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Abstract
Any reasonable machine learning model should not only
interpolate efficiently in between the training samples pro-
vided (in-distribution region), but also approach the ex-
trapolative or out-of-distribution (OOD) region without be-
ing overconfident. Many state-of-the-art algorithms [2, 1]
have tried to fix the overconfidence problem in the OOD
region. However, in doing so, they have often impaired
the in-distribution performance of the model. Our key
insight is that machine learning models partition the fea-
ture space into polytopes and learn constant (random for-
est) or affine (ReLu nets) functions over those polytopes.
This leads to the out-of-distribution overconfidence prob-
lem for the polytopes which lie in the training data bound-
ary and extends to infinity. To resolve this issue, we pro-
pose kernel density methods that fit Gaussian kernel over
the polytopes, which are learned using machine learning
models. Specifically, we introduce a variant of kernel den-
sity polytopes: Kernel Density Forest (KDF) based on ran-
dom forests. Studies on various simulation settings show
that KDF achieves uniform confidence over the classes
in the OOD region while maintaining good in-distribution
accuracy compared to that of its parent model—random
forests.

Problem Formulation
Consider a supervised learning problem with independent
and identically distributed training samples {(xi, yi)}Ni=1
such that (X, Y ) ∼ PX×Y , where X ∼ Pin is a X ∈ Rd

valued input and Y is a Y = {1, · · · , K} valued label.
We consider the OOD-distributions Pout with their support
spanning the whole feature space excluding the support of
Pin. In other words, Pout :=

⋃
j Pj, where Pj is any

distribution having little or no overlap with Pin. Here the
goal is to learn a model g : Rd×{Rd×{1, · · · , K}}N →
[0, 1]k such that,

g(x) =

{
P [Y = k|X = x], ∀k if x ∼ Pin

P [Y = k], ∀k if x ∼ Pout
(1)

where P [Y = k|X = x] is the true posterior probability of
class k given by,

P [Y = k|X = x] =
fk(x)P [Y = k]∑K
i=1 fi(x)P [Y = i]

(2)

Here, fi(x) is the true training class conditional density
function of class i. The class prediction ŷ for a test sample
x is obtained by,

ŷ = argmax(g(x)) (3)

Proposed Model
• Consider p polytopes {Qr}pr=1 from a trained random

forest.

• Fit a Gaussian to each polytope Qr.

f̂k(x) =
1

Nk

p∑
r=1

NrkKrk(x) (4)

where Nrk is the total number of samples that end up in
the current polytope Qr of class k and Nk =

∑p
r=1Nrk

is the total number of training samples with class k.

• Add suitable bias the model.

f̃k(x) = f̂k(x) + b (5)

Bias Intuition
The motivation behind the bias term is to modify our es-
timator such that its posterior estimates become closer to
the class priors as a given inference point x becomes fur-
ther from the training data X .

Simulation Results
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Simulation distributions and posterior estimates by different algorithms. Binary simulation data are generated within the region
bounded by [−1, 1]× [−1, 1], then posteriors are estimated within the [−2, 2]× [−2, 2] region. Kernel Density Forests (KDFs)
yields better estimates when compared to its respective parent models—random forests (RFs). It achieves particularly good

posteriors in the out-of-distribution (OOD) region, while RFs yields overconfident posteriors.

Theorem 1: Let d represent euclidean distance. Now as-
sume that mini d(x,Xi) → ∞ and that the variances of all
Krk are bounded. Then P̂ [Y = k|X = x] → P̂ [Y = k].

More Theoretical Results
• Theorem 2: Given the polytope size hrk → 0, the num-

ber of samples within each polytope Nrk → ∞ and
Nrk grows slowly compared to the total sample size
Nrk
Nk

→ 0, kernel density polytope is an unbiased estima-
tor of the true class conditional in-distribution density
function fk(x).

• Theorem 3: Given the conditions in theorem 1, variance
of the kernel density polytope estimate var(f̂k(x)) → 0.

Out-of-distribution Results
RF KDF

Simulation AUROC FPR@95 AUROC FPR@95
Gaussian XOR 0.80(±0.03) 0.83(±0.13) 0.98(±0.00) 0.32(±0.28)
Spiral 0.55(±0.02) 0.75(±0.16) 0.99(±0.00) 0.39(±0.36)
Circle 0.29(±0.13) 0.81(±0.19) 0.97(±0.00) 0.32(±0.25)
Sinewave 0.86(±0.03) 0.68(±0.11) 0.99(±0.00) 0.31(±0.27)
Polynomial 0.82(±0.03) 0.64(±0.14) 0.99(±0.00) 0.28(±0.26)

Table 1: Performance metrics on the out-of-distribution
(OOD) region: area under the receiver operating charac-
teristic (AUROC) and false positive rates at 95% recall
(FPR@95). For each simulation 10000 samples were used
for training the models over 45 Monte Carlo repetitions.

Discussion
kernel density polytopes enable OOD detection without
sacrificing any in-distribution performance. Models aug-
mented with such a method could achieve better overall
performance than the original and produce posteriors that
resemble human decisions. In the meantime, our code, in-
cluding the package and the experiments in this manuscript,
is available from https://github.com/neurodata/kdg
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