chemical Information and Computer Sci-
ences 1992, 32, 244–255.

[4] W. J. Wiswesser, How the WLN began in 1949 and how it might be in
1999, Journal of Chemical Information and Computer Sciences 1982,
22, 88–93.

[5] W. R. Homer, J. Swanson, R. J. Jilek, T. Hurst, R. D. Clark, SYBYL
Line Notation (SLN): A Single Notation To Represent Chemical Struc-
tures, Queries, Reactions, and Virtual Libraries, Journal of Chemical
Information and Modeling 2008, 48, 2294–2307.

[6] D. Weininger, SMILES, a chemical language and information system.
1. introduction to methodology and encoding rules, J. Chem. Inf. Com-
put. Sci. 1988, 28, 31–36.

40

6. Atom types

Graph theory is nice, but we are, of course, interested in chemistry. While
graph theory has its limitations, we can do a lot of interesting things with
just the vertex-edge formalism. Particularly, if we combine it with the
concept of atom types.
An atom type is a concept to describe certain properties of the atom. For
example, force fields use atom types to describe geometrical and interaction
properties of the atoms in a molecule. Within such formalism, a sp3 carbon
is a carbon with four neighbors organized in a tetrahedral coordination, as
depicted in Figure 6.1.

6.1. The CDK atom type model

A complete description for the atom types of the following atomic properties
is needed by the various algorithms in the CDK:

• element

• formal charge

• number of bonded neighbors

• hybridization (sp3, sp2, sp, etc)

• number of lone pairs

• number of π bonds

For example, the carbon in methane, we can list these properties with this
code:

Script 6-1: code/CDKAtomTypeProperties.groovy

factory = AtomTypeFactory.getInstance(

"org/openscience/cdk/dict/data/cdk-atom-types.owl",

NoNotificationChemObjectBuilder.getInstance()

);

IAtomType type = factory.getAtomType("C.sp3");

41

6. Atom types

Figure 6.1.: 3D structure of methane, showing a sp3 car-
bon surrounded by four hydrogens. Image from
Wikipedia: http://en.wikipedia.org/wiki/File:

Methane-CRC-MW-dimensions-2D.png (public domain).

println "element : $type.symbol"

println "formal change : $type.formalCharge"

println "hybridization : $type.hybridization"

println "neighbors : $type.formalNeighbourCount"

println "lone pairs : " +

type.getProperty(CDKConstants.LONE_PAIR_COUNT)

println "pi bonds : " +

type.getProperty(CDKConstants.PI_BOND_COUNT)

We will see the carbon has these properties:

element : C

formal change : 0

hybridization : SP3

neighbors : 4

lone pairs : 0

pi bonds : 0

For a carbon in benzene (C.sp2), it would list:

element : C

formal change : 0

hybridization : SP2

neighbors : 3

lone pairs : 0

pi bonds : 1

And for the oxygen in hydroxide (C.minus), it would give:

42

http://en.wikipedia.org/wiki/File:Methane-CRC-MW-dimensions-2D.png
http://en.wikipedia.org/wiki/File:Methane-CRC-MW-dimensions-2D.png

6.2. Atom type perception

element : O

formal change : -1

hybridization : SP3

neighbors : 1

lone pairs : 3

pi bonds : 0

A full list of CDK atom types is given in a table in Appendix A.

6.1.1. Hybridization Types

The CDK knows about various hybridization types. Hybridizations are lin-
ear combinations of atomic orbitals and typically used to explain the ori-
entation of atoms attached to the central atom. For example, Figure 6.1
showed one possible hybridization, sp3.
The list of supported hybridization types can be listed with:

Script 6-2: code/HybridizationTypes.groovy

IAtomType.Hybridization.each {

println it

}

listing these types:

S

SP1

SP2

SP3

PLANAR3

SP3D1

SP3D2

SP3D3

SP3D4

SP3D5

6.2. Atom type perception

Because so many cheminformatics algorithms depend on atom type infor-
mation, determining the atom types of the atoms in a molecule is typically
a very first step, after a molecule has been created. When the CDK is not
able to recognize (perceive) the atom type, then this will most certainly

43

6. Atom types

mean that the output of cheminformatics algorithms in undefined. The fol-
lowing two sections will describe how atom types can be perceived. It will
also be shown what happens when the atom type cannot be recognized.

6.2.1. Single atoms

Instead of perceiving atom types for all atoms in the molecule, one may also
perceive the type of a single atom. The former is more efficient when types
need to be perceived for all atoms, but when the molecule only partly
changed, it can be worthwhile to only perceive atom types for only the
affected atoms:

Script 6-3: code/AtomTypePerception.groovy

molecule = new Molecule();

atom = new Atom(Elements.CARBON);

molecule.addAtom(atom);

matcher = CDKAtomTypeMatcher.getInstance(

DefaultChemObjectBuilder.getInstance()

);

type = matcher.findMatchingAtomType(molecule, atom);

AtomTypeManipulator.configure(atom, type);

println "Atom type: $type.atomTypeName"

This reports the perceived atom type for the carbon:

Atom type: C.sp3

6.2.2. Full molecules

Because atom type perception requires the notion of ring systems, with
each atom type being perceived individually, using the above approach
ring detection must be done each time the atom type is perceived for each
atom1. Therefore, perceiving atom types for all atoms in a molecule can
be done more efficiently with the following code:

Script 6-4: code/AtomTypePerceptionMolecule.groovy

matcher = CDKAtomTypeMatcher.getInstance(

DefaultChemObjectBuilder.getInstance()

);

type = matcher.findMatchingAtomType(molecule);

1Theoretically, this information can be cached, but there currently is no suitable solu-
tion for this in the CDK.

44

6.3. Sybyl atom types

6.2.3. Configuring the Atom

We saw earlier how the AtomTypeManipulator class was used to configure
an atom with the configure(IAtom, IAtomType) method. This class also has
a convenience method to perceive and configure all atoms in a molecule
with one call:

Script 6-5: code/AtomTypePerceptionAndConfigure.groovy

AtomContainerManipulator

.percieveAtomTypesAndConfigureAtoms(molecule);

6.3. Sybyl atom types

The Sybyl atom type list is well-known for its application in then mol2
file format (see the Mol2Format class) and used in force fields [1]. Sybyl
atom types can be perceived with the SybylAtomTypeMatcher class, which
perceives CDK atom types and then translates this in to Sybyl atom types:

Script 6-6: code/SybylAtomTypePerception.groovy

molecule = new Molecule();

atom = new Atom(Elements.CARBON);

molecule.addAtom(atom);

matcher = SybylAtomTypeMatcher.getInstance(

DefaultChemObjectBuilder.getInstance()

);

type = matcher.findMatchingAtomType(molecule, atom);

AtomTypeManipulator.configure(atom, type);

println "Atom type: $type.atomTypeName"

This will give you the Sybyl atom type for carbon in methane:

Atom type: C.3

A full list of Sybyl atom types is given in a table in Appendix A.

References

[1] M. Clark, R. D. Cramer, N. Van Opdenbosch, Validation of the general
purpose tripos 5.2 force field, J. Comput. Chem. 1989, 10, 982–1012.

45

7. Graph Properties

Graph theory is the most common representation in cheminformatics, and
with quantum mechanics, rule the informatics side of chemistry. The molec-
ular graph follow graph theory and defines atoms as molecules and bonds
as edge between to atoms. This is by far the only option, and the IBond
allows for more complex representations, but we will focus on the molecular
graph in this chapter.

7.1. Partitioning

If one is going to calculate graph properties, the first thing one often has
to do, is to split ensure that one is looking at a fully connected graph.
Since this is often in combination with ensuring fully connected graphs, the
ConnectivityChecker is a welcome tool. It allows partitioning of the atoms
and bonds in an IAtomContainer into molecules, organized into IMoleculeSet:

Script 7-1: code/ConnectivityCheckerDemo.groovy

atomCon = new AtomContainer();

atom1 = new Atom("C");

atom2 = new Atom("C");

atomCon.addAtom(atom1);

atomCon.addAtom(atom2);

moleculeSet = ConnectivityChecker.partitionIntoMolecules(

atomCon

);

println "Number of isolated graphs: " +

moleculeSet.moleculeCount

Which gives:

Number of isolated graphs: 2

7.2. Spanning Tree

The spanning tree of a graph, is subgraph with no cycles; that spans all
atoms into a, still, fully connected graph:

47

7. Graph Properties

Script 7-2: code/SpanningTreeBondCount.groovy

println "Number of azulene bonds: $azulene.bondCount"

treeBuilder = new SpanningTree(azulene)

azuleneTree = treeBuilder.getSpanningTree();

println "Number of tree bonds: $azuleneTree.bondCount"

which returns:

Number of azulene bonds: 11

Number of tree bonds: 9

As a side effect, it also determines which bonds are ring bonds, and which
are not:

Script 7-3: code/SpanningTreeRingBonds.groovy

ethaneTree = new SpanningTree(ethane)

println "[ethane]"

println "Number of cyclic bonds: " +

ethaneTree.bondsCyclicCount

println "Number of acyclic bonds: " +

ethaneTree.bondsAcyclicCount

azuleneTree = new SpanningTree(azulene)

println "[azulene]"

println "Number of cyclic bonds: " +

azuleneTree.bondsCyclicCount

println "Number of acyclic bonds: " +

azuleneTree.bondsAcyclicCount

giving

[ethane]

Number of cyclic bonds: 0

Number of acyclic bonds: 1

[azulene]

Number of cyclic bonds: 11

Number of acyclic bonds: 0

7.3. Graph matrices

Chemical graphs have been very successfully used as representations of
molecular structures, but are not always to most suitable representation.

48

7.3. Graph matrices

For example, for computation of graph properties often a matrix repre-
sentation is used as intermediate step. The CDK has predefined helper
classes to calculate two kind of graphmatrices: the adjacency matrix and
the distance matrix. Both are found in the cdk.graph.matrix package.

7.3.1. Adjacency matrix

The adjacencymatrix describes which atoms are connected via a covalent
bond. All matrix elements that link to bonded atoms are 1, and those
matrix elements for disconnected atoms are 0. In mathematical terms, the
adjacency matrix A is defined as:

Ai,j =

 0 if i = j
0 if atoms i and j are not bonded
1 if atoms i and j are bonded

(7.1)

The algorithm to calculate this matrix is implemented in the AdjacencyMatrix
class. The matrix is calculated with the static getMatrix(IAtomContainer)
method:

Script 7-4: code/AdjacencyMatrixCalc.groovy

int[][] matrix = AdjacencyMatrix.getMatrix(ethanoicAcid)

for (row=0;row<ethanoicAcid.getAtomCount();row++) {

for (col=0;col<ethanoicAcid.getAtomCount();col++) {

print matrix[row][col] + " "

}

println ""

}

This code outputs the matrix, resulting for ethanoic acid, with the atoms
in the order C, C, O, and O, in:

0 1 0 0

1 0 1 1

0 1 0 0

0 1 0 0

7.3.2. Distance matrix

The distance matrix describes the number of bonds on has to traverse to get
from one atom to another. Therefore, it has zeros on the diagonal and non-
zero values at all other locations. Matrix elements for neighboring atoms
are 1 and others are larger. The CDK uses Floyd’salgorithm to calculate
this matrix [1], which is exposed via the TopologicalMatrix class:

49

7. Graph Properties

Script 7-5: code/DistanceMatrix.groovy

int[][] matrix = TopologicalMatrix.getMatrix(ethanoicAcid)

For the ethanoic acid used earlier, the resulting matrix looks like:

0 1 2 2

1 0 1 1

2 1 0 2

2 1 2 0

7.4. Atom Numbers

Another important aspect of the chemical graph, is that the graph uniquely
places atoms in the molecule. That is, the graphs allows us to uniquely
identify, and therefore, number atoms in the molecule. This is an important
aspect of cheminformatics, and the concept behind canonicalization, such
as used to create canonicalSMILES. The InChI library (see Chapter 12)
implements such an algorithm, and we can use it to assign unique integers
to all atoms in a chemical graph.

7.4.1. Morgan Atom Numbers

Morgan published an algorithm in 1965 to assign numbers to vertices in the
chemical graph [2]. The algorithm does not take into account the element
symbols associated with those vertices, and it only based on the connectiv-
ity. Therefore, we see the same number of symmetry related atoms, even if
they have different symbols. If we run:

Script 7-6: code/MorganAtomNumbers.groovy

oxazole = MoleculeFactory.makeOxazole();

long[] morganNumbers =

MorganNumbersTools.getMorganNumbers(

oxazole

);

for (i in 0..(oxazole.atomCount-1)) {

println oxazole.getAtom(i).symbol +

" " + morganNumbers[i]

}

we see this output:

50

7.4. Atom Numbers

Figure 7.1.: InChI atom numbers of oxazole (left) and benzene (right). This
figure was made with the code given in Section 9.3.

