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General Experimental Procedures
Dimethylformamide (DMF) was purchased anhydrous from Aldrich and used without 

further treatment. MeOH (1.00 L) was distilled from Magnesium (5.00g) and iodine (500 

mg). Unless specified, all other reagents and solvents were obtained from commercial 

sources and use without further purification. 8-(3-acetylphenyl)-2’-deoxyguanosine was 

synthesized according to the procedures outlined elsewhere.1 Column chromatography 

was performed using silica gel 60, 44-63 µm from Sorbent Technologies. For TLC, EMD 
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silica gel 60 F254 glass backed plates from Sorbent Technologies, were used. 

Visualization of TLC plates was effected with UV light or anisaldehyde as a stain. 

Reactions requiring anhydrous conditions were carried out using oven or flame-dried 

glassware under Argon.  

Characterization and Instrumentation
NMR spectra were recorded on Bruker DRX-500 or AV-500 spectrometer, with nominal 

frequencies of 500.13 MHz for proton and 125 MHz and for carbon respectively. All 

NMR experiments were performed at 298 K unless otherwise stated. All compounds 

were characterized with 1H, 13C NMR and 2D-NMR techniques such as COSY, HMBC 

and NOESY. All chemical shifts are reported in parts per million relative to the residual 

undeuterated solvent as an internal reference.  The following abbreviations are used to 

explain the multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiple; b, broad. 

The FT-IR analyses were performed on a Bruker Tensor 27 spectrophotometer equipped 

with Helios Attenuated Total Reflectance (ATR) with a diamond crystal. CD spectra 

were acquired on an OLIS DSM-10 UV-Vis CD or a Jasco 710 spectrophotometer.  DSC 

analyses were performed on a VP-DSC from MicroCal and Origin (v. 7) was use for data 

processing. Melting temperatures were determined using Fisher brand electro-thermal 

digital melting point apparatus from Fisher Scientific. Mass Spectroscopy was recorded 

in a Micromass Quattro Micro API triple quadrupole mass spectrometer with an ESI 

source (Micromass, Inc., Manchester, UK).

General method for esterifications using 8-(3-acetylphenyl)-2’-
deoxyguanosine as an example
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Scheme S1. Synthesis of mAGcat and dGcat.

8-(3-acetylphenyl)-2’-deoxyguanosine was suspended in anhydrous DMF (20 mg mL-1). 

To this suspension, a 1:1 complex of 4-dimethylaminopridine: 4-toluenesulphonic acid2

(DPTS) (0.5 equivalents), 6-azidohexanoic acid3 (2.5 equivalents) and dicyclohexyl-

carbodiimide (2.5 equivalents) were added. The reaction mixture was stirred until TLC 

(CHCl3-MeOH, 80:20) showed complete conversion of the starting material. The reaction 

mixture was quenched by the addition of an excess of MeOH and this was followed by 

solvent evaporation. The resulting solid material was dissolved in EtOAc and washed with 

10% NaHCO3 (2 × 25 mL) and brine (1 × 25 mL). The organic phase was separated, dried 

over MgSO4 and adsorbed directly onto silica gel. Dry loading of the silica onto a 

chromatography column followed by chromatography (MeOH-CHCl3, 1:19) afforded the 

target compound as a foam. 

8-(3-Acetylphenyl)-(3’,5’-bis-O-(6-azidohexanoyloxy))-2’-deoxyguanosine. 

(mAGhaz):  Light yellow foam (85 % yield). 1H NMR (500 MHz, DMSO-d6): δ 10.83 (s, 

1H), 8.20 (s, 1H), 8.07 (d, J = 7.5 Hz, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.69 (t, J = 8.2 Hz, 

1H), 6.50 (b s, 2H), 6.10 (t, J = 7.1 Hz, 1H), 5.44 (m, 1H), 4.43 (dd, J = 5.1, 12.2 Hz, 1H), 

4.27 (dd, J = 7.5, 11.5 Hz, 1H), 4.15 (b m, 1H), 3.51 (m, 1H), 3.27 (q, J = 7.0 Hz, 4H), 

2.63 (s, 3H), 2.35 (m, 1H), 2.30 (q, J = 7.5 Hz, 4H), 1.52 (m, 8H), 1.30 (m, 4H). 13C NMR 

