

Markov Chains for
programmers

First Edition – April/2022

Ricardo M. Czekster
Birmingham, United Kingdom

Self Publishers Worldwide

This book was typeset using LATEX software (using OverLeaf – online).
It employs proprietary software (mostly MS-Excel) for demonstrating MC.
It uses the PRISM Statistical Model Checker, version 4.6 (2022).
For demonstrating direct solution methods, it works with MATLAB®.

Copyright © 2022 Ricardo M. Czekster
License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Preface

This book originated as I perceived a need for better and simpler explanations sur-
rounding Markov Chains (MC). If you take the formal literature on this subject and
if you do not have a rather strong mathematical background to understand the con-
cepts, you are probably restricted to use MC, which I always thought that I could
change that. In my view, this is a nice opportunity to sharp programming skills as
the numerical methods proposed pose interesting challenges.

The purpose of this book is to present MC firstly to programmers (at any level), but
it is not restricted though; I think that broader audiences might enjoy it as well. The
idea is to grasp the basic notions and then implement solutions that are reproducible.
Proof of that is that I have shared C code in GitHub and supporting spreadsheets so
there are multiple ways of verifying answers.

I hope you enjoy the next pages. Please, feel free to send me your remarks, sug-
gestions, comments, and (eventual) critics.

I shall keep track of changes among editions, errata, etc., in a yearly rate. First
edition of the book was published in early April/2022 and it covered MC (types DTMC
and CTMC), basic notions, and introductory models.

1st April, 2022
Birmingham, United Kingdom

Ricardo M. Czekster

v

vi

Table of Contents

Introduction 1

1 Markov Chains 3
1.1 Model and system . 3
1.2 Emergence of Markov Chains . 3
1.3 Basic modelling primitives . 4
1.4 Input and output . 4
1.5 Types . 5
1.6 Values decorating transitions . 5
1.7 Markov property or memoryless property 7
1.8 Let’s code! . 9

1.8.1 Challenge 01 . 9
1.8.2 Challenge 02 . 10

1.9 What is considered a ‘proper’ MC? 11
1.9.1 Irreducible MC . 12

1.10 Limitations of Markov Chains . 13
1.11 Comments on the spreadsheets . 13

2 DTMC 15
2.1 Remembering matrix operations . 16
2.2 The Belfast weather model . 17
2.3 Let’s code! . 18

2.3.1 Challenge 03 . 18
2.4 Solution methods for DTMC . 19

2.4.1 Power matrix, or Matrix-Matrix Multiplication 20
2.4.2 Vector-Matrix Multiplication 20
2.4.3 Forward simulation . 21
2.4.4 Useful comments . 22
2.4.5 Direct solution method . 22
2.4.6 PRISM DTMC model . 23

2.5 Let’s code! . 24
2.5.1 Challenge 04 . 24
2.5.2 Challenge 05 . 26

vii

2.6 Comments on the spreadsheets . 26

3 CTMC 29
3.1 Infinitesimal Generator . 29
3.2 Computing the embedded DTMC . 31
3.3 The Lily Pad model . 32
3.4 Let’s code! . 34

3.4.1 Challenge 06 . 34
3.5 Solution methods for CTMC . 35

3.5.1 Forward simulation . 35
3.6 Race condition . 36
3.7 Comments on the spreadsheets . 37
3.8 Let’s code! . 37

3.8.1 Challenge 07 . 37
3.9 Solution methods (cont.) . 39

3.9.1 Direct solution method . 39
3.9.2 PRISM CTMC models . 40

4 More projects and models 43
4.1 Projects . 43

4.1.1 Combine it all! . 43
4.1.2 Visual MC . 44
4.1.3 Parallelisation of simulation samples 44

4.2 Models . 44
4.2.1 Birth and Death model . 44
4.2.2 Mouse Maze model . 45
4.2.3 Availability model . 45
4.2.4 Aging and Rejuvenation model 46

5 Final considerations 49
5.1 What’s next? . 49

About the author 51

Index 55

List of Figures

1.1 A simple CTMC model with two states and two transitions. 6
1.2 An example of periodic MC with three states. 11
1.3 Two MC for demonstrating irreducibility (in this case, the lack thereof)

properties (note that Q0 and Q1 are not irreducible). 12

2.1 A simple DTMC with 2 states (the “lighting model”). 15
2.2 Model representing the weather of Belfast, in Northern Ireland. . . . 17

3.1 Representation of balancing rates in states in CTMC. 29
3.2 Lighting model with two states as a CTMC. 30
3.3 Generic CTMC model with four states. 30
3.4 Lily Pad model showing possible pads and transitioning rates. 32
3.5 Hypothetical situation showing the problem of choosing the next state

in CTMC simulation. 36
3.6 Drawing pseudo-numbers from uniform and exponential distributions

to help simulate time in CTMC (log is the natural logarithm, in base e). 37

4.1 A four state Birth and Death CTMC model. 44
4.2 A mouse in a maze visiting cells mindlessly. 45
4.3 Availability modelling of a blade server in a data centre. 46
4.4 Software aging and rejuvenation model [1]. 47

ix

x LIST OF FIGURES

List of Tables

1.1 Duration and rate for decorating transitions in CTMC models. 6
1.2 Yearly observations of a person waiting for a bus. 8

2.1 A two state representation of the lighting problem. 15

3.1 Residence time observed in lily pads and corresponding rates. 33

xi

xii LIST OF TABLES

Introduction

Markov Chains is a recurrent topic in systems analysis. The vast literature on the
subject and applicability attests its importance and timeliness. A host of authors
have delved into the formalism, proposing new modelling primitives, or enhancing
numerical tractability throughout the years. However, if one wants to learn about its
fundamental underpinnings, however simple, the overwhelming number of outcomes
prevents others from deepening the knowledge. Another problem is that sometimes
the wealth of previous results about Markov Chains focuses on specific audiences,
e.g., statisticians, mathematicians, and so on, seldom on computer programmers.

We aim to bridge this gap in this work, by presenting Markov Chains in simple
terms and then tackling the programming issues within the formalism. This book is
dedicated to programmers and people initiating studies in Markov Chains. It aims to
expose Markov Chains to programmers (at any level) having elementary mathemat-
ical background and willingness to delve into this modelling and analysis approach.

If you are looking for more formal aspects, please look elsewhere in the vast lit-
erature on this subject. This book is about understanding the basic principles sur-
rounding Markov Chains and how to implement basic numerical methods to derive
actionable indices for analysis. It has been written for programmers or engineers with
enthusiasm for computing (and coding), eager to get their hands dirty on Markov
Chains and willing to grasp results in short time.

In pursuing this objective, I shall:

• Employ as little mathematical notation as possible.

• Propose modelling with a corresponding spreadsheet or code (usually in C in
this edition).

• Simplify and convey notions with matching implementations.

The book does not address the mathematical foundations of Markov Chains and
intricate solution mechanisms such as Chapman-Kolmogorov equations, Perron-Fro-
benius theory, Krylov sub-spaces, Chebyshev methods, Arnoldi or GMRES solution
methods, and other similar concepts. Please, do submerse in this literature (else-
where) if it is relevant to you. There are a lot of interesting notions lurking in previous
research and, depending on your background, it might prove useful in your career.
For example, you could start looking at this book by Häggström [2] or Trivedi & Bob-

1

bio work on Reliability and Availability engineering [3] which are both remarkably
interesting.

Before we embark any further in this journey, a few housekeeping, and notes of
caution:

• From time to time, there will be programming ‘challenges’; the idea is that
one tries to code and test and come up with one’s own solution. There will
be presented matching code and comments to challenges in the last chapter –
most of the code will be produced using the C Programming Language.

– All code is covered by the GPLv3 License – free to redistribute citing the
source. Feel free to use it as you wish.

– For the spreadsheets MS-Excel was used – do test it on other platforms.

– GNU/Linux is the recommended OS for testing the software provided
here – it was tested on a Virtual Machine running KUbuntu 18.04 and
GNU/Linux kernel 5.4.100(generic).

• There is a website that accommodates all models, auxiliary code, and spread-
sheets available at: https://github.com/czekster/markov – clone it and
compile the projects thereof (the book is CC-BY-4.0 and the code is GPLv3).

• At all times, try to fully understand the code, what it does, how it does, and
why it does. Understanding the sequences of commands is crucial to improve
reasoning about the subject.

Enjoy.

https://github.com/czekster/markov

Chapter 1

Markov Chains

This is a gentle introduction to Markov Chains (MC). Before delving into MC however,
we need to comment on basic key notions and ideas.

1.1 Model and system
A system, broadly speaking, comprises a set of interacting components that collab-
oratively perform functions to address a problem. A model abstracts a system, i.e.,
it captures the most relevant operational semantics (i.e., the essence of what it effec-
tively does) into constructs for example a table (in mathematical words, in a matrix) of
relationships among pre-modelled components. Here, it is true that the adage “mod-
elling is more of an art than a science” comes up. Good modellers learn how to capture
the system’s function in essence and convey it into a working model that not only
represents its behaviour, but it is amenable for reasoning and decision making.

Norbert Wiener (1894-1964), a mathematician, once stated that “The best material
model for a cat is another, or preferably the same cat”. If your model represents the
totality of parts belonging to a system under study, then why modelling? Why not
inspecting and observing the real-world system for extracting properties and infer-
ences?

1.2 Emergence of Markov Chains
Markov Chains (MC) were envisioned by Andrey Andreyevich Markov (1856-1922).
His doctoral advisor was P. Chebyshev1. He published the first paper on the topic in
1906 and then applied later to study the distribution of vowels in Alexander Pushkin’s
opus Eugene Onegin. During those days, it attracted a reasonable amount of attention.
Markov himself thought of the limited applicability of his result, perhaps only to the
analysis of texts and identification of author’s styles.

1Pafnuty Lvovich Chebyshev was a Russian mathematician known as the founding father of Russian
mathematics.

3

4 CHAPTER 1. MARKOV CHAINS

It was picked up by Alan Scherr in the 1960’s in his thesis on time shared systems
(MIT), where he applied to study scalability issues [4]. Nowadays, analysts employ
MC to study a variety of phenomena, from economic models to Internet searching
(PageRank® algorithm [5] [6]). The following paper [7] details the top five most
significant MC applications, with interesting discussions (in information theory, in
indexing the Internet, and so on).

1.3 Basic modelling primitives
MC models employ states, transitions, and values decorating transitions (I will com-
ment more about these ‘values’ in Section 1.5). And that’s it. It cannot be any simpler
than that. The problem in MC is not about the primitives but about the abstractions
modellers use to convey behavioural ideas to their investigations. You must make de-
cisions on what and about the Level-of-Detail (LoD) of components, in a way that is
not too abstract nothing is learned, and not too detailed that hinders comprehension.

There is a wealth of literature on MC [8, 9, 10], numerical methods [11], and
applications [12], relating models to systems, decomposition techniques, division of
responsibilities, coupling/cohesion, and so on. The vastness of notions should not
overwhelm you because after all, what is important here is to capture the operational
essence of systems and key component interactions.

1.4 Input and output
MC will take a model of a system with enumerable sets of states and transitions deco-
rated with values as a Directed Graph (DG), i.e., a construct that has vertices or nodes
(states), connected by arcs (transitions). A DG connects states where every transition
has arrows pointing to other states (also known as a digraph).

