Supplementary Material

1 MULTIPLE SCALES ANALYSIS

The solution of the leading order Eq. (29) is derived by making the following product ansatz

$$
\begin{equation*}
P^{0}(\boldsymbol{r}, \boldsymbol{R}, \boldsymbol{\eta}, T, t)=w(\boldsymbol{r}, \boldsymbol{\eta}) \rho^{0}(\boldsymbol{R}, T, t) . \tag{S1}
\end{equation*}
$$

Integrating by parts over the microscale variables \boldsymbol{r} and $\boldsymbol{\eta}$, and using the solvability condition, the solution of Eq. (29) P^{0} is constant over the period: $P^{0}(\boldsymbol{r}, \boldsymbol{R}, \boldsymbol{\eta}, T, t)=P^{0}(\boldsymbol{R}, \boldsymbol{\eta}, T, t)$. The leading order Eq. (29) becomes

$$
\begin{equation*}
\nabla_{\boldsymbol{\eta}} \cdot[\boldsymbol{\eta} w]+\frac{1}{2} \nabla_{\boldsymbol{\eta}}^{2} w=0 \tag{S2}
\end{equation*}
$$

Using the known result for a multi-dimensional Ornstein-Uhlenbeck process Ref. 138, the solution for w is given by

$$
\begin{equation*}
w\left(\eta_{1}, \eta_{2}, \eta_{3}\right)=\prod_{i=1}^{3} \frac{1}{\sqrt{2 \pi}} e^{\frac{-\eta_{i}^{2}}{2}} \tag{S3}
\end{equation*}
$$

The solvability condition for $\mathcal{O}(\epsilon)$ equation is

$$
\begin{equation*}
\int d \boldsymbol{r} d \boldsymbol{\eta}\left(w \frac{\partial}{\partial T} \rho^{0}+w \frac{\partial}{\partial R_{3}}\left[v \rho^{0}\right]+w P_{a} v_{a} \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{R}} \rho^{0}\right)=0 \tag{S4}
\end{equation*}
$$

which depends on the leading order result, P^{0}, from which we find

$$
\begin{equation*}
\frac{\partial}{\partial T} \rho^{0}=-\frac{\partial}{\partial R_{3}}\left[v \rho^{0}\right] \tag{S5}
\end{equation*}
$$

and the $\mathcal{O}(\epsilon)$ equation becomes

$$
\begin{equation*}
\mathcal{L} P^{1}=w P_{a} v_{a} \boldsymbol{\eta} \cdot \nabla_{\boldsymbol{R}} \rho^{0} . \tag{S6}
\end{equation*}
$$

We assume that

$$
\begin{equation*}
P^{1}=w P_{a} v_{a} \boldsymbol{\alpha} \cdot \nabla_{\boldsymbol{R}} \rho^{0}, \tag{S7}
\end{equation*}
$$

after which we find that

$$
\begin{equation*}
\boldsymbol{\alpha}=-\frac{1}{P_{A}} \boldsymbol{\eta} . \tag{S8}
\end{equation*}
$$

Substitution of P^{1} into the $\mathcal{O}\left(\epsilon^{2}\right)$ equation and using the solvability condition, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial t} \rho^{0}=\frac{P_{a}^{2} v_{a}^{2}}{2 P_{A}} \nabla_{\boldsymbol{R}}^{2} \rho^{0}-\beta_{D} \frac{c_{h}}{D_{c}} \nabla_{\boldsymbol{R}} \cdot\left[\rho^{0} \nabla_{\boldsymbol{R}} c^{0}\right]+\nabla_{\boldsymbol{R}}^{2}\left[D \rho^{0}\right] \tag{S9}
\end{equation*}
$$

and in dimensional form, we have

$$
\begin{equation*}
\frac{\partial}{\partial \tilde{t}} \rho=-\beta_{D} \nabla_{\tilde{\boldsymbol{r}}} \cdot\left[\rho \nabla_{\tilde{\boldsymbol{r}}} \tilde{c}\right]-\frac{\partial}{\partial \tilde{z}}[\tilde{v} \rho]+\nabla_{\tilde{\boldsymbol{r}}}^{2}\left[\left(\tilde{D}_{a}+\tilde{D}\right) \rho\right] . \tag{S10}
\end{equation*}
$$

2 SOLUTION OF THE FOKKER-PLANCK EQUATION IN THE LARGE PÉCLET LIMIT

The analytic solution of Eq. (32) in the large Péclet number limit follows by expanding the probability density function, ρ perturbatively Ref. 139, as

$$
\begin{equation*}
\rho=\rho_{0}+\rho_{1}, \tag{S11}
\end{equation*}
$$

with $\rho_{1}=\mathcal{O}(\tilde{c}) \rho_{0}$. The associated system of equations is

$$
\begin{align*}
& \frac{\partial}{\partial \tilde{t}} \rho_{0}+\frac{\partial}{\partial \tilde{z}}\left[\tilde{v} \rho_{0}\right]-\nabla_{\tilde{r}}^{2}\left[\left(\tilde{D}_{a}+\tilde{D}\right) \rho_{0}\right]=0 \tag{S12}\\
& \frac{\partial}{\partial \tilde{t}} \rho_{1}+\frac{\partial}{\partial \tilde{z}}\left[\tilde{v} \rho_{1}\right]-\nabla_{\tilde{r}}^{2}\left[\left(\tilde{D}_{a}+\tilde{D}\right) \rho_{1}\right]=-\beta_{D} \nabla_{\tilde{\boldsymbol{r}}} \cdot\left[\rho_{0} \nabla_{\tilde{\boldsymbol{r}}} \tilde{c}\right] \tag{S13}
\end{align*}
$$