C 64

O 64

C 64

N 64

C 64

7.4.2. InChI Atom Numbers

The InChI library does not have a direct method to calculate atom numbers
from Java, but the CDK can extract these from the auxiliary layer. These
numbers are those listed in the bond layer, but to use these in the CDK
molecule class, we need to mapping of the InChIatomnumbers This method
is made available via the InChINumbersTools class:

Script 7-7: code/InChIAtomNumbers.groovy

oxazole = MoleculeFactory.makeOxazole();

long[] morganNumbers =

InChINumbersTools.getNumbers(

oxazole

);

for (i in 0..(oxazole.atomCount-1)) {

atom = oxazole.getAtom(i)

println atom.symbol +

" " + morganNumbers[i]

}

which outputs:

51

7. Graph Properties

C 2

O 5

C 3

N 4

C 1

It is important to note that because these numbers are used in the connec-
tivity layer, symmetry is broken in assignment of these numbers, allowing
all atoms in, for example, benzene to still be uniquely identified:

Script 7-8: code/InChIAtomNumbersBenzene.groovy

benzene = MoleculeFactory.makeBenzene();

long[] numbers =

InChINumbersTools.getNumbers(

benzene

);

for (i in 0..(benzene.atomCount-1)) {

atom = benzene.getAtom(i)

atom.setProperty(

"AtomNumber",

"" + numbers[i]

)

}

which outputs:

C 1

C 2

C 4

C 6

C 5

C 3

The InChI atom numbers are shown in Figure 7.1.

References

[1] R. W. Floyd, Algorithm 97: Shortest path, Commun. ACM 1962, 5,
345+.

[2] H. L. Morgan, The Generation of a Unique Machine Description for
Chemical Structures-A Technique Developed at Chemical Abstracts
Service. Journal of Chemical Documentation 1965, 5, 107–113.

52

8. Missing Information

Missing information is common place in chemical file formats and line no-
tations. In many cases this information is implicit to the representation,
but recovering it is not always easy, requiring assumptions which may not
be true. Examples of missing informations is the lack of bonds in XYZ
files, and the removed double bond location information for aromatic ring
systems.

8.1. Reconnecting Atoms

XYZ files do not have bond information, and may look like:

5

methane

C 0.25700 -0.36300 0.00000

H 0.25700 0.72700 0.00000

H 0.77100 -0.72700 0.89000

H 0.77100 -0.72700 -0.89000

H -0.77100 -0.72700 0.00000

Fortunately, we can reasonably assume bonds to have a certain length, and
reasonably understand how many connections and atom can have at most.
Then, using the 3D coordinate information available from the XYZ file, an
algorithm can deduce how the atoms must be bonded. The RebondTool
does exactly that. And, it does it efficiently too, using a binary search tree,
which allows it to scale to protein-sized molecules.
Now, the algorithm does need to know what reasonable bond lengths are,
and for this we can use the Jmol list of covalent radii, and we configure the
atoms accordingly:

Script 8-1: code/CovalentRadii.groovy

methane = new Molecule();

methane.addAtom(new Atom("C", new Point3d(0.0, 0.0, 0.0)));

methane.addAtom(new Atom("H", new Point3d(0.6, 0.6, 0.6)));

methane.addAtom(new Atom("H", new Point3d(-0.6,-0.6,0.6)));

53

8. Missing Information

methane.addAtom(new Atom("H", new Point3d(0.6,-0.6,-0.6)));

methane.addAtom(new Atom("H", new Point3d(-0.6,0.6,-0.6)));

factory = AtomTypeFactory.getInstance(

"org/openscience/cdk/config/data/jmol_atomtypes.txt",

methane.getBuilder()

);

for (IAtom atom : methane.atoms()) {

factory.configure(atom);

println "$atom.symbol -> $atom.covalentRadius"

}

which configures and prints the atoms’ radii:

C -> 0.77

H -> 0.32

H -> 0.32

H -> 0.32

H -> 0.32

Then the RebondTool can be used to rebind the atoms:

Script 8-2: code/RebondToolDemo.groovy

RebondTool rebonder = new RebondTool(2.0, 0.5, 0.5);

rebonder.rebond(methane);

println "Bond count: $methane.bondCount"

The number of bonds it found are reported in the last line:

Bond count: 4

8.2. Missing Hydrogens

The CDKHydrogenAdder class can be used to add missing hydrogens. The
algorithm itself adds implicit hydrogens (see Section 2.4), but we will see
how these can be converted into explicit hydrogens. The hydrogen adding
algorithm expects, however, that CDK atom types are already perceived
(see Section 6.2).

8.2.1. Implicit Hydrogens

Hydrogens that are not vertices in the molecular graph are called implicit
hydrogens.They are merely a property of the atom to which they are con-
nected. If these values are not given, which is common in for example
SMILES, they can be (re)calculated with:

54

8.3. 2D Coordinates

Script 8-3: code/MissingHydrogens.groovy

adder = CDKHydrogenAdder.getInstance(

DefaultChemObjectBuilder.getInstance()

);

adder.addImplicitHydrogens(molecule);

println "Atom count: $molecule.atomCount"

println "Implicit hydrogens: $newAtom.hydrogenCount"

which reports:

Atom count: 1

Implicit hydrogens: 4

8.2.2. Explicit Hydrogens

These implicit hydrogens can be converted into explicit hydrogens using
the following code:

Script 8-4: code/ExplicitHydrogens.groovy

adder.addImplicitHydrogens(molecule);

println "Atom count: $molecule.atomCount"

println " .. adding explicit hydrogens .."

AtomContainerManipulator.convertImplicitToExplicitHydrogens(

molecule

);

println "Atom count: $molecule.atomCount"

which reports for the running methane example:

Atom count: 1

.. adding explicit hydrogens ..

Atom count: 5

8.3. 2D Coordinates

Another bit of information missing from the input is often 2D coordinates.
To generate 2D coordinate, the StructureDiagramGenerator can be used:

Script 8-5: code/Layout.groovy

butanol = smilesParser.parseSmiles("CCC(O)C")

sdg = new StructureDiagramGenerator();

55

8. Missing Information

sdg.setMolecule(butanol);

sdg.generateCoordinates(new Vector2d(0, 1));

butanol = sdg.getMolecule();

for (atom in butanol.atoms()) {

println atom.getSymbol() + ": " +

atom.getPoint2d()

}

which will generate the coordinate starting with an initial direction:

C: (0.0, 0.0)

C: (0.0, 1.5)

C: (-1.299038105676657, 2.2500000000000018)

O: (-1.2990381056766538, 3.7500000000000018)

C: (-2.598076211353316, 1.500000000000004)

8.4. Unknown Molecular Formula

Mass spectrometry (MS) is a technology where the experiment yields monoiso-
topic masses for molecules. In order to analyze these further, it is common
to convert them to molecular formula. The MassToFormulaTool has func-
tionality to determine these missing formulae. Miguel Rojas-Chertó devel-
oped this code for use in metabolomics [1]. Basic usage looks like:

Script 8-6: code/MissingMF.groovy

tool = new MassToFormulaTool(

NoNotificationChemObjectBuilder.getInstance()

)

mfSet = tool.generate(133.0968);

for (mf in mfSet) {

println MolecularFormulaManipulator.getString(mf)

}

This will create a long list of possible molecular formula. It is important to
realize that it looks only at what molecular formula are possible with respect
to the corresponding mass. This means that it will include chemically
unlikely molecular formulae:

C3H11N5O

C5H13N2O2

C2H15NO5

CH9N8

56

8.4. Unknown Molecular Formula

H13N4O4

C10H13

C9H11N

CH15N3O4

C6H13O3

C2H11N7

C4H11N3O2

C4H13N4O

C2H9N6O

C6H15NO2

CH13N2O5

H7N9

C8H9N2

H15N5O3

C5H11NO3

C3H13N6

C3H9N4O2

C5H15N3O

C2H13O6

CH7N7O

H11N3O5

C9H9O

C7H7N3

C4H9N2O3

C4H15N5

C2H7N5O2

CH11NO6

H5N8O

C8H7NO

C6H5N4

C5H9O4

C3H7N3O3

CH5N6O2

This is overcome by setting restrictions. For example, we can put restric-
tions on the number of elements we allow in the matched formulae:

Script 8-7: code/MissingMFRestrictions.groovy

rules = new ArrayList<IRule>();

restriction = new ElementRule();

MolecularFormulaRange range = new MolecularFormulaRange();

range.addIsotope(ifac.getMajorIsotope("C"), 8, 20);

57

8. Missing Information

range.addIsotope(ifac.getMajorIsotope("H"), 0, 20);

range.addIsotope(ifac.getMajorIsotope("O"), 0, 1);

range.addIsotope(ifac.getMajorIsotope("N"), 0, 1);

params = new Object[1];

params[0] = range;

restriction.setParameters(params);

rules.add(restriction);

tool.setRestrictions(rules);

Now the list looks more chemical:

C10H13

C9H11N

C9H9O

C8H7NO

C7H19NO

References

[1] M. Rojas-Chertó, P. T. Kasper, E. L. Willighagen, R. Vreeken, T.
Hankemeier, T. Reijmers, Elemental Composition determination based
on MSn, Bioinformatics 2011, DOI 10.1093/bioinformatics/btr4
09.

58

http://dx.doi.org/10.1093/bioinformatics/btr409
http://dx.doi.org/10.1093/bioinformatics/btr409

9. Depiction

The CDK originates from the merger of Jmol and JChemPaint [1]. As such,
CDK has long contained code to depict molecules. However, after the 1.0
series, a rewrite of the code base was initiated, causing the CDK 1.2 series
to not be available with rendering functionality. During the development
of the 1.4 series, the rendering code became gradually available as a set of
patches, and, separately, as a JChemPaint applet. The new rendering code
has entered the CDK.
However, if you need rendering of reaction schemes or the editing function-
ality found in JChemPaint, you still need the CDK-JChemPaint patch.

9.1. Molecules

Rendering molecules to an image is done in a few steps. First, an Image
needs to be defined, for example, of 200 by 200 pixels. The next step is
to define what is to be generated, and how. The most basic rendering re-
quires a few generators: one for the overall scene, one for atoms, and one
for bonds. Therefore, we add a BasicSceneGenerator, a BasicAtomGenera-
tor, and a BasicBondGenerator. We will see later that we can add further
generators to add further visualization. Now that we defined what we want
to have depicted, we construct a renderer. Because we are rendering a
molecule here, we simply use the AtomContainerRenderer.

Figure 9.1.: 2D diagram of triazole.

We also need to define, however, what rendering platform we want to use.
The Java community has a few options, with the AWT/Swing platform to

59

9. Depiction

be the reference implementation provided by Oracle, and the SWT toolkit
as a popular second. In fact, the redesign was needed to be able to support
both widget toolkits. For rendering images, we can use the AWT toolkit.
Therefore, we use a AWTFontManager to help the renderer draw texts. We
get our Graphics2D object to which will be drawn from the earlier created
image, and we set some basic properties. Then we are ready to draw the
molecule to the graphics object with the paint() method, and here again
we need a AWT-specific class: the AWTDrawVisitor.
What then remains is to save the image to a PNG image file with the
ImageIO helper class.
The full code example then looks like:

Script 9-1: code/RenderMolecule.groovy

int WIDTH = 200;

int HEIGHT = 200;

// the draw area and the image should be the same size

Rectangle drawArea = new Rectangle(WIDTH, HEIGHT);

Image image = new BufferedImage(

WIDTH, HEIGHT, BufferedImage.TYPE_INT_RGB

);

// generators make the image elements

List<IGenerator> generators = new ArrayList<IGenerator>();

generators.add(new BasicSceneGenerator());

generators.add(new BasicBondGenerator());

generators.add(new BasicAtomGenerator());

// the renderer needs to have a toolkit-specific font manager

AtomContainerRenderer renderer =

new AtomContainerRenderer(generators, new AWTFontManager());

// the call to ’setup’ only needs to be done on the first paint

renderer.setup(triazole, drawArea);

// paint the background

Graphics2D g2 = (Graphics2D)image.getGraphics();

g2.setColor(Color.WHITE);

g2.fillRect(0, 0, WIDTH, HEIGHT);

// the paint method also needs a toolkit-specific renderer

renderer.paint(triazole, new AWTDrawVisitor(g2));

ImageIO.write(

(RenderedImage)image, "PNG",

new File("RenderMolecule.png")

);

This results in the image of triazole given in Figure 9.1.

60

9.2. Parameters

Figure 9.2.: The atoms symbols are replaced by squares using the Com-
pactAtom rendering parameter.