After one finish working on the model, tools prepare the model for numerical so-
lution by applying procedures that creates matrices with interesting properties (to be
inspected and discussed later). The procedure also checks whether the MC respects
fundamental properties (mostly ergodicity – explained later as well) or checking im-
possible MC models (models having invalid states or values – I will not delve into this
now, but I shall comment about it later. For impatient readers, the discussion here is
about absorbing states, where the solution mechanism will differ from ‘normality’).

Even if a model is well-formed, it may not yield a solution in a timely fashion
(steady state analysis vs transient analysis that will be discussed later). What an-
alysts would like to compute are the permanence probability of each state in the
model, i.e., the percentage of time spent in that state in a very long simulation. The
computation is done by different ways, for instance, one might employ simulation,
direct solution (using a set of linear equations), numerical methods (power matrix,
Vector-Matrix Multiplication), and so on. One computes the eigenvector of the ma-
trix, i.e., the unique vector that ‘describes’ the matrix (let’s put this way to simplify
everything – I urge you to deepen your knowledge a bit more on this concept, in spe-
cialised literature). Another way of thinking about eigenvectors is to think that one

1.5. TYPES 5

is performing a dimension reduction, from a matrix (a two-dimensional structure) to
a one-dimensional vector. Again, we compute this vector only if the matrix respects
a set of properties which we shall discuss in due time.

1.5 Types
The literature provides a distinction for Markov Processes and Markov Chains. It
explains that modellers use the first for describing continuous processes whereas the
second one for discrete time considerations. For the present work we will call Con-
tinuous Time Markov Chains (CTMC) when working with durations and rates when
modelling states and Discrete Time Markov Chains (DTMC) when analysts would
decorate transitions with probabilities [3].

Important
• CTMC: when working with durations (that are converted to rates), res-

idence time in states (or sojourn times).

• DTMC: when decorating transitions with probabilities.

That is what will happen to the model, intuitively. A bit more formally, we care
about observations of the system at time T. If these are discrete, e.g., T = {0, 1, 2, . . .},
then we have a discrete stochastic (random) process whereas if T is continuous, where
T = {0 < t ≤ ∞} the process is continuous [11]. In CTMC, to proper work with the
Markov property, the time spent in a state must be independent of the time already
spent in that state. Thus, this time must be exponentially distributed whereas in
DTMC, the residence time in a state that respects the Markov property must be ruled
by a geometrically distributed value, which are the only distributions that exhibit the
memoryless property [11].

1.6 Values decorating transitions
After discussing the types of MC, a lot of concepts floated around. One must dec-
orate transitions with rates, frequencies, or durations for CTMC, and probabilities
for DTMC. Let’s start with the easiest way of decorating transitions, employing du-
rations. Modellers should observe a system for a considerable amount of time and
then inspect the amount of time the observed entity (it could be anything, it will be
dependent on the model) has remained in that state. We say that the modeller is ob-
serving the residence time in the state (also called the sojourn time). Then, to decorate
the transition, it will require to compute the rate out of the state (leaving the state)
by using the inverse of the duration (i.e., Rate = 1

Duration), also called the frequency
out of the state [3]. Observe Table 1.1 next:

For DTMC, it is simpler: one decorates transition with perceived probabilities out
towards other states or within the same state (loops). Loops are disregarded in CTMC

6 CHAPTER 1. MARKOV CHAINS

Table 1.1: Duration and rate for decorating transitions in CTMC models.
Observed duration
(time spent IN the
state) in min

Rate or frequency
(OUT of the state)
over one hour

Remarks

60 60/60 = 1

If any given entity has stayed in the
state for 60 minutes, the rate exiting
this state in one hour will be one, i.e.,
it would leave the
state once in one hour.

30 60/30 = 2
If in a state for 30 min, the rate out
would be modelled as two.

Note that one could have used 1
60 and 1

30 to decorate transitions without any difference
for the solution. That is because of, in terms of proportions, they are the same.

for reasons that will be explained later (note for impatient readers: the diagonal is
obliterated and the negative line sum of the rest of transitions is used). Now, let’s
reason about a simple model with two states as depicted in Figure 1.1 (this shall be
referred as “The lighting model”):

On Off

1

2

Figure 1.1: A simple CTMC model with two states and two transitions.

In this example, the modeller had observed that when a light switch was On, it
remained lit for 60 minutes whereas when Off, someone would invariably turn back
on every 30 minutes. As we shall discuss in detail next one could take this represen-
tation of the behaviour of a system and convert it to a table that will be subjected to
a numerical method that will be able to answer the following: “At any given time of
the day, what is the probability of the system in the On state or in the Off state”.

In other words: “You were somehow ‘teleported’ into this room: what is the proba-
bility that the light is either On or Off?”. Having the ability to answer this one might
take measures to decide on making changes to the system or promoting ways to help
users turn the light off more frequently to save money, and so on. Of course, this is
a very simple model, and it respects all requirements of MC in terms of well-formed
models, and well-behaved durations, and so on. We shall discuss cases where these
assumptions may not hold true.

1.7. MARKOV PROPERTY OR MEMORYLESS PROPERTY 7

1.7 Markov property or memoryless property
By now you can identify different types of MC (continuous time or discrete time),
however, deep down, what does this actually mean? MC have a governing principle
that states that the past is irrelevant to determine the future steps taken by the system.
Let’s imagine a frog in a pond with a set of lily pods2. This mindless frog cannot
store its past movements in his diminutive brain, so it jumps around lily pods never
considering the visits taken beforehand. When jumping around, the frog has forgot
about the past (perhaps because of his reduced brain capacity?), so it makes decisions
on whether to stay or to move based on what it is perceiving in that moment in time.
And then it keeps jumping between pads until it gets tired and go to sleep.

One observer (you?) might have been filming these for several hours and would
like to know the set of lily pods that he most likely visits every time, by trying to
extrapolate the frog’s life until the infinite (looking for the steady state as one might
say). So, you either take durations and mark the lily pods he visited (CTMC) or some
probability given the observations (DTMC). And then you convert this system to a
model and subject the model to a numerical method that will rank (by the highest
probability), the set of most visited lily pads in the pond.

Now let’s go back to those MC types, e.g., Continuous Time or Discrete Time
once again, which is why we have started the discussion. Modelling with durations
(and then with rates) and given the fact that you would like to simulate any given
situation plus the fact that you are bounded by the memoryless property, you will
have to model these durations also using a memoryless distribution. In this case, you
would use the exponential distribution (mind that there are other distributions that
are out of the scope of this work).

In this sense, you are modelling a continuous time ‘evolution’ (we might say) of
this system. This distribution is better explained with an example. Let’s suppose
a person takes a bus to go home every day and after one year taking the bus and
listing the time spent waiting for it in a bus stop, he (or she) ended up defining it
as an exponential distribution of average parameter of 20 minutes. This means that
one could wait one minute, 10 minutes, 25 minutes, or even 78 minutes (or more!)
for the bus to arrive, just because it is using an exponential distribution. On average
(if one draws successive samples) it will correspond to 20 minutes. See Table 1.2
(spreadsheets/Chapter01-bus-times.xlsx), with a list of some observations
about the waiting time in the bus stop over a period of one year (365 observations).

To compute the time waiting in the bus stop for each day one uses the conversion
from the uniform distribution (in MS-Excel it corresponds to the RAND() function,
yielding uniformly distributed pseudo-random numbers between 0 and 1) to the ex-
ponential distribution: Exp = (PARAMETER) * LN(1-RAND()). The PARAMETER
value for this case was set to 20 (if one computes the average of draws, it will be closer
to this value).

Note that this is because we are modelling backwards here: we are generating
numbers when we already know the distribution (we do not have the actual real-
world observations here – we are trying to demonstrate one possible way of deriving

2Attribution needed: the lily pads and frog example can also be found in [11], on page 4, detailing MC.

8 CHAPTER 1. MARKOV CHAINS

Table 1.2: Yearly observations of a person waiting for a bus.
Ja

nu
ar

y

Fe
br

ua
ry

M
ar

ch

A
pr

il

M
ay

Ju
ne

Ju
ly

A
ug

us
t

Se
pt

em
be

r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

1 16.4 3.2 22.9 4.4 3.3 43.7 7.3 23.1 1.3 5.4 6.7 1.5
2 53.7 14.0 4.7 3.6 6.0 50.3 12.2 28.8 1.0 4.4 12.3 39.6
3 48.4 11.7 15.2 0.1 46.5 26.7 28.9 21.9 6.2 22.7 13.4 11.8
4 6.0 5.4 19.5 4.9 28.3 17.6 7.4 14.5 4.7 1.7 11.2 24.6
5 1.6 35.9 4.1 7.6 13.2 17.5 27.5 18.2 46.1 4.9 10.4 28.1
6 20.9 22.7 14.9 119.9 5.2 102.1 3.4 83.2 16.6 45.8 2.1 11.4
7 22.8 27.1 5.9 40.3 28.8 8.4 18.8 34.4 5.6 32.3 66.3 1.0
8 28.6 1.4 2.0 4.4 13.8 22.3 2.0 34.2 1.6 37.2 8.5 2.9
9 40.7 2.8 5.0 36.3 1.2 9.8 61.3 31.8 4.5 10.6 20.4 40.3
10 20.9 27.4 11.2 6.8 50.0 20.8 1.2 9.9 10.1 3.1 27.6 12.7
11 0.3 4.7 15.1 3.3 20.4 26.7 29.8 42.1 8.5 4.5 14.9 36.3
12 29.5 2.1 41.3 3.5 3.5 0.7 24.8 26.2 2.2 9.3 8.7 0.2
13 46.0 1.5 41.2 51.5 38.2 7.5 6.1 12.0 79.2 2.3 42.2 0.7
14 3.4 52.5 148.5 10.6 5.5 21.3 10.2 11.0 16.7 49.7 2.0 11.4
15 9.1 8.7 39.0 5.2 1.4 20.2 2.6 22.0 42.1 57.5 28.7 17.3
16 82.0 10.3 1.7 2.9 8.6 38.9 91.0 10.2 23.1 17.2 5.9 0.3
17 14.7 21.8 24.9 94.5 10.1 19.8 6.6 32.0 32.2 2.3 20.9 21.9
18 20.9 51.7 37.7 29.7 1.1 1.8 9.5 15.5 20.8 12.9 61.7 5.1
19 2.9 18.0 30.0 21.8 0.1 5.7 128.7 16.3 5.8 60.6 3.4 49.5
20 41.4 13.7 57.5 2.9 32.4 33.0 6.7 16.3 30.2 9.6 34.9 5.2
21 0.7 11.1 9.6 9.3 30.1 11.2 3.9 6.4 6.6 8.8 32.5 19.8
22 38.4 8.1 20.9 36.6 6.3 1.6 52.9 37.7 5.3 31.6 24.2 40.5
23 19.1 6.0 10.6 3.0 48.1 54.8 28.9 40.1 0.5 5.7 38.1 16.2
24 45.3 50.1 13.8 10.1 10.2 12.9 31.7 2.3 5.1 40.0 32.9 55.5
25 6.7 6.7 5.9 6.7 89.7 33.6 6.8 9.4 3.5 46.6 13.0 4.1
26 21.4 40.8 4.9 1.0 7.3 31.8 13.7 21.0 39.1 25.5 15.0 9.5
27 7.1 10.9 1.2 24.9 3.1 3.4 7.0 42.0 50.3 28.4 67.3 7.1
28 24.8 4.2 11.6 51.0 22.9 13.2 9.9 93.9 6.2 23.4 75.2 5.6
29 62.5 3.0 2.2 21.2 17.1 49.0 5.4 31.2 0.7 50.1 15.1
30 9.1 4.6 29.0 32.1 6.9 34.2 28.7 26.6 5.9 0.4 20.6
31 112.8 59.4 2.4 12.2 15.9 24.4 22.2

µ 27.7 17.0 22.2 20.9 19.1 22.7 23.8 26.0 17.8 20.5 25.0 17.3

these numbers). This is because one wants to work with the exponential distribution
(at least for the time being).

