Experimental evolution reveals the synergistic genomic mechanisms of adaptation to ocean warming and acidification in a marine copepod

Reid S. Brennan^{1,2*}, James A. deMayo³, Hans G. Dam³, Michael Finiguerra³, Hannes Baumann³, Vince Buffalo⁴, Melissa H. Pespeni^{1*}

mpespeni@uvm.edu @mpespeni

Can copes cope?

- Acartia tonsa were collected in the Long Island Sound and first lab acclimated for three generations.
- ✓ 25 generations of experimental evolution.
- ☑ Four replicates of each of four treatments; sustained population sizes of ~3,000 copepods per replicate.
- **Preprint:** https://doi.org/10.1101/2021.11.01.466754

Ambient 18°C, 400 µatm CO₂

- Acidification 18°C, 2000 µatm CO₂ Warming 22°C, 400 µatm CO2
- OWA 22°C, 2000 µatm CO₂
- Conditions experienced periodically in nature.

CANDIDATE 5000 **SNPs** EXCEEDING 4000 DRIFT. Warming Number of loci and OWA 3000 share loci, as do all 2000 groups in response 1000 to lab conditions. Ambient Acidic Warm OWA

REPLICATE POPULATIONS EXPERIMENTALLY EVOLVE OVER 25 GENERATIONS. PCA of all 394,667 SNPs. Pooled capturesequencing of gDNA using 32,413 custom probes.

CONVERGENT CORRELATIONS OF ALLELE FREQUENCY CHANGE FROM F0 TO F25. Warming and OWA share variation; other treatment pairs do not.

Acartia tonsa has standing genetic variation to adapt to a high temperature, high CO₂ world. High temperature was the driving selective pressure, but there was negative synergy with high CO₂.

1 University of Vermont, Burlington, VT, USA Affiliations: ² GEOMAR Helimotic Connecticut, Groton, CT, USA 3 University of Connecticut, Groton, CT, USA 2 GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany 4 Institute for Ecology and Evolution, University of Oregon, USA

Adrie Rumsey for artwork in the graphical abstract. Acknowledgements: Funded by NSF grants to M.H.P. (OCE 1559075; IOS 1943316) and H.G.D, H.B. and M.F. (OCE 1559180)