9.2. Parameters

Rendering wasn’t as much fun, if you could not tune it to your needs.
JChemPaint has long had many rendering parameters, which are now all
converting to the new API. The following code is an modification of the code
example in snippet 9-1, and adds some code to list all rendering parameters
for the three used generators:

Script 9-2: code/RendererParameters.groovy

// generators make the image elements

List<IGenerator> generators = new ArrayList<IGenerator>();

generators.add(new BasicSceneGenerator());

generators.add(new BasicBondGenerator());

generators.add(new BasicAtomGenerator());

// the renderer needs to have a toolkit-specific font manager

AtomContainerRenderer renderer =

new AtomContainerRenderer(generators, new AWTFontManager());

// dump all parameters

for (generator in renderer.generators) {

for (parameter in generator.parameters) {

println "parameter: " +

parameter.class.name.substring(40) +

" -> " +

parameter.value;

}

}

The output will look something like:

parameter: BasicSceneGenerator$BackgroundColor -> java.a...

wt.Color[r=255,g=255,b=255]

61

9. Depiction

parameter: BasicSceneGenerator$ForegroundColor -> java.a...

wt.Color[r=0,g=0,b=0]

parameter: BasicSceneGenerator$Margin -> 10.0

parameter: BasicSceneGenerator$UseAntiAliasing -> true

parameter: BasicSceneGenerator$UsedFontStyle -> NORMAL

parameter: BasicSceneGenerator$FontName -> Arial

parameter: BasicSceneGenerator$ZoomFactor -> 1.0

parameter: BasicSceneGenerator$Scale -> 1.0

parameter: BasicSceneGenerator$FitToScreen -> false

parameter: BasicSceneGenerator$ShowMoleculeTitle -> false

parameter: BasicSceneGenerator$ShowTooltip -> false

parameter: BasicBondGenerator$BondWidth -> 1.0

parameter: BasicBondGenerator$DefaultBondColor -> java.a...

wt.Color[r=0,g=0,b=0]

parameter: BasicBondGenerator$BondLength -> 40.0

parameter: BasicBondGenerator$WedgeWidth -> 2.0

parameter: BasicBondGenerator$BondDistance -> 2.0

parameter: BasicBondGenerator$TowardsRingCenterProportio...

n -> 0.15

parameter: BasicAtomGenerator$AtomColor -> java.awt.Colo...

r[r=0,g=0,b=0]

parameter: BasicAtomGenerator$AtomColorer -> org.opensci...

ence.cdk.renderer.color.CDK2DAtomColors@9300cc

parameter: BasicAtomGenerator$AtomRadius -> 8.0

parameter: BasicAtomGenerator$ColorByType -> true

parameter: BasicAtomGenerator$CompactShape -> SQUARE

parameter: BasicAtomGenerator$CompactAtom -> false

parameter: BasicAtomGenerator$KekuleStructure -> false

parameter: BasicAtomGenerator$ShowEndCarbons -> false

parameter: BasicAtomGenerator$ShowExplicitHydrogens -> t...

rue

Of course, the idea is that you can override default parameter values. That
way you can tune the output to your particular needs. An example use
case is when a diagram gets smaller and the element symbols would become
unreadable. Then you can choose to draw the non-carbon atoms as colored
filled circles. To achieve this, we only need to change the CompactAtom
and CompactShape parameters from the BasicAtomGenerator as listed in
the above output.

We set parameter and extend our first example:

62

9.3. Generators

Script 9-3: code/CompactAtomParam.groovy

model = renderer.getRenderer2DModel();

model.set(CompactAtom.class, true);

model.set(CompactShape.class, Shape.OVAL);

The new output is given in Figure 9.2.

9.3. Generators

We saw earlier that generators are used to convert a chemical graph into
a depiction. These generators implement the IGenerator interface. This
interface is using Java generics, and looks something like:

public interface IGenerator<T extends IChemObject> {

public List<IGeneratorParameter<?>> getParameters();

public IRenderingElement generate(

T object, RendererModel model

);

}

This means, if we extend the IGenerator¡IAtomContainer, the implemen-
tation is expected to provide the method generate(IAtomContainer object,
RendererModel model). Thus, we can create a class to depict atom numbers
with:

Script 9-4: code/AtomNumberGenerator.java

public class AtomNumberGenerator

implements IGenerator<IAtomContainer> {

public IRenderingElement generate(

IAtomContainer ac, RendererModel model

) {

ElementGroup numbers = new ElementGroup();

Vector2d offset = new Vector2d(0.5,0.5);

for (IAtom atom : ac.atoms()) {

Point2d p = new Point2d(atom.getPoint2d());

p.add(offset);

numbers.add(

new TextElement(

p.x, p.y,

(String)atom.getProperty("AtomNumber"),

Color.BLACK

63

9. Depiction

Figure 9.3.: 2D diagram of adenine with numbers atoms.

)

);

}

return numbers;

}

public List<IGeneratorParameter<?>> getParameters() {

return Collections.emptyList();

}

}

We can add this generator in the same way as the other generator:

Script 9-5: code/RenderAdenineWithNumbers.groovy

generators.add(new BasicSceneGenerator());

generators.add(new BasicBondGenerator());

generators.add(new BasicAtomGenerator());

generators.add(new AtomNumberGenerator());

And get a depiction as shown in Figure 9.3.

References

[1] S. Krause, E. L. Willighagen, C. Steinbeck, JChemPaint - Using the
Collaborative Forces of the Internet to Develop a Free Editor for 2D
Chemical Structures, Molecules 2000, 5, 93–98.

64

10. Substructure Searching

The UniversalIsomorphismTester class in the CDK can be used for substruc-
ture searching. It allows you to determine if some structure is a substructure
and what the matching substructures are. As such, this can also be used
to determine if two structures are identical.
In this chapter we will see how the class returns all possible substructure
matches, and we’ll notice that redundancy occurs due to symmetrically
equivalent matches, and how these redundant matches can be removed.

10.1. Exact Search

The UniversalIsomorphismTester class implements an algorithm that was
originally developed for isomorphism checking. However, it can be used for
substructure search too. This section will first show how the class is used
to check if two classes are identical:

Script 10-1: code/Isomorphism.groovy

butane = MoleculeFactory.makeAlkane(4);

println "Is isomorphic: " +

UniversalIsomorphismTester.isIsomorph(

butane, butane

)

The step to substructure searching is made via the isSubgraph() method:

Script 10-2: code/IsSubgraph.groovy

butane = MoleculeFactory.makeAlkane(4);

propane = MoleculeFactory.makeAlkane(3);

println "Propane part of Butane: " +

UniversalIsomorphismTester.isSubgraph(

butane, propane

)

println "Butane part of Propane: " +

UniversalIsomorphismTester.isSubgraph(

65

10. Substructure Searching

propane, butane

)

It gives this output:

Propane part of Butane: true

Butane part of Propane: false

Now, you may wonder why propane is a subgraph of butane, because it
is indeed not. This code is taking advantage of the fact that the factory
returns hydrogen depleted graphs (see Section 2.4). Therefore, butane is a
chain of four carbons, and propane is a chain of three carbons. Then, the
latter is a chemical subgraph of the former.

10.2. Matching Substructures

Substructure searching is finding in a target molecule the atoms that match
the given searched substructure. With the UniversalIsomorphismTester we
can do:

Script 10-3: code/Overlap.groovy

butane = MoleculeFactory.makeAlkane(4)

ccc = MoleculeFactory.makeAlkane(3)

hits = UniversalIsomorphismTester

.getOverlaps(

butane, ccc

)

println "Number of hits: " + hits.size

hits.each { substructure ->

println "Substructure in Molecule:"

println " #atoms: " + substructure.atomCount

}

However, this only returns us one match, selected as being the largest:

Number of hits: 1

Substructure in Molecule:

#atoms: 3

There is an alternative:

66

10.3. Fingerprints

Script 10-4: code/Substructure.groovy

butane = MoleculeFactory.makeAlkane(4);

ccc = MoleculeFactory.makeAlkane(3);

hits = UniversalIsomorphismTester

.getSubgraphAtomsMaps(

butane, ccc

)

println "Number of hits: " + hits.size

hits.each { substructure ->

println "Atoms in substructure: " +

substructure.size

}

The getSubgraphAtomsMaps() methods returns a List〈List〈RMap〉〉 object,
where each List〈RMap〉 represents on substructure match. When we look
at the outer list, we see that the subgraph of three carbon atoms is found
4 times in butane, each with 3 atoms:

Number of hits: 4

Atoms in substructure: 3

Atoms in substructure: 3

Atoms in substructure: 3

Atoms in substructure: 3

This is caused by the symmetrical nature of the substructure. It can map
twice onto the same three atoms in butane: once in the forward direction,
and once in the backward direction.

10.3. Fingerprints

Substructure searching is a relatively slow algorithm, and the time re-
quired to compare two molecules scales with the number of atoms in each
molecule. To reduce the computation time, molecular fingerprints were in-
vented. There are two key aspects to fingerprints that make them efficient:
first, they have a fixed length so that the time to compare two molecule is
independent of the size of the two structures; secondly, the fingerprint of a
substructure always matches the fingerprint of any molecules that has that
substructure.
In this section we will see two fingerprint types available in the CDK: a
substructure based fingerprint, and a patch based fingerprint. Before I will
explain how these fingerprints are created, we will first look at the BitSet
class that is used by the CDK to represent these fingerprints. Consider this
code:

67

10. Substructure Searching

Script 10-5: code/BitSetDemo.groovy

bitset = new BitSet(10);

println "Empty bit set: $bitset";

bitset.set(3);

bitset.set(7);

println "Two bits set: $bitset";

If we analyze the output, we see that all set bits are listed, and that all
other bits are not:

Empty bit set: {}

Two bits set: {3, 7}

Let us now consider a simple substructure fingerprint of length four with
the following bit definitions:

• bit 1: molecule contains a carbon

• bit 2: molecule contains a nitrogen

• bit 3: molecule contains a oxygen

• bit 4: molecule contains a chlorine

Let’s call this fingerprinter SimpleFingerprinter:

Script 10-6: code/SimpleFingerprinter.java

public class SimpleFingerprinter implements IFingerprinter {

Map<String,Integer> map = new HashMap<String,Integer>() {{

put("C", 1);

put("N", 2);

put("O", 3);

put("Cl", 4);

}};

public BitSet getFingerprint(IAtomContainer molecule) {

BitSet bitSet = new BitSet(getSize());

for (IAtom atom : molecule.atoms()) {

if (map.containsKey(atom.getSymbol()))

bitSet.set(map.get(atom.getSymbol()));

}

return bitSet;

}

public int getSize() {

68

10.3. References

return 4;

}

}

We can then calculate the fingerprints for ethanol and benzene:

Script 10-7: code/SimpleFingerprintDemo.groovy

fingerprinter = new SimpleFingerprinter();

println "ethanol: " + fingerprinter.getFingerprint(ethanol)

println "benzene: " + fingerprinter.getFingerprint(benzene)

and we get these bit sets:

ethanol: {1, 3}

benzene: {1}

Now, we can replace the presence of a particular atom, by the presence of a
substructure, such as a phenyl or a carbonyl group. We have then defined
a substructure fingerprint.
The CDK has several kinds of fingerprints, including path-based finger-
prints (Fingerprinter and HybridizationFingerprinter), a MACSS fingerprint
(MACSSFingerprinter) [1], and the PubChem fingerprint (PubChemFingerprinter).
These fingerprints have been used for various tasks, including ligand clas-
sification [2], and databases like BRENDA [3] and TIN [4].

References

[1] J. L. Durant, B. A. Leland, D. R. Henry, J. G. Nourse, Reoptimiza-
tion of MDL Keys for Use in Drug Discovery, Journal of Chemical
Information and Computer Sciences 2002, 42, 1273–1280.

[2] C. Ma, L. Wang, X.-Q. Xie, Ligand Classifier of Adaptively Boosting
Ensemble Decision Stumps (LiCABEDS) and Its Application on Mod-
eling Ligand Functionality for 5HT-Subtype GPCR Families, Journal
of Chemical Information and Modeling 2011, 51, 521–531.

[3] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn,
D. Schomburg, BRENDA, the enzyme database: updates and major
new developments, NUCLEIC ACIDS RESEARCH 2004, 32, DOI
10.1093/nar/gkh081.

[4] K. V. Dorschner, D. Toomey, M. P. Brennan, T. Heinemann, F. J.
Duffy, K. B. Nolan, D. Cox, M. F. A. Adamo, A. J. Chubb, TIN A
Combinatorial Compound Collection of Synthetically Feasible Multi-
component Synthesis Products, Journal of Chemical Information and
Modeling 2011, 51, 986–995.

69

http://dx.doi.org/10.1093/nar/gkh081

11. Molecular Properties

Cheminformatics is about molecular properties and chemistry in general the
field of finding chemicals with new properties1. We keep databases to store
those properties, and we develop methods to predict and understand those
properties. Prediction is important for one reason: there are too many
chemical structures and we cannot experimentally measure the properties
for all of them. The number of molecules is often said to be relevant to
drug discovery is in the order of 1060. The largest current databases have
less then 108 structures. This chapter will show how the CDK can be used
to calculate a number of molecular properties.

11.1. Molecular Mass

The simplest but perhaps the most reported molecular property is the
molecular mass. It is important to realize this mass is not constant, and
depends on the natural mixture of isotopes, which is not constant itself. If
you have an atom container with explicit hydrogens, you can loop over the
atoms to calculate the molecular mass as summation of the masses of the
individual atoms:

Script 11-1: code/CalculateMolecularWeight.groovy

molWeight = 0.0

for (atom in molecule.atoms()) {

molWeight += isotopeInfo.getNaturalMass(atom)

}

In this case, you can also use the AtomContainerManipulator:

Script 11-2: code/CalculateMolecularWeightShort.groovy

molWeight = AtomContainerManipulator

.getNaturalExactMass(molecule)

The element masses are calculated from the accurate isotope masses and
natural abundances defined in the Blue Obelisk Data Repository [1].

1Prof. Gasteiger in 2006 gave a lecture at Cologne University where he expressed this
view. It sticked around.