What might happen in real life is that real measurements might not fit into the
exponential distribution. In this case, we are in violation of employing MC to work
with our problem and we shall resort to other technique, for instance, simulation.
This shall be commented further in due time. For the time being, let’s be happy with
the fact that we can generate numbers from the exponential (memoryless) distribu-
tion. The last line (µ) in the table contains the monthly average.

If you take a closer look at this table, you will see that the average (for all table)

1.8. LET’S CODE! 9

is 21.7 minutes, the minimum value is 0.1 minutes (3.2 seconds!) and the maximum
value is 148.5 minutes (2.5 hours!!). So, there are good days and bad days, but on
average, the expected behaviour is to approximate to the rate I set forth: 20 minutes.
It is true that it is memoryless, sometimes the bus took let’s say 7 minutes (January
27th) but on January 28th, it took 24.8 minutes to arrive! As a matter of fact, it is
capturing the memoryless property at its finest.

This is contrasted with Discrete Time. The best idea of understanding the concept
is to consider a sort of metronome, with pulses ticking the same (without any losses).
So, the system governed by a DTMC would change states following the rules set forth
by the probabilities that decorated the transitions, without the notion of time passing
(as it happened in CTMC).

To build a DTMC simulation, it suffices to model a situation where a visitor stands
on a given state and draw a pseudo-random number from the uniform distribution
and then use this value to consult and then jump to the next state. And then repeat
this process many times and counts the visits to each state. Time is considered to jump
on every metronome pulse, moment that the system changes state. We will stop now
explaining about simulation, this topic is covered in detail in the next chapters.

1.8 Let’s code!
For coding these challenges you will need to know how to process parameters from
the command line and work with time constructs in C (for the pseudo-random3 num-
ber generator).

1.8.1 Challenge 01

File: challenge01.c

Do: write a program that given a parameter N (passed in the command line),
it computes and shows N uniformly distributed numbers (each line shows 10
numbers, to ease output).

Notes:
• The parameter (N) is an integer, but you will have to convert from the

command line using the atoi function (this function converts a string
to an integer).

• Use #include <stdlib.h> and #include <time.h> and auxiliary
function random().

• Use a seed based on the current time (for increased randomness) with

3Most programming languages employ a pseudo-random generator that produces number from known
formulas. See Linear Congruential Generators in the Rosetta code project: https://rosettacode.org/
wiki/Linear_congruential_generator#C.

https://rosettacode.org/wiki/Linear_congruential_generator#C
https://rosettacode.org/wiki/Linear_congruential_generator#C

10 CHAPTER 1. MARKOV CHAINS

function srand(time(NULL)).

Good programming practice write a function to compute a uniform
number and another function to show N uniform numbers, separating
concerns in your code.

Suggested variations: (no code or auxiliary file will be provided)

• Do the same task in a spreadsheet (MS-Excel or other). Plot using a
scatterplot. Plot the frequency on a bin size of 0.1. See that the numbers
are de facto uniform.

• Count the number of values between 0.0 and 0.09, then from 0.1 to 0.19
and so on – they should have a uniform distribution, on average. See
whether this is true.

1.8.2 Challenge 02
For the next challenge we shall use parts of the previous challenge (Section 1.8.1)
to generate exponentially distributed numbers (adding the following ‘cell’ formula:
=(-1/A1)*LN(1-RAND() – in MS-Excel, with parameter in cell A1)4.

This challenge will use auxiliary mathematical libraries already available in most
GNU/Linux distributions.

File: challenge02.c

Do: write a program that given a parameter N (passed in the command line)
corresponding to the PARAMETER of the desired exponential distribution
and another parameter M (the number of samples to compute), with func-
tions to compute samples from the exponential distribution given the uniform
distribution.

• The function prototype is float next_exp(float rate);

Notes:

• The parameter (N) could be a float value, so conversions will use the
atof function.

• You will use the double log(double); function in C.

– So, you must compile the file with -lm (this will link your code
with the math library).

4Note that now, the rate is used, i.e., 1
rate

instead of the duration. The average, in both cases, will
approximate to the parameter used.

1.9. WHAT IS CONSIDERED A ‘PROPER’ MC? 11

Good programming practice: write functions as the previous challenge
recommended.

Suggested variations: (no code or auxiliary file will be provided)

• Write the output to a file (text).

• Do the same task in a spreadsheet (MS-Excel or other). Plot using a
scatterplot. Then order numbers and plot using lines, adding a trendline
based on the exponential function.

1.9 What is considered a ‘proper’ MC?
To be considered a MC, the model must adhere to a set of properties. We have dis-
cussed ‘well-formed’ or ‘well-behaved’ models in previous sections, now it is time
to inspect what exactly this entails. MC considers so called ergodic chains, i.e., those
that assume that all states belonging to models are visited in (eventually) in a random
way.

In other ways, a MC is ergodic if a visitor can jump back and forth to and from
every state (not necessarily in one step). In many definitions (in books), ergodic MC
are also called irreducible (see Section 1.9.1). The MC should not be periodic, e.g., it
returns to the original state in a pre-defined number of steps. For example, consider
the MC in Figure 1.2:

A B

1

1

C
1

Figure 1.2: An example of periodic MC with three states.

Starting in state A one might return to state A after three hops (one to B, then
to C, then back to A) every time. This characteristic defines a periodic MC, so we
shall concern modelling chains that are aperiodic. Finally, we will address positive

12 CHAPTER 1. MARKOV CHAINS

recurrent MC, i.e., those chains that are recurrent, they eventually return to the state
after a number of steps and positive if the time it took to return is relatively fast
(intuitively speaking).

Important In summary, we are dealing with MC that are ergodic (irre-
ducible), aperiodic, and positive recurrent.

That’s the mantra of MC in (almost every) book ever written about this subject.
Start getting acquainted with the notion that not everything that you put down as
a model will be considered a MC and have a steady-state solution. If your MC ad-
heres to these properties, discovering the solution vector shall be possible within a
decent amount of time, using appropriate numerical methods. We will not cover here
MC with absorbing states, i.e., states with only incoming transitions and no outgo-
ing transitions. It is worth noting that non-ergodic MC will not yield results if one
employs a (let’s say) classic numerical method. As we shall see these models might
yield results if one resorts to simulation approaches.

1.9.1 Irreducible MC
Consider the next two MC, Q0 and Q1 depicted in Figure 1.3. In model Q0, whenever
state E gets visited, it stays switching between E and F states indefinitely. In terms of
result vector, we shall see probabilities only for those two states.

A B C D
2

1

5

3

6

4

8

7

E F
9

10

A B C D
2

1

5

3

6

4

8

7

E F
9

10

1

Figure 1.3: Two MC for demonstrating irreducibility (in this case, the lack thereof)
properties (note that Q0 and Q1 are not irreducible).

In model Q1, there are in fact two MC to consider, one with states A, B, C, and D,
and another with E and F. Thus, one could solve each one separately, instead of it all.
We are concerned here about chains that are irreducible, i.e., starting in any state, it
is possible to reach any other state (not necessarily in one step). If Q1 had a transition
from F to A, B, C, or D, it would be sufficient to deem the matrix irreducible, because
it would respect the property.

William Stewart’s book [11], on page 38, discusses so called Nearly Completely
Decomposable (NCD) stochastic matrices, cases where transitions among states are

1.10. LIMITATIONS OF MARKOV CHAINS 13

weak (or low), where the matrix is irreducible however the model could have been
broken in two (or more) to ease analysis. The literature refers to partitioning the state
space in subsets with strong and weak interactions. Please, refer to the source for
further information about NCD. Interested readers may also enjoy other properties
such as aggregation or lumpability as well as other notions that surface as recurrent
topics in MC.

1.10 Limitations of Markov Chains
MC are not free from drawbacks, unfortunately. For example, models should respect
the memoryless property because all rates are drawn from the exponential distribu-
tion. Not all real-world problems are directly observed to respect this constraint, as
other probability distributions could be present.

Another limitation concerns the state space of problems: even for simple models,
the number of states required to represent the MC could be enormously high (state
space explosion problem), presenting difficulties in achieving solution. This problem
poses limits to MC as modellers should employ clever abstractions to represent large
problems.

To cope with some of the limitations of pure MC and its dimensionality prob-
lems, research has proposed higher-level constructs such as structured MC. Examples
are Queueing Networks (QN), Stochastic Petri Nets (SPN), Performance Evaluation
Process Algebra (PEPA), or Reactive Modules (formalism employed by the PRISM
Statistical Model Checker to represent CTMC, DTMC, Markov Decision Processes –
MDP and Probabilistic Timed Automata – PTA) [13].

1.11 Comments on the spreadsheets
For this chapter we have the following spreadsheet to inspect:

• spreadsheets/Chapter01-bus-times.xlsx: it shows the exponentially
distributed bus times using the uniform distribution.

Play with the spreadsheet, change parameters, see what happens, build code that
replicates (note: it will never yield the same results5 since you are employing different
sets of pseudo-random numbers) the results of the spreadsheet.

5Unless you make the seed parameter to the srand(int seed); function constant.

14 CHAPTER 1. MARKOV CHAINS

Chapter 2

DTMC

Let’s start discussing DTMC, where models have probabilities in the transitions, as
depicted in Figure 2.1 (this model was covered and commented earlier, the only dif-
ference is that for the other one we used rates – CTMC):

On Off

0.50

1.0

0.50

Figure 2.1: A simple DTMC with 2 states (the “lighting model”).

For this MC, one may assume that since the On state is the most visited (because
of the self-loop present in this model), the final probability vector π (our result) will
be higher on this state (intuitively). The restriction of DTMC models is that they
must have each line summing to 1.0, and for the case of numerical solution, that it
also respects previously discussed MC properties.

There are several ways of solving this DTMC. For instance, after representing
the model in a matrix, one could multiply it by itself many times, until it reaches
convergence (steady state). This is known as the Power Matrix method. But first,
let’s create the model appropriately in Table 2.1:

Table 2.1: A two state representation of the lighting problem.
On Off

On 0.50 0.50
Off 1.00 0.00

15

16 CHAPTER 2. DTMC

After solution using the Power Matrix method (please, consult file in reposi-
tory called spreadsheets/Chapter02-DTMC-2states.xlsx), we compute that
πon = 0.66667 (around 67%) and πOff = 0.33334 (around 33%). Note that in the MS-
Excel file we have employed the function MMULT for the same matrix. To do this, one
must first select an empty 2x2 result cell (where the results will be), pressing F2, then
putting the formula =MMULT(D3:E4,D3,E4) and pressing CTRL-SHIFT-ENTER. This
is required in MS-Excel when operating with matrix multiplication (where the results
are matrices as well). It was necessary to multiply the matrix by itself seven times
(M7) before reaching convergence (steady state) for this model. You may try to repli-
cate these results as well.

