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THESIS ABSTRACT 

Some insects have the capability to detect and track small moving objects, often against 

cluttered moving backgrounds. Determining how this task is performed is an intriguing 

challenge, both from a physiological and computational perspective. Previous research 

has characterized higher-order neurons within the fly brain known as ‘small target 

motion detectors’ (STMD) that respond selectively to targets, even within complex 

moving surrounds. Interestingly, these cells still respond robustly when the velocity of 

the target is matched to the velocity of the background (i.e. with no relative motion 

cues). 

We performed intracellular recordings from intermediate-order neurons in the fly visual 

system (the medulla). These full-wave rectifying, transient cells (RTC) reveal 

independent adaptation to luminance changes of opposite signs (suggesting separate 

‘on’ and ‘off’ channels) and fast adaptive temporal mechanisms (as seen in some 

previously described cell types). We show, via electrophysiological experiments, that 

the RTC is temporally responsive to rapidly changing stimuli and well suited along a 

proposed pathway to target-detecting neurons.  

To model this target discrimination, we use high dynamic range (HDR) natural images 

to represent ‘real-world’ luminance values that serve as inputs to a biomimetic 

representation of photoreceptor processing. Adaptive spatiotemporal high-pass filtering 

(1st-order interneurons) shape the transient ‘edge-like’ responses, useful for feature 

discrimination. Following this, a model for the RTC implements a nonlinear facilitation 

between the rapidly adapting, and independent polarity contrast channels, each with 

center-surround antagonism. The recombination of the channels results in increased 

discrimination of small targets, of approximately the size of a single pixel, without the 

need for relative motion cues. This method of feature discrimination contrasts with 

traditional target and background motion-field computations. We show that our RTC-

based target detection model is well matched to properties described for the higher-

order STMD neurons, such as contrast sensitivity, height tuning and velocity tuning. 

The model output shows that the spatiotemporal profile of small targets is sufficiently 

rare within natural scene imagery to allow our highly nonlinear ‘matched filter’ to 

successfully detect many targets from the background.  
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The model produces robust target discrimination across a biologically plausible range 

of target sizes and a range of velocities. We show that the model for small target motion 

detection is highly correlated to the velocity of the stimulus but not other background 

statistics, such as local brightness or local contrast, which normally influence target 

detection tasks. 

From an engineering perspective, we examine model elaborations for improved target 

discrimination via inhibitory interactions from correlation-type motion detectors, using 

a form of antagonism between our feature correlator and the more typical motion 

correlator. We also observe that a changing optimal threshold is highly correlated to the 

value of observer ego-motion. We present an elaborated target detection model that 

allows for implementation of a static optimal threshold, by scaling the target 

discrimination mechanism with a model-derived velocity estimation of ego-motion. 

Finally, we investigate the physiological relevance of this target discrimination model. 

We show that via very subtle image manipulation of the visual stimulus, our model 

accurately predicts dramatic changes in observed electrophysiological responses from 

STMD neurons. 
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 CHAPTER 1:    

INTRODUCTION 

1.1 TARGET DETECTION, TRACKING AND PURSUIT 
Many insects have the capability to detect, track and chase moving targets either for 

prey or conspecifics (Land and Collett, 1974, Wagner, 1986a, Land, 1993). Although 

female houseflies will chase other flies in free flight (Wehrhahn, 1979) this behaviour is 

less accurate and of shorter duration than male pursuits. Male houseflies will chase 

another fly continuously, engaging in rapid and circling trajectories, resulting in high 

angular velocities of over 3000°/s (Land and Collett, 1974). As would be expected, 

these behavioural differences have led to evolution of sexual dimorphism in the 

morphology and neurophysiology of the visual system (Dietrich, 1909, Collett and 

Land, 1975, Kirschfeld and Wenk, 1976). Specializations extend from the optical 

design of the eye, for example, the high acuity ‘love spot’ in the male housefly 

(Beersma et al., 1975, Land and Eckert, 1985),  through to differences in the higher-

order neurons (Hausen and Strausfeld, 1980, Strausfeld, 1991, O'Carroll et al., 1997, 

Nordström et al., 2008).  

Male blowflies track their targets and control both forward velocity (dependent on 

angular size of the target) and turning velocity (dependent on angular position of the 

target) during chases (Boeddeker et al., 2003). In an entirely different method of 

chasing, insects such as large hoverflies (Eristalis and Volucella) and dragonflies will 

intercept their targets (Collett and Land, 1978, Olberg et al., 2000). These insects 

appear to derive sufficient information of target motion in early stages of the detection 

so as to plot an interception course. 

In some species, a chasing fly will attempt to maintain the target in the dorso-frontal 

visual field (Wehrhahn et al., 1982). Whilst others have formed specialised eyes, with 

dorsal acute zones, to silhouette a target against the bright sky (Zeil, 1983). Still others 

have frontal acute zones (Land and Eckert, 1985) and therefore must track targets 

against complex visual textures. Dependent on the fly (species, gender and behaviour) 

some eyes show a structural form, tuned for the target pursuit task, both within the 
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distribution of facets (Land and Eckert, 1985), the dynamics of the photoreceptors 

(Hardie et al., 1981, Hornstein et al., 2000) and the other underlying neural architecture 

(Collett and King, 1975).  

 

 

Figure 1-1.  Fly chase behaviour.  Reproduced from Wagner, 1986. Rapid turns at high angular 
velocities (over 3000°/s) typify flights, as flies pursue one another (point intervals 10ms). 

 

In this thesis, I will investigate the neural pathways that may form the basis for 

detecting targets in visual clutter. I have also used electrophysiological recordings of 

neurons from various stages of the insect visual pathway, including from neurons that 

respond to small moving targets, to develop a biologically inspired model for this task. 
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1.2 MOTION DETECTION THEORY 
During chase behaviour, the fly will encounter two general forms of motion. One is a 

rotatory and translatory movement of the entire visual field which will be induced by 

the fly’s ego-motion (self motion). The other is the movement of objects within the 

visual surround. These require two separate motion detection systems, as was first 

observed in behavioural experiments with crickets (Palka, 1969), flies (Geiger and 

Poggio, 1975, Srinivasan and Bernard, 1977), and locusts (Rowell et al., 1977). 

There are three primary methods to detect motion. The first involves identification and 

tracking of features, typically in frame-based representations of the moving scene, and 

is a popular method within the computer vision community. The other two types deal 

with ‘first-order’ visual motion, defined by a spatial displacement of luminance over 

time. The detection of these spatiotemporal luminance changes requires two spatially 

separated receiving elements, an asymmetry in the connected network and the nonlinear 

interaction of the two signals (Buchner, 1984). Two mathematically distinct families of 

models achieve this detection task, the gradient scheme (Limb and Murphy, 1975, 

Srinivasan, 1990) and motion energy or correlation schemes (Adelson and Bergen, 

1985, Hassenstein and Reichardt, 1956). The three forms of motion computation are 

described in detail in the following sections. 

1.2.1 Feature-tracking 

At any instant of time, features (or feature derivatives) are identified within a scene and 

their spatial locations quantified (for examples, Harris and Stephens, 1988, Moravec, 

1977, Shi and Tomasi, 1994, Smith and Brady, 1997). In the following frame (discrete 

time), the features are again spatially localised. The displacement of the features is 

calculated, and with the frame period known, the motion of the features or scene is 

readily calculated. The challenging part of this process is in identification of the 

location of features. 

1.2.2 The Gradient Scheme 

The ‘gradient detector’ is based on the computation of velocity by dividing the 

derivative of luminance over time, by the derivative of luminance over space. This 

method of motion detection is based on the following equation. 
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This calculation can be implemented with high-pass temporal filtering and a subtractive 

inhibitory interaction between two sampling points (an approximation). A divisive 

element is also required (Torre and Poggio, 1978) and the availability of such a neural 

element has been the subject of intense investigation (Holt and Koch, 1997). 

Interestingly, while there are numerous applications of models of this kind in artificial 

vision, evidence for neural mechanisms resembling gradient detection in biological 

systems is scarce, possible due to the difficulty of implementing the divisive operator. 

The signal provided by the gradient detector is proportional to the image velocity, 

however, because of the division, if the spatial derivative is low then noise will be 

amplified (also, the signal is undefined for a spatial derivative value of zero). 

Elaborations to the gradient scheme have resolved these issues (Srinivasan, 1990, 

Sobey and Srinivasan, 1991) and this method of motion computation is commonly used 

within the image processing field.  

 

 

Figure 1-2.  The Gradient Detector.  Computation of velocity by dividing the derivative of 
luminance over time, by the derivative of luminance over space. 
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1.2.3 The Reichardt Correlator 

In seminal studies, Hassenstein and Reichardt (1956) studied the behavioural turning 

response (the optomotor response) of the beetle Chlorophanus to the movement of the 

visual surround. This turning response is the animal’s attempt to compensate for a 

perception of ego-motion in the opposite direction. The analysis of these results led to 

the development of a motion detection model referred to as a ‘correlation-type detector’ 

or ‘Reichardt correlator’. 

 

 

Figure 1-3.  The Reichardt Correlator.  A delay (τ) and compare (multiplication, x) of two spatially 
separated inputs signals the motion. 

 

The correlator subunit consists of two spatially separated inputs, with one of the signals 

delayed relative to the other (e.g. via a low pass filter), before multiplication between 

the two arms (Hassenstein and Reichardt, 1956). More usually, the signals are initially 

processed via spatial and temporal prefilters (Reichardt, 1961, van Santen and Sperling, 

1985). The prefilters represent early visual processing, such as the optical blurring, 

photoreceptor responsiveness and spatiotemporal filtering characteristics of 1st-order 

interneurons. The multiplication results in a signal that will (on average) be more 

positive when a pattern moves in the preferred direction (and more negative in the anti-
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preferred direction), however, the unit is still very responsive to a flicker (non-motion) 

luminance component. Therefore, a mirror symmetric unit is subtracted from the 

original forming a full correlator mechanism. The Reichardt correlator is commonly 

referred to as an elementary motion detector (EMD). 

Other forms of motion detection, such as the Energy model (Adelson and Bergen, 

1985), have been found to be holistically equivalent to the correlation based 

mechanism, only with a different underlying mathematical architecture (Adelson and 

Bergen, 1985, van Santen and Sperling, 1985). The Reichardt correlator suggests a 

multiplicative unit for the comparison stage, though several other possibilities have also 

been suggested, for example, asymmetric and nonlinear inhibitory mechanisms in the 

rabbit retina (Barlow and Levick, 1965), turtle retina (Ariel and Adolph, 1985) and in 

the medulla of the fly (Mimura, 1972) and locust (Osorio, 1986). These proposed 

models, based on delayed inhibition, also have a similarity to the correlator-type 

detectors, as the ‘and-not’ structure approximates the multiplicative nonlinearity in a 

digital sense (Buchner, 1984). Further elaborated inhibitory models have provided 

explanation for facilatory responses observed in the insect visual system (Bouzerdoum 

and Pinter, 1990, Bouzerdoum, 1993). 

These ‘equivalent type’ detectors have been used to describe motion computation in a 

variety of biological contexts; in insects (Hassenstein and Reichardt, 1956), rabbit 

(Barlow and Levick, 1965), humans (van Santen and Sperling, 1983), wallabies 

(Ibbotson et al., 1994) and pigeons (Wolf-Oberhollenzer and Kirschfeld, 1994). The 

correlator has also explained behavioural experiments on the fly optomotor response 

(Fermi and Reichardt, 1963, Buchner, 1976). Hence, this form of motion detector is 

likely to have evolved numerous times and appears to be the ubiquitous biological 

motion detector. 

The neural mechanisms that could implement the mathematical operation of 

multiplication are still yet to be determined, however plausible biophysical mechanisms 

have previously been suggested (Koch, 2004). The location in the visual pathway of the 

correlation mechanism, particularly the multiplicative processing, remains unknown. 

By increasing the spatial phase (by changing the spatial sampling baseline of the 

inputs), or decreasing the time constant of the delay, the correlator-detector is tuned for 

higher velocities. An array of EMDs may be combined via spatial integration (either 
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linearly, or nonlinearly) to provide an element that signals directionally opponent wide-

field motion. Higher order neurons within the optic lobes of the fly, the lobula plate 

tangential cells (LPTC), are found to have these characteristics (for example, Single and 

Borst, 1998, Haag et al., 2004). 

However, this ‘tuning’ of the correlation model leads to interesting characteristics in 

coding velocity by these types of motion detector. The response of the direction 

selective neurons would not represent velocity in a linear manner, rather would increase 

to an ‘optimal velocity’ and then decrease as this velocity was exceeded (Buchner, 

1984). This optimal velocity should also vary proportionally to the spatial frequency of 

the stimulus, maintaining a constant ratio between the two. Some of these effects have 

been verified experimentally (review Borst and Egelhaaf, 1989). However, many 

modifications of the EMD circuit have been proposed to more closely match the 

response characteristics of the recorded neurons. EMDs that are independent of the 

spatial structure of the image, including contrast invariance, are required for a complete 

model (Zanker et al., 1999). 

For these reasons, many engineers have rejected the Reichardt correlator as ambiguous 

and unusable in attempts to build artificial optic flow detectors. This begs the question 

as to why this type of scheme has become so ubiquitous in nature. 

It has been show that an ‘optimal’ motion detector, with respect to the signal-to-noise 

ratio (SNR), would be based on the gradient scheme under high SNR conditions, 

however under low SNR, a correlation mechanism is most appropriate (Potters and 

Bialek, 1994). However, Haag et al. (2004) showed that motion sensitive cells in the fly 

were based on Reichardt correlators over a large SNR range, i.e. over a wide range of 

luminance and contrast conditions.   

1.2.4 The Motion Stimulus (Classical and Natural Images) 

Having discussed motion detection theory, it is relevant to address what is actually 

moving. Traditional investigation of motion processing examined responses to ‘simple’ 

stimuli such as moving objects (dots and bars) and drifting (sinusoidal) gratings. 

Gratings have the benefit of a simple mathematical representation and analysis of 

input/output transforms that are more readily defined. Felson and Dan (2005) examine 
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arguments that biological motion is best examined with ‘natural’ inputs, whilst Rust and 

Movshon (2005) praise classical visual stimuli. 

With respect to studying natural stimuli and vision processing there are two general 

approaches (Simoncelli and Olshausen, 2001). One method is to examine neural 

responses under natural stimulation conditions (Laughlin, 1981a, Rieke et al., 1995) 

whilst the other is to predict a visual processing model for a particular statistical 

optimization (relevant to natural inputs). This model is then compared with the neural 

responses (Atick, 1992, Olshausen and Field, 1996, van Hateren, 1998). 

Natural images are found to have consistent spatial statistics. Their spectral power falls 

with increasing frequency (f), in a power law relationship 1/f
p
, (p ~2) (Field, 1987, 

Ruderman, 1994). There is a correlational structure within natural scenes and 

Srinivasan et al. (1982) showed that the amount of spatiotemporal antagonism (within a 

visual neuron of the fly) was matched to remove these correlations from typical moving 

natural scenes. Further predictions were made regarding the dynamic changes of these 

filtering characteristics due to information theoretic considerations (low-pass in low 

SNR, high-pass in high SNR), again dependent on the natural stimulus inputs (van 

Hateren, 1992c).  

The Reichardt detector provides an ambiguous velocity signal (for differing 

combinations of spatial and temporal frequencies). However, it was shown that due to 

the predictable statistics of natural images, the mean response of spatially integrated 

EMDs does provide a reliable estimate of velocity (Dror et al., 2000). Residual 

problems remain in providing an accurate velocity estimation which would match the 

robust velocity responses observed behaviourally in the bee (Srinivasan et al., 1991). 

The study of spatially integrated, wide-field EMDs that can provide a robust estimation 

of velocity is presently a focus of research (Shoemaker et al., 2005, Brinkworth and 

O'Carroll, 2007) 
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1.3 INSECT VISUAL PATHWAY 
This thesis is concerned with a variety of insect visual systems and aims at generalising 

target discrimination across the visual systems of blowflies, hoverflies and dragonflies. 

In this brief review of insect visual pathways, I will focus on the fly visual system 

which provides the required background information. However, there are significant 

differences between the insect species, and where relevant these are highlighted. 

