
| 1  | Supporting Information for                                                                       |
|----|--------------------------------------------------------------------------------------------------|
| 2  | Human-associated fecal qPCR measurements and simulated risk of gastrointestinal                  |
| 3  | illness in recreational waters contaminated with raw sewage                                      |
| 4  |                                                                                                  |
| 5  | Alexandria B. Boehm <sup>1*</sup> , Jeffrey A. Soller <sup>2</sup> , Orin C. Shanks <sup>3</sup> |
| 6  |                                                                                                  |
| 7  | 1. Environmental and Water Studies, Dept. Civil & Environmental Engineering, Stanford            |
| 8  | University, Stanford, CA 94305                                                                   |
| 9  | 2. Soller Environmental, Berkeley, CA 94703                                                      |
| 10 | 3. USEPA Office of Research & Development, Cincinnati, OH, 45268                                 |
| 11 |                                                                                                  |
| 12 | * Corresponding author                                                                           |
| 13 | A manuscript                                                                                     |
| 14 |                                                                                                  |
| 15 | Environmental Science & Technology Letters                                                       |
| 16 |                                                                                                  |
| 17 | 8 August 2015                                                                                    |
| 18 |                                                                                                  |
| 19 |                                                                                                  |

## **Human qPCR Marker Concentration Estimates in Raw Sewage**

Shanks et al. <sup>1</sup> previously reported concentrations of HF183 and HumM2 qPCR markers in raw sewage collected from 54 wastewater treatment plants throughout the United States. Results were reported as the estimated  $log_{10}$  copies (cp) per ng total nucleic acids. The concentration of total nucleic acids was measured for each DNA extract using a NanoDrop ND-1000 UV spectrophotometer (NanoDrop Technologies, Wilmington, DE) as previously reported <sup>1</sup>. Using this concentration (ng total nucleic acids per  $\mu$ L of DNA extract), the total elution volume (100  $\mu$ L), and the volume of sewage filtered (25 mL per sample), the concentration of each human qPCR marker in cp/mL sewage was estimated. The distribution of estimated concentrations for the two human-associated qPCR markers is shown in Figure S1.



**Figure S1.** Distribution of human-associated qPCR markers in sewage at 54 geographical locations across the US. Box and whiskers indicate median (line in middle of box), 25<sup>th</sup> and 75<sup>th</sup> percentile (bottom and top of box, respectively), and 10<sup>th</sup> and 90<sup>th</sup> percentile (bottom and top of whisker, respectively).

## GI Illness Risk From Exposure to Individual Pathogens

The risk of GI illness from exposure to each of the individual pathogens is shown in Figures S2-S7.

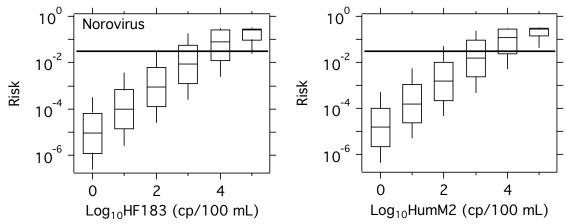



Figure S2. Left panel. GI risk from norovirus as a function of concentration of HF183Taqman marker in ambient water. Right panel. GI risk from norovirus as a function of concentration of HumM2 marker in ambient water. cp is copy. Box and whiskers indicate median (line in middle of box), 25<sup>th</sup> and 75<sup>th</sup> percentile (bottom and top of box, respectively), and 10<sup>th</sup> and 90<sup>th</sup> percentile (bottom and top of whisker, respectively). The horizontal line indicates a risk of 0.03 which is approximately the USEPA benchmark risk of ~30 GI per 1000 swimmers.

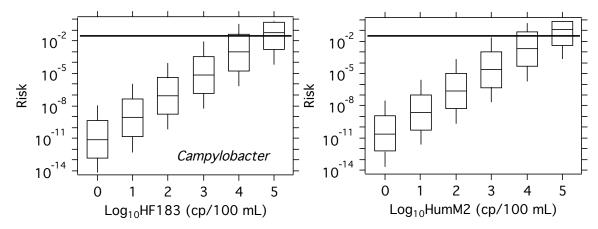



Figure S3. Left panel. GI risk from *Campylobacter* as a function of concentration of HF183Taqman marker in ambient water. Right panel. GI risk from *Campylobacter* as a function of concentration of HumM2 marker in ambient water. cp is copy. Box and whiskers indicate median (line in middle of box), 25<sup>th</sup> and 75<sup>th</sup> percentile (bottom and top of box, respectively), and 10<sup>th</sup> and 90<sup>th</sup> percentile (bottom and top of whisker, respectively). The horizontal line indicates a risk of 0.03 which is approximately the USEPA benchmark risk of ~30 GI per 1000 swimmers.