(125 MHz, DMSO-d6): δ 198.1, 173.3, 173.0, 157.3, 153.8, 152.7, 146.8, 137.8, 134.0, 

131.2, 129.8, 129.6, 129.5, 117.9, 85.4, 82.4, 75.3, 64.2, 51.1, 34.5, 34.0, 33.9, 28.5, 27.7, 

26.2, 24.5. IR (νmax): 3324, 2928, 2850, 2091, 1734, 1684, 1624, 1570, 1242, 1087, 640 

cm-1. ESI-MS m/z 664.53 [M+H]+. 

(3’,5’-bis-O-(6-azidohexanoyloxy))-2’-deoxyguanosine. (dGhaz):  Ivory solid (52 % 

yield). Mp 153-155 °C. 1H NMR (500 MHz, DMSO-d6): δ 10.71 (s, 1H), 7.91 (s, 1H), 

6.51 (s, 2H), 6.13 (t, J = 5.0 Hz, 1H), 5.32 (d, J = 5.0 Hz, 1H), 4.22 (m, 3H), 3.32 (t, J = 

10.0 Hz, 2H), 3.28 (t, J = 10.0 Hz, 2H), 2.92 (m, 1H), 2.45 (m, 1H), 2.35 (m, 4H), 1.53 

(m, 8H), 1.32 (m, 4H). 13C NMR (125 MHz, DMSO-d6): δ 172.6, 172.4, 156.8, 153.8, 

151.1, 135.2, 116.8, 82.7, 81.6, 74.4, 63.5, 50.5, 35.6, 33.3, 33.1, 28.0, 27.9, 25.6, 23.9, 
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23.8. IR (νmax): 3392, 3315, 3169, 2731, 2090, 1715, 1594, 1168, 1101, 943 cm-1. ESI-

MS m/z 546.60 [M+H]+. (Figure S1-3)

General Method for the Azide/Alkyne Cycloaddition Catalyzed by CuSO4

and Sodium Ascorbate using mAGhaz as an example.
The starting material, mAGhaz (417 mg, 626 µmol) and 1-dimethylamino-2-propyne 

(156 mg, 200 µL, 1.88 mmol) were dispersed in THF: 100 mM sodium phosphate buffer 

(pH 7.01) (3:1, 40.0 mL). To this was added sodium ascorbate (37.2 mg, 188 µmol, 30 

mol %) and then CuSO4 (626 µL of a 100 mM solution, 62.6 µmol, 10 mol %). When the 

starting material was consumed as determined by TLC (1:9, MeOH-CHCl3) the solvent 

was removed under reduced pressure then dispersed in chloroform and loaded onto a 

chromatography column. The product was eluted using a gradient of MeOH-CHCl3

(1:19) to Et3N-MeOH-CHCl3 (1:1:18). The oil thus obtained was dispersed 

dichloromethane (DCM), precipitated onto the walls of a round bottomed flask by adding 

Et2O, the Et2O-DCM decanted off and the residue dried under reduced pressure. This 

process was repeated until a pale yellow foam was obtained.

(8-(3-acetylphenyl)-2-amino-6-oxo-1H-purin-9(6H)-yl)-2-((6-(4-((dimethylamino) 

methyl)-1H-1,2,3-triazol-1-yl)hexanoyloxy)methyl)tetrahydrofuran-3-yl 6-(4-

((dimethylamino)methyl)-1H-1,2,3-triazol-1-yl)hexanoate (mAGcat). Light yellow 

foam (61% yield). 1H NMR (500 MHz, DMSO-d6): δ 10.89 (s, 1H), 8.20 (s, 1H), 8.07 (d, 

J = 7.5 Hz, 1H), 7.93 (d, J = 4.5 Hz, 2H), 7.89 (d, J = 7.5 Hz, 1H), 7.69 (t, J = 7.5 Hz, 

1H), 6.54 (s, 1H), 6.10 (t, J = 6.5 Hz, 1H), 5.43 (s, 1H), 4.42 (m, 1H), 4.26 (q, J = 6.5 Hz, 

1H), 4.14 (s, 1H), 3.53 (m, 1H), 3.45 (d, J = 11.0 Hz, 4H), 2.63 (s, 3H), 2.35 (m, 1H), 