1.3.1 Optics 

Light intensity of the surrounding environment is processed through the optics of the 

compound eye via thousands of (semi) regularly arranged facet lenses. Each facet 

points in a different direction and accepts light from a narrow angle (review Nilsson, 

1989, Strausfeld, 1989). Light is guided to eight photoreceptors contained within a 

single sampling unit referred to as an ommatidium. The optics of male houseflies is 

tuned to the task of target detection. In an ‘acute zone’ they have larger ommatidial 

facet lenses (Land and Eckert, 1985) which have higher acuity and better sensitivity 

(Land, 1981). 

 

 

Figure 1-4.  Sexual Dimorphism.     Reproduced from van Hateren et al (1989). (A) Female and (B) 
Male Chrysomyia. The dorsal eye of the male has greatly enlarged facets. This ‘bright’ zone, rather 
than an ‘acute’ zone, provides greater sensitivity in this region of the eye. 
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1.3.2 Photoreceptors 

The photoreceptor cells act as light sensors, producing graded membrane potentials via 

the process of phototransduction (review Yarfitz and Hurley, 1994, Hardie, 2001), and 

then transferring this information to the visual interneurons in the lamina.   

Adaptive mechanisms allow the photoreceptors to operate in a large range of luminance 

conditions (Laughlin, 1994), and shift their behaviour dynamically dependent on 

changing background luminance. Photoreceptors code for contrast (relative differences 

in intensity, both in space and time) (Barlow, 1961, Laughlin et al., 1987) and alter their 

contrast gain to reduce noise and improve the SNR dependent on the adaptation 

conditions (Juusola et al., 1994).  Generally, photoreceptors act as low-pass filters that 

change to band-pass filters with increasing light adaptation (Jarvilehto and Zettler, 

1971).  

Photoreceptors have to encode the large dynamic range encountered in natural scenes, 

into the limited dynamic range of the neuron (van Hateren, 1992c). Dependent on the 

spatial power spectrum of the scene and the behaviour of the insect (velocity dependent 

temporal structure) theoretically optimal filters have been developed that maximise 

information transmission (van Hateren, 1992a, van Hateren, 1993). A parametric 

photoreceptor model has been developed, based on a cascade of linear and nonlinear 

elements that matches information theoretic expectations of photoreceptor responses to 

natural scenes (van Hateren and Snippe, 2001).  

Interestingly, the complex and dynamical properties of the photoreceptor has recently 

been found to enhance target salience within moving scenes, purely by their temporal 

processing characteristics (Brinkworth et al., 2008). 

1.3.3 Neural Superposition 

Previous research has provided detailed description of the neural interconnections 

within the retina (Strausfeld and Nässel, 1981). Six photoreceptors (R1-R6), from 

adjacent ommatidia, looking at the same point in space, converge onto a single lamina 

cartridge by the principles of neural superposition (Nilsson, 1989). The inner 

photoreceptors (R7 and R8) are involved in colour vision, bypassing the lamina and 

terminating in the medulla (Hardie, 1985). Recent experiments in Drosophila 

(Yamaguchi et al., 2008) have verified that only the outer photoreceptors (R1 to R6) are 
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involved in the motion processing pathway. These photoreceptors are sensitive to UV 

or green-blue light (review Hardie, 1985). 

 

 

Figure 1-5.  Fly Eyes.  Reproduced from Delcomyn (1998). This diagram shows the arrangement of 
the facets and the underlying structure of the lens which guide light towards the photoreceptors. 
 

1.3.4 Lamina Neurons 

The 2nd optic ganglion, the lamina, is usually regarded as the principal site of 

redundancy reduction in the insect visual pathway, with clear evidence for both spatial 

and temporal high-pass filtering in the Large Monopolar Cells (LMC) (Laughlin et al., 

1987). 

Neurons within the lamina neuropile are grouped into cartridges, referred to as neuro-

ommatidia, and each grouping corresponds to one sampling point of space. This 

columnar (retinotopic) organisation is maintained through the visual stages. In the 

lamina, the visual signal is processed by three large monopolar cells (LMC) (L1, L2 and 

L3), two small monopolar cells (SMC) (L4 and L5), an amacrine cell (AM) and the 

basket cell T1 (Laughlin, 1984, Shaw, 1984). 

The graded responses of the three LMCs are generally the same, with an ‘on’ 

hyperpolarization, a sustaining component and a transient ‘off’ depolarization. These 
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components vary depending on stimulus duration and the state of light adaptation 

(Laughlin, 1981b). They are not motion specific (Gilbert et al., 1991).  There are small 

physiological and anatomical differences between L1 and L3 cells compared with L2 

neurons, which may suggest a slight difference in the temporal dynamics for these 

neuron types (Hardie and Weckström, 1990). Histamine neurotransmitter is being 

tonically released by the photoreceptor, even in darkness (Laughlin et al., 1987), and an 

increase in release causes histamine gated chloride channels to open, hyperpolarizing 

the LMC (Hardie, 1987). This metabolically expensive processing allows for the rapid 

signalling of increased and decreased contrast changes.  

The LMC, due to spatial and temporal antagonism, removes redundant information 

from correlations in visual scenes (Srinivasan et al., 1982). A more thorough 

examination reveals that the LMC alters its filtering characteristics dependent on visual 

conditions. In the dark adapted state, the LMC is more integrative with longer 

sustaining temporal components. As overall luminance conditions increase, the LMC 

becomes more transient and high-pass in nature, both in space and time (Juusola et al., 

1995). These transient responses enhance edge-like boundaries, to varying degrees 

depending on adaptation state (Srinivasan et al., 1990b), which enhances target 

discrimination (Wiederman et al., 2008). Spatial antagonism observed in the LMCs 

appear to utilize inhibitory interactions between nearest neighbour receptors (Srinivasan 

et al., 1982).   

The less well known L5 is a spiking neuron, which seems to replicate photoreceptor 

dynamics with a sustained response to light and adaptation characteristics (Jansonius 

and Van Hateren, 1993b). The basket T1 neuron has dendrites that receive information 

from R1-R6 via the amacrine cell (Campos-Ortega and Strausfeld, 1973).  The medulla 

terminals of T1 mix with each L2 terminal and the dendrites of the transmedullary cell, 

Tm1. Tm1 has a non-directional movement sensitive nature and has been hypothesised 

to play a role in the motion detection pathway (Gilbert et al., 1991, Douglass and 

Strausfeld, 1995).  

There is still a vast amount of understanding to be developed regarding the functionality 

of the insect lamina neuropile. Defined roles for L4 and L5 remain unknown and it is 

possible that the amacrine cell may not only play a part in lateral inhibition (Strausfeld 

and Campos-Ortega, 1977), but may also be intrinsic to the motion detector delay 
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pathway.  Differentiating roles for the large monopolar cells (L1, L2, L3) are unknown, 

though responses are well characterised. Electrophysiological responses, presumed to 

be from the L4 neurons, are discussed in the following section. In the coming years, 

with new genetic intervention techniques and further electrophysiological study, it is 

hoped that some of these unknowns may be addressed (Keller, 2002). 

 

 

 

Figure 1-6.  The Lamina and Medulla of Drosophila.  Reproduced from Fischbach and Dittrich 
(1989). Photoreceptors, small and large monopolar cells and other neuron types compose the 
elements of early visual processing. 
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1.3.5 On-Off cells 

Extracellullar recordings in the first optic chiasm between 2nd and 3rd order interneurons 

of the fly brain (between the lamina and medulla), first showed the presence of ‘on-off’ 

cells (Arnett fibers) with full-wave rectification (Arnett, 1971, Arnett, 1972). This work 

included lesion experiments that showed these fibres to be centripetal, indicating an 

impressive level of complexity at an early processing stage of the visual pathway (i.e., 

the lamina). These cells (presumed to be a SMC) were later re-examined and shown to 

adapt independently to luminance changes, dependent on the polarity (increment or 

decrement) of the change (Jansonius and van Hateren, 1991). Contrast sensitivity to 

wide-field stimulation was found to be relatively poor. Experiments with moving 

sinusoidal gratings indicated a low-pass temporal characteristic with roll-off of response 

at the relatively low frequency of ~12 Hz, compared with the much higher temporal 

responsiveness of the photoreceptors (Jansonius and van Hateren, 1991). Independent 

adaptation has also been seen in locust medullary cells (Osorio, 1991) which was 

hypothesised to detect contrasting edges of visual features, ignoring their inner “textual 

detail” (Osorio, 1987, O'Carroll et al., 1992). 

To examine spatial interactions on a larger spatial scale, visual LED stimuli of 

separated pulses (5°) were presented to the ‘on-off’ cells (Jansonius and Van Hateren, 

1993a). This revealed spatial antagonism over a distance equivalent to several facets of 

the compound eye.  

Neural models have been developed for these transient cells and were proposed to serve 

a role in the front end of motion detection (Ogmen and Gagne, 1990).  The transient cell 

model of Sarikaya et al. (1998) in particular is biophysically detailed, and accounts for 

many of the temporal characteristics as observed in the electrophysiological studies in 

the fly. 
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Figure 1-7. Cross-section of the Fly Head.  Reproduced from Borst and Haag (2002). This image 
shows the visual processing regions, the retina, lamina, medulla, lobula and lobula plate. 
 

1.3.6 The Neural Basis for an Elementary Motion Detector (EMD) 

Presently, the scientific consensus is that there are no directionally selective neurons in 

the lamina of the fly (Mimura, 1972), however, evidence has been provided for phase 

shifts in the response of a lamina neuron, dependent on the direction of motion 

(Douglass and Strausfeld, 1995). Motion-sensitive cells that arise in the medulla have 

been identified via activity (motion) dependent staining (Buchner, 1984, Bausenwein 

and Fischbach, 1992). Due to their small size, medullary neurons are difficult to record 

from using electrophysiological techniques. Therefore, determining the components of 

the EMD, which may occur in this neuropil, is a challenging task. There is a proposed 

motion pathway, building on non-directional movement sensitive cells (responsive to 

movement in any direction) and passing through the T5 cells of the lobula (Gilbert et 

al., 1991).  These studies have developed over many years (Douglass and Strausfeld, 

1995, Douglass and Strausfeld, 1996, Douglass and Strausfeld, 2003) and have served 

as the basis for computational motion models which correspond to the 

electrophysiological findings (Higgins et al., 2004).   

An alternative hypothesis is that EMDs are contained within the dendritic processing of 

the higher-order LPTC neurons (Single et al., 1997) which spatially integrate motion 

signals (see 1.4.1).  

The initial stage of motion detection models are often designed with lamina LMC 

neurons delivering high-pass filtered information to the correlator inputs. An earlier 

study outlined reasons that LMC’s were not on the motion pathway (Coombe et al., 

1989).  However, the LMCs are ideally suited to remove redundancy (Srinivasan et al., 
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1982), maximize information transmission (van Hateren, 1992b) and due to their high-

pass filtering nature (suitable for modelled EMDs) should be considered as plausible 

neural elements in the motion detection pathway. 

There have been limited successful recordings from neurons within the medullary 

neuropil. A variety of response types have been reported (DeVoe and Ockleford, 1976), 

including reference to ON/OFF transients, sustaining neurons, spiking and non-spiking 

varieties of cells, those with directional selectivity, and those sensitive to motion in any 

direction. In research on the locust, further and more complete investigation of the 

medullary neurons has been completed (Osorio, 1986, Osorio, 1987).   
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1.4 NEURAL MECHANISMS AND MODELS FOR MOTION 
DETECTION 
In this section I explore several unique classes of motion detecting neurons described 

from insects. In each case, these neurons have played an important role in the 

development of neuromorphic models for motion detection. 

1.4.1 Lobula Plate Tangential Cells (LPTC) 

Electrophysiological recordings from wide-field motion-sensitive cells in the lobula 

plate (a higher-order visual region of the fly brain) indicate an underlying motion 

framework based on the Reichardt correlator (review Borst and Egelhaaf, 1989). These 

30-60 Lobula Plate Tangential Cells (LPTCs) (Hausen, 1982), are sensitive to visual 

motion in a directional way (review Borst and Haag, 2002). The cells’ optimal response 

are matched to directions of rotation around the flies’ own axis (yaw, pitch and roll) 

(Krapp and Hengstenberg, 1996). The LPTCs have been shown to spatially integrate 

over arrays of EMDs (Franceschini et al., 1989). 

1.4.1.1 Figure Detection (FD) neurons 

A subset of LPTCs, referred to as the FD neurons, have been shown to respond to 

medium size (rather than wide-field) motion (Egelhaaf, 1985b). Originally, a series of 

experiments that showed fly fixation behaviour, with discrimination between the figure 

and ground of moving random-dot patterns (Reichardt and Poggio, 1979), led to the 

development of a model for the visual detection of objects moving relative to 

backgrounds (see 1.5.2) and the postulation of the existence of a corresponding cell 

type (Reichardt et al., 1983). As modelled, these figure-detection (FD) cells are most 

sensitive to the movement of smaller objects, though not to wide-field motion of the 

visual surround. These cells were later discovered in the lobula plate of the fly optic 

lobes using electrophysiological techniques (Egelhaaf, 1985b). 

Evidence for relative motion calculations to underlie the FD neural response was 

observed in ablation experiments in the fly. When the CH neuron, an LPTC, was laser-

ablated, object specificity was removed (Warzecha et al., 1993, Egelhaaf and Borst, 

1993).  However, later experiments revealed no strong dependence of FD cell responses 

to the velocity of the background motion (on which CH cell response depends strongly) 

(Kimmerle and Egelhaaf, 2000). This suggests the relationship between object 
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selectivity and possible inhibitory effects from background motion may be more 

complex. Higgins and Pant (2004) developed and simulated an elaboration of the FD 

model which provided an explanation for this unexpected result via more complex 

interaction between the wide-field neurons (see 1.5.3). 

FD neurons have a peak response to stimuli (composed of limited spatial extent 

gratings) of greater than 10° in angular size. As the grating stimuli size increases 

further, neural responses roll off relatively slowly. FD neurons are motion opponent 

(Egelhaaf, 1985b) expressing strong directionality (excited by motion in the preferred 

direction, whilst inhibited from motion in the anti-preferred direction). This suggests 

that like the wide-field LPTCs, FD neurons are built from a Reichardt correlator 

framework.  

1.4.2 LGMD/DCMD 

The lobula giant motion detector (LGMD) is a neuron located within the third optic 

neuropil of the locust and is sensitive to a ‘looming’ stimulus (Strausfeld and Nässel, 

1980). The neuron has three large dendritic regions, the largest receiving excitatory 

local motion inputs, with the other two receiving feed-forward, size dependent 

inhibition (Rowell et al., 1977, O'Shea and Williams, 1974). The LGMD synapses onto 

the descending contralateral motion detector (DCMD), in a one-to-one spiking 

relationship  (O'Shea and Williams, 1974). The DCMD projects to motor centres 

responsible for jump and flight steering (Pearson et al., 1980) and has been suggested to 

be responsible for escape and collision avoidance behaviour when the looming visual 

stimulus reaches a fixed angular threshold size (Hatsopoulos et al., 1995). 

Before the looming nature of the LGMD/DCMD system was determined (Rind and 

Simmons, 1992), the neural system was thought to be selective for small targets 

(Rowell et al., 1977). This size selectivity was modeled by lateral inhibitory interactions 

around a centre unit. This modelling was based on cells within the locust medulla 

responding transiently to both contrast increments (‘on’ channel) and contrast 

decrements (‘off’ channel) in a full-wave rectified manner (see 1.3.5). A lateral unit, 

derived from the local signal spread of these channels, was identified in the proximal 

medulla (O'Carroll et al., 1992). These were hypothesized to mediate the inhibitory 

interactions on the centre units and are still likely to play a role in the looming response 

of the LGMD. 
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1.4.3 Target selective neurons in the insect brain 

Within the insect brain there are a variety of neurons that have smaller size selectivity 

than that of the FD neurons. These cell classes may underlie pursuit behaviour as they 

are more appropriately size tuned to the moving targets. Neurons suitable for this task 

have been observed in the hawkmoth (Collett, 1971), hoverfly (Collett and King, 1975) 

and dragonfly (Olberg, 1981, Olberg, 1986, O'Carroll, 1993).  

1.4.3.1 Small Target Motion Detectors (STMD) 

New characterizations of target-selective neurons, within the optic ganglia of the 

hoverfly and dragonfly, have recently been investigated (Nordström and O'Carroll, 

2006, Nordström et al., 2006, Barnett et al., 2007, Geurten et al., 2007). Unlike the 

relative ‘larger object’ selectivity of the FD neurons, these ‘small target motion 

detectors’ (STMDs) are found to be selective for small targets of no more than a few 

degrees of the visual field. The receptive fields of STMDs are varied in size, i.e. the 

area in which the visual presentation of a small target elicits an excitatory response. 