Another way of reaching the same conclusions is to employ a Vector-Matrix Mul-
tiplication (VMM) method that from an initial vector multiplies the matrix iteratively
until it finds the results. This method is more lightweight than the Power Method,
because instead of a Matrix-Matrix multiplication, now it is a Vector-Matrix prod-
uct, which is less cumbersome. It suffices to say that this method produces the same
results as before. It took 21 steps for reaching the steady state.

Another difference in the MS-Excel for this method is needed: we should fix the
matrix position (using the symbol ‘$’ before cell placements). The initial vector cho-
sen was [1 0] however, any initial vector summing 1.0 would work – perhaps
the iterative method will have the side effect of performing better, i.e., producing the
results in fewer iterations. That is what is called preconditioning, and there is a wealth
of research on methods to accelerate solution of MC. If the vector does not sum 1.0,
you will have to adjust the results, because let’s say, it sums 0.25, this 0.25 will be
distributed 66% to the On state (≈ 0.16667) and 34% to the Off state (≈ 0.08333),
which is equal to the answer.

2.1 Remembering matrix operations
For MC solution mechanisms we will require to review matrix operations, especially
matrix-matrix and vector-matrix multiplication. For example, when multiplying (op-
erator ‘x’ below) two matrices X and Y, both of order 3x3, then X × Y is shown in
Equation 2.1:

Let X =

A B C
D E F
G H I

 and Y =

 J K L
M N O
P Q R


Then,

X × Y =

AJ +BM + CP AK +BN + CQ AL+BO + CR
DJ + EM + FP DK + EN + FQ DL+ EO + FR
GJ +HM + IP GK +HN + IQ GL+HO + IR

 (2.1)

There are several APIs for handling matrix multiplication efficiently. We are
showing the basic process here because we are interested in coding this down the

2.2. THE BELFAST WEATHER MODEL 17

line (for our next model). As we have shown, MS-Excel (and other spreadsheet-
based applications) have built-in functions to help multiplying matrices altogether.
For Vector-Matrix Multiplication, the process is easier, i.e., only the first line of X is
used (Equation 2.2):

Let X =
[
A B C

]
and Y =

 J K L
M N O
P Q R


Then,

X × Y =
[
AJ +BM + CP AK +BN + CQ AL+BO + CR

]
(2.2)

This concludes the basic reviewing of matrix operations that we will require to
code the solution.

2.2 The Belfast weather model
This model is depicted on William Stewart’s work [11] (page 6), where it models the
weather of Belfast, Northern Ireland1. Figure 2.2 shows a visual representation of the
states and transitions of the DTMC model.

Rainy

Cloudy

Sunny

0.15

0.7 0.1

0.3

0.5

0.05

0.2

0.2

0.8

Figure 2.2: Model representing the weather of Belfast, in Northern Ireland.

Just by looking at transitions and their weight (the values associated to the mod-
elled probabilities decorating transitions), one might assume that the expected prob-
ability result for both Rainy and Cloudy states will be high. Seldom it transitions to

1Häggström [2] contrasts two other weather models, with comparisons, namely the Gothenburg model
and the Los Angeles model.

18 CHAPTER 2. DTMC

the Sunny state, and from this state, it returns with high probability towards Rainy
(0.5) or Cloudy (0.3) states.

The solution of this model (spreadsheets/Chapter02-DTMC-3states.xlsx)
shows that the final probability vector π is distributed as: πRainy = 0.7625, πCloudy =
0.16875, πSunny = 0.06875. So, Rainy or Cloudy days account for almost the totality
of probabilities, Rainy + Cloudy= 0.7625+0.16875 = 0.93125, which is the same
of thinking Rainy + Cloudy = 1− Sunny (for this model), yielding the same result.
So, one could expect that any given day, in Belfast, to be either Rainy or Cloudy,
and prepare for this.

2.3 Let’s code!
This challenge will work with static structures and simple tests to see whether the
model is well-written as expected for MC. You will need to review ergodicity, ab-
sorbing states, and the previously discussed properties of well-formed MC for this
challenge.

2.3.1 Challenge 03
Before we start discussing the challenge, it is worth noticing that we are doing vali-
dation instead of verification2.

File: challenge03.c

Do: write a program that declares a static matrix and runs some tests (e.g.,
sum of lines equals to one, etc.) and output features.

Notes:

• The matrix corresponding to the model could be defined hard coded
with static declarations (float m[3][3];), however, you could im-
plement a way of opening a (text) file with the model (where values are
separated by spaces or commas). That would require dynamic alloca-
tion and pointers.

Good programming practice:

• Use #define LIN 3 and #define COL 3.

• Employ error codes (as #define) for returning values in the
function, for example, ERR_NOT_SQUARE, ERR_ABSORBING,
ERR_LINE_SUM, SUCCESS).

Implement:

2The word verification conjures the notion of formal verification processes that models might undergo
against specifications.

2.4. SOLUTION METHODS FOR DTMC 19

• Function void print_static_dtmc(float m[LIN][COL]);

• Function void print_static_array(float a[LIN]);

• Function int validate_static_dtmc(float m[LIN][COL]);
that checks whether every line of matrix m sums 1.0 and also if the
matrix m has absorbing states.

– Return 1 if matrix checks out and it is well-formed, no absorbing,
summing lines to 1.0.

– Return -1 if the matrix is not square (#lines ! = #columns).

– Return -2 if sum of each line (show line) is not 1.0.

– Return -3 if matrix has absorbing states: check whether there is
one state with no outgoing transitions to other states other than
to itself.

Tips:

• Work on incoming and outgoing transitions: if there are no incoming
or there is no incoming except to itself, then it is absorbing.

• Implement a way to learn about the state which is absorbing (pass a
pointer to an integer by reference to the validate_static_dtmc
function, where it saves it to this variable. Then show the state in the
output.

Suggested variations: (no code or auxiliary file will be provided)

• ‘Open’ the model from a file, and then ‘Save’ the output to a file.

• Use a library (external API) to power a matrix or multiply a vector by
a matrix.

• Run the model on MATLAB® or GNU/Octave and compute the same
set of results.

2.4 Solution methods for DTMC
After the model definition and after passing basic tests to see whether it is well-
formed and no absorbing states (which would require other solution methods), it is
time to solve it and extract state (occurrence) probabilities.

We will work next with three methods: i) Power matrix; ii) VMM; and iii) forward
simulation. For i) and ii) methods, the idea is to call the functions iteratively until one
achieves convergence, i.e., the resulting matrix has the same vectors in all positions,
or the resulting vector does not change between the last two iterations. If the solution
reaches the boundaries set by the numerical methods (e.g., number of iterations), it

20 CHAPTER 2. DTMC

then diverged (the opposite of converged), and you should state this to whomever
call the method and show the last computed vector.

2.4.1 Power matrix, or Matrix-Matrix Multiplication
This method consists of multiplying a matrix (in our case, one where each line sums
to 1.0) by itself, iteratively, until one observes negligible differences (or no difference
at all) between lines in the final matrix. Because this method employs ensembles of
multiplication/addition pairs each time, depending on the size of the model, it may
behave computationally heavy in terms of required processing power.a00 a01 a02

a10 a11 a12
a20 a21 a22


Note that there are no convergence insurances that this method will produce valid

π probabilities vector after execution. It is the job of the modeller to analyse (partial)
results and investigate causes when diverging, refining models, reviewing transition
probabilities, and so on.

2.4.2 Vector-Matrix Multiplication
The VMM method will operate in simpler terms, it will multiply an initial vector
(where the sum is 1.0) by the matrix iteratively, until this vector has negligible dif-
ferences between two iterations.

(
1 0 0 0

)
×


a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33


The power matrix method may converge faster than this method, however, VMM

requires less mathematical operations to complete on each iteration. On each iter-
ation of VMM it is possible to see the π vector being redistributed throughout the
positions, always summing to 1.0 (as a matter of fact it will sum to the value set
earlier).

Let’s revisit the Belfast weather model and apply the VMM method:

(
1 0 0

)
×

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20


Here is a step-by-step view of the VMM process.
Consult file spreadsheets/Chapter02-DTMC-3states.xlsx, on Tab ‘Vector-

Matrix Multiplication’:

2.4. SOLUTION METHODS FOR DTMC 21

Initial Vector: 1 0 0
Iter.1: 0.8 0.15 0.05
Iter.2: 0.77 0.165 0.065
Iter.3: 0.764 0.168 0.068
Iter.4: 0.7628 0.1686 0.0686
Iter.5: 0.76256 0.16872 0.06872
Iter.6: 0.762512 0.168744 0.068744
Iter.7: 0.7625024 0.1687488 0.0687488
Iter.8: 0.76250048 0.16874976 0.06874976
Iter.9: 0.762500096 0.168749952 0.068749952

Note that by Iteration 9, the residue between Iteration 8 and this one is negligi-
ble. Depending on accuracy requirements, this could be handled by continuing the
process until the residue is smaller than a pre-defined threshold.

2.4.3 Forward simulation
For the DTMC simulation (also called forward simulation), the process is different,
and one must follow this process:

• Define the desired number of visits or samples (e.g., 1000).

• Define a start state to visit initially (any state belonging to the model).

• Modify the probability matrix of the DTMC to withhold the cumulative prob-
abilities on each position, that will ease the selection of the next state.

For example, suppose a three state DTMC with the following probabilities:


0 1 2

0 0.2 0.4 0.4
1 0.1 0.2 0.7
2 0.3 0.6 0.1

 becomes


0 1 2

0 0.2 0.6 1.0
1 0.1 0.3 1.0
2 0.3 0.9 1.0


On the left-hand side, there is the original matrix, and on the right-hand side, an

accumulated version, on each state, of the same matrix.
When making draws for each state, let’s say in state 0, and a pseudo-random

number equals to 0.345632, then it suffices to consult the accumulated table and see
that if the number was between 0.0 and 0.2, then the next state would be 0, if the
number was between 0.200001 and 0.6 the next state would 1, otherwise state 3.

Let’s continue the process. From that chosen start state, one:

1. Check if the number of samples reached the desired value: if yes, stop the
process (and go directly to step 5);

2. Add the visit to this state in a counting vector withholding all visits;

3. Draw a uniform random number;

22 CHAPTER 2. DTMC

4. Look at the transitions from that state;

5. If the probability is less than the position at the cumulative matrix, jumps to
that position;

6. Repeat steps 1-4;

7. Compute visits statistics (e.g., divide each position of the counting visits vector
by the total number of samples);

8. Present the vector to the user (it should approximate to the analytical counter-
part);

Let’s proceed now to a demonstration of this procedure.
Consult spreadsheets/Chapter02-DTMC-3states.xlsx, Tab ‘DTMC simu-

lator’. It shows the accumulated matrix and 1, 000 samples from the Belfast weather
model (note that the results approximate to the analytical answer).

