A Cell Culture Substrate with Biologically Relevant Size-scale Topography and Compliance of the Basement Membrane Shaun P. Garland¹§, Clayton T. McKee²§, Yow-Ren Chang², Vijay Krishna Raghunathan², Paul Russell², Christopher J. Murphy^{2,3,*} ¹ Department of Biomedical Engineering, University of California Davis, Davis, California 95616 ² Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, California 95616 ³ Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Davis, California 95616 [§] These authors contributed equally to this work. ^{*} Corresponding Author: cjmurphy@ucdavis.edu ## **Supplemental Information** **Supplemental Figure S1.** AFM images of the molded ridge and groove topographies in the thin film hydrogels, ranging from 2000-800nm pitch, without collagen. The thin bridges observed at 800nm are an artifact of strong AFM tip - sample adhesions. ## Supplemental Figure S2. AFM height maps with their associated cross-section of 4000 nm pitch ansiotropically patterned PEG surfaces made from PEG-DA 700 g/mol prepolymers swollen in either (a) ethanol or (b) PBS. Ridge cross-sectional areas were 0.749 ± 0.057 μm^2 in ethanol and 0.694 ± 0.035 μm^2 in PBS. These data suggest that PEG films swell similarly in ethanol as they do in PBS. **Supplemental Figure S3.** Measured elastic moduli for anisotropic surfaces of varying pitches made (a) without collagen type I or (b) with collagen type I included in the prepolymer solution.