To derive the solutions for ρ_{0} and ρ_{1}, we use the Green's function $G\left(\tilde{\boldsymbol{r}}, \tilde{t} \mid \tilde{\boldsymbol{r}_{0}}, \tilde{t}_{0}\right)$ Ref. 140 which satisfies

$$
\begin{equation*}
\frac{\partial}{\partial \tilde{t}} G+\frac{\partial}{\partial \tilde{z}}[\tilde{v} G]-\nabla_{\tilde{\boldsymbol{r}}}^{2}\left[\left(\tilde{D}_{a}+\tilde{D}\right) G\right]=0 \tag{S14}
\end{equation*}
$$

The solution of Eq.(32) was derived in the large Péclet number limit in Ref. 89, and is

$$
\begin{align*}
\rho_{0}=G\left(\tilde{\boldsymbol{r}}, \tilde{t} \mid \tilde{r}_{0}, \tilde{t}_{0}\right) & =\frac{\tilde{z}^{3}}{\left(\tilde{z}^{\prime}\right)^{3 / 4}} \exp \left(-\frac{\left[\left(\tilde{z}^{\prime}\right)^{1 / 4}-\tilde{z}_{0}\right]^{2}}{20+4 \tilde{D}_{a}\left(\tilde{t}-\tilde{t}_{0}\right)}\right) \exp \left[-\frac{\left(\left(\tilde{x}-\tilde{x}_{0}\right)^{2}+\left(\tilde{y}-\tilde{y}_{0}\right)^{2}\right)}{\left(1+4 \frac{\tilde{D}(\tilde{z})}{\tilde{v}(\tilde{z})}\left[\left(\tilde{z}^{\prime}\right)^{1 / 4}-\tilde{z}\right]+4 \tilde{D}_{a}\left(\tilde{t}-\tilde{t}_{0}\right)\right)}\right] \\
& \times \frac{1}{2 \sqrt{5 \pi}\left(1+4 \frac{\tilde{\tilde{v}}(\tilde{\tilde{v}}(\tilde{z})}{}\left[\left(\tilde{z}^{\prime}\right)^{1 / 4}-\tilde{z}\right]+4 \tilde{D}_{a}\left(\tilde{t}-\tilde{t}_{0}\right)\right)} . \tag{S15}
\end{align*}
$$

Given the Green's function the formal solution of Eq. (32) is

$$
\begin{equation*}
\rho(\tilde{\boldsymbol{r}}, \tilde{t})=G\left(\tilde{\boldsymbol{r}}, \tilde{t} \mid \tilde{\boldsymbol{r}}_{0}, \tilde{t}_{0}\right)-\beta_{D} \int_{\tilde{t}_{0}}^{\tilde{t}} d \tau \int d \tilde{\boldsymbol{r}}_{1} G\left(\tilde{\boldsymbol{r}}, \tilde{t}, \mid \tilde{\boldsymbol{r}}_{1}, \tau\right)\left[\nabla_{\tilde{\boldsymbol{r}}_{1}}\left(G\left(\tilde{\boldsymbol{r}}_{1}, \tau \mid \tilde{\boldsymbol{r}}_{0}, \tilde{t}_{0}\right) \nabla_{\tilde{\boldsymbol{r}}_{1}} \tilde{c}\left(\tilde{\boldsymbol{r}}_{1}, \tau \mid \tilde{\boldsymbol{r}}_{0}, \tilde{t}_{0}\right)\right)\right] \tag{S16}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{c}\left(\tilde{\boldsymbol{r}}, \tilde{t} \mid \tilde{\boldsymbol{r}}_{0}, \tilde{t}_{0}\right)=\frac{1}{\left(4 \pi \tilde{D}_{c h}\left(\tilde{t}-\tilde{t}_{0}\right)\right)^{\frac{3}{2}}} \exp \left[-\frac{\left(\left(\tilde{x}-\tilde{x}_{0}\right)^{2}+\left(\tilde{y}-\tilde{y}_{0}\right)^{2}+\left(\tilde{z}-\tilde{z}_{0}\right)^{2}\right)}{4 \tilde{D}_{c h}\left(\tilde{t}-\tilde{t}_{0}\right)}\right] . \tag{S17}
\end{equation*}
$$

At $\tilde{t}_{0}=0$ and $\tilde{x}_{0}=\tilde{y}_{0}=0$, the initial distribution is, to leading order ρ_{0}, given by

$$
\begin{equation*}
\rho_{0}(\tilde{\boldsymbol{r}}, \tilde{t}=0)=\frac{1}{2 \sqrt{5 \pi}} \exp \left[-\frac{\left(\tilde{z}-\tilde{z}_{0}\right)^{2}}{20}-\left(\tilde{x}^{2}+\tilde{y}^{2}\right)\right] . \tag{S18}
\end{equation*}
$$

Equations (S16) and (S17) give the analytic solution to Eqs. (32)-(33), with initial distribution given by Eq. (S18). When the nutrients are neglected we recover our previous result Ref. 89.