2.4.4 Useful comments
Note that sometimes running a method and inspecting the resulting probability vec-
tor may help you investigate other problems with models. Depending on the problem,
one could resort on modifying the original matrix to force its way into becoming a
MC, i.e., adding transitions or even new states (that is the approach employed by
Google’s PageRank® when (attempting to) fixing the matrix).

One clear indication of problems is, for example, if just one state has all the prob-
ability – this means that your model has an absorbing state If only a small set of states
have probabilities, then one should inspect whether the MC is irreducible or perhaps
NCD (with weak links).

2.4.5 Direct solution method
It is worth discussing that these three solution methods are not the only way of solv-
ing MC. For instance, one might employ direct solution methods (linear equations)
and specialised tools. We shall briefly comment on these two methods next.

The direct solution methods employ for example MATLAB® or GNU/Octave. The
idea is to work with Equation 2.3 [11, 3]:

π × P = π (2.3)

Recall that π is a vector of unknowns, i.e., for the Belfast weather model (with
three states, according to Section 2.2 with a probability vector having size three:
[πRainy, πCloudy, πSunny]). This is what we would like to compute, i.e., the probabil-
ity of each state in the model. To simplify the discussion, we shall refer this symbolic
probability vector as [π1, π2, π3].

2.4. SOLUTION METHODS FOR DTMC 23

If you recall the Belfast weather model, here are the state transitions and the
required operations for performing π × P = π:

[
π1 π2 π3

]
×

0.80 0.15 0.05
0.70 0.20 0.10
0.50 0.30 0.20

 =

π1

π2

π3


Refer to the review in matrix multiplication we conducted in Section 2.1.
Let’s multiply this symbolically:

0.80π1 + 0.70π2 + 0.50π3 = π1

0.15π1 + 0.20π2 + 0.30π3 = π2

0.05π1 + 0.10π2 + 0.20π3 = π3

We should work with the variables and also add the following equation to the
mix: π1 + π2 + π3 = 1. So, after operating (after some algebra) on the equations, we
come up with the following system to solve:


(0.8− 1)π1 + 0.70π2 + 0.50π3 = 0

0.15π1 + (0.2− 1)π2 + 0.30π3 = 0

0.05π1 + 0.10π2 + (0.2− 1)π3 = 0

1.00π1 + 1.00π2 + 1.00π3 = 1


−0.20π1 + 0.70π2 + 0.50π3 = 0

0.15π1 − 0.80π2 + 0.30π3 = 0

0.05π1 + 0.10π2 − 0.80π3 = 0

1.00π1 + 1.00π2 + 1.00π3 = 1

This is a system of linear equations with three unknowns. The best (and fastest)
way to solve this is using MATLAB® (or GNU/Octave) for discovering the π proba-
bility vector (refer to file matlab/matlabsolution_dtmc.m in the GitHub repos-
itory).

% MATLAB Model
M = [-0.20, 0.70, 0.50;

0.15, -0.80, 0.30;
0.05, 0.10, -0.80;
1.00, 1.00, 1.00];

b = [0; 0; 0; 1];
pi = linsolve(M,b);

The solution vector is: [πRainy, πCloudy, πSunny] = [0.7625, 0.1688, 0.0688] which
(not surprisingly) corresponds to the solution for this model (using the Power method
or VMM as explained earlier).

2.4.6 PRISM DTMC model
The PRISM model is straightforward, being sufficient to describe the model using the
appropriated syntax, i.e.:

24 CHAPTER 2. DTMC

dtmc

const int N=3; // N - number of states

const int sRainy = 0;
const int sCloudy = 1;
const int sSunny = 2;

module Module1
n : [0..N] init sRainy; // total states, initial state sRainy
// transitions
[] (n=sRainy) -> 0.80 : (n’=sRainy) +

0.15 : (n’=sCloudy) +
0.05 : (n’=sSunny);

[] (n=sCloudy) -> 0.20 : (n’=sCloudy) +
0.70 : (n’=sRainy) +
0.10 : (n’=sSunny);

[] (n=sSunny) -> 0.20 : (n’=sSunny) +
0.50 : (n’=sRainy) +
0.30 : (n’=sCloudy);

endmodule

The model is located in prism/belfast-dtmc.pm and it should be run in PRISM
Statistical Model Checker tool (it was tested on version 4.6). After running the tool,
go to Open Model and choose a file. Click on Model>Compute>Steady-state
probabilities. The following results are shown to modellers:

Printing steady-state probabilities in plain text format below:
0:(0)=0.7624998618647714
1:(1)=0.16875010721113942
2:(2)=0.06875003092408917

Observe that it yielded the same probability vector as output as all other methods
explored here so far.

For the next challenge it will be required to work with C pointers and dynamic al-
location so you should sharpen up your skills around these concepts before venturing
into the challenge.

2.5 Let’s code!
The next programming challenge will take into account those aforementioned matrix
and vector operations.

2.5.1 Challenge 04
We will implement a solution to work with the power method and the VMM.

2.5. LET’S CODE! 25

File: challenge04.c

Do: write a program to work with the following methods:

1. Power matrix

2. Vector-Matrix Multiplication

Notes:

• We will need to use dynamic allocation (employing pointers) in C for
the next tasks.

Good programming practice:

• When programming with pointers you need to exert caution and pa-
tience.

• Your code should not run indefinitely. You will have to code auxiliary
functions to help you, for example, one that checks residuals between
two arrays of floats. If the residuals are less than a pre-defined threshold
you may stop computing the process.

Implement a program accepting the following parameters:

• <FILENAME> <OP>

– <FILENAME>: a text-based file with a DTMC (a squared matrix,
each line sums 1.0) describing the model.

– OP (will trigger one of the following methods):

∗ [OP=0] void multiply0(float** m, int size);

· Returns the solution vector for a model of a model rep-
resented by m of order size.

∗ [OP=1] void multiply1(float* v, float** m, int
size);

· Employs VMM and returns the solution vector v for a
model in m, of a matrix of order size.

– The usual tests (see Section 2.3.1) apply and at the end, it prints
the full resulting matrix (for OP = 0), the resulting vector (for
OP = 1).

Suggested variations:

• Output the current result vector per iteration on the screen (according
to an option passed in command-line).

26 CHAPTER 2. DTMC

2.5.2 Challenge 05
This challenge will implement a basic forward DTMC simulator.

File: challenge05.c

Do: write a program that runs a simple DTMC simulator, where given a
model, a visitor jumps from state to state during a pre-defined number of
steps.

Notes:

• Implement a function void dtmc_simulator(float** m, int
size, int samples, int* results); that simulates a DTMC
(the function returns the solution vector π in results).

• The results should approximate to the analytical solution as observed
in previous challenge (Section 2.5.1).

Implement a program accepting the following parameters:

• <FILENAME> <SAMPLES>

Implementation tips:

• Not necessarily you will need to code the accumulating matrix. You
could just use an accumulating variable each time you traverse the line
of the matrix under consideration (this will be explored in the solution
for this challenge).

Suggested variations:

• Output the top N states (passed in command line) with the highest visits
(so far) as the method is running).

2.6 Comments on the spreadsheets
The spreadsheets for DTMC are:

• The Lighting model: spreadsheets/Chapter02-DTMC-2states.xlsx.

• The Belfast model: spreadsheets/Chapter02-DTMC-3states.xlsx.

Each file has three tabs: 1. Power-Matrix method; 2. Vector-Matrix Multiplication;
and 3. DTMC simulator.

The first method multiplies the model’s matrix to the nth power (in this case, to
M5), whereas the VMM method iteratively multiplies a start vector (summing to one)

2.6. COMMENTS ON THE SPREADSHEETS 27

by the model’s matrix until the last two resulting vectors are the same between two
iterations (in this case, it ran for nine iterations).

Finally, the DTMC simulator will run a simulation using pseudo-random numbers
(uniformly distributed) mimicking the idea of visiting states one after the other for a
fixed number of times (in the spreadsheet, it is set to run until it produces 1,000 state
samples).

After it runs, it computes the resulting probabilities. In terms of results, one no-
tices that they are quite close to the analytical ones (computed previously), however,
a larger number of samples would produce even closer results.

28 CHAPTER 2. DTMC

Chapter 3

CTMC

In terms of modelling, one could wonder about the expressiveness of CTMC over
DTMC. The idea is that one could think about state permanence, or durations, in-
stead of probabilities. CTMC are different than DTMC when modelling situations
because one thinks on the time spent in the state (residence or sojourn time) and
how it transitions to other states, using rate = 1

duration to represent the rate out of
the state.

Figure 3.1 shows how the balancing process works for each state: the negative
sum of outgoing rates is used to even out the rates, so each line in the model will sum
to zero.

state-(a+b+c)

a

b

c

Figure 3.1: Representation of balancing rates in states in CTMC.

Here, this is not a MC per se, but only a representation of how and why one
does not consider self-loop transitions. The side-effect of this is that, in CTMC, the
diagonal is not used in the modelling process, because it is destroyed to accommodate
the sum of exits and balance out the rates in and out the state.

3.1 Infinitesimal Generator
The process to model CTMC differs from DTMC in the sense that we must work
with a special kind of matrix called the Infinitesimal Generator (IG). It consists on

29

30 CHAPTER 3. CTMC

destroying the diagonal (self-loops in the model) and substituting it with the negative
sum of rates of this state, balancing rates in and rates out.

Let’s revisit the Lighting model once again in Figure 3.2:

On Off

1

2

Figure 3.2: Lighting model with two states as a CTMC.

The IG (referred as matrix Q) for this model is1:

Q =

(
−1 1
2 −2

)
The same process is repeated for higher order matrices, i.e., a Generic model with

four states (Figure 3.3):

0
2

1

5
2

1

7

3

9

14

2

Figure 3.3: Generic CTMC model with four states.

1It contrasts with matrix M in DTMC, where each line sums 1.0, whereas Q sums 0.0.

3.2. COMPUTING THE EMBEDDED DTMC 31

The corresponding IG for this model is:

Q =


−10 1 5 4
2 −2 0 0
0 9 −11 2
7 0 1 −8


Note that both models respect previously mentioned properties to be MC, i.e.,

they are ergodic (Section 1.9).

3.2 Computing the embedded DTMC
Given an IG, one could convert the CTMC into its embedded DTMC. The process is
as follows.

1. Let Q be an Infinitesimal Generator of a MC model;

2. Let In be an Identity Matrix of order n;

3. Find maxQ, i.e., the maximum value of Qij :

• Because of the way the IG is built, this value will be always located in the
diagonal.

• Find the highest value in absolute terms and then use it with its signal –
more about this in a moment.

4. For each cell of Q, i.e., Qij , compute M ′
ij= Iij − Qij

maxQ
.

Let’s examine this example using the Generic model presented in previous section
and use an Identity Matrix of order 4 (I4) to derive the embedded DTMC. For this case,
maxQ = −11.