Some receptive fields (the small-field STMDs) extend just a few degrees (O'Carroll, 

1993) and are retinotopically organised (Barnett et al., 2007), whilst others cover a large 

part of the visual field. The target response may vary in magnitude across this region, 

however the size selectivity is independent of the target location or the size and shape 

of the receptive field (Nordström et al., 2006).  

The STMD neural response varies with the changing of target parameters, expressing 

an optimal target size and velocity tuning, whilst also exhibiting a strengthening of 

response to increased target contrast. 

Some STMDs respond to targets moving relative to a background, in many cases when 

the background itself is moving (Nordström et al., 2006). As with the FD neuron, it 

would seem likely that segregation of the motion of the target from the motion of the 

background would be a possible mechanism for the target discrimination. However, a 

subset of the larger-field STMDs respond robustly even when the velocity of the target 

is matched to the velocity of the background, i.e. with no relative motion cues 

(Nordström et al., 2006). If only wide-field background motion is presented to the 

STMD, the cell does not respond. This implies that the spatial statistics of small targets, 

with respect to the background, form an important cue for discrimination, regardless of 

any additional role that may be played by other motion cues (Nordström et al., 2006). 
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Within this thesis I present a model for target discrimination in visual clutter, which is 

derived from a proposed neural pathway to the STMD. This model relies on the 

spatiotemporal statistics of the moving target rather than relative motion cues between 

target and background. 
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1.5 NEUROMORPHIC MODELS FOR TARGET SELECTIVITY 

1.5.1 Photoreceptors 

The target detection model, as described in this thesis (see 4.2), represents early visual 

processing mechanisms by including an elaborated version of a photoreceptor model 

first devised by van Hateren and Snippe (2001). This model of photoreceptor dynamics 

was determined by varying parameters in a suitable cascade of linear and nonlinear 

elements (with feedbacks) until the coherence between stimulus and response best 

matched the rate seen within a physiological context. This model consisted of adaptive 

temporal filtering, followed by two divisive feedbacks (at different speeds – slow and 

fast adaptation) and a saturating nonlinearity. Brinkworth et al. (2008) perform 

electrophysiological recordings from photoreceptors that were visually stimulated with 

natural time series images (van Hateren, 1997). The natural series contained embedded 

targets and the photoreceptor processing revealed enhanced target salience, even 

without any spatial interactions. This was due to the temporal nonlinear dynamics of the 

photoreceptor. 

 

Figure 1-8. Photoreceptor Processing.  Reproduced from Brinkworth et al. (2008). Left is the 
original luminance image and right is the reconstruction from electrophysiological recordings of 
the photoreceptor, showing an enhancement of target salience. 
 

1.5.2 Figure Detection (FD) Cells 

Models of FD cells vary dependent on the particular FD type (Egelhaaf, 1985a). 

Generally speaking, EMDs are summed to form directional (or non-directional) motion 

‘pool’ cells. These progressive or regressive motion units are coupled across the eyes so 

as to provide representations of rotational motion. The pool cells use shunting inhibition 
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on each individual EMD ‘detector’ unit before they are integrated by the FD neuron. 

The inhibitory feedback of wide-field motion signals onto localized motion detectors (a 

form of relative motion computation) provides a mechanism for figure-ground 

discrimination. The response of the FD neuron is directionally selective to the motion of 

these objects anywhere within a large visual field, however, does not respond to wide-

field motion.  

 

 
Figure 1-9. Small Field FD model.  Reproduced from Higgins and Pant (2004). Interactions 
between wide-field and local motion detectors allow for object discrimination from ground 
(Triangles: black excitatory, white inhibitory, gray shunting inhibitory). 
 

1.5.3 Elaborated FD 

Higgins and Pant (2004) designed an elaborated FD model for target tracking purposes. 

The elaborated model changed how the binocular pool cells interacted with the 

normalisation of the target motion whilst also enhancing the pooled interactions to 

account for translatory (expansion and contraction) wide-field motion components. 

Rectifying the motion signal of the target (to indicate the presence of motion, rather 

than the direction of motion) also aided in the performance of the guidance algorithm. 
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1.5.4 STMD 

To date there has been limited modelling of the STMD neuron. In Guerten et al (2007), 

dragonfly centrifugal small target motion detector (CSTMD) neurons were stimulated 

with varying width/velocity profiles of small moving targets. These responses 

suggested an EMD type mechanism underlying the computation of target motion. 

In Chapter 2 and 3 of this thesis, I develop a model for small target motion detection 

inspired by the properties of the STMD. This model includes an ‘on-off’ type 

component, based on my electrophysiological recordings from rectifying transient cells 

in the blowfly medulla. 

In Chapter 4 and 5, I present an extended version of the model, including complex early 

visual processing mechanisms. I test the target discrimination mechanism under real 

world luminance and contrast conditions and across more general stimulus conditions 

of varying target sizes and velocities. Elaborations to the model allow for an optimal 

static threshold for the target discrimination under varying ego-motion conditions.  

In Chapter 6, I test whether subtle manipulation of the visual stimulus can induce 

changes in the electrophysiological responses from STMD neurons in the dragonfly, as 

predicted by the model. 
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 CHAPTER 2:   

RECTIFYING TRANSIENT CELLS AND 

TARGET DISCRIMINATION 
 

2.1 CONTEXT 
Previous literature had speculated on roles for the ‘on-off’ units (see 1.3.5),  for 

example, as inputs to motion correlators (Ogmen and Gagne, 1988), moving object 

boundary detection (Osorio, 1991) and as a modulator of the temporal behaviour of 

motion detectors (Jansonius and Van Hateren, 1993a). 

Conceptually, this form of nonlinear processing (independent contrast polarity 

adaptation) would be suitable as a target discrimination mechanism. While the inherent 

properties of such cells are interesting for modelling, the limitation of their temporal 

responsiveness (Jansonius and van Hateren, 1991) seemed to preclude their role in 

target discrimination.  

To clarify this issue we performed intracellular recordings from ‘on-off’ units in the 

medulla of the blowfly. This allowed us to re-examine the temporal responsiveness of a 

type of ‘on-off’ unit which we now refer to as the Rectifying Transient Cell (RTC). We 

found that taking into account their highly adaptive nature was an important aspect 

when examining their responses to visual stimuli. That is, when examining transient 

phenomena, the steady-state responses have little functional meaning. When we 

examined the transient, unadapted response of the RTC we found that these ‘on-off’ 

units were as fast as neurons found earlier in the visual system. A role in target 

detection was therefore feasible. 

In this chapter we outline these physiological experiments and also test a model (which 

includes an RTC element) for the ability to discriminate targets from a series of natural 

images. 
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Due to the breadth of the publication, we limited our simulations to a series of four 8-bit 

natural images, with embedded targets of a single size and a single panorama velocity. 

Although limited, these simulations revealed that this form of nonlinear processing had, 

as expected, the ability to greatly aid in the discrimination of targets from within natural 

scenes. 

Importantly, the physiological characteristics of actual STMD neurons, such as contrast 

sensitivity, target height tuning and velocity tuning, were also matched by the model 

output. 
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2.2 A MODEL FOR THE DETECTION OF MOVING TARGETS IN 
VISUAL CLUTTER INSPIRED BY INSECT PHYSIOLOGY 
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1Discipline of Physiology, School of Molecular and Biomedical Science, The University 
of Adelaide, Adelaide, Australia 
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ONE 3(7): e2784 doi:10.1371/journal.pone.0002784 

 

2.2.1 Abstract 

We present a computational model for target discrimination based on intracellular 

recordings from neurons in the fly visual system. Determining how insects detect and 

track small moving features, often against cluttered moving backgrounds, is an 

intriguing challenge, both from a physiological and a computational perspective. 

Previous research has characterized higher-order neurons within the fly brain, known as 

‘small target motion detectors’ (STMD), that respond robustly to moving features, even 

when the velocity of the target is matched to the background (i.e. with no relative 

motion cues). We recorded from intermediate-order neurons in the fly visual system 

that are well suited as a component along the target detection pathway. This full-wave 

rectifying, transient cell (RTC) reveals independent adaptation to luminance changes of 

opposite signs (suggesting separate ON and OFF channels) and fast adaptive temporal 

mechanisms, similar to other cell types previously described. From this physiological 

data we have created a numerical model for target discrimination. This model includes 

nonlinear filtering based on the fly optics, the photoreceptors, the 1st order interneurons 

(Large Monopolar Cells), and the newly derived parameters for the RTC. We show that 

our RTC-based target detection model is well matched to properties described for the 

STMDs, such as contrast sensitivity, height tuning and velocity tuning. The model 

output shows that the spatiotemporal profile of small targets is sufficiently rare within 
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natural scene imagery to allow our highly nonlinear ‘matched filter’ to successfully 

detect most targets from the background. Importantly, this model can explain this type 

of feature discrimination without the need for relative motion cues. 

2.2.2 Introduction 

Certain flies (as well as other kinds of insects) detect and track small moving objects as 

they engage in rapid pursuits, demonstrating the capability to discriminate between 

targets (e.g. other flies) and an often cluttered, moving background (Wagner, 1986b, 

Wehrhahn, 1979). This is an especially challenging task considering that the fly 

compound eye limits visual resolution to ~1° (Land, 1997). 

Neurons sensitive to (and in some cases selective for) small moving targets have been 

described in a variety of insect species (Collett and King, 1975, Gilbert and Strausfeld, 

1991, O'Carroll, 1993, Wachenfeld, 1994). Recent intracellular investigations have 

more carefully characterized a number of target-selective neurons in the optic ganglia of 

the hoverfly (Nordström and O'Carroll, 2006, Nordström et al., 2006, Barnett et al., 

2007). These ‘small target motion detectors’ (STMDs) were found to be exquisitely 

selective for small targets subtending no more than a few degrees of the visual field, 

equivalent to just one or two ‘pixels’ of the compound eye. The receptive fields of 

STMDs vary in size, with some extending just a few degrees, to those that encompass 

the whole eye hemifield. The target response may vary in magnitude across this region, 

however the size selectivity is independent of the target location (Nordström and 

O'Carroll, 2006) or the size and shape of the receptive field (Nordström et al., 2006).  

STMDs respond to targets moving relative to a background, in many cases when the 

background itself is moving (Nordström et al., 2006). Conceptually, it would seem 

likely that neural mechanisms required for such a task involve segregation of the 

motion of the target from the motion of the background. Surprisingly, whilst some 

STMDs exhibit a suppressed response in the presence of background motion, a subset 

respond robustly even when the targets move at the same velocity as the background, 

i.e. with no relative motion cues (Nordström et al., 2006). However, the response to 

wide-field background motion alone elicits no response. This implies that the spatial 

statistics of small targets, with respect to the background, form an important cue for 

discrimination, regardless of any additional role that may be played by other motion 

cues (Nordström et al., 2006). 
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2.2.2.1 Computational models for target discrimination 

Understanding the computation that underlies small target selectivity and rejection of 

background motion presents a daunting challenge. Some models for target 

discrimination rely on inhibitory feedback of wide-field motion signals to localized 

motion detectors (Egelhaaf, 1985c, Higgins and Pant, 2004), which may provide an 

explanation for small target selectivity, but would lead to inhibition by background 

motion. Another model, for what some thought at the time was the target selectivity of a 

higher order locust neuron (Rowell et al., 1977), has lateral inhibitory interactions 

around a centre unit. This model was based on cells responding transiently to both 

contrast increments (ON channel) and contrast decrements (OFF channel) in a full-

wave rectified manner. A lateral unit, derived from the local signal spread of these 

channels, was hypothesized to mediate the inhibitory interactions on these centre units 

(O'Carroll et al., 1992). Here we examine and model a similar neuron type we refer to 

as the ‘Rectifying Transient Cell’ (RTC). We show that fast temporal adaptation and 

lateral inhibitory connections, characteristic properties of RTCs, could provide the basis 

for an alternative model for small target selectivity, robust against wide-field 

background motion. 

2.2.2.2 Full-wave rectifying transient neurons 

Extracellullar recordings in the first optic chiasm between 2nd and 3rd order interneurons 

of the fly brain (between the lamina and medulla), first showed the presence of “on-off” 

cells (Arnett fibers) with full-wave rectification (Arnett, 1971, Arnett, 1972). 

Surprisingly, these cells were later re-examined and shown to adapt independently to 

luminance changes, dependent on the polarity (increment or decrement) of the change 

(Jansonius and van Hateren, 1991). This independent adaptation was also observed in 

medullary neurons in the locust (Osorio, 1991). These locust neurons had a 

‘breakthrough response’ when stimulated with a pulse of the same polarity but greater 

contrast than the prior adaptor. The authors hypothesized that this nonlinear adaptation 

might enhance responses to the contrasting edges of visual features, whilst rejecting 

lower contrast “textual detail”  (Osorio, 1987, O'Carroll et al., 1992).  

Spatial antagonism observed in the LMC, an earlier 1st order interneuron in the lamina, 

appears to utilize inhibitory interactions between nearest neighbor receptors (Srinivasan 

et al., 1982).  However in the ‘on-off’ cell experiments (Jansonius and Van Hateren, 

1993a), separated pulses (5°) revealed antagonism on a larger spatial scale, equivalent 
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to several facets of the compound eye. The authors proposed a model where 

rectification occurs after lateral inhibition of the subunits (Figure 1A), however, unless 

the inhibitory influence of neighbors is excessively strong, it is difficult to explain why 

the summing of spatially separated rectified signals, responding to pulses of ‘like’ sign, 

should produce an inhibition of the overall response as was observed (Jansonius and 

Van Hateren, 1993a). These results lead us to propose the possibility of a second-order 

of local inhibitory interactions between ‘like’ ON channels and OFF channels, before 

they are recombined via spatial pooling (Figure 1B). 
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Figure 2-1. Model Overviews.  (A) Model of the ‘on-off’ unit as described by Jansonius and van 
Hateren (Jansonius and Van Hateren, 1993a). The transient subunits exhibit fast adaptation and 
lateral inhibition before full-wave rectification and spatial pooling. (B) Our proposed version of 
rectifying transient cells where fast adaptive units are segregated into ON and OFF channels via 
half-wave rectification. Each polarity channel laterally inhibits one another before spatial pooling. 
(Ci) The detailed block diagram of the elementary small target motion detector (ESTMD) model. 
Early visual processing (photoreceptors, Large Monopolar Cells (LMC) and amacrine cells) is 
modeled with optical blurring (LPF1), a nonlinear compressive transform (Lipetz function) with 
an adaptive mid-point parameter, and spatiotemporal band-pass filtering (LPF2&3, R-HPF1&2). 
The signal is separated into independent channels (responding to contrast increments and 
decrements respectively) via further high-pass filtering (HPF3) and half wave rectification (HW-
R). Each channel exhibits fast adaptation, implemented via the FDSR inhibition (see Cii). The 
channels are separately inhibited by a delayed (LPF4) signal derived from surrounding channels of 
the same type. The strength of this surround inhibition is determined by the free gain parameter 
INH. To implement sensitivity to dark targets, the OFF channel is delayed (LPF5) and then 
recombined with an undelayed ON channel in either a linear (Σ) or quadratic (X) manner. (Cii) 
Fast depolarization, slow repolarization (FDSR). If the input signal is ‘depolarizing’ (positive 
temporal gradient), a first-order low pass filter with a small time constant (LPFfast) is used, 
otherwise for a ‘repolarizing’ signal (negative gradient)  a larger time constant is applied (LPFslow). 
The resulting processed signal represents an ‘adaptation state’ which then subtractively inhibits 
the unaltered pass-through signal. 
[LPF1 Gaussian blur (half-width 1.4°); LPF2 τ=2.5 ms; R-HPF1&2&3 τ=40 ms, 30% DC; LPF3&4 τ=2 
ms; LPF5 τ=25 ms; LPFfast τ=1 ms; LPFslow τ=100 ms; INH = 3 (free parameter)] 
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2.2.2.3 Rectifying Transient Cells in the target detection pathway   

We have developed a model for small target motion detection inspired by the properties 

of the higher order STMDs, and including a RTC-type component. We validate key 

stages of the model with intracellular recordings of the RTC in the fly (Calliphora 

stygia) medulla and with published physiological data. We investigate the temporal 

responsiveness of the RTC and obtain filtering parameters for the STMD model. We 

show that the properties of independent adaptation and lateral inhibitory interactions, as 

observed in ‘on-off’ cells and the RTC, are well suited for a role in target detection. We 

show that the spatiotemporal signature associated with the motion of a small feature is 

the passing of two contrast boundaries of opposite polarities (i.e. due to the leading and 

trailing edges), with limited spatial extent – which induces an excitatory response little 

affected by centre-surround inhibition or adaptation of the presumed ON and OFF 

channels. We include a stage for the recombination of ON and OFF channel signals, as 

yet untested by electrophysiological experiments, which enhances small target 

sensitivity. Finally, we show that this model leads to enhanced target discrimination, 

even when there are no relative motion cues between target and background. 