2.26 (q, J = 7.0 Hz, 4H), 2.11 (s, 12H), 1.76 (m, 4H), 1.48 (m, 4H), 1.19 (m, 4H). 13C 

NMR (125 MHz, DMSO-d6): δ 197.5, 172.6, 172.3, 156.7, 153.2, 152.0, 146.1, 143.6, 

143.5, 137.1, 133.3, 129.2, 128.8, 123.5, 117.2, 84.7, 81.7, 74.6, 63.6, 53.6, 53.6, 49.0, 

44.5, 33.1, 29.3, 25.2, 23.7, 23.6. IR (νmax): 3317, 2941, 1732, 1597, 1358, 1250, 1172 

cm-1. ESI-MS m/z 830.9 [M+H]+. (Figure S4-8)

2-amino-6-oxo-1H-purin-9(6H)-yl)-2-((6-(4-((dimethylamino)methyl)-1H-1,2,3-

triazol-1-yl) hexanoyloxy)methyl)tetrahydrofuran-3-yl 6-(4-((dimethylamino) 
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methyl)-1H-1,2,3-triazol-1-yl)hexanoate (dGcat).  Light yellow solid (66 % yield). Mp 

52-55 °C. 1H NMR (500 MHz, DMSO-d6): δ 10.76 (s, 1H), 7.98 (d, J = 5.0 Hz, 2H), 7.93 

(s, 1H), 6.56 (s, 2H), 6.13 (t, J = 10.0 Hz, 1H), 5.31 (s, 1H), 4.32 (q, J = 5.0 Hz, 4H), 4.26 

(m, 1H), 4.19 (m, 2H), 3.47 (s, 4H), 2.93 (t, J = 5.0 Hz, 1H), 2.37 (m, 1H), 2.32 (m, 4H), 

2.13 (s, 12H), 1.79 (m, 4H), 1.52 (m, 4H), 1.22 (m, 4H), 0.98 (t, J = 10.0 Hz, 4H). 13C 

NMR (125 MHz, DMSO-d6): δ 172.6, 172.4, 156.8, 153.9, 151.1, 143.7, 143.7, 135.1, 

123.5, 116.8, 82.6, 81.5, 74.4, 63.5, 53.7, 49.0, 44.6, 35.6, 33.1, 29.4, 25.3, 23.7. IR 

(νmax): 3322, 3130, 2931, 2859, 2091, 1734, 1687, 1626, 1573, 1165, 1086, 644 cm-1. 

ESI-MS m/z 712.70 [M+H]+. (Figure S9-13)
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Figure S1. 1H-NMR of dGhaz (10 mM) in DMSO-d6.
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Figure S2.  13C-NMR (125 MHz) of dGhaz (10 mM) in DMSO-d6.
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Figure S3.  COSY of dGhaz (10 mM) in DMSO-d6.
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Figure S4. 1H-NMR of mAGcat (8 mM) in DMSO-d6.
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Figure S5.  13C-NMR (125 MHz) of mAGcat (8 mM) in DMSO-d6.
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Figure S6. COSY of mAGcat (8 mM) in DMSO-d6.
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Figure S7.  HMBC of mAGcat (8 mM) in DMSO-d6.
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Figure S8.  NOESY of mAGcat (8 mM) in DMSO-d6 (mixing time 550 ms).
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Figure S9. 1H-NMR of dGcat (8 mM) in DMSO-d6.
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Figure S10. 13C-NMR (125 MHz) of dGcat (8 mM) in DMSO-d6.
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Figure S11.  COSY of dGcat (8 mM) in DMSO-d6.
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Figure S12.  HMBC of dGcat (8 mM) in DMSO-d6.
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Figure S13.  NOESY of dGcat (8 mM) in DMSO-d6 (mixing time 200 ms).
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Circular Dichroism (CD) Spectroscopy
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Figure S14. CD spectra of mAGi (10 mM) and mAGcat (5 mM), with and without KI.

CD spectroscopy studies were carried out in CH3CN and H2O, at 20°C, in the 400-200 

nm wavelength region at 0.2 nm resolution using a 1.0 cm quartz cell.  The solvent 

reference spectrum was used as baseline and digitally subtracted from the CD spectra.