I4︷ ︸︸ ︷
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Q︷ ︸︸ ︷

,


−10 1 5 4
2 −2 0 0
0 9 −11 2
7 0 1 −8


M ′︷ ︸︸ ︷

,


0.09 0.09 0.45 0.36
0.18 0.82 0.00 0.00
0.00 0.82 0.00 0.18
0.64 0.00 0.09 0.27


We created a new version of the model and called it M ′, which is the embed-

ded DTMC of Q. Let’s compute the first cell: M ′
00 = I00 − Q00

maxQ
= 1 − (−10

−11) =

0.090909091 (the matrix shows a less accurate number for presentation purposes).
The process is subsequently repeated for all cells of Q.

For reference, these are all intermediary computations for reaching M ′:

32 CHAPTER 3. CTMC

M ′ =

1− (−10
−11) 0− (1

−11) 0− (5
−11) 0− (4

−11)

0− (2
−11) 1− (−2

−11) 0 0

0 0− (9
−11) 1− (−11

−11) 0− (2
−11)

0− (7
−11) 0 0− (1

−11) 1− (−8
−11)

So, this is the embedded DTMC of the CTMC, the discrete time version of it (where
each line sums to one). One may use any of those previously discussed solution meth-
ods available for DTMC to unveil the probability vector π.

Take some time to look at the resulting DTMC. Observe that now there are some
self-loop transitions (from 0 to 0, from 1 to 1 and from 3 to 3). If one was modelling
from the onset using DTMC, one should take those transitions into account. That
is why one might think that employing CTMC for modelling is sometimes best to
represent complex behaviour.

3.3 The Lily Pad model
Let’s consider the “Lily Pad model” now: it consists of a frog hopping lily pads in a
fictitious pond. The idea is that it jumps around mindlessly, staying some time on
each lily pad and then moving on to the next.

Figure 3.4 shows a pond with four lily pads and transitions among them.

A B C D
11

6

1

9

9

2

8

2

3

5

7

2

Figure 3.4: Lily Pad model showing possible pads and transitioning rates.

Consider Table 3.1 for thinking about the rates decorating transitions in the model.
Note that for modelling time, the observer has attended the pond and remained col-
lecting frog residence times over a period of time, to have a nice idea of jumps and
durations.

3.3. THE LILY PAD MODEL 33

Table 3.1: Residence time observed in lily pads and corresponding rates.
Time

From To Rate
(min)

5.4
A

B 11
10 C 6
60 D 1
6.7

B
A 9

6.7 C 9
30 D 2
7.5

C
A 8

30 B 2
20 D 3
12

D
A 5

8.6 B 7
30 C 2

One might think that, when modelling, it is easier to consider states and ‘entities’
changing states where each has remained some time in the state before transitioning
to other state. The reasoning is that sometimes, time is the only observable thing
to model the system. Recall that for modelling DTMC one requires the probabilities
for switching states. Because of the formula to convert durations to rates, lower
time spent in the state corresponds to higher rates out of it, as seen in the table. For
example, from pad A to pad B with a duration of 5.4 min, the converted rate was equal
to 11, whereas from pad A to pad D, the frog stayed for 60 min and the rate out in
one hour was one.

The IG (Q) for this model (maxQ = −20) and its embedded DTMC M ′ is:

Q =


−18 11 6 1
9 −20 9 2
8 2 −13 3
5 7 2 −14

 M’ =


0.10 0.55 0.30 0.05
0.45 0.00 0.45 0.10
0.40 0.10 0.35 0.15
0.25 0.35 0.10 0.30


As previously mentioned, with the embedded DTMC M’, one could employ Power

matrix, VMM, simulation, or direct methods to discover π. Using the VMM, we reach
the following results (starting with vector [1 0 0 0]):

π =
(
0.302449696 0.243404608 0.327575347 0.12657035

)
We come to the conclusion that the frog has a preference for lily pads A, B, and

C (1 − 0.12657035 = 0.87342965, ≈87% of the time), given the probabilities that
we have computed. It is worth mentioning that those are the same results if one
employed the Power matrix method using the embedded DTMC.

34 CHAPTER 3. CTMC

3.4 Let’s code!

Let’s put those ideas into practice now.

3.4.1 Challenge 06

This challenge ‘fix’ the diagonal of a CTMC and then convert it to its embedded
DTMC representation.

File: challenge06.c

Do: write a program that will take a CTMC as parameter and then compute
the main diagonal accordingly and convert it to its embedded DTMC.

Notes:

• Implement a function void fix_ctmc(float** q, int size);
that will destroy the current main diagonal and replace it with the sum
of line accordingly.

• Implement a function float** convert2dtmc(float** q, int
size); that creates another matrix in memory and returns the DTMC
of the CTMC matrix passed by parameter (variable q)/

– Remember to use previous function fix_ctmc because it has the
‘corrected’ value for the diagonal.

• Remember that you will have to code auxiliary functions to help you,
such as float discover_max(float** q, int size);

• You will also need to consider the use of identity matrix (without nec-
essarily creating it in memory.

– The idea is that if you are traversing Q, then if you are on the
diagonal position (when i==j), then you proceed with the proper
computation (as discussed earlier), otherwise consider it as zero.

Suggested variations:

• Remember to use previously implementations and solution mecha-
nisms for DTMC (earlier challenges).

• Offer users a way of outputting the newly generated DTMC in a file
(that you pass both the option and the name of this file in the command-
line).

3.5. SOLUTION METHODS FOR CTMC 35

3.5 Solution methods for CTMC
3.5.1 Forward simulation
In the DTMC case, one would choose an initial state, and according to a model, visit
states using the uniform distribution. The process ends when enough visits reached
a pre-defined value, and then modellers would compute state statistics on visits.

For CTMC we would like to pursue more or less the same venue, however, now,
we would like to generate pseudo-random numbers from the exponential distribution.
The idea of visiting states remains, also for running for a large number of samples
and then calculating state probabilities.

Before we start discussing the simulation per se, we would like to state the process
and how it would work, for example:

1. Given a model written in CTMC, and assuming that the diagonal contains the
sum of the rest of the elements (negative value).

2. The model fills a matrixQ, that is a valid (well-written) Infinitesimal Generator.

3. Now, we will compute a new matrix called Q′: for each cell Qij , and employing
an Identity Matrix of same order (I4), and then we will compute Q′

ij = Qij −
MAXQ × Iij .

4. From an initial state S0, draw a number from the exponential distribution (con-
sidering the rates in Q) and then visit the next state, accumulating all these
visits in a counting vector (to present to modellers afterwards).

• The formula to generate an exponential distributed variable using a pseudo-
random number generated using the uniform distributions is Exp(rate) =
(− 1

rate)× log(1− U(0; 1), e), where U(0, 1) is a pseudo-random number
between 0 and 1 and log is the natural logarithm of a number (base e).

Recall the Q matrix for the Generic model using CTMC (Section 3.2):

Q =


−10 1 5 4
2 −2 0 0
0 9 −11 2
7 0 1 −8


For reference, these are all intermediary computations for computingQ′ (MAXQ =

−11):

−10− (−11× 1) 1− (−11× 0) 5− (−11× 0) 4− (−11× 0)

2 −2− (−11× 1) 0 0

0 9− (−11× 0) −11− (−11× 1) 2− (−11× 0)

7− (−11× 0) 0 1− (−11× 0) −8− (−11× 1)

36 CHAPTER 3. CTMC

The new matrix Q′ is equal to (observe that the only change is in the main diag-
onal):

Q =


−10 1 5 4
2 −2 0 0
0 9 −11 2
7 0 1 −8

 Q’ =


1 1 5 4
2 9 0 0
0 9 0 2
7 0 1 3


If you simulate this matrix, you will reach results that are approximations of the

other solution methods for this model.

3.6 Race condition
When modelling CTMC and looking at individual states, one might ponder: if one
must choose a state to visit, given the rates, which one to select? This is important
in simulation, because visiting a state one cannot look at the past (after all this is a
Markovian process) to decide which state to visit next.

Look at Figure 3.5 next, given that you are in a state with those transitions, which
one you choose to trigger next?

4

9

1

5

state 1

state 2

state 3

state 4modelled
rates

state

Figure 3.5: Hypothetical situation showing the problem of choosing the next state in
CTMC simulation.

The answer is: the fastest. As we have discussed earlier, it does not matter the
highest rate when you use the exponential distribution. Only after you draw a num-
ber from the distribution you know the parameter to use to decide “which transition
will win the ‘race’ and become the next state visited”.

Important Remember that Figure 3.5 does not show previous transitions
for reaching the state: recall that in MC the past is irrelevant, what only mat-
ters is where to ‘jump’ next.

3.7. COMMENTS ON THE SPREADSHEETS 37

In a CTMC simulation you are working with time; so, this means that you will
draw pseudo-random numbers using each state rates and then you will choose the
one that happened first in time. Figure 3.6 details this process, and shows the winning
transition for this particular case.

4

9

1

5

state 1

state 2

state 3

state 4

state

Rate Uniform Exponential Rank
4 0.3024550 0.0900470 2

9 0.8295417 0.1965850 4

1 0.0528990 0.0543496 1

5 0.6072475 0.1869151 3

Figure 3.6: Drawing pseudo-numbers from uniform and exponential distributions to
help simulate time in CTMC (log is the natural logarithm, in base e).

So, given the pseudo-random numbers, and after establishing a rank (to simulate
the lowest time), one decides that state 3 will be the next state visited2. This is
the core of the CTMC simulator, visiting states, and depending on the rates on each
state, deciding where to go next, simulating time. Since you are simulating, you could
choose how long would you like to simulate in terms of time, e.g., 10 hours.

3.7 Comments on the spreadsheets
This are the MS-Excel files detailing the solution possibilities for this model:

• Generic model: spreadsheets/Chapter03-CTMC-4states-generic.xlsx.

• Lily Pad model: spreadsheets/Chapter03-CTMC-4states-lily.xlsx.

3.8 Let’s code!
For this challenge we will build a CTMC simulator.

3.8.1 Challenge 07

File: challenge07.c

Do: write a program that will take a CTMC as parameter and then simulates
it for some time (passed as parameter in the command line).

2Pure chance has selected the minimum rate in this example – be mindful of this. I suggest you open
a blank spreadsheet to test this.

38 CHAPTER 3. CTMC

Implement a program accepting the following parameters:
• <FILENAME> <TIME>

Notes:
• Implement a function float** convert2ctmc_prime(float** q,
int size); that converts a matrixQ by another (Q′) using the method
discussed in Section 3.5.1.

• Use the function that generates a pseudo-number from the exponential
distribution that you have coded in previous challenge (Challenge 02 in
Section 1.8.2) – the function needs the rate parameter.

– Function prototype: float exponential(float n);

• You will need to implement a function to find out the next state to visit.
The idea is to draw N exponentially distributed numbers (a line of the
current state) and then select the one that has the least value other than
zero, so code the following function:

– int lowest_not_zero(float* qline, int size, float*
sim_time);

∗ It returns the next state according to values drawn
∗ You must pass the time in order to conveniently update it

(since the function returns the next state).

• Implement a function int ctmc_simulator(float** qprime,
int size, float sim_time, int* results); that simulates
a CTMC (the function returns the solution vector π) for some time, i.e.,
sim_time.

– The function returns the number of samples produced for simu-
lated that time amount (units of time).

Suggested variations:
• Make the residue either small enough (configured in command line)

or after sampling a number of samples (as before), whichever event
comes early. Show each position’s residue after every 1, 000 samples
computation.