2.2.3 Methods 

2.2.3.1 Modeling 

A model for an elementary small target motion detector (ESTMD) was created in 

Simulink (Mathworks), with image preparation and analysis tools programmed in 

Matlab (Mathworks). The term ‘elementary’ refers to a single unit that would be pooled 

to emulate the ‘position invariant’ nature of an STMD neuron (Nordström and 

O'Carroll, 2006). Each major component in the model (Figure 1C) is inspired by key 

stages in visual processing and will be discussed in detail later. 

We do not attempt to emulate biophysical properties of cellular dynamics, e.g. 

compartmental modeling, nor are we developing a neural network representation. 

Rather we are building a numerical model based on linear and nonlinear spatial and 

temporal filtering and typical feed-forward signal processing methods. This approach 

allows for the model to be implemented in engineering applications.  

The ESTMD model was tested using a series of panoramic images (Figure 2) (see Input 

Imagery) animated at a high temporal sample rate (5 kHz) to simulate continuous time. 

A 5x5 array of local ‘photoreceptor’ inputs was used to evaluate the response of the 



P a g e  | 48 

central ESTMD (Figure 3). Because the input imagery is a circular panorama, 

continuous motion allows estimation of the output of this ESTMD for all horizontal 

locations on the image. The region of interaction was shifted vertically in 1° increments 

to build up a 2 dimensional representation of ESTMD outputs in a raster fashion (Figure 

3). The stimulus was rotated at 90°/s (within the optimal range for STMD neurons 

(Nordström and O'Carroll, 2006)) for two complete revolutions, with the first discarded, 

to avoid start-up transients. 

2.2.3.2 Input imagery 

To test for robustness of the model for discriminating targets embedded in visual 

clutter, a series of three panoramic images (Figure 2B-D), with a 72° vertical extent, 

were acquired from natural habitats (Brinkworth and O'Carroll, 2007). The 8-bit images 

were 2048 x 410 pixels. Although original panoramas were sampled as RGB, all 

simulations used the green channel only in order to approximate the spectral sensitivity 

of the fly photoreceptors that subserve motion processing (Srinivasan and Guy, 1990). 

A fourth image (Figure 2A) was obtained by combining the three natural images with 

ten others and averaging their phase and magnitude in the frequency domain 

(Brinkworth and O'Carroll, 2007). This combined image, whilst displaying a typical 

power spectrum, lacks hard edge-like contours found in many (but not all) natural 

images. This image acts as a control with respect to potential phase congruency 

components underlying motion detection mechanisms. The first stage of modeling 

emulates fly optics via spatial blurring (see Results: Photoreceptors), therefore reducing 

hard edges, including those of the targets. The Gaussian blurring is shown for two 

images (Figure 2E, 2F) with 20 scattered 1.6°x1.6° targets embedded. The targets 

effectively have varying contrasts, and are difficult to discern, revealing the challenging 

nature of this target discrimination task. All four of the images had power spectra 

showing an approximately 1/f dependence on spatial frequency f, which is typical of 

natural images (Tolhurst et al., 1992, Bex and Makous, 2002). 

We created a second set of images, identical to the first, but into which black targets 

(1.6°x1.6°) were pseudo-randomly distributed, with each target centered on an 

ommatidial row. To improve computational efficiency, we inserted twenty such targets 

into each image. We maintain a 70° horizontal separation between the targets and a 6° 

vertical separation. This limits spatiotemporal interactions between the targets at any 

stage of the modeling, with a larger (in effect longer) horizontal separation required, as 
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this becomes the resultant temporal domain due to the panorama being rotated 

horizontally (influences are of longer-term adaptive components, e.g. photoreceptor 

dynamics). Because these targets become a feature of the image (i.e. there is no relative 

motion between targets and background) these simulations test the most demanding 

condition observed in physiological STMD experiments (Nordström et al., 2006). 

Model simulation was run with a single control trial using the original panoramas 

without targets and 26 trials (for each image) in which different pseudo-random target 

distributions were used, allowing us to evaluate responses from a total of 26 x 20 target 

locations, across four images.  
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Figure 2-2. Input Images and Optical Blurring.  Four panoramic images are used as model inputs 
to test target discrimination. The images display natural statistics with luminance intensity 
inversely proportional to spatial frequency (Tolhurst et al., 1992). Image (A) is composed of the 
average magnitude and phase of 13 natural images (Brinkworth and O'Carroll, 2007). Image (B) 
includes several man-made structural elements. Image (C) is relatively sparse, whilst (D) is a 
highly cluttered scene. The images are panoramic and extend 72° vertically. They have a resolution 
of 2048x410 pixels, with the ‘green’ channel of the RGB image (depicted here in grayscale) 
retained for further processing, approximating the spectral sensitivity of motion detection 
mechanisms in the fly visual system(Srinivasan and Guy, 1990). The row section highlighted in 
image (D) corresponds to the data traces of Figure 9. Images (E) and (F) are the optically blurred 
versions of images (A) and (D), including 20 pseudo-randomly scattered targets (1.6°x1.6°) in each 
image.  
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To analyze how effectively targets are discriminated a spatial image of the model 

output, at varying stages of processing, was reconstructed from the vertical columnar 

units, and binning of the horizontal time dimension (back into an equivalent 1° spatial 

domain). Target locations are determined taking the non-uniform lag into account. We 

determine ‘hits’ (above threshold output corresponding to target location) and ‘false 

positives’ (above threshold outputs not corresponding to target locations). This 

categorization is done for each image (Figure 2), at each processing stage, and across 

varying model output thresholds. By varying this threshold and plotting ‘hit’ rate 

(relative to total targets present in the scene) versus number of ‘false positives’, we 

constructed Receiver Operating Characteristic (ROC) curves. 

In addition to the experiments using natural images, basic characteristics of the ESTMD 

were evaluated using a similar stimulus paradigm into which targets of varying contrast, 

height and velocity were animated against bright or mean luminance backgrounds. 

2.2.3.3 Physiology 

Flies (Calliphora) were either caught in the wild or reared in the laboratory under a 

natural day/night cycle. Insects were immobilized with wax. The back of the head was 

shaved, and a small hole in the cuticle was removed. Air sacs and other tissue were 

removed to provide clear access to the medulla. The brain was immersed with a Ringer 

solution: NaCl (130 mM), KCl (6 mM), MgCl2 (4 mM), CaCl2 (5 mM), with HEPES 

buffer at pH 7.0. Osmolarity was adjusted to 450 mM with the addition of sucrose. The 

fly was positioned to view a 200 Hz CRT monitor, mean luminance of 100 cd·m-2. The 

visual stimuli were programmed in Python, using the VisionEgg stimulus software 

(www.visionegg.org).   

Micropipettes were pulled from 1 mm (O.D.) thick walled alumina-silicate glass 

capillaries (SM100F-10, Harvard Apparatus Ltd.), on a Sutter Instruments P-97 puller, 

and filled with 2 M KCl or 2 M potassium acetate. Electrode resistances were typically 

120-150 MΩ.  

A wide-field, square-wave, flicker stimulus (1 Hz) induced opposing polarity potentials 

within the extracellular space. Intracellular recording from the RTC was identifiable by: 

a) a drop to resting membrane potential of approximately -60 mV; b) the full-wave 

rectification of the signal; c) depolarizing responses of 10-15 mV (graded), with ~10 
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mV spikelets. The data were sampled at 5 kHz during acquisition, using a National 

Instruments 16-bit ADC. Data analysis was performed offline with Matlab. 

 

2.2.4 Results  

We consider here in detail both the major stages of our model, and compare their 

outputs with known biological counterparts.   

2.2.4.1 Photoreceptors 

After target insertion we low-pass filter input images (Gaussian, half-width 1.4°) to 

mimic the spatial blur of fly optics (Figure 1C,  LPF1) (Stavenga, 2003). Luminance 

values sampled by “photoreceptors” at 1° spatial separation approximately match the 

resolution of Eristalis (Straw et al., 2006) and Calliphora (Land, 1997). For 

computational efficiency, we use rectangular sampling in a 5°x5° receptor patch, rather 

than emulating the hexagonal distribution of ommatidia (Figure 3). Photoreceptor 

transduction transforms the input luminance to membrane potential in a roughly 

logarithmic manner around an operating point determined by stimulus history 

(Laughlin, 1981a, Srinivasan et al., 1982, van Hateren and Snippe, 2001). Our model 

mimics this effect by transforming luminance values with a Lipetz function (Equation 

1), with the exponent u set at 0.7, as in our earlier modeling of fly motion detection 

(Shoemaker et al., 2005). 

u

u u
o

x
x x+

       (1) 

To elaborate this Lipetz nonlinearity we include an ‘adaptation state’ with the mid-level 

parameter x0 set as a first-order low-pass filtered version of x (time constant (τ) of 750 

ms). Fly photoreceptor responses are temporally limited, with a corner frequency of 40-

70 Hz (Laughlin and Weckstrom, 1993).  To capture this, our modeling employs a static 

low-pass filter with corner frequency of 60 Hz (Figure 1C, LPF2) following the Lipetz 

transform. 
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Figure 2-3. Panorama Rotation.  A single model output has 25 ‘photoreceptors’ as inputs, each with 
1° sampling separation (inter-ommatidial angle), thus represents a 5°x5° grid. The values 
representing luminance intensities at these locations vary over time as the panorama image is 
rotated past the ESTMD at 90°/s. Linear interpolation between pixels in the horizontal spatial 
domain results in higher temporal resolution (sampling at 5kHz). There is an ESTMD at each 
degree separation down the vertical column, therefore 72 in all, each with overlapping, feed-
forward, receptive fields.   
 

2.2.4.2 Large Monopolar Cells 

While the role of LMCs in motion processing has been controversial, most research 

suggests that they are the ideal input to this pathway (Coombe et al., 1989, Douglass 

and Strausfeld, 2003, Keller, 2002). The LMCs have been shown to remove redundancy 

(Srinivasan et al., 1982) and maximize information transmission (van Hateren, 1992b) 

and they work as spatiotemporal contrast detectors, suitable for feature detection. 

Therefore, we implement an LMC-like spatiotemporal band-pass filtering on the 

photoreceptor output (Figure 1C). Spatial antagonism can be modeled as a recurrent 

inhibitory network (direct LMC to LMC inhibition), however, surround inhibition in a 

feed-forward manner, via a proposed surround ‘amacrine cell’ is equally plausible and 

is in accord with recent research on fly retina-lamina circuitry (Zheng et al., 2005). Our 

modeling comprises an amacrine cell that samples the surrounding nine photoreceptor 

outputs and subtractively inhibits the centre LMC (leaving a 30% DC spatial 

component). LMC spatial filtering dynamics are variable, dependent on overall light 

adaptation levels (Srinivasan et al., 1990b); however, our model parameters remain 

constant for computational efficiency. The inhibitory signal is delayed prior to the 

subtraction by application of a first-order low-pass filter (LPF3, τ = 2 ms), representing 

the time course of the amacrine cell signal spread (James, 1990). The LMC has band-
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pass temporal characteristics, with low frequency roll-off  below a few hertz and high 

frequency at ~80-100Hz, in light adapted conditions (Juusola et al., 1995).  For our 

model, the LMC signal is temporally filtered (R-HPF1) with a ‘relaxed’ first-order high-

pass filter (one that passes a small DC component of 10%). This filter is characterized 

in the Laplace domain by the transfer function: 

 0.1*(10 1)
( 1)

s
s

τ
τ

+
+

        (2) 

where s is the Laplace variable and τ = 40 ms. The LMC signal is inverted, to replicate 

the hyperpolarizing response to luminance increments observed in intracellular 

recordings (Järvilehto and Zettler, 1970). 

2.2.4.3 Rectifying Transient Cell 

Because electrophysiological data suggests that RTCs give little sustained response, 

unlike LMCs (Figure 4A), the signal is passed through an additional first-order high-

pass filter (HPF3,τ = 40ms). A half-wave rectification is performed to segregate ON and 

OFF channels of the input waveform, with the negative phase inverted in sign.  

For each independent channel of the RTC, a signal representing an ‘adaptation state’ is 

formed by applying a nonlinear low-pass filter to the input signal with a fast onset, slow 

decay characteristic (Equation 3).  
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X designates the input, NLF the filter output, and τ1 is set to 1 ms (LPFfast) and τ2 to 100 

ms (LPFslow). Such a filter is an approximation to plausible biophysical mechanisms, 

such as an interneuron with a long intrinsic membrane time constant and strong, 

‘bursty’ inputs. This fast depolarizing, slow repolarizing signal is subtracted from the 

unaltered, pass-through version of the input signal. 

In addition to this step, a second subtractive inhibition is applied based on the average 

of the surrounding input signals of the same channel polarity (surrounding ON 

subtractively inhibit the centre ON channel and similarly for the OFF channels). This is 

based on the surround inhibitory effect found in the ‘on-off’ cells (Jansonius and Van 

Hateren, 1993a). Unlike the previous parameters in our model, we do not have a 
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physiologically derived estimate for the strength of this inhibitory effect, and consider 

the scaling of the inhibitory signal a free parameter (INH) in our modeling and 

simulations. Alteration of this value can be used to tune the model to different size 

image features. We include a neural delay, modeled by a first-order low-pass filter 

(LPF4, τ = 2 ms), which is applied to the averaged and scaled surround inhibitory 

pathways.   

The channels are then half-wave rectified to mimic a thresholded response (a 

nonlinearity seen in many spiking neurons). The resultant channel signals are passed 

through a ‘neural delay’ smoothing filter (τ = 2 ms). This smoothing better represents 

the temporal response dynamics seen in the physiological RTC. 

The final stage of processing is a recombination of the ON and OFF channels to form a 

single output corresponding to the ESTMD response. The simplest operation to achieve 

this would be a straightforward sum of the two output signals. However, we consider an 

operation that enhances selectivity for small, dark targets. A delay operator D[*], 

consisting of a low-pass filter (LPF5), is applied to the OFF channel prior to 

recombination with the undelayed ON channel. For generality, we took a 

phenomenological approach to this recombination allowing second-order as well as 

linear interactions: 

Output = a·ON + b·D[OFF] + c·ON·D[OFF]  (4) 

In our simulations, we consider primarily the purely linear case (c=0), which we refer to 

as ‘RTC’, and the second-order case (a=b=0), referred to as ‘ESTMD’. Note the formal 

similarity of the second-order structure to the correlational or Hassenstein-Reichardt 

elementary motion detector  (Hassenstein and Reichardt, 1956). However, in this case 

the correlation operates on rectified signals of opposite polarity from the same spatial 

location, rather than signals from spatially neighboring locations. In this form, although 

tuned primarily to small contrasting features, this rectification of polarities resembles 

models proposed to explain selectivity for expanding edges in ‘looming’ motion 

detectors such as in the locust LGMD/DCMD (Rind and Bramwell, 1996, Rind and 

Simmons, 1992).  

Although STMDs respond better to black targets (Nordström et al., 2006) and light 

target sensitivity is not modeled here, a symmetric correlation operation could be 
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established for a white target detector by interchange of the signal roles in Equation 4. 

This would provide white target sensitivity by correlating a delayed ON channel with 

an undelayed OFF channel. A detection mechanism for targets of both contrast 

polarities (light and dark) would involve summing these two versions or having any 

weighted combination of the above terms (both linear and second-order). 

 

 

Figure 2-4. Rectifying Transient Cells (Independent Adaptation).  (A) Intracellular recording from 
a rectifying transient cell shows independent adaptation to ‘on’ and ‘off’ contrast changes. Pulses 
of equal, but opposite, contrast polarity are of 5 ms duration and separated by varying intervals. 
At a pulse interval of 30 ms (left trace), little adaptation can be seen (but the response to the first 
pulse is strongest). At 10 ms interval, temporal adaptation limits the response until the polarity of 
the contrast reverses, which then produces an unadapted response. A single electrophysiological 
recording is shown for clarity (from N=5). The model version (B) output is similar, capturing the 
important functional characteristics of the RTC. 
 