71

11. Molecular Properties

11.1.1. Implicit Hydrogens

If your atom container has implicithydrogens specified, you will have the
above code will not be sufficient. Instead, your code should look like:

Script 11-3: code/CalculateMolecularWeightImplicitHydrogens.groovy

molWeight = 0.0

hWeight = isotopeInfo.getNaturalMass(Elements.HYDROGEN)

for (atom in molecule.atoms()) {

molWeight += isotopeInfo.getNaturalMass(atom)

if (atom.getImplicitHydrogenCount() != CDKConstants.UNSET)

molWeight += atom.getImplicitHydrogenCount() *

hWeight

}

11.2. LogP

The partition coefficient describes how a molecular structure distributes
itself over two immiscible solvents. The logarithm of the partition coeffi-
cient (LogP) between octanol and water is often used in cheminformatics
to describe hydrophobicity [2, 3]. Wikipedia gives this equation 2:

log Poct/wat = log

([
solute

]
octanol[

solute
]un−ionized
water

)
(11.1)

This equation assumes that the solute is neutral, which may involve chang-
ing the pH of the water.
The CDK has implemented an algorithm based on the XLogP algorithm [4,
5]. The code is available via the descriptor API. It can be used to calculate
the LogP for a single molecule. The implementation expects explicit hy-
drogens, so you need to add those if not present yet (see Section 8.2). The
calculation returns a DoubleResult following the descriptor API:

Script 11-4: code/XLogP.groovy

oxazone = MoleculeFactory.makeOxazole();

benzene = MoleculeFactory.makeBenzene();

// add explicit hydrogens ...

descriptor = new XLogPDescriptor()

println "LogP of oxazone: " +

2http://en.wikipedia.org/wiki/Partition_coefficient

72

http://en.wikipedia.org/wiki/Partition_coefficient

11.3. Total Polar Surface Area

((DoubleResult)descriptor.calculate(oxazone).getValue())

.doubleValue()

println "LogP of benzene: " +

((DoubleResult) descriptor.calculate(benzene).getValue())

.doubleValue()

which returns:

LogP of oxazone: -0.14800000000000002

LogP of benzene: 2.082

11.3. Total Polar Surface Area

Another properties that frequently returns in cheminformatics is the Total
Polar Surface Area (TPSA). The code in the CDK uses an algorithm pub-
lished by Ertl in 2000 [6]. Here too, the descriptor API is used, so that the
code is quite similar to that for the logP calculation:

Script 11-5: code/TPSA.groovy

oxazone = MoleculeFactory.makeOxazole();

benzene = MoleculeFactory.makeBenzene();

// add explicit hydrogens ...

descriptor = new TPSADescriptor()

println "TPSA of oxazone: " +

((DoubleResult)descriptor.calculate(oxazone).getValue())

.doubleValue()

println "TPSA of benzene: " +

((DoubleResult) descriptor.calculate(benzene).getValue())

.doubleValue()

which returns:

TPSA of oxazone: 21.59

TPSA of benzene: 0.0

11.4. Aromaticity

I am not fond of the aromaticity concept; first of all, because there is no uni-
versal definition. Most cheminformatics toolkits have different definitions
of aromaticity, and so does the CDK. If a compound is aromatic, and if so,
which atoms and bonds are involved in an aromatic system are not easily

73

11. Molecular Properties

defined. Ultimately, it is the delocalization energies that has a large influ-
ence on this, which are hard to reproduce with heuristic rules in chemical
graph theory-based algorithms. Nevertheless, the CDK does its best.
Atom type perception is required first (see Section 6.2) before we use the
CDKHueckelAromaticityDetector:

Script 11-6: code/Aromaticity.groovy

mol = MoleculeFactory.makeBenzene()

AtomContainerManipulator.

percieveAtomTypesAndConfigureAtoms(mol);

aromatic = CDKHueckelAromaticityDetector.

detectAromaticity(mol);

println "benzene is " +

(aromatic ? "" : "not ") + "aromatic."

which tells us that

benzene is aromatic.

References

[1] R. Guha, M. T. Howard, G. R. Hutchison, P. Murray-Rust, H. Rzepa,
C. Steinbeck, J. Wegner, E. L. Willighagen, The Blue Obelisk - Inter-
operability in Chemical Informatics, Journal of Chemical Information
and Modeling 2006, 46, 991–998.

[2] A. Leo, C. Hansch, D. Elkins, Partition coefficients and their uses,
Chemical Reviews 1971, 71, 525–616.

[3] A. J. Leo, Calculating log Poct from structures, Chemical Reviews
1993, 93, 1281–1306.

[4] R. Wang, Y. Fu, L. Lai, A New Atom-Additive Method for Calculating
Partition Coefficients, Journal of Chemical Information and Computer
Sciences 1997, 37, 615–621.

[5] R. Wang, Y. Gao, L. Lai, Calculating partition coefficient by atom-
additive method, Perspectives in Drug Discovery and Design 2000,
19, 47–66.

[6] P. Ertl, B. Rohde, P. Selzer, Fast Calculation of Molecular Polar Sur-
face Area as a Sum of Fragment-Based Contributions and Its Ap-
plication to the Prediction of Drug Transport Properties, Journal of
Medicinal Chemistry 2000, 43, 3714–3717.

74

12. InChI

The IUPAC International Chemical Identifier (InChI, http://www.iupac.
org/inchi/) is an identifier developed to provide a database-independent,
unique identifier for small organic molecules [1]. The CDK uses the JNI-InChI
library by Adams (http://jni-inchi.sf.net/) to provides a Java layer
on top of the open source InChI library written in C. The InChI is design to
be unique for molecules, and one InChI always identifies the same molecule,
and as such is aimed to be used to look up molecules in databases or on
the internet [2, 3].

To overcome the common problem caused by tautomerism in database look
up, the InChI applies a number of rules to determine what the possible
tautomers for a particular chemical graph are. This makes it possible to find
ethanal in a database when the less-stable tautomer ethenol was searched.
Both give rise to the same InChI, as we will see later.

First, we need to see how we can generate InChIs in the CDK. It starts with
an InChIGeneratorFactory to create an InChIGenerator. This generator is
then used to run the InChI software on the given molecule. The algorithm
might fail, for various reasons, and we need to check if the generation
succeeded too:

Script 12-1: code/InChIGeneration.groovy

factory = InChIGeneratorFactory.getInstance();

generator = factory.getInChIGenerator(methane);

if (generator.getReturnStatus() == INCHI_RET.OKAY)

print generator.getInchi()

which gives the InChI for methane:

InChI=1S/CH4/h1H4

This snippet of code has generated us a StandardInChI. To explain what a
Standard InChI is, we first need to briefly look at the layers in InChIs.

75

http://www.iupac.org/inchi/
http://www.iupac.org/inchi/
http://jni-inchi.sf.net/

12. InChI

12.1. Layers

An InChI is like an onion. No, not in the sense that it makes you cry, but in
the sense that is has layers 1. Each layer adds more detailed information to
the InChI of a molecule. The aforementioned InChI for methane has a layer
reflecting the molecular formula (/CH4) and a hydrogen layer showing the
number of hydrogens for each atom (/h1H4). Except for the molecular
formula layer, most layers start with a lower case character, as is visible in
the hydrogen layer, indicated by the (/h).
Another important thing to note is that hydrogens are not explicitly defined
in the connection table (see Section 2.4). Therefore, the InChI for methane
does not have a connectivity layer, but formic acid, mierezuur in Dutch,
does (/c2-1-3):

InChI=1S/CH2O2/c2-1-3/h1H,(H,2,3)

You see that the connectivitylayer shows how the atoms are connected, and
this layer it does not give bond orders. The atom numbering follows the
molecular formula, where the hydrogens are not numbered. Therefore, the
carbon has atom number 1, while the oxygens are atoms 2 and 3.
Now, have a careful look at this InChI for formic acid. Take a few minutes
for this, and make sure you fully understand the connectivity and hydrogen
layers2.
Other layers the InChI supports include those for, for example, stereo-
chemistry. The InChI software has a number of option to enable or disable
certain layers. This explains the existence of the Standard InChI. This
version of the InChI is created when a particular set of layers is used, al-
lowing the InChI string to be used as uniqueidentifier: because it removes
the choice of layers, one molecule always has the same standard InChI,
whereas a molecule can have multiple InChI string depending on turning
on or off certain layers. However, it is of utmost importance to realize that
a particular InChI layer is always unique to the molecule, independent of
layers being added or removed.
A Standard InChI string is identified by the 1S version number. If non-
standard layers are turned on, the version is simply 1, as we will see shortly.
If you had not cheated in the mierezuur exercise, you will have noted that
one hydrogen is delocalized: it can be attached to either of the oxygens.
This feature is picked up by the InChI algorithm to compensate for certain
kinds of tautomerism. If we want to fix the hydrogens to a particular atom,
we use the following code:

1See Shrek.
2The answer is given in code snippet 12-2.

76

12.2. Tautomerism

Figure 12.1.: 2D diagram of one of the tautomers of adenine.

Script 12-2: code/InChIMierezuurFixed.groovy

factory = InChIGeneratorFactory.getInstance();

generator = factory.getInChIGenerator(mierezuur, "FixedH");

print generator.getInchi()

which results in this non-standard InChI:

InChI=1/CH2O2/c2-1-3/h1H,(H,2,3)/f/h2H

By adding the FixedHoption for the InChI algorithm, we added the fixedhydrogenlayer
(/f/h2H). This additional layer assigns one mobile hydrogen to the second
atom, which is the first oxygen.

12.2. Tautomerism

Recently, Mark Rijnbeek implemented an approach published by Thalheim
et al. [4] for using the InChI library for tautomer generation. While this
will not calculate all tautomers for a given structure, it can still be useful as
a quick indication of tautomerism. For example, the tautomers of adenine
(see Figure 12.1) can be calculated with this code:

Script 12-3: code/AdenineTautomers.groovy

AtomContainerManipulator.percieveAtomTypesAndConfigureAtoms(

adenine

);

tautomerGenerator = new InChITautomerGenerator();

tautomers = tautomerGenerator.getTautomers(adenine)

for (tautomer in tautomers) {

println smilesGenerator.createSMILES(tautomer)

}

77

12. InChI

giving the SMILES for the eight possible tautomers returned by this method:

N=C1N=CNC=2NC=NC1=2

N=C1NC=NC=2NC=NC1=2

N=C1N=CNC=2N=CNC1=2

N=C2NC=NC=1N=CNC=12

N=1C=NC2=C(N=CNC=12)N

N1=CN=C2NC=NC2(=C1N)

N=1C=NC=2C=1N=CNC=2(N)

N=1C=NC(N)=C2NC=NC=12

It is important to note, that this functionality does not yet use the experi-
mental /Ket and /15T from the InChI 1.03 release. Therefore, keto-enoltautomerism
and 1,5-tautomerism will not be detected. In general, the heuristic rules for
tautomerism detection do not catch all possible tautomers. In fact, the
current code only finds 6 out of the 42 known tautomers for warfarin [5].

12.3. Parsing InChIs

Adam’s CDK interface to InChI also allows parsing of InChIs into IAtom-
Containers. The basic workflow looks like:

Script 12-4: code/ParsingInChIs.groovy

InChIToStructure parser = new InChIToStructure(

"InChI=1/CH2O2/c2-1-3/h1H,(H,2,3)/f/h2H",

DefaultChemObjectBuilder.getInstance()

);

IAtomContainer container = parser.getAtomContainer();

which will create an IAtomContainer with the following SMILES:

O=CO

References

[1] S. E. Stein, S. R. Heller, D. Tchekhovskoi Proceedings of the 2003
International Chemical Information Conference, 2003, pp. 131–143.

[2] G. Wohlgemuth, P. K. Haldiya, E. Willighagen, T. Kind, O. Fiehn,
The Chemical Translation Service: web-based tool to improve stan-
dardization of metabolomic reports, Bioinformatics (Oxford England)
2010, 26, 2647–2648.

78

12.3. References

[3] S. J. Coles, N. E. Day, P. Murray-Rust, H. S. Rzepa, Y. Zhang, En-
hancement of the chemical semantic web through the use of InChI
identifiers, Org. Biomol. Chem. 2005, 3, 1832–1834.

[4] T. Thalheim, A. Vollmer, R.-U. Ebert, R. Kühne, G. Schüürmann,
Tautomer Identification and Tautomer Structure Generation Based
on the InChI Code, Journal of Chemical Information and Modeling
2010, 50, 1223–1232.

[5] W. Porter, Warfarin: history, tautomerism and activity, Journal of
Computer-Aided Molecular Design 2010, 24, 553–573–573.

79

13. How to install the CDK

This chapter explains how the CDK can be installed on your favorite plat-
form. The first sections discusses how the binary version can be installed,
and the second section shows how the CDK can be compiled directly from
the source code.

13.1. Binary Version

Like most Java software, CDK can be downloaded in binary form as .jar
file. This binary distribution is a precompiled version of the CDK library
and can be directly used as cheminformatics library, without further pro-
cessing. The CDK 1.4.1 version can be downloaded from http://sf.net/

projects/cdk/files/cdk(development)/1.4.1/cdk-1.4.1.jar/download.
This Java Archive file includes all third party dependencies, and only re-
quires a Java Virtual Machine to be used. Alternatively, you can also find
a precompiled version on the complementary CD.

13.2. Source Code

There are two primary methods to download the source code for the CDK:
you can download the source distribution, or you can check out the source
code from the Git repository. The source distribution has the advantage
that you run exactly the version of the CDK for which you downloaded the
source code; using Git has the approach to run any version you like, but
requires a bit more effort to get going.
The source distribution with all required third party libraries (except a
Java Virtual Machine) can be downloaded as tar.gz from http://sf.net/

projects/cdk/files/cdk(development)/1.4.1/cdk-src+libs-1.4.1.tar.

gz/download or as ZIP file from http://sf.net/projects/cdk/files/

cdk(development)/1.4.1/cdk-src+libs-1.4.1.zip/download.