• Build a program that computes series of simulation ‘batches’ consisting
of N samples each (for instance, 10 runs of 1000 samples), then present
to the modeller basic statistics over the batches, e.g., averages, standard
deviation, boxplot output (1st quarter, 2nd, 3rd, 4th). Look at Jain’s
book [14] for multiple batch runs.

• Implement transitions having other probability distributions (you are
running a simulation after all).

3.9. SOLUTION METHODS (CONT.) 39

There is a CTMC simulator written for MS-Excel in the following files (on Tab
CTMC simulator):

• Lighting model: spreadsheets/Chapter03-CTMC-2states.xlsx.

• Generic model: spreadsheets/Chapter03-CTMC-4states-generic.xlsx.

• Lily Pad model: spreadsheets/Chapter03-CTMC-4states-lily.xlsx.

All methods yield the same results, for each model.

3.9 Solution methods (cont.)
Now let’s continue working with other solution methods for CTMC, more precisely,
the direct solution method and then some PRISM models.

3.9.1 Direct solution method
For direct solution of CTMC one must satisfy πQ = 0. Let’s recall the Generic model
(CTMC) and state transitions and add the required operations accordingly:

[
π1 π2 π3 π4

]
×


−10 1 5 4
2 −2 0 0
0 9 −11 2
7 0 1 −8

 =


0
0
0
0


After multiplication, one has the following system of equations (plus the one for

ensuring that all π will sum to 1.0, i.e., π1 + π2 + π3 + π4 = 1):

−10π1 + 2π2 + 7π4 = 0

π1 − 2π2 + 9π3 = 0

5π1 − 11π3 + π4 = 0

4π1 + 2π3 − 8π4 = 0

π1 + π2 + π3 + π4 = 1

For this model one could start by defining π1 = 1 and then doing algebra to dis-
cover π3 and π4 (on the third and fourth equations), then circling back to π2 (second
equation). Then, the next step would be to uniformise the results, i.e., all probabilities
sum to 1.0.

We submitted this system of linear equations to MATLAB® (please, refer to file
matlab/matlabgeneric_model_dtmc.m in the GitHub repository).

40 CHAPTER 3. CTMC

% MATLAB Model
Q = [-10, 2, 0, 7;
1, -2, 9, 0;
5, 0, -11, 1;
4, 0, 2, -8;
1, 1, 1, 1];

% auxiliary vector with one position set as 1
b = [0; 0; 0; 0; 1];

pi = linsolve(Q,b);

Again, the computed vector π is equivalent to the other solutions.

3.9.2 PRISM CTMC models
We present next the Lily Pad model and the Generic model written in CTMC for
PRISM. We start with the Lily Pad model (file prism/lily-ctmc.sm):

// Lily Pad model (frog in the pond)
ctmc

const int N=4; // N - number of states

const int sA=0;
const int sB=1;
const int sC=2;
const int sD=3;

module Module1
n : [0..N] init sA; // total states, initial state sA
// transitions
[] (n=sA) -> 11 : (n’=sB) + 6 : (n’=sC) + 1 : (n’=sD);
[] (n=sB) -> 2 : (n’=sD) + 9 : (n’=sC) + 9 : (n’=sA);
[] (n=sC) -> 2 : (n’=sB) + 8 : (n’=sA) + 3 : (n’=sD);
[] (n=sD) -> 5 : (n’=sA) + 7 : (n’=sB) + 2 : (n’=sC);
endmodule

Printing steady-state probabilities in plain text format below:
0:(0)=0.30244974694693344
1:(1)=0.24340456372498753
2:(2)=0.32757532070253004
3:(3)=0.12657036862554888

And here is the Generic model (file prism/generic-ctmc.sm):

3.9. SOLUTION METHODS (CONT.) 41

// Generic model
ctmc

const int N=4; // N - number of states

const int s0=0;
const int s1=1;
const int s2=2;
const int s3=3;

module Module1
n : [0..N] init s0; // total states, initial state s0
// transitions
[] (n=s0) -> 1 : (n’=s1) + 5 : (n’=s2) + 4 : (n’=s3);
[] (n=s1) -> 2 : (n’=s0);
[] (n=s2) -> 9 : (n’=s1) + 2 : (n’=s3);
[] (n=s3) -> 7 : (n’=s0) + 1 : (n’=s2);
endmodule

Printing steady-state probabilities in plain text format below:
0:(0)=0.20235285239955195
1:(1)=0.567058916201716
2:(2)=0.1035294076461007
3:(3)=0.1270588237526314

42 CHAPTER 3. CTMC

Chapter 4

More projects and models

In this chapter we will comment about other projects and some models based on MC
that are worth discussing.

4.1 Projects
The code present here and in the repository are far from having a bug-free status. As
a starting project, one could improve the code and translate it to C++, or adding more
controls, working with increased number of states1.

4.1.1 Combine it all!
The idea here is to combine all pieces of code into one C project, putting functions in
a different file for proper organisation. In the repository you may find a folder called
project01, with a full project with all challenges explored here (combined in one
place).

The ‘services’ provided by the project are the following command-line options
(the executable is markov):

printf("This is the Markov chain solver [DD/MM/YYYY].\n");
printf("To run it, type: ./markov <FILE> <OP>\n");
printf(" where <OP> is one out of these options:\n");
printf(" 0 Solve DTMC - Power Matrix\n");
printf(" 1 Solve DTMC - Vector-Matrix Multiplication\n");
printf(" 2 Simulate DTMC (pass <SAMPLES> parameter!)\n");
printf(" 3 Convert CTMC to Embedded DTMC\n");
printf(" 4 Simulate CTMC (pass <TIME> parameter!)\n");

For OP=2, the user must also inform the number of samples at some point and for
OP=4, the simulation time (in time units).

1Please consider doing this and then a subsequent Pull Request on the GitHub repository.

43

44 CHAPTER 4. MORE PROJECTS AND MODELS

Suggestion: before looking at the solution, take all challenges and try to come up
with your own solution.

4.1.2 Visual MC

Find a way of representing MC visually, using an auxiliary library or API like graphviz
or some other.

4.1.3 Parallelisation of simulation samples

Vendors ship modern CPUs with more than one core. The idea of this project is to
explore parallelism in simulations by distributing the computation of samples among
multiple processing core and then assembling results altogether, showing to the mod-
eller. This approach would make a lot of sense in huge models.

4.2 Models

4.2.1 Birth and Death model

Figure 4.1 shows a four states Birth and Death [15] process in CTMC with symbolic
rates λ (for arrivals, i.e., births) and µ (for departures, or deaths).

0 1 2 3

Figure 4.1: A four state Birth and Death CTMC model.

The Q matrix for this model follows a distinctive pattern:


0 1 2 3

0 −λ λ 0 0
1 µ −(µ+ λ) λ 0
2 0 µ −(µ+ λ) λ
3 0 0 µ −µ


There are known equations that work with this type of models (closed form) [15,

14]. And also check out the model S6-birth-and-death-ctmc.txt in the GitHub
repository for a six states Birth and Death process.

4.2. MODELS 45

4.2.2 Mouse Maze model
This model was extracted from the book “Introduction to Probability” (page 440) [16].
The model employed DTMC and it has nine states, mapping the situation explained
in Figure 4.2.

21 3

6 5 4

7 8 9

Figure 4.2: A mouse in a maze visiting cells mindlessly.

The model, as follows, shows the probabilities for reaching adjacent cells in the
maze. 

1 2 3 4 5 6 7 8 9

1 0 0.50 0 0 0 0.50 0 0 0
2 0.33 0 0.33 0 0.33 0 0 0 0
3 0 0.50 0 0.50 0 0 0 0 0
4 0 0 0.33 0 0.33 0 0 0 0.33
5 0 0.25 0 0.25 0 0.25 0 0.25 0
6 0.33 0 0 0 0.33 0 0.33 0 0
7 0 0 0 0 0 0.50 0 0.50 0
8 0 0 0 0 0.33 0 0.33 0 0.33
9 0 0 0 0.50 0 0 0 0.50 0


The transition probabilities depend on the number of doors in the cell. For ex-

ample, cells 1, 3, 7, and 9 have two doors, so the probability is 0.50 whereas cells 2,
4, 6, and 8 have three doors each (probability of 0.33) and finally, cell 5 has 4 doors
(probability of 0.25). This model will not yield an analytical solution, however, via
simulation, it is possible to reach satisfactory results.

The mouse in the maze model is in GitHub’s repository:

• File: S9-maze-model-dtmc.txt.

4.2.3 Availability model
Next model was discussed by Trivedi and Bobbio [3] (Example 9.2, page 311), about a
blade server in a data centre. They investigated the availability (and conversely, the
unavailability) using CTMC. The model is depicted in Figure 4.3.

46 CHAPTER 4. MORE PROJECTS AND MODELS

up down

Figure 4.3: Availability modelling of a blade server in a data centre.

For this case, the IG of the CTMC is:(up down

up −λ λ
down µ −µ

)
The authors use special numerical methods to solve this CTMC (e.g., Laplace

transform method – they explain why they do it in the book) and then discuss the
following equations for assessing availability:

πup =
µ

λ+ µ

πdown =
λ

λ+ µ

The instantaneous system Availability is A(t) = πup and correspondingly, the
instantaneous system Unavailability is U(t) = 1− A(t) = πdown.

4.2.4 Aging and Rejuvenation model
Next model was discussed by Huang et al. (1995) [1], about software aging and reju-
venation [17]. The basic idea behind these concepts is to employ preemptive mech-
anisms to restart applications to healthy states to prevent failures in the future. The
authors have come up with a CTMC model depicted in Figure 4.4.

In the model, S0 is the robust state of an application where it stays for a period
equivalent to its base longevity interval, then it transitions to a failure probable state
SP . From this state (SP), it goes to a failure state SF where it remains until it is
repaired. If only these states (S0, SP , and SF) were considered, the model would
correspond to a normal process without any rejuvenation.

The model as described in [1] uses the following assumptions:

• λ = 1
12∗30∗24 = 0.000115741 →, i.e., the Mean Time Between Failure (MTBF)

is 12 months.

• r1 = 2→ it takes 30 minutes to recover from an unexpected failure.

4.2. MODELS 47

Figure 4.4: Software aging and rejuvenation model [1].

• r2 = 1
7∗24 = 0.005952381→ base longevity interval (from S0 to SP), equal to

7 days.

• r3 = 3→ the mean repair time after rejuvenation is 20 min.

• r4 = 1
(14−7)∗24 = 0.005952381→ rejuvenation frequency for an application.


S0 SF SP SR

S0 0 0 0.005952381 0
SF 2 0 0 0
SP 0 0.000115741 0 0.005952381
SR 3 0 0 0


The insertion of an intermediary state SR that models a preemptive action from

the probable failure state to replenish the application is inserted, as shown in the
model. After this process is concluded, the application returns to the stable (robust)
state. The rates for each state are discussed in the paper, the point the authors make
is that rejuvenating applications costs less and helps applications stay (or return) in
stable states more frequently. The seminal paper discusses how they modelled each
rate and the reasoning behind it and other interesting notions about aging and reju-
venation. This idea has further implications in cyber-security, as studied by Czekster
et al. (2021) [18].