2.2.4.4 Comparison of model responses to fly RTCs  

We compare our recordings of the RTC in the medulla of the blowfly to our modeled 

responses. The intracellular recordings (Figure 4A) show independent adaptation to 

contrast increments and decrements, as seen in ‘on-off’ type cells (Jansonius and van 

Hateren, 1991, Osorio, 1987). Figure 4A shows an experiment with a train of contrast 

pulses at two different frequencies. At 30 ms separation, the neuron recovers to produce 

graded depolarization in response to each pulse. When the separation is reduced to 10 

ms, the adaptation suppresses the response to the stimulus. However, when the contrast 

polarity is reversed (from contrast increments to decrements), an unadapted response is 

observed before the neuron again rapidly adapts to the new polarity stimulus.  
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2.2.4.5 Temporal responsiveness 

Although our model captures the basic behavior of the biological RTC, the 

incorporation of an LMC-like input stage is somewhat contradicted by earlier work 

suggesting the frequency response (to sinusoidal stimuli) of ‘on-off’ units rolls off 

above 12 Hz (Jansonius and van Hateren, 1991), while the LMCs have a much higher 

corner frequency (Juusola et al., 1995). Jansonius and van Hateren (Jansonius and van 

Hateren, 1991) suggested this apparent low-pass characteristic  is simply a result of the 

rapid adaptation that occurs at higher stimulus frequencies (as seen in Figure 4A); it is 

possible that the unadapted system has a much higher temporal acuity than this result 

would suggest.  

To test this hypothesis we used a ‘doublet’ stimulus consisting of a pair of pulses (‘on’ 

followed by ‘off’). Whilst not strictly containing energy at a single frequency, this 

stimulus allowed us to construct transfer functions for the RTC to a single stimulus 

cycle, thus avoiding the influence of adaptation. The response power is calculated as the 

mean-square value until the neuron returns to within 5% of the resting membrane 

potential. As can be seen in our physiological data (Figure 5A, dashed line, squares), 

the response of the medulla RTC to the doublet stimulus has a peak at high frequency 

(~50 Hz). The RTC still responds with 85% maximum at 100 Hz, the highest frequency 

doublet that we could generate on our 200 Hz stimulus display. The model RTC (Figure 

5A, dashed line) gives a similar temporal responsiveness. The RTC frequency response 

is a good match for that obtained by Fourier transforming the linear kernel for fly 

LMCs using white noise stimuli (Figure 5A, solid line) (1990).  Interestingly, if we 

simulate the earlier experiments of Jansonius and van Hateren (Jansonius and van 

Hateren, 1991) with a wide-field sinusoidal stimulus (Figure 5B, dashed line), we 

obtain a curve that rolls off at a much lower frequency, consistent with their 

experimental data (reproduced in Figure 5B, solid line).  Our model rolls off more 

sharply at low frequency, likely due to the pure nature of our high-pass filter (HPF3) 

and because the non-linearity introduced into their extracellular recordings by the 

thresholding mechanism for spike generation may lead to overestimation of weak 

responses. We conclude that the apparent low-pass nature of the ‘on-off’ cell frequency 

response was, as hypothesized, a result of adaptation (Jansonius and van Hateren, 

1991), and that the response to transient as opposed to stationary stimuli reflects a much 

more rapid temporal response capability. Also, the inclusion of an LMC-like input stage 



P a g e  | 58 

in our model is supported by the very similar temporal characteristics of the LMC to the 

fly RTC. 

 

 

Figure 2-5.. Temporal Responsiveness.  (A) The response of the physiological RTC to a stimulus 
doublet (2, 5, 6.6 Hz N=2, no error bars; others N=6 (flies) mean ± SEM). This RTC transfer 
function peaks at ~50 Hz (dashed line, squares) and is still responsive at the highest stimulus 
frequencies, which are limited by the CRT refresh rate .We simulate doublet input and show that 
the model RTC frequency response is comparable to the physiological correlate (dashed line). The 
response to the doublet at the LMC stage of the model is also shown (dotted line). Frequency 
response properties of fly LMCs obtained via white noise analysis (James, 1990) is also plotted for 
comparison (solid line). It should be noted that the RTC and LMC response characteristics show a 
similar temporal responsiveness.  
(B) Previous analysis of ‘on-off’ units in the fly lamina  (Jansonius and van Hateren, 1991) showed 
poor temporal responsiveness (peak at ~6 Hz) (reproduced here, solid line) and our model shows a 
similar shift in response to the non-optimal sinusoidal stimulus (dashed line).  

 

2.2.4.6 Contrast Sensitivity Function 

The high-pass nature of the RTC data (and as captured by our model) we expect to form 

an ideal basis for a neural pathway for small target detection as the signal from the 

passing target boundaries provides a near optimal transient stimulus, with no spatial 

antagonistic suppression that would occur with larger features. 

We determine the model response to a small target (0.8°x0.8°) as a function of target 

contrast and compare it with that induced by wide-field flicker stimuli (Figure 6). As 

the target is below the size of a single ommatidium, an effective neural contrast is 

calculated by the convolution of the target with the optical blurring filter (half-width 
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1.4°) (Nordström et al., 2006). Even very low contrast discrete targets induce a model 

response over 10 times higher than that of the wide-field flicker stimulus (compare at 

equivalent contrast Figure 6A with 6B, dashed lines). We also plot reproduced STMD 

responses to targets of varying contrast (Figure 6A, squares). However, it is important 

to note that these responses were to 0.8°x0.8° targets (50°/s) moving on complex 

moving backgrounds (45°/s) (Nordström et al., 2006).  

Physiological data for the low contrast sensitivity of ‘on-off’ cell responses to wide-

field flicker (Jansonius and Van Hateren, 1993a) is well explained by the model (Figure 

6B). The divergence seen between the model and neuron recordings at higher negative 

contrast is expected, since we make no attempt to account for saturating nonlinearities 

in neural components that would be expected in the biological system. Interestingly, the 

RTC model stage also produces a reasonable explanation for the near threshold contrast 

sensitivity of higher order STMD neurons (Figure 6A, squares) (Nordström et al., 

2006). 

 

Figure 2-6. Contrast Sensitivity Function (Small Target and Wide-field). The contrast sensitivity 
function is calculated from the peak model responses to varying contrasts of small targets 
(0.8°x0.8°) moving at 50°/s on a mean background (RGB 0.5) (dashed line). Also plotted (squares) 
are physiological STMD responses to a 0.8°x0.8° target, moving at 50°/s. However, this stimuli 
included a complex moving background (mean luminance 150 cd·m-2, 45°/s) (Nordström et al., 
2006). For the model we measure contrast as the effective neural contrast. For the physiological 
data the contrast values represent average Michelson contrasts as the targets transverse a complex 
moving background (Nordström et al., 2006). (B) Reproduced responses of ‘on-off’ units to wide-
field contrast steps of 500 ms duration (solid line) (1991).  For comparison, we plot the model RTC 
responses to a simulation of this wide-field visual input (dashed line). We note that low contrast 
sensitivity is observed in the model output due to spatial antagonistic interactions and this could be 
a plausible explanation for low contrast sensitivity in the ‘on-off’ units. The model responses in (B) 
are less than 1/10 those seen in response to small targets of equivalent contrast (A). 
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2.2.4.7 Target height tuning 

A feature of our ESTMD model is the inclusion of second-order spatial (lateral) 

inhibition by neighboring RTCs and a temporal cross correlation of the outputs of local 

ON and OFF pathways which form a ‘matched filter’ for both the spatial and temporal 

characteristics of small, moving features. 

By analogy to models for direction-selective motion detectors where wide-field optic 

flow can be deduced by summing output of local elementary motion detectors, we use 

the term ‘elementary small target motion detector’ (ESTMD) for this stage. Responses 

of higher-order STMDs should be easily explained by simply summing across a 

weighted array of such ESTMDs to produce receptive fields of varying size (as 

observed in electrophysiological recordings from the lobula) (Barnett et al., 2007, 

Nordström et al., 2006) whilst retaining position invariant selectivity for small features 

(Nordström and O'Carroll, 2006). To confirm whether our model displays size 

selectivity, we estimate responses to discrete moving targets of different length (i.e. 

extended orthogonal to the direction of motion). Figure 7 shows that the ESTMD stage 

of our model provides an excellent fit to the data published for lobula STMD neurons 

(Barnett et al., 2007). Note that while LMCs act to maximize information to the higher 

order pathways by enhancing edge-like features, the very sharp suppression of 

responses to targets above a few degrees in size that characterizes both model and 

neuron responses cannot be explained by the simpler spatial antagonism of LMCs 

(Figure 7, dashed line).  
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Figure 2-7. Target Height Tuning.  The curve shows model ESTMD responses to targets of varying 
height (0.8° wide black targets on white background, moving at 50°/s). Physiological data from 
STMD neurons in the hoverfly for the equivalent target parameters and background is 
reproduced (Barnett et al., 2007). The model is selective for targets of less than a few degrees 
height with the suppression to the right of the peak determined by the strength of the lateral 
inhibition between channels. The model response to targets at the LMC stage (no units) shows that 
the responses remain at maximum as the target is extended vertically (max height shown of 10°), 
i.e. the LMC is not target selective. This highlights that a second-order spatial antagonism is 
required for target selectivity. 

 

2.2.4.8 Velocity tuning 

An important aspect of the second-order configuration of our model is its inherent 

similarity to a Reichardt correlator (Hassenstein and Reichardt, 1956) such that the 

velocity dependence in response to small moving targets is essentially the same.  The 

responses to a 0.8°x0.8° moving target (Figure 8) represents a typical velocity tuning 

curve as obtained from a delay-and-correlate-type model. The position of the peak 

response is dependent on the time constant of the delay filter D[*] (LPF5). For 

comparison, we plot the velocity tuning curve seen in STMD neurons (Nordström and 

O'Carroll, 2006). We have not attempted to specifically fit this data (nor in the target 

height tuning) and note that differences in the broadness of the tuning curves could 

reflect additional compressive nonlinearities which we have not attempted to account 

for in this model.  

Although the ESTMD model provides a good account for the basic tuning properties of 

STMDs, it is not unique in this respect. Other STMD models (Egelhaaf, 1985c, Higgins 

and Pant, 2004) should also be able to explain both contrast sensitivity and velocity 
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tuning. However, our key finding is that the unique adaptive component of the RTC 

inputs to our STMD can also explain the otherwise enigmatic finding that STMDs can 

respond to features embedded in clutter, but without relative motion cues (Nordström et 

al., 2006). 

 

 

 

Figure 2-8. Velocity Tuning.  Model ESTMD responses to black moving targets (0.8°x0.8°) on a 
white background at varied velocities is shown in comparison to the physiological data of STMD 
neurons to the same visual stimulus from hoverflies (Nordström and O'Carroll, 2006). The model 
output exhibits typical velocity tuning as observed in correlation-type motion detection 
mechanisms. The tuning of the model parameters (particularly, the OFF delay filter time constant) 
determines at which point the velocity response peaks. The broadness of the tuning curve may be 
extended and shaped via the addition of a final saturating nonlinearity, not included in this model.  
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2.2.4.9 Responses to targets in clutter 

Figure 9 shows a single output row at each stage of the model, in response to a 

panoramic image in which a small target is inserted (the image row is delineated in 

Figure 2D). We selected this row to illustrate the effect of the key stages of the model in 

enhancing target responses, whilst rejecting other high contrast features. 

Photoreceptor dynamics encode a large luminance range into the limited dynamic range 

of the neuron (Brinkworth et al., 2006, van Hateren and Snippe, 2001). Our inputs have 

already emulated a similar process via a form of global gain control inherent in digital 

camera processing (Figure 9A-B). The LMC output (Figure 9C) with spatiotemporal 

high-pass filtering, enhances contrast boundaries in both space and time. The OFF fast 

temporal adaptation (Figure 9D, solid line) suppresses textures and signals larger 

‘breakthrough’ contrast changes.  
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Figure 2-9. Sample Data Traces.  The traces show the mode outputs at various stages of processing 
over the second complete revolution of the scene (at 90°/s). The right hand trace shows a magnified 
version of the period between 1 and 2 seconds. The y-axes are unit-less model outputs. The input 
intensity (A) is delineated in Figure 2D. Photoreceptor dynamics (B) encode a large luminance 
range into the limited dynamic range of the neuron. The LMC (C) exhibits spatiotemporal high-
pass filtering, enhancing contrast boundaries. The temporal adaptive mechanisms within the 
independent channels suppress rapid texture variations but signal a novel contrast change (D). 
Surround antagonistic interactions limit the spatial extent of this type of signaling (E) and a final 
linear or quadratic recombination of the channels (F) signals the presence of a dark moving target 
(G). 
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The surround inhibition ensures that this effect is spatially localized. Note that the 

response to the tree trunk (t = 1.1 s), which also has a novel ‘off’ shortly followed by an 

‘on’ contrast boundary is suppressed as a consequence of second-order spatial 

inhibition (Figure 9E, solid line). The ON channels (not shown) show similar 

characteristics. Finally, the OFF channel (Figure 9F, solid line) is temporally delayed 

and correlated with the undelayed ON channel (Figure 9F, dashed line) to signal target-

like events (Figure 9G). 

Figure 10 shows ROCs for the four panoramic images, at a velocity of 90°/s. During the 

pseudo-random distribution, some targets are scattered onto backgrounds of the same 

luminance (as the target) such that that they lose all defining characteristics. In image D 

(Figure 2), the most highly textured scene, it is difficult for the human observer to 

detect the scattered targets. Image C is extremely sparse and LMC filtering is enough 

for successful target discrimination (Figure 10C). Across the varied scenes, both linear 

(RTC) and quadratic (STMD) processing have improved the discrimination of targets as 

revealed by the shift to the upper left corner of the ROC curve (Figure 10 A-D). The 

limited number of false positives in the final model output suggests that target-like 

structures are rare in these natural image scenes.  

These results show that a highly nonlinear filter (derived from the plausible biological 

components) exploits the spatiotemporal statistics of the moving target within its 

immediate surround. The statistics required are as follows 1) a small duration of time 

(~50 ms) in which contrast changes do not exceed that of the upcoming target, therefore 

providing an unadapted ‘off’ phase. This provides ‘distinctiveness’ to the start of the 

dark feature. 2) An unadapted ‘on’ phase, which is inherent in the non-changing texture 

of the dark target. 3) These same characteristics, i.e. unadapted, opposite polarity, 

contrast changes, to not be present in the immediate surround. If this third characteristic 

were relaxed, the detector would be sensitive to a similar width/velocity profile as the 

target, though not suppressed by the height of the feature, i.e. the detector would also be 

stimulated by a vertical ‘bar’ stimulus. 
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Figure 2-10.. Natural Image Panoramas (ROC curves).  Twenty targets (1.6°x1.6°) pseudo-
randomly scattered (26 trials) on four panoramic images with the simulation run at a velocity of 
90°/s. (A) Receiver Operating Characteristic (ROC) curves are shown for a scene with averaged 
natural statistics. The addition of RTC-type processing (solid line, triangle) to the LMC (dashed 
line, square) shifts the ROC curve to the upper left, revealing enhanced target discrimination. The 
quadratic (ESTMD) version of the model (solid line, diamond) shows further improvement via the 
multiplicative interaction of the delayed OFF and undelayed ON channels. (B) The LMC stage has 
a large number of false positives, due to high contrast, man-made features (which the RTC-type 
processing can discriminate). (C) This image is sparse so the targets can be readily discriminated 
by the LMC processing alone. (D) A highly textured scene, with many scattered targets losing 
defining characteristics, however, the target discrimination is still improved. Error bars are within 
symbol representation, therefore removed for clarity. 
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2.2.4.10 Relative motion 

Intuitively, the ESTMD model is responsive to the motion of the contrast boundaries 

across the detector inputs. Relative motion between target and background will have an 

effect on ESTMD responses, as it alters the temporal statistics (dependent on 

background velocity) that establish the adaptation states of the independent channels. 

We tested this by varying the background motion with a constant target velocity of 

90°/s (Figure 11).  

Depending on background speed, we varied initial background position so that we 

could analyze target response at the same spatial juxtaposition of target and background 

(target size of 1.6°x1.6°). Hence, data for a background speed of +90°/s effectively 

represents the scenario in the other ‘no relative motion’ panorama simulations. We 

repeated this test in 100 distributed locations across the four panoramic images. We 

show that the ESTMD target responses are robust across the tested range of relative 

motions and the results confirm that the response improves when there is some relative 

motion, reaching a peak when the background speed is close to zero. 