Self-assembly studies
Self-assembly studies were carried out using a Bruker DRX-500 NMR spectrometer, 

equipped with either a 5 mm BBO or a TXI probe. In water, a conventional 1D 

presaturation pulse sequence with the excitation pulse set over the water peak at 4.7 ppm 

was used. A standard proton sequence was used for experiments in D2O. Self-assembly 

studies were performed, for example, using a 10 mM solution of mAGcat in 600 µL of 

H2O-D2O (9:1) or D2O. For the NOESY experiment a phase-sensitive 2D NOESY pulse 

sequence with presaturation (noesyphpr) was used. For NOESY and COSY in D2O 

standard pulse sequences were used.  
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Figure S15. 1H-NMR of mAGcat (10 mM) in H2O-D2O (9:1).
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Figure S16. 1H-NMR of: a) mAGcat (10 mM) with KCl (1 M) in H2O-D2O (9:1) and b) 
mAGi (50 mM) with KI (25 mM) in CD3CN.
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Figure S17. 1H-NMR titration of mAGcat (10 mM) in H2O-D2O (9:1) with increasing amounts 
of KCl. a) with no KCl, no detectable amount of hexadecamer (Hx), b) 0.63 mM KCl, 31 % Hx, 
c) 1.25 mM KCl, 50 % Hx, d) 2.00 mM KCl, 51 % Hx, e) 5.00 mM KCl, 60 % Hx, and f) 1 M 
KCl, 92 % Hx.
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Figure S18. 1H-NMR of a) dGcat (10 mM), with no KCl in H2O-D2O (9:1); b) dGcat (10 mM), 
1 M KCl in H2O-D2O (9:1); and c) dGcat (10 mM), 2 M KCl in H2O-D2O (9:1).

a b c
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Figure S19.  COSY of mAGcat (10 mM) 1M KCl in D2O.
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Figure S20.  NOESY of mAGcat (10 mM) 1M KCl in D2O (mixing time 500 ms).
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Figure S21.  Expansion of the NOESY of mAGcat (10 mM) 1M KCl in D2O (mixing time 500 
ms).
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Figure S22.  NOESY of mAGcat (10 mM) 1M KCl in H2O-D2O (9:1) (mixing time 410 ms).

Q
ui

ck
T

im
e™

 a
nd

 a
 d

ec
om

pr
es

so
r

ar
e 

ne
ed

ed
 to

 s
ee

 th
is

 p
ic

tu
re

.



M. García-Arriaga et al.                                                                            Supporting Information

S29

Figure S23.  Expansion of the NOESY of mAGcat (10 mM) 1 M KCl in H2O-D2O (9:1) (mixing 

time 410 ms). 

This section of the NOESY, which corresponds to figure 2 in the main text, shows the 
connectivities between the subunits in the outer tetrad and the subunits in the inner tetrad. 
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As such those NOEs can only arise from an assembled hexadecamer as described in the 
main text. The connectivities are NH2

H
o-NH2

wc
o, NH2

wc
o/NH2

H
o-NH1o, NH2

wc
i/NH2

wc
o,

NH2
wc

o/NH2
H

o-H10i and NH1i/NH2
wc

i-NH1o. 

Figure S24. Detailed explanation of the connectivities shown in Figure 2a from the main text.

QuickTime™ and a
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are needed to see this picture.
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Diffusion NMR studies

Pulsed field gradient diffusion experiments were carried out with a Bruker DRX-500, 

equipped with a 5 mm BBO probe, spectrometer using the Stimulated Echo Pulse 

Gradient sequence (stebpgp1s) in FT mode. To improve homogeneity a “13 interval pulse 

sequence” was used with two pairs of bipolar gradients. The shape of the gradient used 

was sine and the temperature was actively controlled at 25.0 ± 0.5 °C. Diffusion 

coefficients were derived using integration of the desired peaks to a single exponential 

decay, using the Bruker software package T1/T2 Relaxation (TopSpin v 2.0). Calculation 

of the hydrodynamic radius in D2O used the viscosity value (η = 1.103 Kg m-1 s-1, 298.15

°K) reported in the literature.1 The hydrodynamic radii of the species in the NMR tube 

were calculated according to the spherical approximation using the Einstein-Stokes 

equation: 

D =
kBT

6πηrH

where T denotes the temperature, η is the viscosity of the solvent at the given 

temperature, kB is the Boltzmann-Constant, D is measured diffusion constant and rH is the 

hydrodynamic radius. The data were further processed by the Bruker software package. 