It is worth pointing out that the model has only four states, modelling a CTMC
that helps analysts consider different possibilities when designing or handling sys-
tems. Solving the model and having numerical outputs enormously help analysts
understand behaviours and effectively cope with trade-offs.

48 CHAPTER 4. MORE PROJECTS AND MODELS

Chapter 5

Final considerations

Markov Chains have multiple applications, and one hopes you have had a good jour-
ney reading this book, and your knowledge about the formalism has dramatically
improved. Now it is possible to address more sophisticated problems using MC as
another tool in your toolbox. However, don’t think that because you now have a
good fancy hammer (i.e., MC), every problem is a nail, and you must torture it until
it fits the framework and reasoning discussed here. You should be able to apply MC
depending on the problem at hand, the data you have, and the circumstances (the
context) surrounding your analysis.

As one notices, the code present in the book (and in the repository) is far from
perfect. If one looks deeper one may find a lot of defects and problems. It handles
models with few number of states, having line sizes no greater than 1k (it does not
even say that this is problem while trying to open). So, you could improve the code,
translate it to C++ perhaps, add more controls, work with increased number of states,
and so on. The sky is the limit – go for it!

The problems and models tackled here have reduced number of states, that is be-
cause it is targeted at educational purposes only. It is worth remarking that useful1

real world modelling tends to require much larger order matrix to represent some-
what complex behaviours and relationships. Given all this, think that your Markovian
Journey has just began.

5.1 What’s next?
The next step will require further understanding of MC. For instance, one might:

• Investigate structured MC: Queueing Networks (QN) [19, 12], Stochastic Petri
Nets (SPN), PEPA [20], or PTA/MDP.

• Understand and implement “Perfect Simulation” (also called backwards simu-
lation) notions.

1Remember that quote from George Box, “All models are wrong, some are useful.”

49

50 CHAPTER 5. FINAL CONSIDERATIONS

• Explore other related formalisms, such as Generalized Stochastic Petri Nets [21],
Well Formed Networks, Layered Queueing Networks [22], Superposed Gener-
alized SPNs (SGSPN) [23], and so on.

To deepen the knowledge in MC, it is suggested to give more time to PRISM and
the inherent modelling formalisms thereof. It is a well-established and stable tool
that researchers around the world use in a daily basis. You could for example explore
other tool features such as investigate (in depth) other formalisms (suitable for CTMC
or DTMC, PTA, and MDP), generation of automatic charts with variables, simulation,
transient analysis, synchronising events. The tool comes with several examples and
has a decent User Guide with lots of useful information to start modelling.

Using PRISM over the years one can attest its robustness and usefulness, how-
ever it is worth looking also into other tools. Mind that there is a wealth of tools to
consider, for instance, the Modest Toolset (https://www.modestchecker.net/)
or the Möbius Tool (https://www.mobius.illinois.edu/). And also, you may
explore other quantitative analysis tools such as SHARPE (Symbolic Hierarchical Au-
tomated Reliability and Performance Evaluator) [24] – https://sharpe.pratt.
duke.edu/.

You could start learning more about dependability reading the landmark paper
by Avizienis et al. (2004) [25].Then, look at Jain’s book on performance [14], the
“Queueing networks and Markov chains” book [15], and Trivedi’s “Reliability and
Availability engineering” [3].

Your ‘real’ journey has just started!

https://www.modestchecker.net/
https://www.mobius.illinois.edu/
https://sharpe.pratt.duke.edu/
https://sharpe.pratt.duke.edu/

About the author

Ricardo Melo Czekster is a curious individual
based in Birmingham, United Kingdom (at least
in 2022, time of writing this book). He promises
he has no relation to Andrey A. Markov as his
ancestors were from Vitebsk (Viciebsk) in Be-
larus. From what he has learned over time,
Markov was from St. Petersburg and the distance
between these two cities is 328 miles.

In 1906, two major events happened in the
world history: first, Markov published his magna
opus and second, avoiding impending wars, Ri-
cardo’s ancestors eventually settled down in
Brazil in the southernmost region of Rio Grande
do Sul, precisely in Santo Ângelo (distant 272
miles from the state capital, Porto Alegre).

He is a travelled and seasoned world visitor, having spent substantial time in
Porto Alegre/Brazil (his hometown), Grenoble/France, Edinburgh/Scotland, Prince-
ton/USA, St Andrews/Scotland, Newcastle upon Tyne/England and now Birming-
ham/England.

Ricardo has been studying Markov Chains since 2004 (there goes a lot of time!),
whilst pursuing his PhD. Since then, he has done a lot of thinking and messing around
this formalism, devising methods and solutions for tackling large state space models.

When he is not teaching or researching, he is doing some light manual wood-
working, to try to forget about things for a while and engage in creating things out
of wood and keep his fast-paced thought-stream in check.

51

Bibliography

[1] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuvenation:
Analysis, module and applications,” in Symposium on Fault-Tolerant Computing.
IEEE, 1995, pp. 381–390.

[2] O. Häggström, Finite Markov chains and algorithmic applications. Cambridge
University Press, 2002, vol. 52.

[3] K. S. Trivedi and A. Bobbio, Reliability and availability engineering: modeling,
analysis, and applications. Cambridge University Press, 2017.

[4] A. L. Scherr, An analysis of time-shared computer systems. Massachusetts Insti-
tute of Technology, 1965, vol. 535.

[5] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation ranking:
Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[6] A. N. Langville and C. D. Meyer, Google’s PageRank and beyond. Princeton
University Press, 2011.

[7] P. Von Hilgers and A. N. Langville, “The five greatest applications of Markov
chains,” in Proceedings of the Markov Anniversary meeting. Citeseer, 2006, pp.
155–158.

[8] K. L. Chung, “Markov chains,” Springer-Verlag, New York, 1967.

[9] J. R. Norris and J. R. Norris, Markov chains. Cambridge university press, 1998,
no. 2.

[10] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability. Springer
Science & Business Media, 2012.

[11] W. J. Stewart, Introduction to the numerical solution of Markov chains. Princeton
University Press, 1994.

[12] ——, Probability, Markov chains, queues, and simulation. Princeton University
Press, 2009.

53

54 BIBLIOGRAPHY

[13] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of prob-
abilistic real-time systems,” in International conference on computer aided verifi-
cation. Springer, 2011, pp. 585–591.

[14] R. Jain, The art of computer systems performance analysis. John Wiley & Sons,
1991.

[15] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing networks and
Markov chains: modeling and performance evaluation with computer science ap-
plications. John Wiley & Sons, 2006.

[16] C. M. Grinstead and J. L. Snell, Introduction to probability. American Mathe-
matical Soc., 1997.

[17] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A survey of software
aging and rejuvenation studies,” ACM Journal on Emerging Technologies in Com-
puting Systems (JETC), vol. 10, no. 1, pp. 1–34, 2014.

[18] R. M. Czekster, A. Avritzer, and D. S. Menasché, “Aging and Rejuvenation Models
of Load Changing Attacks in Micro-Grids,” in 2021 IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW). IEEE, 2021, pp. 17–24.

[19] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open, closed, and
mixed networks of queues with different classes of customers,” Journal of the
ACM (JACM), vol. 22, no. 2, pp. 248–260, 1975.

[20] J. Hillston, A Compositional Approach to Performance Modelling, ser. Distin-
guished Dissertations in Computer Science. Cambridge University Press, 1996.

[21] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis, “Modelling
with generalized stochastic Petri nets,” ACM SIGMETRICS Performance Evalua-
tion Review, vol. 26, no. 2, p. 2, 1998.

[22] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi, “Enhanced mod-
eling and solution of layered queueing networks,” IEEE Transactions on Software
Engineering, vol. 35, no. 2, pp. 148–161, 2008.

[23] S. Donatelli, “Superposed generalized stochastic Petri nets: definition and ef-
ficient solution,” in International Conference on Application and Theory of Petri
Nets. Springer, 1994, pp. 258–277.

[24] R. A. Sahner, K. Trivedi, and A. Puliafito, Performance and reliability analysis of
computer systems: an example-based approach using the SHARPE software pack-
age. Springer Science & Business Media, 2012.

[25] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and tax-
onomy of dependable and secure computing,” IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

Index

A
aggregation, 13
aperiodic, 11

B
Belfast model, 17

C
CTMC, 5, 29
Czekster, 51

D
digraph, 4
DTMC, 5
DTMC simulation, 9
duration, 7

E
eigenvector, 4
Embedded DTMC, 31
ergodic, 11, 31
ergodicity, 4
exponential, 7

G
Google PageRank algorithm, 4, 22

I
Identity Matrix, 31
Infinitesimal Generator, 29
irreducible, 11

L
level-of-detail, 4
Lily Pad model, 40
Linear Congruential Generator, 9
lumpability, 13

M
Markov Chains, 5
Markov Chains, MC, 3
Markov Process, 5
Markov property, 5
model, 3

N
Nearly Completely Decomposable, 12

P
periodic, 11
Power Matrix, 15
preconditioning, 16
PRISM model, 23
pseudo-random, 9

R
residence time, 5

S
seed parameter, 13
sojourn time, 5
stochastic Petri nets, 49
structured MC, 49
system, 3

T
time shared system, 4
transitions, 4

V
Vector-Matrix Multiplication, 16

W
well-formed, 11

55

Yet another venture by the lazy panda collection
URL: https://pixabay.com/photos/mammal-wildlife-animal-zoo-panda-3074618/
Simplified Pixabay License

Markov Chains for programmers
Copyright 2022- Ricardo M. Czekster

Why should you read this book?

- It is directed at programmers (at any level) interested in Markovian numerical
methods.

- It addresses simple Markov Chains and explains the numerical methods behind
the formalism.

- It explains simple models and discusses trade-offs about computation effort
concerning solutions.

https://pixabay.com/photos/mammal-wildlife-animal-zoo-panda-3074618/

	Introduction
	Markov Chains
	Model and system
	Emergence of Markov Chains
	Basic modelling primitives
	Input and output
	Types
	Values decorating transitions
	Markov property or memoryless property
	Let's code!
	Challenge 01
	Challenge 02

	What is considered a `proper' MC?
	Irreducible MC

	Limitations of Markov Chains
	Comments on the spreadsheets

	DTMC
	Remembering matrix operations
	The Belfast weather model
	Let's code!
	Challenge 03

	Solution methods for DTMC
	Power matrix, or Matrix-Matrix Multiplication
	Vector-Matrix Multiplication
	Forward simulation
	Useful comments
	Direct solution method
	PRISM DTMC model

	Let's code!
	Challenge 04
	Challenge 05

	Comments on the spreadsheets

	CTMC
	Infinitesimal Generator
	Computing the embedded DTMC
	The Lily Pad model
	Let's code!
	Challenge 06

	Solution methods for CTMC
	Forward simulation

	Race condition
	Comments on the spreadsheets
	Let's code!
	Challenge 07

	Solution methods (cont.)
	Direct solution method
	PRISM CTMC models

	More projects and models
	Projects
	Combine it all!
	Visual MC
	Parallelisation of simulation samples

	Models
	Birth and Death model
	Mouse Maze model
	Availability model
	Aging and Rejuvenation model

	Final considerations
	What's next?

	About the author
	Index