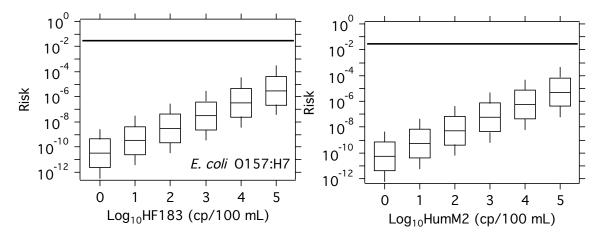



Figure S4. Left panel. GI risk from  $E.\ coli$  O157:H7 as a function of concentration of HF183Taqman marker in ambient water. Right panel. GI risk from  $E.\ coli$  O157:H7 as a function of concentration of HumM2 marker in ambient water. cp is copy. Box and whiskers indicate median (line in middle of box),  $25^{th}$  and  $75^{th}$  percentile (bottom and top of box, respectively), and  $10^{th}$  and  $90^{th}$  percentile (bottom and top of whisker, respectively). The horizontal line indicates a risk of 0.03 which is approximately the USEPA benchmark risk of  $\sim 30$  GI per 1000 swimmers.

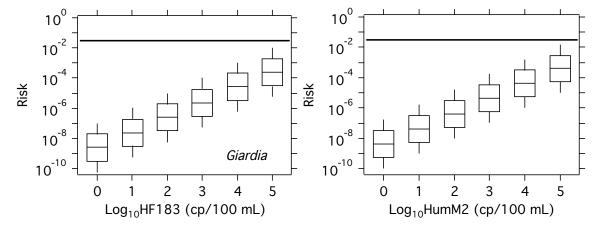



Figure S5. Left panel. GI risk from *Giardia* as a function of concentration of HF183Taqman marker in ambient water. Right panel. GI risk from *Giardia* as a function of concentration of HumM2 marker in ambient water. cp is copy. Box and whiskers indicate median (line in middle of box), 25<sup>th</sup> and 75<sup>th</sup> percentile (bottom and top of box, respectively), and 10<sup>th</sup> and 90<sup>th</sup> percentile (bottom and top of whisker, respectively). The horizontal line indicates a risk of 0.03 which is approximately the USEPA benchmark risk of ~30 GI per 1000 swimmers.

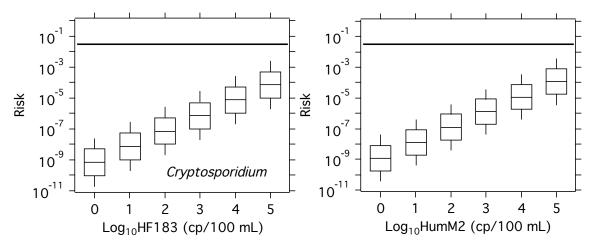



Figure S6. Left panel. GI risk from *Cryptosporidium* as a function of concentration of HF183Taqman marker in ambient water. Right panel. GI risk from *Cryptosporidium* as a function of concentration of HumM2 marker in ambient water. cp is copy. Box and whiskers indicate median (line in middle of box), 25<sup>th</sup> and 75<sup>th</sup> percentile (bottom and top of box, respectively), and 10<sup>th</sup> and 90<sup>th</sup> percentile (bottom and top of whisker, respectively). The horizontal line indicates a risk of 0.03 which is approximately the USEPA benchmark risk of ~30 GI per 1000 swimmers.

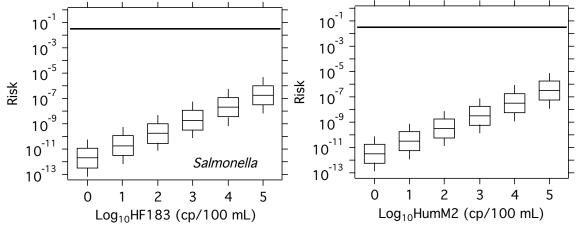



Figure S7. Left panel. GI risk from *Salmonella* as a function of concentration of HF183Taqman marker in ambient water. Right panel. GI risk from *Salmonella* as a function of concentration of HumM2 marker in ambient water. cp is copy. Box and whiskers indicate median (line in middle of box), 25<sup>th</sup> and 75<sup>th</sup> percentile (bottom and top of box, respectively), and 10<sup>th</sup> and 90<sup>th</sup> percentile (bottom and top of whisker, respectively). The horizontal line indicates a risk of 0.03 which is approximately the USEPA benchmark risk of ~30 GI per 1000 swimmers.

## References

(1) Shanks, O. C.; White, K.; Kelty, C. A.; Sivaganesan, M.; Blannon, J.; Meckes, M.; Varma, M.; Haugland, R. A. Performance of PCR-Based Assays Targeting

| 101 | Bacteroidales Genetic Markers of Human Fecal Pollution in Sewage and Fecal |
|-----|----------------------------------------------------------------------------|
| 102 | Samples. Environ. Sci. Technol. 2010, 44 (16), 6281–6288.                  |
| 103 |                                                                            |