SI Tables 1-5

Title of paper: Effects of Calibration Approaches on the Accuracy for LC-MS Targeted Quantification of Therapeutic Protein

Eslam Nouri-Nigjeh^{1,2,#}, Ming Zhang^{1,2,#}, ¹Tao Ji, Haoying Yu^{1,2}, An Bo^{1,2}, Xiaotao Duan^{1,2}, Joseph Balthasar^{1,2}, Robert W. Johnson*³, and Jun Qu* ^{1,*}

¹ The Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260

² New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203

³Abbvie, 1 North Waukegan Road, North Chicago, IL 60064-6101

SI Table 1. Signature peptide (SP) candidates for HCV ${\sf mAb}^{a,b}$

Peptide	Charge state	Precursor (m/z)	Top 5 product ions
Light Chain			
VDNALQSGNSQESVTEQDSK	2	1069.00	707.3, 1495.6, 893.4, 1408.8, 1022.5
TVAAPSVFIFPPSDEQLK	2	974.03	913.4, 1060.5, 802.6, 1320.7, 1173.6
VDNALQSGNSQESVTEQDSK	3	713.00	748.5, 641.3, 812.3, 606.3, 513.2
TVAAPSVFIFPPSDEQLK	3	649.29	457.4, 913.5, 517.4, 530.7, 443.8
VYACEVTHQGLSSPVTK	3	626.32	807.4, 772.2, 889.1, 692.0, 527.5
VYACEVTHQGLSSPVTK	2	938.97	788.4, 1154.7, 1053.5, 1088.5, 444.3
SSQSLVYSNGNTYLHWYLQKPGQSPK	3	995.17	1191.4,1241.0,1109.8,1066.3,1182.5
DSTYSLSSTLTLSK	2	751.89	734.0, 836.5, 1036.5, 642.1, 448.2
DSTYSLSSTLTLSK	3	501.60	489.7, 83.7, 477.4, 519.4, 448.2
SSQSLVYSNGNTYLHWYLQKPGQSPK	2	1492.31	613.3,1468.8,1331.7,1331.7,741.4
Heavy Chain			
GPSVFPLAPSSK	2	593.83	699.3,846.4,470.2,585.0,418.2
FNWYVDGVEVHNAK	3	559.94	708.8,616.0,534.3,262.1,766.6
FNWYVDGVEVHNAK	2	839.41	968.5,1067.5,697.3,1230.7,708.8
GGTGYWGQGTTLTVSSASTK	2	980.49	1337.7,780.3,1152.6,580.3,604.2
VVSVLTVLHQDWLNGK	3	603.68	805.4,712.7,656.2,531.6,762.2
GPSVFPLAPSSK	1	1186.65	699.4,751.4,769.5,846.4,418.2,
STSGGTAALGCLVK	2	661.35	576.3,760.4,689.3,567.5,519.3
VVSVLTVLHQDWLNGK	2	905.01	997.4,1110.5,617.3,1191.7,1310.7
TPEVTCVVVDVSHEDPEVK	3	714.02	834.6,472.3,856.9,906.7,970.9
FAFSLETSASTAYLQINNLK	3	740.40	488.2,729.3,992.2,601.3,865.8,
GGTGYWGQGTTLTVSSASTK	3	653.66	681.5,580.3,493.2,641.0,804.1,780.4
TPEVTCVVVDVSHEDPEVK	2	1070.52	1667.7,472.3,1039.5,1154.5,940.5,1253.6
FAFSLETSASTAYLQINNLK	2	1110.09	1005.5,842.4,729.4,601.4,1264.6
STSGGTAALGCLVK	3	441.23	576.3,588.4,373.6,633.1,567.5
TTPPVLDSDGSFFLYSK	2	937.98	836.7,1265.5,1378.8,827.4,1150.6
NEDTATYFCTR	2	689.30	583.2,847.4,746.3,1134.5,436.1
EEQYNSTYR	2	595.26	526.2,369.1,640.3,803.3,532.1
TTPPVLDSDGSFFLYSK	3	625.32	827.7,836.3,609.2,821.2,657.5
NEDTATYFCTR	1	1377.57	1019.4,1134.5,1001.6,1116.6,847.4

^a In total, more than 85% sequence coverage was achieved. Peptides that are not unique to HCV-mAb, or containing labile residues, known modification sides or missed cleavage were removed.

^bThe top 2 most intensive charge states of each candidate were investigated. The peptide/charge combinations were sorted by the abundances of precursor peak, from high to low.