13.2.1. Git Repository

The CDK source code is hosted in a Git repository on GitHub at https:

//github.com/cdk/cdk/, and mirrored at SourceForge http://cdk.git.

81

http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-1.4.1.jar/download
http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-1.4.1.jar/download
http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-src+libs-1.4.1.tar.gz/download
http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-src+libs-1.4.1.tar.gz/download
http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-src+libs-1.4.1.tar.gz/download
http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-src+libs-1.4.1.zip/download
http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-src+libs-1.4.1.zip/download
https://github.com/cdk/cdk/
https://github.com/cdk/cdk/
http://cdk.git.sourceforge.net/git/gitweb.cgi?p=cdk/cdk;a=summary
http://cdk.git.sourceforge.net/git/gitweb.cgi?p=cdk/cdk;a=summary

13. How to install the CDK

sourceforge.net/git/gitweb.cgi?p=cdk/cdk;a=summary. You will there
find the complete history of the source code of the CDK library. Git
(http://git-scm.com/) is a version control system that allows us to de-
velop the CDK in a distributed manner. Everyone is invited to write
patches, publish them on their web site, upload them to the CDK patch
tracker, or make them available otherwise. After a formal code review pro-
cess, the CDK release managers can decide to include them in the main
distribution.
In contrast to downloading the source distribution, by checking out the
CDK from the git repository, you get the full history of the project. All
changes ever made since the start of the project are visible. While Git is
pretty efficient, this still is about 100MB in raw data, and increasing almost
evert day. All these changes are available as patches, and if you ever decide
to submit a patch, your name will end up in the commit history of the
library.
The command to make a local copy of the git repository on SourceForge
looks like:

$ git clone git://github.com/cdk/cdk.git

This will get you a copy of trunk, but since we discuss CDK 1.4.1 , you
will need to get the cdk-1.4.1 branch which you can do by making a local
branch:

$ git checkout -b local-1.4.1 origin/cdk-1.4.1

Compiling the library requires you have at least Ant 1.7.1 installed, which
can be downloaded from http://ant.apache.org/.
The source code can be compile by running:

$ ant clean dist-large

13.3. Debian GNU/Linux & Ubuntu

Debian GNU/Linux and Ubuntu users can install older version of the CDK
with aptitude:

$ sudo aptitude install libcdk-java

If you wish to compile CDK 1.4.1 , you can take advantage of the build-
dependencies for the above package. With the following command you can
download most of the required dependencies:

$ sudo apt-get build-dep libcdk-java

82

http://cdk.git.sourceforge.net/git/gitweb.cgi?p=cdk/cdk;a=summary
http://cdk.git.sourceforge.net/git/gitweb.cgi?p=cdk/cdk;a=summary
http://git-scm.com/
http://ant.apache.org/

14. Writing CDK Applications

This book gave a lot of small code snippets, which can easily be integrated
in larger programs. But the book has not shown so far what such a larger
program can look like. This book is not about Java programming, and
therefore did not introduce those aspects of using the CDK. Nevertheless,
this section gives a brief introduction on how to write a Java application,
a BeanShell script, and a Groovy script. Most code snippets in this book
are actually Groovy scripts, as you can see on the complementary CD.

14.1. A (Very) Basic Java Application

Given you already downloaded the CDK jar file, or compiled it from scratch,
consider the following piece of Java source code:

import org.openscience.cdk.interfaces.IAtom;

import org.openscience.cdk.Atom;

public class BasicProgram {

public static void main(String args[]) throws Exception {

IAtom atom = new Atom("C");

System.out.println(atom);

}

}

This Java application can then be compiled with javac to byte code, cre-
ating a BasicProgram.class:

$ javac -classpath cdk-1.4.1.jar BasicProgram

And then run with:

$ java -classpath .:cdk-1.4.1.jar BasicProgram

The downside of pure Java applications is the relative overhead needed
to define an application. Other programming language provide a simpler
syntax, including the BeanShell, Groovy, and Clojure described below.

83

14. Writing CDK Applications

14.2. BeanShell

BeanShell (http://www.beanshell.org/) is a simple interactive environ-
ment where one can experiment with Java libraries. For example, consider
this simple script:

Script 14-1: code/BeanShell.bsh

import org.openscience.cdk.Atom;

Atom atom = new Atom("C");

print(atom);

Figure 14.1 shows the effect of running this script in the graphical frontend
xbsh.
Beanshell needs to be made aware of the CLASSPATH, which uses the
common approach for setting this:

$ CLASSPATH=cdk-1.4.1.jar bsh

Figure 14.1.: Screenshot of xbsh showing a simple BeanShell script.

14.3. Groovy

Groovy (http://groovy.codehaus.org/) is a programming language that
advertizes itself as an agile and dynamic language for the Java Virtual
Machine. Indeed, like BeanShell, it provides an environment to quickly try
Java code. However, unlike BeanShell, it provides more linguistic changes
to the Java language, and adds quite interesting sugar too.
A simple script may look like:

84

http://www.beanshell.org/
http://groovy.codehaus.org/

14.3. Groovy

Script 14-2: code/IterateAtoms.groovy

for (IAtom atom : molecule.atoms()) {

System.out.println(atom.getSymbol());

}

But in Groovy it can also look like:

Script 14-3: code/IterateAtomsGroovy.groovy

for (atom in molecule.atoms()) {

println atom.getSymbol()

}

Groovy needs to aware of the localtion of the CDK so that it can properly
load the classes, for which we uses the common CLASSPATH approach.
To start the GUI console shown in Figure 14.2:

$ CLASSPATH=cdk-1.4.1.jar groovyConsole

14.3.1. Closures

One of the more interesting features of Groovy is something called closures.
I have know this programming pattern from R and happily used for a long
time, but only recently learned them to be called closures. Closures allow
you to pass a method as a parameter, which can have many applications,
and I will show one situation here.
Consider the calculation of molecular properties which happen to be a mere
summation over atomic properties, such as the total charge, or the molec-
ular weight. Both these calculations require an iteration over all atoms. If
we need those properties at the same time, we can combine the calcultion
into one iteration. However, for the purpose of this section, we will not
combine the two calculations to use one iteration, but use closures instead.
Therefore, we have two slices of code which share a large amount of source
code statements:

Script 14-4: code/CalculateTotalCharge.groovy

totalCharge = 0.0

for (atom in molecule.atoms()) {

totalCharge += atom.getCharge()

}

and

85

14. Writing CDK Applications

Figure 14.2.: Screenshot of groovyConsole showing a simple Groovy script.

Script 14-5: code/CalculateMolecularWeight.groovy

molWeight = 0.0

for (atom in molecule.atoms()) {

molWeight += isotopeInfo.getNaturalMass(atom)

}

In both cases we want to apply a custom bit of code to all atoms, while the
iteration over the atoms is identical. Groovy allows us to share the common
code, by defining a forAllAtoms function into which we inject a code block
using closures:

Script 14-6: code/GroovyClosureForAllAtoms.groovy

def forAllAtoms(molecule, block) {

for (atom in molecule.atoms()) {

86

14.4. Clojure

block(atom)

}

}

totalCharge = 0.0

forAllAtoms(molecule, { totalCharge += it.getCharge() })

totalCharge = String.format(’%.2f’, totalCharge)

println "Total charge: ${totalCharge}"

molWeight = 0.0

forAllAtoms(molecule, {

molWeight += isotopeInfo.getNaturalMass(it)

})

molWeight = String.format(’%.2f’, molWeight)

println "Molecular weight: ${molWeight}"

which gives the output:

Total charge: -0.00

Molecular weight: 16.04

This language feature makes it possible to write more compact code.

14.4. Clojure

Clojure is a programming language which runs in a Java Virtual Machine,
just like Groovy [1]. However, being Lisp-based, the syntax as well as its
characteristics is quite different. A full introduction it far outside the scope
of this book, but to just gave a taste of what Clojure looks like, the following
code is given:

(import ’(org.openscience.cdk Atom Bond Molecule))

(def ethanol (Molecule.))

(.addAtom ethanol (Atom. "C"))

(.addAtom ethanol (Atom. "C"))

(.addAtom ethanol (Atom. "O"))

(println methane)

14.5. Other Languages

There are even other languages at your disposal for using the CDK library.
This book will mostly use Groovy code snippets, but this section points
a few alternatives. These alternatives do not always provide access to the
full CDK API, but at the same time often do offer a customized API which
hides certain more technical details.

87

14. Writing CDK Applications

14.5.1. Bioclipse

Bioclipse has a custom scripting language with a JavaScript interface [2, 3].
Functionality is provided using managers, and CDK functionality is pro-
vided using two such managers. Bioclipse can be downloaded from http://

www.bioclipse.net/ and example scripts are available from the following
bookmark lists: http://delicious.com/tag/bioclipse+gist+manager:

cdk and http://delicious.com/tag/bioclipse+gist+manager:cdx.

14.5.2. Cinfony

Cinfony is a Python module that integrates to the CDK as well as two
other cheminformatics toolkits [4]. Cinfony can be downloaded from http:

//code.google.com/p/cinfony/.

14.5.3. R

The statistical software R (http://www.r-project.org/) also provide ac-
cess to the CDK functionality via the rcdk package [5]. This package can be
downloaded from CRAN from http://cran.r-project.org/web/packages/

rcdk/.

References

[1] S. Halloway, Programming Clojure (Pragmatic Programmers), Prag-
matic Bookshelf, 2009.

[2] O. Spjuth, T. Helmus, E. L. Willighagen, S. Kuhn, M. Eklund, J. Wa-
gener, P. Murray-Rust, C. Steinbeck, J. E. Wikberg, Bioclipse: an open
source workbench for chemo- and bioinformatics, BMC Bioinformatics
2007, 8, 59+.

[3] O. Spjuth, J. Alvarsson, A. Berg, M. Eklund, S. Kuhn, C. Mäsak, G.
Torrance, J. Wagener, E. L. Willighagen, C. Steinbeck, J. E. Wikberg,
Bioclipse 2: A scriptable integration platform for the life sciences, BMC
Bioinformatics 2009, 10, 397+.

[4] N. M. O’Boyle, G. R. Hutchison, Cinfony–combining Open Source
cheminformatics toolkits behind a common interface. Chemistry Cen-
tral journal 2008, 2, DOI 10.1186/1752-153X-2-24.

[5] R. Guha, Chemical Informatics Functionality in R, Journal of Statis-
tical Software 2007, 18, 1–16.

88

http://www.bioclipse.net/
http://www.bioclipse.net/
http://delicious.com/tag/bioclipse+gist+manager:cdk
http://delicious.com/tag/bioclipse+gist+manager:cdk
http://delicious.com/tag/bioclipse+gist+manager:cdx
http://code.google.com/p/cinfony/
http://code.google.com/p/cinfony/
http://www.r-project.org/
http://cran.r-project.org/web/packages/rcdk/
http://cran.r-project.org/web/packages/rcdk/
http://dx.doi.org/10.1186/1752-153X-2-24

15. Documentation

15.1. JavaDoc

Besides this book, and in particular the keyword index at the end, you will
find the Java API documentation (JavaDoc) valuable. If you have down-
loaded the source distributions will, you can generate the documentation
with Ant in the doc/cdk-javadoc-1.4.1 folder, using:

$ ant -f javadoc.xml html

Alternatively, you can download the documentation here at http://sf.

net/projects/cdk/files/cdk(development)/1.4.1/cdk-javadoc-1.4.

1.tar.gz/download.

15.2. Other Sources

More information can be found in the following resource:

• Planet CDK: http://pele.farmbio.uu.se/planetcdk/

• CDK Wiki: https://apps.sourceforge.net/mediawiki/cdk/index.
php?title=Documentation

15.2.1. Unit tests

One excellent source of information on how to use particular classes in the
CDK, is to check their respective unit tests. This does require some dare,
as you will have to dive into the source code repository, and you need to
find the appropriate unit tests. Now, for the latter the CDK has adopted
a naming scheme. First of all, the unit tests for a certain class are located
in a test class in the same package. However, the functionality and their
respective unit tests are located in different folders. To demonstrate that,
compare these two URLs (to the current GitHub source code repository):

1. src/main/org/openscience/cdk/Atom.java, and

2. src/test/org/openscience/cdk/AtomTest.java.

89

http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-javadoc-1.4.1.tar.gz/download
http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-javadoc-1.4.1.tar.gz/download
http://sf.net/projects/cdk/files/cdk (development)/1.4.1/cdk-javadoc-1.4.1.tar.gz/download
http://pele.farmbio.uu.se/planetcdk/
https://apps.sourceforge.net/mediawiki/cdk/index.php?title=Documentation
https://apps.sourceforge.net/mediawiki/cdk/index.php?title=Documentation
https://github.com/cdk/cdk/blob/cdk-1.4.x/src/main/org/openscience/cdk/Atom.java
https://github.com/cdk/cdk/blob/cdk-1.4.x/src/test/org/openscience/cdk/AtomTest.java

15. Documentation

We can here see that the functionality itself is found in the code/main folder,
while the tests are found in the src/test folder. These two URLs also show
the pattern in file naming, where the test class uses a Test suffix in the class
name.
It his highly recommended to browse these classes.