 

 

Figure 2-11. Relative Motion.  Results of simulations carried out for 25 targets in each of the 4 
images, where background speed and direction was varied. Target speed was constant at 90°/s (left 
to right, as indicated by pictograms). Data are mean ± SEM, N=100.  
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2.2.5 Discussion 

By recording from a cell in the fly medulla (the RTC) we have been able to determine 

their quick temporal responsiveness to transient stimuli. This has provided parameters, 

such as adaptation time constants, that form the basis of our target detection model. We 

have compared responses of the model, e.g. contrast sensitivity, height tuning, and 

velocity tuning, to those observed in STMD physiological recordings and find that they 

are well matched. 

We have shown that linear systems analysis of steady-state responses is not an 

appropriate method for characterization of the relevant neural responses (Figure 5). In 

this case, when we consider the quickly adapting transient component of the RTC 

signal, we find the temporal responsiveness is well matched to presumed early 

components of the visual system (the LMC). We also observe that apparent contrast 

insensitivity of a neural system may be the result of wide-field antagonistic interaction. 

In our modeling, due to a neural delay in the surround interactions, the naturally 

‘unrealistic’ wide-field flicker can transiently pass through the system, however with 

low contrast sensitivity the result. In comparison, the response to the limited spatial 

extent of a small target is very contrast sensitive.  

Larger wide-field STMD neurons display a position invariant receptive field that 

typically spans many ommatidia (Nordström and O'Carroll, 2006). This presumably 

requires a pooling of the outputs of many subunits from earlier stages of processing. In 

fact, because some STMD neurons are weakly direction-selective (Barnett et al., 2007, 

Nordström et al., 2006, Nordström and O'Carroll, 2006), rather than a summative 

pooling of ‘non-directional’ subunits, some type of higher-order spatial facilitation may 

take place. Weak direction selectivity could be built into our modeling via asymmetry 

in the inhibitory surrounds or via a higher order spatial facilitation during this pooling 

stage. 

 Unfortunately, RTC neurons are small and intracellular recording times are limited in 

duration. We have, to date, not been able to establish the morphology of the neuron via 

dye-filling techniques nor can we examine more time intensive spatial characterization 

stimuli. Nevertheless, we are confident from our dissection technique and precise 

control of the location of the pipette that our regular recordings from the RTC are from 

the medulla. However, we cannot be certain if they are intrinsic to the medulla, or if 
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they reside elsewhere and project to, from, or via the medulla. There is the possibility 

that they may be the termination of the fibers identified by Arnett (Arnett, 1971, Arnett, 

1972) or a later postsynaptic element that has inherited the properties as seen in the 

projections from the lamina. Although our biological investigation of the RTC is 

limited, the aspects of computation that form the basis for our small target modeling has 

been well established in the work of Jansonius and van Hateren (Jansonius and van 

Hateren, 1991), Osorio (Osorio, 1987) and now again in this present research.  

2.2.6 Conclusion 

Our approach to modeling has provided a solution to the initially perplexing issue of 

how the STMD neuron responds robustly to target motion, even when there is no 

relative motion cue of the target to the background (Nordström et al., 2006). We have 

seen that this problem is solved by incorporating properties of the rectifying transient 

cell in the target detection pathway. This is an attractive solution, as our highly 

nonlinear matched filter is computationally less intensive than complex segregation of 

transparent motion fields, required for relative motion calculations.  
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 CHAPTER 3.  

ENGINEERED TARGET DISCRIMINATION 

DERIVED FROM INSECT PHYSIOLOGY 
 

3.1 CONTEXT 
This chapter was published in IEEE, Intelligent Sensors, Sensor Networks and 

Information Processing (ISSNIP). 

There is a large degree of overlap between the publication in this chapter, and the one 

preceding (see 2.2). However, the ISSNIP publication was formatted and written for an 

engineering audience, and this adopts a different approach to the article published in 

PLoS ONE. The later was written with much more extensive background and 

supporting physiological data for a broad readership. 

This degree of overlap is not the case in the chapters following this one. 
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3.2.1 Abstract 

A challenging engineering problem is the ability to detect and discriminate small 

moving objects against complex moving backgrounds. An evolutionary priority has 

tuned this capability within fly vision systems, so that they may detect, track and chase 

other flies, either for territorial or mating purposes. This is achieved within the confines 

of a light weight, low power system of less than a million neurons. Using in-vivo, 

intracellular, electrophysiological techniques, our lab has recorded from neurons within 

the fly brain that respond to a visual stimulus of small moving targets, even when 

included within a complex surround. Intracellular responses are still present when the 

velocities of the target and background are matched, ruling out relative motion cues as 

the definitive factor in this target discrimination task. 

Intracellular recordings at an earlier stage of the visual pathway show neurons with 

rectified, transient responses that have independent adaptation to stimulation with 

contrast increments versus contrast decrements. These Rectifying Transient Cells 

(RTC) have an ‘on’ and an ‘off’ channel that we hypothesise would serve well as an 

intermediate stage in the detection of small moving targets. 

To test the feasibility of this hypothesis, we have developed a model that includes the 

filtering characteristics of early visual processing, followed by the rectification and 
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independent adaptation properties of the RTC and finally a temporal nonlinear 

facilitation between a delayed ‘off’ channel, and an undelayed ‘on’ channel. The model 

output shows an enhancement in target discrimination, without the need for relative 

motion cues, as seen in physiological experimentation. Characteristic properties of 

neuronal responses from small target detecting cells are well matched by the outputs of 

this model. 

3.2.2 Introduction 

Flies have the capability to detect and track small moving objects, such as other flies, 

often whilst both travel at high velocities and sometimes against complex moving 

backgrounds (Collett and Land, 1975, Wehrhahn, 1979). This is a challenging task, 

considering the low spatial acuity of their visual system which has an angular resolution 

of approximately 1°(Stavenga, 2003). This capability has led researchers to investigate 

the neural elements behind the processing of such a difficult visual task. Neurons are 

studied, via intracellular recordings, at various stages of the visual pathway, in an 

attempt to understand and model the components of this processing. These 

electrophysiological techniques have examined cells that are most sensitive to small 

moving objects in a range of insects: blowfly (Wachenfeld, 1994), dragonfly (O'Carroll, 

1993), fleshfly (Gilbert and Strausfeld, 1991) and hoverfly (Collett and Land, 1975).  

We recently described neurons within the optic lobes of the hoverfly Eristalis tenax that 

are exquisitely selective for small targets of less than a few degrees (Nordström et al., 

2006). These neurons are referred to as Small Target Motion Detectors (STMD) and 

respond in an invariant manner to target position within an area of the visual field 

(receptive field) and are often direction selective. 

A characteristic of the STMD neuron is that their responses maintain small target 

selectivity even with the presence of a complex moving background. Most intriguingly 

when the velocities of the target and background are matched responses persist.  
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Figure 3-1. Responses of Model Rectifying Transient Cell. The model responses include 
characteristics of the RTC neuronal response. The output is transient and rectifies the signal (same 
response to contrast increments and decrements). Within short interval durations the fast adaptive 
mechanism reduces model output. This adaptation is independent for contrast increments versus 
contrast decrements as seen in the unadapted ‘off’ response, at the first contrast decrement pulse, 
in the 10ms trace.  
 

This result suggests that the spatial statistics of the target with respect to the background 

is an effective discriminant, irrespective of any additional role for relative motion cues. 

The identification of neural elements that may lie along the visual pathway of the 

STMD, and are possible to record from intracellularly, aids in our attempts to 

understand the neural computations underlying processing of the STMD. We have 

experimented with, and modelled, a neuron that we hypothesise may play such a role. 

Previous experimentation has identified neurons within a variety of invertebrates that 

are characterised by their rectifying and transient nature (Arnett, 1971, Jansonius and 

van Hateren, 1991, Osorio, 1987). In the fly visual system, these cells, referred to as 

‘on-off units’, revealed independent adaptation to contrast increments versus contrast 

decrements. There is also supporting evidence for the presence of centre-surround 

antagonism between such units (Jansonius and Van Hateren, 1993a).  

We have recorded intracellularly from neurons, that we refer to as Rectifying Transient 

Cells (RTC), within a middle stage of the fly visual pathway (the medulla), which also 

show similar response characteristics to the on-off units.  

To examine the plausibility of our hypothesis that the RTC is well suited to the task of 

small target motion detection, we have modelled the STMD pathway, based on early 

vision and RTC processing. The model outputs are then examined for enhancement of 

target discrimination when provided with inputs of moving natural scenes embedded 

with small targets.  
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3.2.3 Modelling & Simulation 

3.2.3.1 Overview 

Image preparation, model simulation and analysis tools were written and implemented 

in Simulink/Matlab (Mathworks, Natick, USA). The model was designed using 

parameters consistent with those found in the biological system. An overview of the 

model is seen in Fig 2. We refer to the model output as an eSTMD, standing for an 

‘elementary STMD’ as the physiological correlate STMD would be a number of these 

eSTMD subunits combined together to provide a broad, position invariant receptive 

field. 

 

Figure 3-2. Overview of the ESTMD model.  Early visual processing (optics, photoreceptors, LMC) 
and the RTC representation. Filter parameters are chosen so as to match the dynamics we observe 
in electrophysiological experimentation of the fly brain. Further details are found in text. 
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3.2.3.2 Input Images 

A series of four natural panoramic images with a 360° horizontal and 72° vertical extent 

served as inputs to the model. These images could be animated in simulated yaw 

rotation past a column of STMD processors at varying velocities. To improve 

computational efficiency, twenty individual black targets (1.6°) square were pseudo-

randomly distributed on the images, a minimum separation ensuring that there was no 

possibility of spatiotemporal interaction between the targets at any stage of model 

processing. Each simulation was repeated 26 times with new target locations (520 

targets total for each image). During the simulation of panorama motion (yaw) the 

targets are fixed to the background, therefore there were no relative motion cues. The 

results were obtained using a panorama, and therefore target, velocity of 90°/s. Only the 

green channel of the RGB image was retained, so as to approximate the green spectral 

sensitivity of motion processing mechanisms found within the fly visual system. 

3.2.3.3 Early Visual Processing 

Input images were spatially blurred with a Gaussian low pass filter (half-width 1.4°) to 

emulate the spatial blur seen within the optics of the fly visual system (Stavenga, 2003). 

Luminance values from the input images were spatially sampled at 1° to represent the 

distribution of facets in the eye of the fly (Straw et al., 2006). An approximation in our 

model is that we used a rectangular distribution of sampling points, rather than the 

hexagonal distribution seen in the fly compound eye.  

The photoreceptor transduction mechanism transforms luminance inputs in a 

logarithmic manner around an operating point determined by the past stimulus (van 

Hateren, 1997). This was modelled with a Lipetz function relating membrane potential 

Vm to light intensity x, as seen in equation 1. 

Vm =
u

u u
o

x
x x+

          (1) 

The exponent u was set to 0.7 (Shoemaker et al., 2005). The mid-level parameter x0 was 

set as a moving average of previous stimulus values, using a first order low pass filter 

(τ=750ms). The temporal characteristics of the photoreceptor were modelled with a first 

order low pass filter (τ=2.5ms). 
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The next stage of processing is represented by the Large Monopolar Cell (LMC). 

Similar to bipolar cells in human visual pathways, LMCs process information by 

removing redundant information (Srinivasan et al., 1982). Surround processing from the 

nine (eight adjacent and one centre) photoreceptors are summed, scaled, and then 

subtractively inhibited the centre LMC signal, with the scaling set to pass a 30% DC 

spatial component. Prior to inhibition, the surround signal was passed through a first-

order temporal low pass filter (τ=2ms), as an estimation of the time for signal spread of 

the surround interactions. The recombined LMC signal is then temporally filtered with 

a relaxed first order high pass filter (10% DC, τ=40ms). This signal was inverted to 

emulate hyperpolarisation to luminance increments. 

3.2.3.4 Rectifying Transient Cell 

For the version of the model as presented in this paper, any sustaining component is 

removed by passing the signal through another high pass filter (τ=40ms). The ‘on’ and 

‘off’ phases are then separated into distinct channels via half-wave rectification (with 

one signal then inverted). Each channel is temporally processed via a fast adaptive 

mechanism. An ‘adaptation state’ nonlinear signal F, as represented by equation 2, is 

created via a low pass filter that can transition between two time constants. If the 

original ‘pass-through’ signal (X) was increasing, the adaptation state time constant was 

1ms (τ1), if the pass-through signal was decreasing then the time constant was set at 

100ms (τ2). This allowed for representation of a fast depolarisation (increasing signal) 

but slow repolarisation (decreasing signal) cellular effect. 

1

2

/ { } ( ) / ( 0)
  ( ) / ( 0)

d dt F X F X F
X F X F

τ
τ

= − − ≥
= − − <

    (2) 

In each of the ‘on’ and ‘off’ channels, this adaptation state subtractively inhibited the 

pass-through signal. The outcome of this was a fast adaptive mechanism as seen in 

response properties of the RTC. 

A spatial centre-surround antagonism was applied to each of the channels, i.e. an ‘on’ 

surround inhibiting the ‘on’ centre and an ‘off’ surround inhibiting the ‘off centre. 

These surround signals included a neural delay (τ=2ms). This inhibitory surround 

interaction should not reduce the centre output below zero so a further half-wave 

rectification was applied. 
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Finally, the detector was tuned for sensitivity to dark targets by implementing either a 

second order or a linear recombination of the delayed ‘off’ channel (via low pass 

filtering, τ=25ms) with the undelayed ‘on’ channel. 

 

Figure 3-3. An example of model outputs. Panel 1 shows spatial blurring (inherent in fly optics) and 
the ‘green’ channel of an RGB image (spectral sensitivity of fly motion detection). Panel 2 is at the 
photoreceptor level, including a dynamic, compressive nonlinearity. Panel 3, spatiotemporal band 
pass filtering of the LMC stage. Panel 4 reveals eSTMD outputs and panel 5 shows a particular 
threshold of eSTMD output, superimposed on the original image (red = hits, blue = false, green = 
misses). 
 

At each stage of processing, model outputs were examined and target position 

determined via cross-correlation of images ‘with’ and ‘without’ targets. Output 

responses were then binned in time, dependent on the panorama velocity (transformed 

back into a spatial domain). At any given processing stage, varying threshold levels of 

the outputs were examined and bins were categorised, with each either a response to a 

target (a hit), or alternatively a false positive response. Receiver Operating 

Characteristic (ROC) curves were then produced to indicate the success of target 

enhancement / non-target suppression at the various stages of the eSTMD processing. 
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3.2.4 Results 

Fig. 3 shows the results from an example simulation of the model. The panels are a 

reconstruction from a column of outputs with responses over time, at the various output 

stages. The first panel reveals the difficulty of the target detection task when 

considering the low spatial resolution and single spectral sensitivity that serves as inputs 

to the higher levels of processing. Photoreceptor output shown in panel 2 applies a 

dynamic saturating nonlinearity, which is most beneficial when considering high 

dynamic range inputs, rather than the 8-bit representations (though input values were 

calculated with linear interpolation) used in this study. The LMC stage of panel 3 shows 

the effects of spatial and temporal band pass filtering, the parameters of which are 

based on physiological time constants. This stage is the first of two used in further ROC 

comparisons. Panel 4 is the final eSTMD multiplicative recombination, which includes 

the processing inherent in the RTC. In panel 5, we look at an example thresholded 

eSTMD output, categorised and superimposed on the original input image. Both the 

LMC and eSTMD stages are shown, for a variety of natural images, in the ROC curves 

of Fig. 4.  

ROC curves lying in the upper left corner of the graph, i.e. with high hit rates and low 

false positives, reveal enhancement of target discrimination. The absolute number of 

false positives is dependent on bin size, however it is the relative change between 

curves that is significant in the target discrimination task. The input image ‘All’ is 

reconstructed from the average magnitude and average phase components of thirteen 

natural scenes and all of these images have a characteristic ‘natural scene’ power 

spectrum response of approximately 1/f, with spatial frequency f (Field, 1987). During 

target distribution, some targets are scattered on to near equi-luminant backgrounds so 

that there is little or no basis for discrimination, and 100% hit rates are not to be 

expected. This upper constraint on target detection can most readily be seen in the ROC 

of the most cluttered scene, ‘Botanic’. In the image ‘Field’ there is little difference 

between ROC curves as the spatiotemporal band pass filtering has effectively 

discriminated the targets, due to the lack of other contrast features in the image. 