SI Table 2.Actual purities of the standards as quantified by quantitative amino acid analysis (AAA, N=6). All standards were labeled as >95% in purity by the providers.

	HCV-mAb (Full-length protein)	GPS	TVA	Extended-GPS	Extended-TVA
Mean	78%	90%	65%	75%	97%
RSD%	3%	9%	8%	6%	3%

SI Table 3. Validation of the peptide-, extended-peptide- and protein-level calibration approaches using QC spiked with <u>their respective calibrators</u> into blank plasma sample (N=6)^{a,b,c}.

					Accuracy			Precision	l
Calibration approaches	Signature peptide	Range (µg/ml)	R^2	1.6 μg/ml	10 μg/ml	80 μg/ml	1.6 μg/ml	10 μg/ml	80 μg/ml
Protein calibrator with SIL-protein I.S.	GPS	0.1~200	>0.9953	91%	96%	97%	3%	7%	6%
(Protein-spiked QC)	TVA	0.1~200	>0.9932	90%	96%	106%	4%	9%	3%
Extended-peptide calibrator with SIL-	GPS	0.1~200	>0.9963	98%	88%	98%	7%	3%	3%
extended-peptide I.S. (Extended-peptide-spiked QC)	TVA	0.1~200	>0.9931	101%	86%	99%	5%	3%	3%
Peptide calibrator with SIL-peptide I.S	. GPS	0.1~200	>0.9974	96%	103%	103%	5%	6%	4%
(Peptide-spiked QC)	TVA	0.1~200	>0.9915	98%	96%	100%	7%	8%	5%

^a QC samples were prepared by spiking pure protein (before sample preparation, for protein calibration), synthesized extended-peptides (spiked before digestion, for extended-peptide calibration) or peptides (spiked after digestion, for peptidelevel calibration) into blank rat plasma at three levels: 1.6, 10 and 80 µg/mL protein or equal molarities of peptides/extended peptides.

b Each sample was analyzed three times in each of two different days (day 1 and day 14).

 $^{^{\}it c}$ The purities of all standards were accurately measured by quantitative AAA procedure.

SI Table 4.Investigation of the accuracy and precision of the five calibration approaches using QC prepared by <u>spiking pure protein</u> into blank plasma (N=6)^{a, b, c}. The data is also illustrated in Fig. 3.

					Accuracy	/		Precision	1
Calibration methods	Signature peptide	Range (µg/ml protein)	R ²	1.6 μg/ml	10 μg/ml	80 μg/ml	1.6 μg/ml	10 μg/ml	80 μg/ml
	GPS	0.1~200	>0.9953	91%	96%	97%	3%	7%	6%
Protein calibrator with SIL-protein I.S.	TVA	0.1~200	>0.9932	90%	96%	106%	4%	9%	3%
Protein calibrator with SIL-extended-	GPS	0.1~200	>0.9945	93%	95%	92%	4%	6%	6%
peptide I.S.	TVA	0.1~200	>0.9917	95%	94%	95%	7%	3%	3%
	GPS	0.1~200	>0.9924	100%	99%	109%	6%	7%	0%
Protein calibrator with SIL-peptide I.S.	TVA	0.1~200	>0.9912	94%	95%	103%	5%	8%	6%
Extended-peptide calibrator with SIL- extended-peptide I.S.	GPS	0.1~200	>0.9963	78%	74%	70%	4%	6%	6%
extended-peptide 1.3.	TVA	0.1~200	>0.9931	58%	67%	65%	5%	3%	7%
Peptide calibrator with SIL-peptide I.S.	GPS	0.1~200	>0.9974	71%	68%	77%	4%	7%	2%
replied combinator with Sie-peptide i.s.	TVA	0.1~200	>0.9915	38%	39%	41%	10%	8%	11%

 $[^]a$ QC samples were prepared by spiking pure protein into blank rat plasma at three levels: 1.6, 10 and 80 μ g/mL. b Each sample was analyzed three times in each of two different days (day 1 and day 14).

^c The purities of all standards were accurately measured by a quantitative AAA procedure, to eliminate bias arising from inaccurate purity of standards.