90

16. Migration

Going from one CDK release to another brings in API changes. While the
project tries to keep the number of changes minimal, these are inevitible.
This chapter discusses some API changes, and shows code examples on
how to change your code. Section 16.1 discusses changes from 1.2 to 1.4,
Section 16.2 discusses changes from 1.0 to 1.2, and Section 16.3 discusses
changes from 1.0 to 1.4,
The set of changes include changed class names. For example, the CDK 1.2
class MDLWriter is now called MDLV2000Writer to reflect the V2000 version
of the MDL formats.

16.1. CDK 1.2 to 1.4

This section highlights the important API changes between the CDK 1.2
and 1.4 series.

16.1.1. Creating objects with an IChemObjectBuilder

One very prominent changes is how the IChemObjectBuilder works.
The CDK 1.2 code:

IChemObjectBuilder builder =

DefaultChemObjectBuilder.getInstance();

IMolecule molecule = builder.newMolecule();

molecule.addAtom(builder.newAtom("C"));

looks now like:

Script 16-1: code/MigrationNewBuilder.groovy

IChemObjectBuilder builder =

DefaultChemObjectBuilder.getInstance();

IMolecule molecule = builder.newInstance(

IMolecule.class

);

molecule.addAtom(

builder.newInstance(IAtom.class, "C")

);

91

16. Migration

Please note that the builder.newInstance() method may actually return null.
This is not the case for the DefaultChemObjectBuilder, or the alternative
NoNotifiationChemObjectBuilder builder, but future releases may have ded-
icated builders that do have such functionality. However, these builder
would not supposed to be used for building molecules anyway.
The general patterns of newInstance() calls is that the first argument is
the interface for which you want an instance. All further parameters are
passed as parameters for the object’s constructor. The builder maps the
input to appropriate class constructors. To know what parameters you can
pass when instantiating an IAtom with the DefaultChemObjectBuilder, you
would look at the constructor of Atom. Therefore, we can also call:

Script 16-2: code/MigrationNewBuilder2.groovy

IAtom atom = builder.newInstance(

IAtom.class, "C", new Point2d(0,0)

);

16.1.2. Implicit hydrogens

A second API change lies deep in the IAtom interface. To reflect more
accurately the meaning of the method, the IAtomType.getHydrogenCount()
has been renamed to IAtomType.getImplicitHydrogenCount(), and likewise
the setter methods. The 1.2 code:

carbon.setHydrogenCount(4);

has to be updated to:

Script 16-3: code/MigrationImplicitHydrogens.groovy

carbon.setImplicitHydrogenCount(4);

Yeah, that is a simple one. Just to make clear, in both versions the count
reflected the number of implicit hydrogens. The getHydrogenCount() sug-
gested, however, to return the number of all hydrogens attached to that
atom, that is, the sum of implicit and explicit hydrogens. See also Sec-
tion 2.4.

16.2. CDK 1.0 to 1.2

This section highlights the important API changes between the CDK 1.0
and 1.2 series.

92

16.3. CDK 1.0 to 1.4

16.2.1. MFAnalyser

Version 1.2 removed the MFAnalyser class in favor of a more elaborate frame-
work to handle molecular formulas. Please refer to Sections 2.3.3 and 8.4
for more detail on the new framework.

16.3. CDK 1.0 to 1.4

As discussed elsewhere, the CDK 1.2 series was released without rendering
support (see Chapter 9), because the rendering engine was undergoing a
complete rewrite. A good part of this has been finished, and a new render-
ing API is now available. The changes are too extensive to discuss here,
and the reader is refered to new API discussed in Chapter 9 and start from
scratch.

93

A. Atom Type Lists

The table listed in this Appendix is generated with the following code,
listing all six properties of CDK atom types, as outlined in Section 6.1:

Script A-1: code/ListAllCDKAtomTypes.groovy

factory = AtomTypeFactory.getInstance(

"org/openscience/cdk/dict/data/cdk-atom-types.owl",

NoNotificationChemObjectBuilder.getInstance()

);

IAtomType[] types = factory.getAllAtomTypes();

for (IAtomType type : types) {

lonepairs = type.getProperty(

CDKConstants.LONE_PAIR_COUNT

)

output.append(

type.atomTypeName + " & " +

type.symbol + " & " +

type.formalCharge + " & " +

type.formalNeighbourCount + " & " +

(type.hybridization == null

? ""

: type.hybridization) + " & " +

(lonepairs == null

? ""

: lonepairs) + " & " +

type.getProperty(

CDKConstants.PI_BOND_COUNT

) + "\\\\\n")

}

For the Sybyl atom types we can do the same, just by updating to code to
load the proper atom type list:

95

A. Atom Type Lists

Script A-2: code/ListAllSybylAtomTypes.groovy

factory = AtomTypeFactory.getInstance(

"org/openscience/cdk/dict/data/sybyl-atom-types.owl",

NoNotificationChemObjectBuilder.getInstance()

);

A.1. CDK Atom Types

atom
type

element
sym-
bol

formal
charge

number
of
neigh-
bors

hybrid-
ization

number
of
lone
pairs

number
of π
bonds

Al.3plus Al 3 0 S 0 0
Al Al 0 3 SP3 0 0
Ar Ar 0 0 SP3 4 0
As.plus As 1 4 SP3 0 0
As As 0 3 SP3 1 0
As.5 As 0 4 SP3 0 1
As.2 As 0 2 SP2 1 1
As.3plus As 3 0 0
As.minus As -1 6 0
B.minus B -1 4 SP3 0 0
B B 0 3 SP3 0 0
Be.2minus Be -2 4 SP3 0 0
Br Br 0 1 SP3 3 0
Br.minus Br -1 0 SP3 4 0
Br.radical Br 0 0 SP3 3 0
Br.plus.radical Br 1 1 SP3 2 0
Br.plus.sp3 Br 1 2 SP3 2 0
Br.plus.sp2 Br 1 1 SP2 2 1
C.sp3 C 0 4 SP3 0 0
C.sp C 0 2 SP1 0 2
C.sp2 C 0 3 SP2 0 1
C.plus.planar C 1 3 PLANAR3 0 0
C.plus.sp2 C 1 2 SP2 0 1
C.minus.sp3 C -1 3 SP3 1 0
C.minus.planar C -1 3 PLANAR3 1 0
C.radical.planar C 0 3 PLANAR3 0 0
C.radical.sp2 C 0 2 SP2 0 1
C.radical.sp1 C 0 1 SP1 0 2
C.minus.sp2 C -1 2 SP2 1 1
C.minus.sp1 C -1 1 SP1 1 2
C.plus.sp1 C 1 1 SP1 0 2
Ca.2plus Ca 2 0 S 0 0
Cl Cl 0 1 SP3 3 0
Cl.plus.sp3 Cl 1 2 SP3 2 0
Cl.plus.sp2 Cl 1 1 SP2 2 1
Cl.minus Cl -1 0 SP3 4 0
Cl.radical Cl 0 0 SP3 3 0
Cl.plus.radical Cl 1 1 SP3 2 0
Cl.perchlorate Cl 0 4 SP3 0 3
Cl.perchlorate.charged Cl 3 4 SP3 0 0
Cl.chlorate Cl 0 3 SP2 0 2
Co.2plus Co 2 0 0
Co.3plus Co 3 0 0

96

A.1. CDK Atom Types

Co.metallic Co 0 0 0
Cr Cr 0 6 0 0
Cu.2plus Cu 2 0 0
F F 0 1 SP3 3 0
F.radical F 0 0 SP3 3 0
F.minus F -1 0 SP3 4 0
F.plus.sp3 F 1 2 SP3 2 0
F.plus.sp2 F 1 1 SP2 2 1
F.plus.radical F 1 1 SP3 2 0
Fe.2plus Fe 2 0 0
Ga.3plus Ga 3 0 0 0
Ga Ga 0 3 0 0
Ge Ge 0 4 SP3 0 0
Ge.3 Ge 0 3 SP2 0 1
X H 0 null null
H H 0 1 S 0 0
H.plus H 1 0 S 0 0
H.minus H -1 0 S 0 0
H.radical H 0 0 S 0 0
He He 0 0 S 1 0
Hg.minus Hg -1 2 0
I I 0 1 SP3 3 0
I.minus I -1 0 SP3 4 0
I.minus.5 I -1 2 SP3D1 3 0
I.plus.sp2 I 1 1 SP2 2 1
I.3 I 0 2 SP2 1 1
I.5 I 0 3 SP2 0 2
I.plus.sp3 I 1 2 SP3 2 0
I.radical I 0 0 SP3 3 0
I.plus.radical I 1 1 SP3 2 0
I.sp3d2.3 I 0 3 SP3D2 2 0
K.plus K 1 0 S 0 0
K.metallic K 0 0 0
K.neutral K 0 1 0
Kr Kr 0 0 0
Li Li 0 1 S 0 0
Li.neutral Li 0 0 0
Li.plus Li 1 0 0 0
Mg.2plus Mg 2 0 S 0 0
Mn.metallic Mn 0 0 0
Mn.2plus Mn 2 0 0
Mn.3plus Mn 3 0 0
Mn.2 Mn 0 2 0
N.sp3 N 0 3 SP3 1 0
N.sp3.radical N 0 2 SP3 1 0
N.sp2.radical N 0 1 SP2 1 1
N.sp2 N 0 2 SP2 1 1
N.sp2.3 N 0 3 SP2 0 2
N.sp1.2 N 0 2 SP1 0 3
N.planar3 N 0 3 PLANAR3 1 0
N.amide N 0 3 SP2 1 0
N.oxide N 0 4 SP2 0 1
N.thioamide N 0 3 SP2 1 0
N.sp1 N 0 1 SP1 1 2
N.plus N 1 4 SP3 0 0
N.plus.sp2 N 1 3 SP2 0 1
N.plus.sp2.radical N 1 2 SP2 0 1
N.plus.sp3.radical N 1 3 SP3 0 0
N.plus.sp1 N 1 2 SP1 0 2
N.minus.sp3 N -1 2 SP3 2 0
N.minus.sp2 N -1 1 SP2 2 1
N.minus.planar3 N -1 2 PLANAR3 2 0

97

A. Atom Type Lists

N.nitro N 0 3 PLANAR3 0 2
Na.plus Na 1 0 S 0 0
Na Na 0 1 S 0 0
Na.neutral Na 0 0 0 0
Ne Ne 0 0 0
Ni.2plus Ni 2 0 0
Ni Ni 0 2 0
O.sp3 O 0 2 SP3 2 0
O.sp3.radical O 0 1 SP3 2 0
O.sp2 O 0 1 SP2 2 1
O.sp2.co2 O 0 1 SP2 2 1
O.planar3 O 0 2 PLANAR3 2 0
O.plus.sp2 O 1 2 SP2 1 1
O.plus.sp2.radical O 1 1 SP2 1 1
O.plus.sp1 O 1 1 SP1 1 2
O.plus O 1 3 SP3 1 0
O.plus.radical O 1 2 SP3 1 0
O.minus O -1 1 SP3 3 0
O.minus.co2 O -1 1 SP3 3 0
O.minus2 O -2 0 SP3 4 0
P.se.3 P 0 0 SP3 0 0
P.ate P 0 4 SP3 0 1
P.ate.charged P 1 4 SP3 0 0
P.ine P 0 3 SP3 1 0
P.anium P 1 3 SP2 0 1
P.sp1.plus P 1 2 0 2
P.irane P 0 2 PLANAR3 1 1
P.ane P 0 5 SP3D1 0 0
P.ide P 0 1 SP1 1 2
Po Po 0 2 0
Pt.2plus Pt 2 0 0
Pt.4 Pt 0 4 0
Pt.6 Pt 0 6 0
Rn Rn 0 0 0
S.2 S 0 1 SP2 2 1
S.3 S 0 2 SP3 2 0
S.inyl.2 S 0 2 SP2 0 2
S.oxide S 0 2 PLANAR3 3 2
S.plus S 1 2 SP2 1 1
S.planar3 S 0 2 PLANAR3 2 0
S.minus S -1 1 SP3 3 0
S.thionyl S 0 4 SP3 0 2
S.onyl S 0 4 SP3 0 2
S.onyl.charged S 2 4 SP3 0 0
S.inyl S 0 3 SP2 0 1
S.inyl.charged S 1 3 SP2 0 0
S.trioxide S 0 3 SP2 0 3
S.octahedral S 0 6 SP3D2 0 0
S.anyl S 0 4 SP3D2 1 0
Sc.3minus Sc -3 6 0 0
Se.3 Se 0 2 SP3 2 0
Si.2minus.6 Si -2 6 SP3D2 0 0
Si.3 Si 0 3 SP3 0 1
Si.sp3 Si 0 4 SP3 0 0
Si.2 Si 0 2 SP1 0 2
Sn.sp3 Sn 0 4 SP3 0 0
Te.3 Te 0 2 SP3 2 0
Ti.3minus Ti -3 6 0 0
Ti.sp3 Ti 0 4 SP3 0 0
V.3minus V -3 6 0 0
W.metallic W 0 0 0
Xe Xe 0 0 0