In the other three images, the enhancement in target discrimination is evident by a shift 

of the ROC curves into the upper left corner. 
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Figure 3-4. ROC curves for four panoramic images.  Curves that lie in the upper left corner (high 
hits, low false positives) indicate processing that is more effective at discriminating targets. 
 

3.2.5 Discussion 

The results from these simulations suggest that within these four natural scene images, 

spatial statistics similar to that of small targets are sufficiently rare that a highly 

nonlinear filter that can exploit these For a dark target, the requirement for an 

unadapted, or novel, ‘off’ phase provides a temporal distinctiveness to the target which 

is followed by an unadapted ‘on’ phase, inherent in the target itself. This, combined 
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with a requirement for these same aspects to not be present in the surround, provides us 

with small target selectivity, irrespective of the other characteristics of background. If 

this final parameter, the surround ‘on’ or ‘off’ channel inhibition, is relaxed, this model 

can be tuned for bar sensitivity, as seen in some types of insect neurons (O'Carroll, 

1993). 

Characteristic responses from this model match the neuronal STMD in several ways. 

Neuronal STMDs are tuned to velocity and this is the same in the model due to the 

temporal correlation of the ‘on’ and ‘off’ phases. For their small target selectivity, 

STMDs neurons are target height tuned, and this is replicated in this model due to the 

inhibitory surround mechanisms. Finally, some evidence suggests that small target 

selective neurons in hoverfly (Nordström et al., 2006) are superlinearly dependent on 

contrast, as is also seen from the multiplicative structure within this model. Generally, 

the model properties match those of the physiological correlate. However, a collection 

of these units, perhaps pooled, would be required to form the position invariant 

structure of neural STMDs. Direction selectivity, as seen in some of these neurons, 

could be formed in our modelling with an asymmetry in the inhibitory surrounds or 

could also emerge during the process of pooling eSTMD units, i.e. a directional spatial 

facilitation. A spatial facilitation of eSTMD outputs might further enhance target 

discrimination and is a focus of future modelling. This model highlights that RTC 

processing is a feasible mechanism for the detection of small moving targets and further 

physiological experimentation on STMD and RTC neurons will attempt to examine this 

possible role in greater detail. 

A common approach to modelling figure-ground discrimination tasks, such as this small 

target detection problem, has focused on the use of relative motion cues. This involves a 

computationally intensive technique of contrasting motion components of figure versus 

ground. We have found in our modelling, inspired from a physiologically available unit 

of processing (the RTC), that a highly nonlinear ‘matched’ filter may be all that is 

required for the target discrimination task. Our approach is well suited to solving what 

was initially a perplexing issue, i.e. the manner in which the neuronal STMD still 

responded to a small target even when the target was matched to the velocity of the 

background. Further investigation will examine how matched temporal changes (with 

adaptive complexities) of other feature signatures may be useful in detection and 

tracking tasks. 
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 CHAPTER 4:   

TARGET DISCRIMINATION IN GENERAL 

STIMULUS CONDITIONS 
 

4.1 CONTEXT 
The previous modelling efforts had provided evidence for the feasibility of RTC-type 

processing in a model for target discrimination within visual clutter. Due to limitations 

in the length of the PLoS article (with the new physiological results), more simulations 

were left for further publications. In this next publication, we examine target detection 

under more general stimulus conditions. 

 We also took the opportunity to extend the modelling, into a more physiologically 

accurate realm. 

1. The model inputs were changed to accept high dynamic range (HDR) values 

(therefore representing ‘real-world’ luminance and contrasts). This allowed for 

testing of target detection in simulations more akin to visual ecology. 

2. A spatial transformation was implemented into the hexagonal domain to 

approximately represent the arrangement of facets in insect vision systems. The 

spatial arrangement is maintained throughout the visual processing pathway, so 

that higher order spatial interactions, deeper within the visual system, are 

between hexagonally arranged units.  

3. The placement of targets was not aligned to the centre of image rows, thus 

making target detection more difficult.  

4. A laboratory research interest is in the development of a biomimetic 

representation of the photoreceptor. We included this photoreceptor model as a 

front end to our own target detection modelling. We could now address how the 

addition of complex photoreceptor dynamics would aid in the target 

discrimination task in more realistic visual environments. 
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5. We searched the literature to develop a better representation of the 1st order 

interneuron (the LMC). By examining frequency response curves at various 

background luminance values we developed some adaptive temporal filtering 

characteristics, and also better represented spatial inhibitory surrounds. 

With these model elaborations, we simulated the more general stimulus conditions. This 

included using a series of 18 HDR floating-point data sets (natural images) with 

realistic (and precise) representation of visual environments.  

For this article we used a traditional quantification method for target discrimination. 

This involves developing receiver operating characteristic (ROC) curves and integrating 

under the curve to find a value for the ‘area under the ROC’ (AUROC). 

We simulated the target detection mechanism (with pseudo-randomly distributed 

targets) across changing target sizes and panorama (and therefore target) velocities. 

Relative motion considerations have already been investigated in the previous PloS 

ONE (see 2.2) publication. 

These simulations led us to determine that the model output depends on target velocity, 

more so than overall luminance or contrast conditions. 
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DYNAMIC RANGE NATURAL SCENES 
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ACCEPTED: Wiederman, S.D., Brinkworth, R.S.A. and O’Carroll, D.C. (2008) Bio-

inspired small target discrimination in high dynamic range natural scenes. Proceedings 

IEEE, Bio-inspired Computing: Theories and Applications (BIC-TA), in press. 

 

4.2.1 Abstract 

Flies have the capability to detect and track small moving objects, often against 

cluttered moving backgrounds. From both a physiological and engineering perspective, 

understanding this computational process is an intriguing challenge. We have 

developed a target detection model inspired from electrophysiological recordings of 

‘small target motion detector’ neurons within the insect brain. Our numerical modeling 

represents the neural processing along a proposed pathway to this target-detecting 

neuron. We use high dynamic range, natural images, to represent ‘real-world’ 

luminance values that serve as inputs to a biomimetic representation of photoreceptor 

processing. Adaptive spatiotemporal high-pass filtering (1st-order interneurons) then 

shape the transient ‘edge-like’ responses, useful for feature discrimination. Nonlinear 

facilitation of independent ‘on’ and ‘off’ polarity channels (the rectifying, transient 

cells) allows for target discrimination from background, without the need for relative 

motion cues. We show that this form of feature discrimination works with targets 

embedded in a set of natural panoramic scenes that are animated to simulate rotation of 

the viewing platform. The model produces robust target discrimination across a 

biologically plausible range of target sizes and a range of velocities. Finally, the output 

of the model for small target motion detection is highly correlated to the velocity of the 

stimulus but not other background statistics, such as local brightness or contrast, which 

normally influence target detection tasks. 
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4.2.2 Introduction 

The ability to detect and track small moving objects allows flies to engage in rapid 

chase pursuits (Collett and Land, 1975, Wehrhahn, 1979). The computation underlying 

this visual detection of moving targets is non-trivial, especially considering that they are 

often viewed against complex, moving backgrounds. A spatial acuity of ~1°  is a further 

limiting constraint (Straw et al., 2006). This capability to perform real-time target 

detection and tracking is a humbling thought in view of the small size, weight and 

number of neurons within a typical insect brain (Strausfeld, 1976). This consideration 

has led researchers to study the behavioral aspects of small target detection, such as 

examining fly responses to moving objects within experimental flight arenas 

(Boeddeker et al., 2003). 

A different research approach is via electrophysiological experimentation. Intracellular, 

in vivo recordings, from the optic lobes of the fly brain, reveal possible neural 

correlates to the target detection task. Such cell types have been encountered in a range 

of insects including; blowfly (Wachenfeld, 1994), dragonfly (O'Carroll, 1993) and 

fleshfly (Gilbert and Strausfeld, 1991). One such neuron class, within the hoverfly 

Eristalis tenax, referred to as the Small Target Motion Detector (STMD), has been 

examined and many characteristics described (Nordström and O'Carroll, 2006, 

Nordström et al., 2006, Barnett et al., 2007). The response of the STMD neuron is 

selectively tuned to small objects (Nordström and O'Carroll, 2006), sensitive to 

contrast, and position invariant within a section of the visual field (Nordström et al., 

2006). The cell exhibits tuning for preferred velocities and some are direction selective. 

A subset of these neurons respond to the movement of small targets, even when the 

target velocity is matched to that of the moving background, thus ruling out relative 

motion cues as a defining factor in the neural computation (Nordström et al., 2006). 

In order to derive models for this processing, we examine the higher-order properties of 

the STMD in conjunction with neuron types that are candidates for inclusion along this 

visual pathway. The photoreceptors are the only cell type that we may definitively 

assert are at the front end of any visual task. However, we may hypothesize roles for 

other neuron classes, such as the first-order interneurons, the Large Monopolar Cells 

(LMCs), as these are believed to be involved in motion processing (Coombe et al., 

1989, Douglass and Strausfeld, 1995). The LMCs have adaptive temporal band-pass 
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characteristics and spatial antagonistic interactions (James, 1992, Srinivasan et al., 

1982). Hence are well suited to shaping the transient, spatially localized responses 

required for target detection. 

We have recorded from a class of neurons referred to as the Rectifying Transient Cell 

(RTC) (Wiederman et al., 2008), which exhibit a functionality seen within a variety of 

invertebrate visual neurons (Arnett, 1971, Jansonius and van Hateren, 1991, Osorio, 

1987). These cells show independent adaptation to contrast increments versus contrast 

decrements and exhibit surround antagonistic interactions (Jansonius and Van Hateren, 

1993a). Previously, we examined response characteristics of types of ‘on-off’ transient 

neurons, including the RTC, and have shown that they are well suited as an adaptive, 

matched spatiotemporal filter, selectively discriminating target from background within 

moving panoramic images (with or without relative motion considerations) (Wiederman 

et al., 2008). 

Realistic target-background scenes have a much larger range of luminance, contrasts 

and spatiotemporal structure than can be captured using traditional 8-bit digital imaging 

technology. To analyze the effectiveness of our small target detection methods across 

these ‘real-world’ conditions, we must have suitable front end high dynamic range input 

imagery (Debevec and Malik, 1997) and a sound emulation of early visual processing 

(Mah et al., 2008a). Using both biomimetic and bio-inspired neural elements we have 

built a numerical model that effectively increases target discrimination across a range of 

natural scenes, and have shown that this modeling is robust across varied target sizes 

and velocities. 

4.2.3 Methods (Modeling & Simulation) 

4.2.3.1 Overview 

Image preparation, model simulations and analysis tools were written and implemented 

in Matlab (Mathworks, Natick, USA). A model overview is shown in Figure 1. The 

values for model parameters were set with respect to the underlying biological system. 

Photoreceptor responses were based on a biomimetic model (Figure 2) (Brinkworth et 

al., 2006, van Hateren and Snippe, 2001) with parameters and elaborations derived via 

electrophysiological results from Eristalis tenax (Mah et al., 2005). The spatiotemporal 

dynamics of the first order interneurons, the LMCs, have been previously established 

for the blowfly (Calliphora vicina) (1995) and hoverfly, (Eristalis tenax) (1992). A bio-
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inspired role for RTCs in the small target detecting pathway was based on parameters 

from the ‘on-off’ transient cells (Calliphora vicina) (1991) and those found from our 

own electrophysiological recordings of RTCs in blowflies (Calliphora stygia) 

(Wiederman et al., 2008).  The model outputs were matched to those seen in the STMD 

neurons as described for Eristalis tenax (Barnett et al., 2007, Nordström et al., 2006, 

Nordström and O'Carroll, 2006). 

We modeled an array of ESTMD (elementary STMD) subunits that could be pooled to 

form the position invariant receptive field, as seen in the physiological STMD 

(Nordström and O'Carroll, 2006). The model outputs defined values in a three 

dimensional (2D+t) space, at each level of visual processing; the photoreceptor, LMC 

and ESTMD.  

4.2.3.2 Input Images 

The high dynamic range (HDR) data set for this modeling was a series of eighteen 

natural images, captured on a Nikon D-70 camera. Photographs were taken at various 

locations providing images of different luminance, contrasts and spatial structure and 

have been previously published (Brinkworth and O'Carroll, 2007). The photographs 

have natural image statistics, with a 1/f2 relationship between spatial frequency and 

power (Field, 1987). Panoramas with a 360° horizontal by 72° vertical extent were 

created by stitching together a series of twelve overlapping images. Each image was 

photographed at a range of exposure levels and HDR values reconstructed via a 

calibration technique (Debevec and Malik, 1997). From this we obtained floating-point 

data sets (realistic representations of luminance) to serve as inputs for our modeling 

purposes. Figure 3 shows some examples of these natural scene images. 

Panoramic yaw rotation was simulated by animating these data sets at varying 

velocities. For the target detection task, fifty black squares were pseudo-randomly 

distributed over the images, with a minimum spatial separation of 5° vertical and with 

no repeated target on any horizontal row. This was to ensure target independence (no 

spatiotemporal interactions between the targets at any stage of processing). During 

simulation of the panorama motion, the targets were fixed to the background, thus 

removing relative motion cues from the discrimination task. 
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Motion processing pathways within the fly visual system are known to be 

monochromatic, with a ‘green-blue’ spectral sensitivity (Srinivasan and Guy, 1990). 

We therefore used the green channel of our RGB data set as an approximation. 

 

Figure 4-1. Overview of the ESTMD model.  Motion of HDR panoramic imagery is simulated at 
varied velocities. These are spatially blurred to represent the fly optics. The green channel is 
retained to emulate the spectral sensitivity of the motion pathway. A complex photoreceptor model 
implements dynamic filtering characteristics and adaptive feedbacks which allow for the encoding 
of vast luminance conditions. LMCs are modeled as dynamic spatiotemporal high-pass filters 
(relaxed), removing redundant information. The model implements functionality inspired from 
electrophysiological recordings of RTCs, found in the brain of the fly. This includes ON and OFF 
channel separation, independent fast temporal adaptation and independent channel surround 
antagonism. Finally, the delayed OFF channel is recombined with the undelayed ON channel for 
dark target sensitivity. The final output reveals enhanced small target discrimination as seen in 
physiological STMDs. 
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To emulate the spatial blur inherent in the optics of the fly visual system (Stavenga, 

2003) we apply a Gaussian low-pass filter (full width at half maximum 1.4°) to the 

input images. We simulated a range of target sizes. While all targets had a defined 

luminance of 0 the process of blurring caused target luminance to vary, dependent on 

the immediate background, therefore the model responses to different targets are 

essentially to targets of varying effective contrasts. 

The input images were spatially sampled at 1° in a hexagonal manner (Straw et al., 

2006). This spatial organization was at all levels of processing (spatial interactions were 

between adjacent hexagonal ‘facets’ as seen in the fly visual system). The original 

target distributions were not centered on the sampled rows, ensuring the discrimination 

task was especially challenging. Original images had a resolution of 8000 x 1600 pixels 

and after the 1° hexagonal sampling produced 2D arrays of 360 x 62 model units. As 

the panoramic images were ‘rotated past’ the model input, at varied velocities and high 

emulated frame rates, linear sub-pixel interpolation in the spatial domain was used to 

ensure high resolution in the resultant temporal domain. 

4.2.3.3 Photoreceptors 

Blowfly photoreceptor dynamics have previously been modeled, incorporating 

individual photoreceptor gain control and saturating nonlinearities (2001). Elaborations 

to this model are a continued research focus (Mah et al., 2008b) and have been 

implemented in Matlab as the front-end element to this ESTMD model (Figure 2). The 

elaborated photoreceptor model (Brinkworth et al., 2006), includes variable gain control 

and dynamic low-pass filtering, with cutoff frequencies dependent on adaptation state. 

Followed by two divisive feedbacks (one linear, one exponential) representing short and 

longer term adaptations. Finally, a compressive, saturating nonlinearity is implemented 

by a Naka-Rushton transform. 