SI Table 5. Quantitative data in the time course samples by five different calibration approaches (N=4 animals)

	Protein cali SIL-pro	Protein calibrator with SIL-protein I.S.	Peptide calibrator with SIL-peptide I.S.	brator with tide I.S.	Extended-peptide calibrator with SIL-extended-peptide I.S	l-peptide with SIL- septide I.S.	Protein calibrator with SIL-peptide I.S.	orator with tide I.S.	Protein cali SIL-extendec	Protein calibrator with SIL-extended-peptide I.S.
Time(n)	GPS	\mathbf{TVA}	GPS	TVA	GPS	TVA	GPS	\mathbf{TVA}	GPS	TVA
	Mean±SD (μg/ml)	Mean±SD (μg/ml)	Mean±SD $(\mu g/ml)$	Mean±SD (μg/ml)	Mean±SD (μg/ml)	Mean±SD $(\mu g/ml)$	Mean \pm SD $(\mu\mathrm{g/ml})$	Mean±SD $(\mu g/\text{ml})$	Mean±SD (μg/ml)	Mean±SD (μg/ml)
1	48.32 ± 1.31	49.98±7.69	33.72±8.78	20.2±0.65	37.99 ± 2.85	30.41 ± 1.82	44.19 ± 11.50	51.36±1.66	49.46±3.73	45.33±2.73
2	43.87±2.77	43.97±2.43	31.72±2.27	18.15 ± 2.04	36.58 ± 1.82	29.49±1.56	41.57±2.97	46.08±5.22	47.62±2.39	43.95±2.33
4	39.92±2.93	40.98±5.03	31.27±1.45	15.90 ± 1.22	32.23±3.59	26.88 ± 2.83	40.98±1.90	40.31±3.14	41.91±4.70	40.04 ± 4.24
6	37.34 ± 5.08	34.5 ± 2.19	26.24±5.23	15.01 ± 1.46	27.54±4.50	21.51±4.95	35.96±3.46	38.03 ± 1.19	35.77±5.90	32.00±7.41
12	31.14±2.87	29.01±3.56	22.42±4.41	13.39 ± 1.32	23.05±3.26	17.48 ± 2.50	29.38±2.77	33.89 ± 0.96	29.88±5.58	25.97±3.73
24	24.31±2.20	23.67±3.49	17.18±3.36	9.64 ± 0.85	16.42 ± 1.59	12.90 ± 1.57	23.48±2.73	24.27±2.17	21.18±2.08	19.78±1.27
48	17.41 ± 1.89	19.29 ± 2.32	14.97 ± 1.00	7.16±0.87	14.38 ± 0.88	10.78 ± 0.94	19.62±0.91	17.96 ± 1.53	18.51 ± 0.75	16.58 ± 1.01
72	15.45 ± 1.56	16.56±2.73	13.62±1.78	6.15±0.59	12.52 ± 1.02	$8.37{\pm}1.29$	17.05 ± 0.95	15.37 ± 1.52	16.07±1.12	14.18 ± 0.67
120	13.26 ± 0.92	12.99 ± 1.27	10.12 ± 0.58	5.64 ± 0.54	10.41 ± 0.94	7.07 ± 1.08	13.26±0.76	14.06 ± 1.12	13.3 ± 0.93	11.71±0.63
168	11.13 ± 0.62	11.10±0.71	9.83 ± 0.41	4.45±0.53	8.51 ± 0.59	5.79 ± 0.90	12.88±0.21	11.01±0.59	10.82 ± 0.77	10.10 ± 0.80
216	9.77 ± 0.64	10.89 ± 0.48	7.89 ± 0.37	4.06 ± 0.54	7.88 ± 0.48	5.23±0.79	10.73 ± 0.55	10.01 ± 1.38	$9.99{\pm}0.63$	9.06 ± 0.69
264	9.26 ± 0.86	8.70±0.74	7.36 ± 0.43	3.53 ± 0.48	7.49 ± 0.50	5.16 ± 0.56	9.65 ± 0.31	8.65 ± 1.23	9.49 ± 0.33	7.99 ± 0.48
360	6.41 ± 0.44	5.62 ± 0.61	5.04 ± 0.29	2.48±0.27	5.17 ± 0.47	3.23 ± 0.55	6.61±0.38	5.91 ± 0.43	6.56±0.75	6.68 ± 0.67
504	4.91 ± 0.32	4.49 ± 0.40	3.34 ± 0.52	1.76 ± 0.29	3.41 ± 0.36	2.12 ± 0.50	4.38 ± 0.48	4.05 ± 0.42	4.81 ± 0.57	4.52 ± 0.67
648	3.19±0.34	3.07±0.35	2.43±0.49	1.41±0.23	2.70±0.36	1.40 ± 0.32	3.19±0.47	3.16±0.34	3.39±0.35	3.12±0.43