98

A.2. Sybyl Atom Types

Xe.3 Xe 0 4 SP3D2 0
Zn Zn 0 2 0
Zn.2plus Zn 2 0 S 0 0

A.2. Sybyl Atom Types

atom
type

element
sym-
bol

formal
charge

number
of
neigh-
bors

hybrid-
ization

number
of
lone
pairs

number
of π
bonds

Al Al 0
Br Br 0
C.3 C 0 4 SP3 0 0
C.2 C 0 3 SP2 0 1
C.ar C 0 3 SP2 0 1
C.1 C 0 2 SP1 0 2
C.cat C 1
Du.C C 0
Ca Ca 0
Cl Cl 0
Co.oh Co 0
Cr.th Cr 0
Cr.oh Cr 0
Cu Cu 0
F F 0
Fe Fe 0
H H 0 1 0 0
H.spc H 0
H.t3p H 0
LP H 0
Du H 0
Any H 0
Hal H 0
Het H 0
Hev H 0
X H 0
I I 0
K K 0
Li Li 0
Mg Mg 0
Mn Mn 0
Mo Mo 0
N.3 N 0 3 SP3 1 0
N.2 N 0 2 SP2 1 1
N.1 N 0 1 SP1 1 2
N.pl3 N 0 3 1 0
N.4 N 1 4 SP3 0 0
N.ar N 0 2 SP2 1 1
N.am N 0 3 SP2 1 0
Na Na 0
O.3 O 0 2 SP3 2 0
O.2 O 0 1 SP2 2 1
O.co2 O 0 1
O.spc O 0
O.t3p O 0
P.3 P 0 4 SP3 0 1
S.3 S 0 2 SP3 2 0
S.2 S 0 1 SP2 2 1
S.O S 0
S.O2 S 0

99

A. Atom Type Lists

Se Se 0
Si Si 0
Sn Sn 0
Zn Zn 0

100

B. Isotope List

The table listed in this Appendix is generated with the following code,
listing all six properties of CDK atom types, as outlined in Section 6.1.
Abundances, exact masses are inherited from the BODR project [1], which
contains values found in IUPAC recommendations.

Script B-1: code/ListAllIsotopes.groovy

isofac = IsotopeFactory.getInstance(

NoNotificationChemObjectBuilder.getInstance()

);

maxAtomicNumber = 150;

for (atomicNumber in 1..maxAtomicNumber) {

element = isofac.getElement(atomicNumber)

isotopes = isofac.getIsotopes(element.symbol)

for (isotope in isotopes) {

if (isotope.naturalAbundance > 0.1) {

output.append(

atomicNumber + " & " +

element.symbol + " & "

)

output.append(

isotope.massNumber + " & " +

isotope.naturalAbundance + " & " +

isotope.exactMass + "\\\\\n"

)

}

}

}

The full version of the above script lists all (natural) isotopes with an
abundance of more than 0.1:

atomic
num-
ber

element
sym-
bol

mass
num-
ber

abundance exact
mass

1 H 1 99.9885 1.007825032
2 He 4 99.999863 4.002603254
3 Li 6 7.59 6.015122795

101

B. Isotope List

7 92.41 7.01600455
4 Be 9 100.0 9.0121822
5 B 10 19.9 10.012937

11 80.1 11.0093054
6 C 12 98.93 12.0

13 1.07 13.00335484
7 N 14 99.632 14.003074

15 0.368 15.0001089
8 O 16 99.757 15.99491462

18 0.205 17.999161
9 F 19 100.0 18.99840322
10 Ne 20 90.48 19.99244018

21 0.27 20.99384668
22 9.25 21.99138511

11 Na 23 100.0 22.98976928
12 Mg 24 78.99 23.9850417

25 10.0 24.98583692
26 11.01 25.98259293

13 Al 27 100.0 26.98153863
14 Si 28 92.2297 27.97692653

29 4.6832 28.9764947
30 3.0872 29.97377017

15 P 31 100.0 30.97376163
16 S 32 94.93 31.972071

33 0.76 32.97145876
34 4.29 33.9678669

17 Cl 35 75.78 34.96885268
37 24.22 36.96590259

18 Ar 36 0.3365 35.96754511
40 99.6003 39.96238312

19 K 39 93.2581 38.96370668
41 6.7302 40.96182576

20 Ca 40 96.941 39.96259098
42 0.647 41.95861801
43 0.135 42.9587666
44 2.086 43.9554818
48 0.187 47.952534

21 Sc 45 100.0 44.9559119
22 Ti 46 8.25 45.9526316

47 7.44 46.9517631
48 73.72 47.9479463
49 5.41 48.94787
50 5.18 49.9447912

23 V 50 0.25 49.9471585
51 99.75 50.9439595

24 Cr 50 4.345 49.9460442
52 83.789 51.9405075
53 9.501 52.9406494
54 2.365 53.9388804

25 Mn 55 100.0 54.9380451
26 Fe 54 5.845 53.9396105

56 91.754 55.9349375
57 2.119 56.935394
58 0.282 57.9332756

27 Co 59 100.0 58.933195
28 Ni 58 68.0769 57.9353429

60 26.2231 59.9307864
61 1.1399 60.931056
62 3.6345 61.9283451
64 0.9256 63.927966

29 Cu 63 69.17 62.9295975
65 30.83 64.9277895

102

30 Zn 64 48.63 63.9291422
66 27.9 65.9260334
67 4.1 66.9271273
68 18.75 67.9248442
70 0.62 69.9253193

31 Ga 69 60.108 68.9255736
71 39.892 70.9247013

32 Ge 70 20.84 69.9242474
72 27.54 71.9220758
73 7.73 72.9234589
74 36.28 73.9211778
76 7.61 75.9214026

33 As 75 100.0 74.9215965
34 Se 74 0.89 73.9224764

76 9.37 75.9192136
77 7.63 76.919914
78 23.77 77.9173091
80 49.61 79.9165213
82 8.73 81.9166994

35 Br 79 50.69 78.9183371
81 49.31 80.9162906

36 Kr 78 0.35 77.9203648
80 2.28 79.916379
82 11.58 81.9134836
83 11.49 82.914136
84 57.0 83.911507
86 17.3 85.91061073

37 Rb 85 72.17 84.91178974
87 27.83 86.90918053

38 Sr 84 0.56 83.913425
86 9.86 85.9092602
87 7.0 86.9088771
88 82.58 87.9056121

39 Y 89 100.0 88.9058483
40 Zr 90 51.45 89.9047044

91 11.22 90.9056458
92 17.15 91.9050408
94 17.38 93.9063152
96 2.8 95.9082734

41 Nb 93 100.0 92.9063781
42 Mo 92 14.84 91.906811

94 9.25 93.9050883
95 15.92 94.9058421
96 16.68 95.9046795
97 9.55 96.9060215
98 24.13 97.9054082
100 9.63 99.907477

44 Ru 96 5.54 95.907598
98 1.87 97.905287
99 12.76 98.9059393
100 12.6 99.9042195
101 17.06 100.9055821
102 31.55 101.9043493
104 18.62 103.905433

45 Rh 103 100.0 102.905504
46 Pd 102 1.02 101.905609

104 11.14 103.904036
105 22.33 104.905085
106 27.33 105.903486
108 26.46 107.903892
110 11.72 109.905153

47 Ag 107 51.839 106.905097

103

B. Isotope List

109 48.161 108.904752
48 Cd 106 1.25 105.906459

108 0.89 107.904184
110 12.49 109.9030021
111 12.8 110.9041781
112 24.13 111.9027578
113 12.22 112.9044017
114 28.73 113.9033585
116 7.49 115.904756

49 In 113 4.29 112.904058
115 95.71 114.903878

50 Sn 112 0.97 111.904818
114 0.66 113.902779
115 0.34 114.903342
116 14.54 115.901741
117 7.68 116.902952
118 24.22 117.901603
119 8.59 118.903308
120 32.58 119.9021947
122 4.63 121.903439
124 5.79 123.9052739

51 Sb 121 57.21 120.9038157
123 42.79 122.904214

52 Te 122 2.55 121.9030439
123 0.89 122.90427
124 4.74 123.9028179
125 7.07 124.9044307
126 18.84 125.9033117
128 31.74 127.9044631
130 34.08 129.9062244

53 I 127 100.0 126.904473
54 Xe 128 1.92 127.9035313

129 26.44 128.9047794
130 4.08 129.903508
131 21.18 130.9050824
132 26.89 131.9041535
134 10.44 133.9053945
136 8.87 135.907219

55 Cs 133 100.0 132.9054519
56 Ba 130 0.106 129.9063208

132 0.101 131.9050613
134 2.417 133.9045084
135 6.592 134.9056886
136 7.854 135.9045759
137 11.232 136.9058274
138 71.698 137.9052472

57 La 139 99.91 138.9063533
58 Ce 136 0.185 135.907172

138 0.251 137.905991
140 88.45 139.9054387
142 11.114 141.909244

59 Pr 141 100.0 140.9076528
60 Nd 142 27.2 141.9077233

143 12.2 142.9098143
144 23.8 143.9100873
145 8.3 144.9125736
146 17.2 145.9131169
148 5.7 147.916893
150 5.6 149.920891

62 Sm 144 3.07 143.911999
147 14.99 146.9148979
148 11.24 147.9148227

104

149 13.82 148.9171847
150 7.38 149.9172755
152 26.75 151.9197324
154 22.75 153.9222093

63 Eu 151 47.81 150.9198502
153 52.19 152.9212303

64 Gd 152 0.2 151.919791
154 2.18 153.9208656
155 14.8 154.922622
156 20.47 155.9221227
157 15.65 156.9239601
158 24.84 157.9241039
160 21.86 159.9270541

65 Tb 159 100.0 158.9253468
66 Dy 160 2.34 159.9251975

161 18.91 160.9269334
162 25.51 161.9267984
163 24.9 162.9287312
164 28.18 163.9291748

67 Ho 165 100.0 164.9303221
68 Er 162 0.14 161.928778

164 1.61 163.9292
166 33.61 165.9302931
167 22.93 166.9320482
168 26.78 167.9323702
170 14.93 169.9354643

69 Tm 169 100.0 168.9342133
70 Yb 168 0.13 167.933897

170 3.04 169.9347618
171 14.28 170.9363258
172 21.83 171.9363815
173 16.13 172.9382108
174 31.83 173.9388621
176 12.76 175.9425717

71 Lu 175 97.41 174.9407718
176 2.59 175.9426863

72 Hf 174 0.16 173.940046
176 5.26 175.9414086
177 18.6 176.9432207
178 27.28 177.9436988
179 13.62 178.9458161
180 35.08 179.94655

73 Ta 181 99.988 180.9479958
74 W 180 0.12 179.946704

182 26.5 181.9482042
183 14.31 182.950223
184 30.64 183.9509312
186 28.43 185.9543641

75 Re 185 37.4 184.952955
187 62.6 186.9557531

76 Os 186 1.59 185.9538382
187 1.96 186.9557505
188 13.24 187.9558382
189 16.15 188.9581475
190 26.26 189.958447
192 40.78 191.9614807

77 Ir 191 37.3 190.960594
193 62.7 192.9629264

78 Pt 192 0.782 191.961038
194 32.967 193.9626803
195 33.832 194.9647911
196 25.242 195.9649515

105

B. Isotope List

198 7.163 197.967893
79 Au 197 100.0 196.9665687
80 Hg 196 0.15 195.965833

198 9.97 197.966769
199 16.87 198.9682799
200 23.1 199.968326
201 13.18 200.9703023
202 29.86 201.970643
204 6.87 203.9734939

81 Tl 203 29.524 202.9723442
205 70.476 204.9744275

82 Pb 204 1.4 203.9730436
206 24.1 205.9744653
207 22.1 206.9758969
208 52.4 207.9766521

83 Bi 209 100.0 208.9803987
90 Th 232 100.0 232.0380553
91 Pa 231 100.0 231.035884
92 U 235 0.72 235.0439299

238 99.2745 238.0507882

References

[1] R. Guha, M. T. Howard, G. R. Hutchison, P. Murray-Rust, H. Rzepa,
C. Steinbeck, J. Wegner, E. L. Willighagen, The Blue Obelisk - Inter-
operability in Chemical Informatics, Journal of Chemical Information
and Modeling 2006, 46, 991–998.

106

C. CDK Authors

In acknowledgment to all the work done by the many people who have
contributed to the success of the CDK, here is a list of those who wrote
smaller or larger parts of the CDK library:

Sam Adams, Jonathan Alvarsson, Rich Apodaca, Saravanaraj N Ayyam-
palayam, Ulrich Bauer, Stephan Beisken, Arvid Berg, Ed Cannon, Fabian
Dortu, Martin Eklund, Matteo Floris, Dan Gezelter, Uli Fechner, Ra-
jarshi Guha, Yonquan Han, Thierry Hanser, Kai Hartmann, Tobias Helmus,
Christian Hoppe, Oliver Horlacher, Miguel Howard, Nina Jeliazkova, Geert
Josten, Dmitry Katsubo, Jules Kerssemakers, Anatoli Krassavine, Stefan
Kuhn, Uli Köhler, Violeta Labarta, Jonty Lawson, Daniel Leidert, Edgar
Luttmann, Todd Martin, Nathanaël Mazuir, Stephan Michels, Scooter
Morris, Peter Murray-Rust, Carl Mäsak, Irilenia Nobeli, Peter Odéus,
Niels Out, Jerome Pansanel, Julio Peironcely, Chris Pudney, Syed Asad
Rahman, Jonathan Rienstra-Kiracofe, Mark Rijnbeek, David Robinson,
Miguel Rojas Cherto, Bhupinder Sandhu, Jean-Sebastien Senecal, Onkar
Shinde, Sulev Sild, Bradley Smith, Ola Spjuth, Christoph Steinbeck, Alek-
sey Tarkhov, Stephan Tomkinson, Gilleain Torrance, Andreas Truszkowski,
Paul Turner, Jörg Wegner, Stephane Werner, Egon Willighagen, Yong
Zhang, and Daniel Zaharevitz.