1 One of the largest effects of dissolved salts in the diffusion rates of solutes in water 
relates to changes in the viscosity of the solvent and the value used in the Einstein-Stokes 
equation. For salts containing cations that interact strongly with water (e.g. Li+, Na+, 
Mg2+, etc.) there is a significant non-linear increase in the viscosity of the medium, which 
is particularly pronounced for concentrations above 2 M. In contrast, the viscosity of KCl 
remains essentially constant from 0-4 M. This phenomenon results from the poorer 
solvation of the potassium cations when compared to the cations mentioned previously. 
(For more information see: (a) Kevin L. Gering, Electrochimica Acta, 51, 2006, 3125-
3138; (b) D. R. Lide, Editor in Chief, CRC Handbook of Chemistry and Physics, 79 th 
Ed., CRC Press, Boca Ranton, Florida, 1998). Therefore, the valued used in our 
calculations was the one for pure D2O.
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Figure S25. DOSY of mAGcat (10 mM) 1M KCl in D2O.

To corroborate the hydrodynamic radius energy minimizations of mAGcat were 

performed. Computed using AMBER* (MacroModel, Version  9.5, Maestro 8.0.315, 

Schrödinger, LLC, New York, NY, 2007) representing water as a continuum solvent. The 

hydrodynamic radius (r’H) of 25.5 Å is in agreement with that obtained from the 

diffusion coefficient (D) for a hexadecamer of 24.8 Å (Figure S26). Although, the 

corresponding values for models of a dodecamer (24.2 Å) or a 20-mer (28.2 Å) are not 

far off, they can be rejected based on the symmetry reflected in the NMR spectra (OD4). 

A hypothetical octamer (23.9 Å) would be too small and, although it could share the 

same symmetry, it was rejected based on the 2D-NOESY experiments (Figures S20-S24).
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Figure S26.  Hydrodynamic radii determined using a molecular model of (mAGcat)16•3KCl as 
created using AMBER* (MacroModel, Version  9.5, Maestro 8.0.315, Schrödinger, LLC, New 
York, NY, 2007) representing water as a continuum solvent. The purple spheres represent 
potassium cations.

Variable temperature NMR

A solution of mAGcat (10 mM) containing an excess of KCl (1 M) was placed in a 

threaded cap sealed NMR tube. The 1H-NMR was recorded in H2O-D2O (9:1) at 25 ºC 

and increased up to 80 ºC, at 5 ºC intervals. The fraction of ordered species was 

determined by the integration of the area under selected peaks (H1’ in the monomer and 

hexadecamer) and reported as the ratio between the monomer and the G-quadruplex. 
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Figure S27.  Melting curves of; a) mAGcat (10 mM), as determined by NMR by the fraction of 
ordered species (black line) measured at 1 M KCl in H2O-D2O (9:1).  The first derivative plot of 
the melting curve is represented in dots; and b) mAGi (5 mM) in CD3CN saturated in KI.  The 
first derivative plot of the melting curve is represented in dots.

Figure S28.  Variable temperature 1H-NMR of mAGcat (10 mM), 1 M KCl in H2O-D2O (9:1), 
indicating the fraction of ordered species.

Differential Scanning Calorimetry (DSC)

The total heat required for the dissociation of the hexadecamer was measured in water, in 

a temperature range of 20-90 °C, using a heating rate of 1 °C min-1. The Tm value is taken 

as the maxima in the DSC curve. Standard thermodynamic parameters were obtained 

from the DSC experiment using the relationships ∆Hcal = ∫∆CP(T) dT, ∆Scal = ∫∆CP(T)/T 

dT and the Gibbs equation, ∆Go
cal = ∆Hcal - T∆Scal, were CP is the heat capacity of the 

solution during the disassembly process.
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Figure S29.  DSC melting curve of mAGcat (1 mM) in H2O with 1 M KCl.
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