107

List of Scripts

2-1 code/CreateAtom1.java . 3
2-2 code/CreateAtom2.java . 3
2-3 code/ElementProperties.groovy 4
2-4 code/ElementGetProperties.groovy 4
2-5 code/IsotopeProperties.groovy 5
2-6 code/IsotopeGetProperties.groovy 5
2-7 code/AtomTypeProperties.groovy 5
2-8 code/Ethanol.groovy . 6
2-9 code/BondOrders.groovy . 6
2-10 code/AromaticBond.groovy . 6
2-11 code/AtomContainerAddAtomsAndBonds.groovy 8
2-12 code/AtomContainerAddAtomsAndBonds2.groovy 8
2-13 code/CountHydrogens.groovy 8
2-14 code/CountDoubleBonds.groovy 9
2-15 code/NeighborCount.groovy . 9
2-16 code/ConnectedAtoms.groovy 10
2-17 code/ConnectedBonds.groovy 10
2-18 code/MFGeneration.groovy . 10
2-19 code/HydrogenDepletedGraph.groovy 11
2-20 code/HydrogenExplicitGraph.groovy 11
2-21 code/ChemObjectIdentifiers.groovy 12
2-22 code/ChemObjectProperties.groovy 12
2-23 code/AtomLabels.groovy . 12
2-24 code/CDKConstantsProperties.groovy 13
2-25 code/RingBond.groovy . 13
2-26 code/Ring.groovy . 14
3-1 code/Salt.groovy . 17
3-2 code/SaltCrystal.groovy . 18
3-3 code/SaltCrystalParam.groovy 18
4-1 code/LonePairOxygen.groovy 22
4-2 code/LonePairCount.groovy . 22
4-3 code/HydrogenRadical.groovy 23

109

List of Scripts

5-1 code/GuessFormat.groovy . 25
5-2 code/HasReaderOrWriter.groovy 25
5-3 code/InputFromStringReader.groovy 27
5-4 code/PubChemDownload.groovy 27
5-5 code/PubChemDownloadProperties.groovy 28
5-6 code/ReadingModes.groovy . 29
5-7 code/ReadStrict.groovy . 30
5-8 code/ReadRelaxed.groovy . 30
5-9 code/CustomErrorHandler.groovy 31
5-10 code/ReadErrorHandler.groovy 31
5-11 code/PDBCoordinateExtraction.groovy 32
5-12 code/IteratingMDLReaderDemo.groovy 33
5-13 code/PubChemCompoundsXMLDemo.groovy 33
5-14 code/ListIOOptions.java . 35
5-15 code/PropertiesSettings.java . 36
5-16 code/AtomTypeUnitTest.groovy 37
5-17 code/ReadSMILES.groovy . 39
5-18 code/WriteSMILES.groovy . 39
6-1 code/CDKAtomTypeProperties.groovy 41
6-2 code/HybridizationTypes.groovy 43
6-3 code/AtomTypePerception.groovy 44
6-4 code/AtomTypePerceptionMolecule.groovy 44
6-5 code/AtomTypePerceptionAndConfigure.groovy 45
6-6 code/SybylAtomTypePerception.groovy 45
7-1 code/ConnectivityCheckerDemo.groovy 47
7-2 code/SpanningTreeBondCount.groovy 48
7-3 code/SpanningTreeRingBonds.groovy 48
7-4 code/AdjacencyMatrixCalc.groovy 49
7-5 code/DistanceMatrix.groovy . 50
7-6 code/MorganAtomNumbers.groovy 50
7-7 code/InChIAtomNumbers.groovy 51
7-8 code/InChIAtomNumbersBenzene.groovy 52
8-1 code/CovalentRadii.groovy . 53
8-2 code/RebondToolDemo.groovy 54
8-3 code/MissingHydrogens.groovy 55
8-4 code/ExplicitHydrogens.groovy 55
8-5 code/Layout.groovy . 55
8-6 code/MissingMF.groovy . 56
8-7 code/MissingMFRestrictions.groovy 57
9-1 code/RenderMolecule.groovy 60
9-2 code/RendererParameters.groovy 61
9-3 code/CompactAtomParam.groovy 63

110

List of Scripts

9-4 code/AtomNumberGenerator.java 63
9-5 code/RenderAdenineWithNumbers.groovy 64
10-1 code/Isomorphism.groovy . 65
10-2 code/IsSubgraph.groovy . 65
10-3 code/Overlap.groovy . 66
10-4 code/Substructure.groovy . 67
10-5 code/BitSetDemo.groovy . 68
10-6 code/SimpleFingerprinter.java 68
10-7 code/SimpleFingerprintDemo.groovy 69
11-1 code/CalculateMolecularWeight.groovy 71
11-2 code/CalculateMolecularWeightShort.groovy 71
11-3 code/CalculateMolecularWeightImplicitHydrogens.groovy . . . 72
11-4 code/XLogP.groovy . 72
11-5 code/TPSA.groovy . 73
11-6 code/Aromaticity.groovy . 74
12-1 code/InChIGeneration.groovy 75
12-2 code/InChIMierezuurFixed.groovy 77
12-3 code/AdenineTautomers.groovy 77
12-4 code/ParsingInChIs.groovy . 78
14-1 code/BeanShell.bsh . 84
14-2 code/IterateAtoms.groovy . 85
14-3 code/IterateAtomsGroovy.groovy 85
14-4 code/CalculateTotalCharge.groovy 85
14-5 code/CalculateMolecularWeight.groovy 86
14-6 code/GroovyClosureForAllAtoms.groovy 86
16-1 code/MigrationNewBuilder.groovy 91
16-2 code/MigrationNewBuilder2.groovy 92
16-3 code/MigrationImplicitHydrogens.groovy 92
A-1 code/ListAllCDKAtomTypes.groovy 95
A-2 code/ListAllSybylAtomTypes.groovy 96
B-1 code/ListAllIsotopes.groovy . 101

111

Index

/15T, 78
/Ket, 78
1,5-tautomerism, 78
2D coordinates, 55

adjacency matrix, 49
AdjacencyMatrix, 49
aromaticity, 73
ASN.1, 27
atom types, 41
AtomContainerManipulator, 71
AtomContainerRenderer, 59
AtomTypeManipulator, 45
AWTDrawVisitor, 60
AWTFontManager, 60

BasicAtomGenerator, 59, 62
BasicBondGenerator, 59
BasicSceneGenerator, 59
BeanShell, 84
benzene, 6
BitSet, 67

canonical SMILES, 50
canonicalization, 50
CDK-JChemPaint, 59
CDKConstants, 12
CDKHueckelAromaticityDetector,

74
CDKHydrogenAdder, 54
chemical format, 25
ChemObjectIOListener, 36
Clojure, 87
closures, 85

CompactAtom, 62
CompactShape, 62
connected atoms, 9
connected bonds, 10
connectivity layer, 76
ConnectivityChecker, 17, 47
crystal, 18

DefaultChemObjectBuilder, 39, 92
DoubleResult, 72

Elements, 3
ethanol, 6
explicit hydrogens, 55

Fingerprinter, 69
fixed hydrogen layer, 77
FixedH option, 77
flags, 13
Floyd’s algorithm, 49
FormatFactory, 25

Gaussian input file, 34
generics, 63
graph, 47
graph matrices, 49
Graphics2D, 60
Groovy, 84
gzip, 32
GZIPInputStream, 32

hybridization, 43
HybridizationFingerprinter, 69

113

Index

IAtom, 3, 4, 6, 92
IAtomContainer, 7–9, 14, 17, 18,

22, 47
IAtomType, 3–5
IBond, 6, 21
IChemObject, 12, 13
IChemObjectBuilder, 38, 91
IChemObjectReader, 25, 29, 31
IChemObjectReaderErrorHandler,

31
IChemObjectWriter, 25
IChemOject, 12
ICrystal, 18
identifiers, 12
IElectronContainer, 6, 21
IElement, 3, 4
IGenerator, 63
IIsotope, 3, 4
ILonePair, 21
Image, 59
ImageIO, 60
IMolecule, 7, 17, 18
IMoleculeSet, 47
implicit hydrogens, 54, 72
InChI, 51, 75
InChI atom numbers, 51
InChI, parsing of, 78
InChIGenerator, 75
InChIGeneratorFactory, 75
InChINumbersTools, 51
InputStream, 26
IRing, 14
ISingleElectron, 21
isomorphism, 65
Iterable, 8
IteratingMDLReader, 33
IteratingPCCompoundXMLReader,

33

Java application, 83
JChemPaint, 59
JNI-InChI, 75

keto-enol tautomerism, 78

line notation, 38
Lisp, 87
LogP, 72
lone pairs, 21

MACSSFingerprinter, 69
MassToFormulaTool, 56
MDL SD files, 33
MDLV2000Reader, 26
MDLV2000Writer, 26, 91
MDLWriter, 91
metabolomics, 56
MFAnalyser, 93
missing hydrogens, 54
Mol2Format, 45
molecular fingerprints, 67
molecular formula, 10, 56
molecular mass, 71
MolecularFormulaManipulator, 10
molecule, 7
Morgan atom numbers, 50

NoNotifiationChemObjectBuilder,
92

NullPointerException, 3

OpenSMILES, 38

partition coefficient, 72
partitioning, 47
PDBReader, 26
PNG, 60
Properties, 36
properties, 12
PropertiesListener, 36
PubChem, 27
PubChemFingerprinter, 69

radical, 22
Reader, 26
RebondTool, 53, 54

114

Index

salt, 17
SDFWriter, 26
SimpleFingerprinter, 68
SMILES, 38
SMILESGenerator, 39
SmilesParser, 38
spanning tree, 47
Standard InChI, 75, 76
StringReader, 27
StructureDiagramGenerator, 55
substructure searching, 65
Sybyl atom type, 45
Sybyl Line Notation, 38
SybylAtomTypeMatcher, 45

tautomer, 77
tautomerism, 75, 76
TopologicalMatrix, 49
Total Polar Surface Area, 73
TPSA, 73

unique identifier, 76
UniversalIsomorphismTester, 65,

66
unpaired electron, 22

water, 21
Wiswesser Line Notation, 38

XLogP, 72
XYZReader, 26
XYZWriter, 26

115

Index

116

	Introduction
	Atoms, Bonds and Molecules
	Atoms
	IElement
	IIsotope
	IAtomType

	Bonds
	Molecules
	Iterating over atoms and bonds
	Neighboring atoms and bonds
	Molecular Formula

	Implicit and Explicit Hydrogens
	Chemical Objects
	Rings

	Salts and other disconnected structures
	Salts
	Crystals

	Paired and unpaired electrons
	Lone Pairs
	Unpaired electrons

	Input/Output
	File Format Detection
	Reading from Readers and InputStreams
	Example: Downloading Domoic Acid from PubChem

	Input Validation
	Reading modes
	Validation

	Gzipped files
	Iterating Readers
	MDL SD files
	PubChem Compounds XML files

	Customizing the Output
	Setting Properties
	Example: creating unit test for atom type perception

	Line Notations
	SMILES

	Atom types
	The CDK atom type model
	Hybridization Types

	Atom type perception
	Single atoms
	Full molecules
	Configuring the Atom

	Sybyl atom types

	Graph Properties
	Partitioning
	Spanning Tree
	Graph matrices
	Adjacency matrix
	Distance matrix

	Atom Numbers
	Morgan Atom Numbers
	InChI Atom Numbers

	Missing Information
	Reconnecting Atoms
	Missing Hydrogens
	Implicit Hydrogens
	Explicit Hydrogens

	2D Coordinates
	Unknown Molecular Formula

	Depiction
	Molecules
	Parameters
	Generators

	Substructure Searching
	Exact Search
	Matching Substructures
	Fingerprints

	Molecular Properties
	Molecular Mass
	Implicit Hydrogens

	LogP
	Total Polar Surface Area
	Aromaticity

	InChI
	Layers
	Tautomerism
	Parsing InChIs

	How to install the CDK
	Binary Version
	Source Code
	Git Repository

	Debian GNU/Linux & Ubuntu

	Writing CDK Applications
	A (Very) Basic Java Application
	BeanShell
	Groovy
	Closures

	Clojure
	Other Languages
	Bioclipse
	Cinfony
	R

	Documentation
	JavaDoc
	Other Sources
	Unit tests

	Migration
	CDK 1.2 to 1.4
	Creating objects with an IChemObjectBuilder
	Implicit hydrogens

	CDK 1.0 to 1.2
	MFAnalyser

	CDK 1.0 to 1.4

	Atom Type Lists
	CDK Atom Types
	Sybyl Atom Types

	Isotope List
	CDK Authors
	List of Scripts
	Index