 



P a g e  | 90 

 

Figure 4-2. Complex Photoreceptor Model.  Block diagram summarizing a biomimetic model of the 
photoreceptor, modified after Mah et al. (Mah et al., 2008a) and van Hateren & Snippe (van 
Hateren and Snippe, 2001). Photoreceptors allow for encoding a high dynamic range of real-world 
luminance values into the limited dynamic range of the neuron. This biomimetic model copies this 
process via a series of adaptive feedback mechanisms. The photoreceptor dynamics expand the 
possible range of inputs that can then be processed by the higher-order feature detection elements 
of the model. (LP1: feedforward, variable low-pass filter, LP2: linear, divisive feedback, LP3: 
exponential, longer term, divisive feedback, final stage: Naka-Rushton compressive nonlinearity) 
 
 
4.2.3.4 Large Monopolar Cells 

The LMC is the first order interneuron in the fly visual system and due to spatial and 

temporal antagonism (high-pass filtering) removes redundant information from 

correlations in visual scenes (Srinivasan et al., 1982) and are analogous to human 

bipolar cells. A more thorough examination reveals that the LMC alters its filtering 

characteristics dependent on visual conditions. In the dark adaptation state, the LMC is 

more integrative with longer sustaining temporal components. As overall luminance 

conditions increase, the LMC becomes more transient and high-pass in nature, both in 

space and time (Juusola et al., 1995). This spatial interaction (center-surround 

antagonism) was modeled in a feed forward manner with surround (nearest neighbor) 

photoreceptor signals summed, and temporally delayed, before subtractively inhibiting 

the central LMC. The LMC temporal dynamics were modeled with relaxed, variable 

high-pass filtering which incorporated a small DC component 

4.2.3.5 Rectifying Transient Cells 

The LMC output was fed into a Matlab version of our RTC model. A more thorough 

description of the RTC processing has been previously described (Wiederman et al., 

2008). Briefly, transient ‘on’ and ‘off’ phases (from the LMC high-pass filtering) are 

separated via half-wave rectification into independent ON and OFF channels. Each of 

the channels is temporally processed through a fast adaptive mechanism. An adaptation 

state is determined by a nonlinear filter which approximates cellular ‘fast depolarization 

and slow repolarization’ responses. This low-pass filter switches its time constant 
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dependent on whether the input is increasing or decreasing (time constants are ‘fast’ (τ 

= 3ms) when channel input is increasing and ‘slow’ (τ = 70ms) when decreasing). This 

adaptation state subtractively inhibits the unaltered ‘pass-through’ signal. The result of 

this complex, nonlinear filtering is the signaling of ‘novel’ transient contrast changes 

(of the particular channel phase, ‘on’ or ‘off’) with the suppression of fluctuating 

textural variations. As well as this temporal antagonism, the channels also exhibit 

spatial antagonism with ON surround channels subtractively inhibiting the ON centre 

channel, and similarly with the OFF channels. The resultant signal was then half-wave 

rectified, so that the surround does not inhibit the centre below a zero value (a 

nonlinearity seen in some spiking neurons).  
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.  

Figure 4-3. HDR Panoramic Images.  Example panoramic images used as inputs for the target 
detection model. Images have been gamma corrected and reduced to 8-bits (for reproduction) and 
only the green channel (as used in the model) is shown. The original input images were 8000x1600 
pixels and high dynamic range (HDR), meaning that there are no over or under saturated pixels 
and that the real-world luminance information was retained. The natural scene inputs range from 
an average luminance of 276 cd/m2 to 17993 cd/m2. Global image contrast values ranged from 
0.73 to 4.6 (standard deviation/mean). All high dynamic range images are available upon request. 
Results for target detection in individual images can be seen in Figure 6 and matched by image 
number. 
 

 



 
 

 
 

P a g e  | 93 

The two channels were then recombined by delaying the OFF channel (low-pass filter, τ 

= 25ms) and multiplying this by the undelayed ON channel. This is similar to proposed 

correlation-type models for motion detection (Egelhaaf and Kern, 2002, Hassenstein 

and Reichardt, 1956), but the ‘delay and compare’ is with  ‘off’  and ‘on’ transients 

from a single point in space rather than two spatially distinct points. 

4.2.3.6 Simulation and Analysis 

Simulations were run across a wide range of panorama velocities (1°/s-1000°/s) on 

eighteen distinct HDR natural images, both with and without 1.4°x1.4° targets (n=50) 

inserted. Also simulated, at a near optimal velocity of 90°/s, three trials (50 targets 

each) repeated with 1.2°, 1.4°, 1.6°, and 1.8° target sizes. Taking differences between 

the ‘with’ and ‘without’ target images provides target location at each stage of the 

model output (luminance, photoreceptor, LMC and ESTMD) regardless of the non-

linear temporal delays inherent in each stage of the processing. From the output stages 

we determined histograms of model values at the target locations in the ‘with target’ 

images (n=50) and histograms of model outputs in the ‘without target’ images 

(n=360x62 = 22320). At any output threshold level, these histograms define the number 

of ‘hits’ (true positives, targets correctly classified as targets), ‘misses’ (false negatives, 

targets incorrectly classified as not targets) and ‘false alarms’ (false positives, non-

targets incorrectly classified as targets). We used Receiver Operating Characteristic 

(ROC) curves (McNeil and Hanley, 1984) to represent target discrimination which plot 

hits versus false positives, across the varying model output thresholds. The ROC is 

usually quantified by examining the curve within the entire probability range, from 0 to 

1 (hits from 0 to 50, false positives from 0 to 22320) however, for our purposes such a 

high false positive rate is not within a biologically plausible, or functionally relevant, 

range. We arbitrarily define our region of interest to not exceed 50 false positives, thus 

matching the total number of targets. By integrating under the ROC (up to 50 false 

positives) and normalizing, we quantify the effectiveness of target discrimination with a 

single value – the area under the ROC (AUROC). High AUROC values (close to 1) 

indicated the presence of a threshold producing good target hits and low false positives. 

Low AUROC values showed the discrimination between targets and non-targets was 

limited, hence the model performed poorly as a target detector.  
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4.2.4 Results & Discussion 

An example of the simulation output is seen in Figure 4. Within the biological system, 

and emulated in this model, the adaptive mechanisms of the photoreceptor encode the 

high dynamic range of the luminance values within the restricted dynamic range of the 

neuron. This adaptation approximates a logarithmic encoding around an adaptation 

level (van Hateren and Snippe, 2001). The photoreceptors become temporally more 

responsive in the light adapted state, whilst in darker conditions require more temporal 

integration. Photoreceptor encoding is particularly responsive to decreased temporal 

contrast steps (Juusola et al., 1995), as encountered with a passing dark target. 

The LMC stage reveals spatial and temporal high-pass filtering and therefore enhances 

edge-like contrast boundaries in both space and time. Target salience is improved from 

both photoreceptor and LMC processing, however few targets can be reliably separated 

from the background using a single threshold value (Wiederman et al., 2008). The 

ESTMD output improves the functionality as observed in the RTC model. In Figure 4 

we have arbitrarily defined an output threshold and superimposed these results on the 

original blurred luminance image. 
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Figure 4-4. Model output stages.  ‘Luminance’ shows spatial optical blurring and green spectral 
sensitivity. ‘Photoreceptor’ shows dynamic compressive adaptation, allowing for visual processing 
tasks, such as small target detection, to be viable within a large range of luminance conditions. 
‘LMC’ portrays spatial and temporal high-pass filtering, enhancing the contrast boundaries that 
determine features within an image. ‘ESTMD’ output has suppressed temporal texture variations 
by signalling novel contrast changes, independently for ON and OFF channels. To be signalled by 
the ESTMD, this novelty must have a limited spatial extent, due to spatial antagonistic 
interactions. This processing is sensitive for target-type statistics, as shown in the bottom image 
where thresholded ESTMD values are superimposed on the luminance image. Insets show close-up 
views of the luminance both without (upper) and with (lower) superimposed model outputs (star = 
hit, square= false, circle = miss). Image number 11, panorama velocity 90°/s, target size 1.4°x1.4°. 
Despite the difficulty in detecting the targets in the original luminance image the full model 
correctly identified many of the targets with few false positives. 
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Figure 4-5. Receiver Operating Characteristic analysis.  Histograms of output values for image 
number 11 at 90°/s and using targets of size 1.4°x1.4°, as seen in Figure 4. (a) probability density 
functions (PDF) and in (b) cumulative distribution functions (CDF). Discrimination of target from 
background is revealed via non-overlapping PDFs and separable CDFs. (c) Receiver Operating 
Characteristic (ROC) curves are derived from the CDFs. ROC curves that lie in the upper left 
corner (high hits, low false positives) have more effectively discriminated targets from 
background. The area under the ROC is integrated to 50 false positives (dotted line), arbitrarily 
defined as a biologically plausible range and increases dramatically after ESTMD (elementary 
small target motion detector) processing. Luminance is the raw image values in high-dynamic 
range. Photoreceptor processing normalizes the images and compresses them to fit into a lower 
bandwidth. LMC processing is the equivalent of high-pass spatiotemporal filtering. 
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For analysis, we determine the effectiveness of discriminating target versus background 

via the ROC curve methodology. The stages of which are illustrated for a single 

example image in Figure 5. Based purely on the luminance input it is not possible to 

discriminate the targets from the background in any meaningful way as the histograms 

for the targets and the background overlap to such an extent. As the processing levels 

are applied (first the photoreceptor, then LMC and finally ESTMD) the cumulative 

distribution functions for the targets and background become increasingly separable 

with AUROCs rising from a 0 in the cases of both the luminance and photoreceptor 

processed images to 0.15 after processing by the LMCs and 0.79 after the ESTMD 

stage. 

Figure 6 compares LMC and ESTMD AUROC values for varied target sizes across the 

entire series of natural images (at a simulated yaw velocity of 90°/s). Natural images are 

ordered with respect to their increasing RMS Contrast (global standard deviation 

divided by mean). The ability to discriminate targets is least in the low brightness and 

strong textures of image 16. At the other end of the scale is image 2, which is sparse 

and allows for the rare case of effective discrimination at the level of the LMC (see 

Figure 3 for images). Between these two images lies an assortment of natural conditions 

where the RTC processing has improved the AUROC values in comparison to the LMC 

stage. During the pseudo-random distribution, some targets are scattered onto 

backgrounds where the result is the loss of all ‘target-like’ defining characteristics. This 

is especially the case in highly textured sections of images (see Figure 4 inset for such 

an example). Therefore, in most cases, we do not expect AUROC values to approach 

unity. 

In Figure 7, we show the improvement in AUROC between the ESTMD and LMC 

stages, for each of the images, across the tested velocity range (at a target size of 1.4°). 

The actual model outputs exhibit characteristic velocity tuning (as seen in the 

physiological STMD) and this is also observed in the AUROC analysis. Little or no 

improvement in target discrimination is observed outside the range 10 - 300°/s with the 

optimal being 90°/s. This is a direct result of the RTC model tuning parameters only set 

to detect targets within this range. Below 10°/s the target transients corresponding to the 

start and finish of the target are too temporally distinct to allow for a good correlation 

with the time constants used in the model. Above 300°/s the low pass filtering of the 
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early visual processing blurs out the targets making them indistinguishable from the 

background. 

 

 

Figure 4-6. Target Size AUROC.  AUROC values of four target sizes across 18 natural images 
(panorama velocity of 90°/s). An AUROC value of one would indicate the detection of all 50 targets 
before encountering any false positives. The elementary small target motion detection (ESTMD) 
processing enhances target discrimination from background, across varying scene luminance, 
contrasts and clutter. Comparison between closed symbols (LMC) and open symbols (ESTMD) 
show the AUROC improvement from the addition of RTC-type processing. This improvement is 
consistent across target sizes. Images are ordered with respect to increasing global contrast 
(standard deviation divided by the mean). Error bars indicate the AUROC standard deviation 
over repeated simulations (N=3) of each image, at a particular target size, with different pseudo-
random target distributions. In all images and all target sizes the ESTMD processing produces 
better target discrimination than spatiotemporal high-pass filtering (LMC). 
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Figure 4-7. Panorama Velocity AUROC.  The improvement in target discrimination (∆ AUROC) 
from spatiotemporal high-pass filtering alone (LMC) to the full elementary small target motion 
detection (ESTMD) model, shows consistency across panorama images and velocities (target size 
used 1.4°x1.4°). As the delayed OFF channel is recombined with the ON channel, via a 
multiplicative nonlinearity, the model responses and final AUROC exhibit a velocity tuning curve 
indicative of correlative motion detection models. The peak velocity of this curve is dependent on 
the time constant of the OFF delay filter. The mean ∆ AUROC is shown with estimated 95% 
confidence levels (1.96*SEM, N=18). 
 

Finally, we examined the ESTMD responses of 1.6°x1.6° targets (N=50), across the 18 

scenes, at 14 different velocities. At each target location, we look at the local luminance 

and contrast values (5°x5°) of the background, in order to derive coefficients of 

determination (R2) between the image properties (local luminance, local contrast and 

panorama velocity) and model ESTMD responses. The results of which are shown in 

Figure 8. Local luminance is on a logarithmic scale (approximating photoreceptor 

encoding) and panorama velocity is on a log-log scale (represents the power function 

inherent in the multiplicative nonlinearity). We see that the ESTMD output is most 

strongly determined by target velocity, as would be expected in a motion energy 

detection mechanism, with little correlation between target responses and local image 

statistics. Scaling of the overall motion-dependent excitability of this system (and 

therefore optimal discrimination threshold value), as might be induced by global ego-

motion, is a focus of future research in our target discrimination modeling. 
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Figure 4-8. Model Response correlations.   (a) Elementary small target motion detection (ESTMD) 
responses (at target locations) are plotted against their respective mean local background 
luminance (5°x5°). As luminance conditions increase there is only a small increase in the 
responsiveness of the ESTMD model. (b) As local contrast of the background increases, ESTMD 
responses at target locations slightly decrease. High contrast conditions reveal ‘cluttered’ regions 
with limited suppression of target responsiveness. (c) The ESTMD responses at target locations are 
well correlated to the velocity of the panorama image (and therefore velocity of the target), within 
the increasing range of the velocity tuning curve. This is due to the correlation-like structure of the 
target detection mechanism. Also note that the responses flatten out after about 70°/s as the model 
leaves the linear coding range. This shows that the model outputs are more strongly influenced by 
the motion of the target than the local image statistics around the target. (d) The coefficient of 
determination between the model responses at target locations and the stimulus variables (and 
their respective log transforms). Conditions in bold, corresponding to the largest R2 values, are 
graphed. Target size used was 1.6°x1.6°. 
 

4.2.5 Conclusion 

Our previous research showed that target discrimination based on RTC-type processing 

was feasible in response to 8-bit images, at a single target size and single panorama 

velocity This new work has extended the modeling into three dimensions (2D+t) and 

integrated complex early visual processing components (biomimetic photoreceptors and 

LMCs), with hexagonal sampling and unconstrained target positions. In this study, we 

show that our results are robust over different target sizes and a large velocity range. By 
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using HDR input imagery we also show that the small target detection modeling works 

in a range of real-world luminance and contrast conditions. 

From both the biological and engineering perspective, we have seen that even without 

relative motion cues, adaptive mechanisms can extract temporal feature signatures (as 

seen in the physiological correlate). These computations are less intensive than 

traditional motion segregation methods and this approach may be useful in further 

detection and tracking tasks, especially with respect to more complex object detection. 
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 CHAPTER 5:   

ELABORATED MODELS FOR TARGET 

DETECTION 
 

5.1 CONTEXT 
The previous publications examined small target detection within a physiological 

framework, using biomimetic or bio-inspired reasoning to design all aspects of the 

model. In this chapter we take a different approach, examining extensions to the model 

that provide a useful insight from an engineering perspective. The presence of these 

elaborations, within the physiological context, can be investigated in future 

experimentation. 

The publications consider two model elaborations: 

1. ESTMD inhibition from near-local EMD derived motion energy. In this form 

the ‘feature correlator’ is antagonised by a more traditional ‘motion correlator’. 

By varying the amount of inhibition we determine an optimal amount that 

maximises the value of target discrimination (AUROC). 

2. ESTMD re-scaling from a wide-field estimation of velocity. Due to the 

correlation mechanism, the distribution of ESTMD values (target and 

background) will shift depending on the panorama velocity (whilst maintaining 

the same target discrimination). Therefore, to have a static optimal threshold the 

output values need to be normalised by the value of the panorama velocity. That 

is, if the feature correlator is normalised by the amount of ego-motion the result 

is a static optimal threshold for target discrimination. The value of the panorama 

velocity is determined from the model (from wide-field integration of EMDs). 

The following publication describes these model elaborations which are particularly 

useful when considering the implentation of the feature correlator on moving platforms. 
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5.2.1 Abstract 

We have developed a numerical model of Small Target Motion Detector neurons, bio-

inspired from electrophysiological experiments in the fly brain. These neurons respond 

selectively to small moving features within complex moving surrounds. Interestingly, 

these cells still respond robustly when the targets are embedded in the background, 

without relative motion cues. This model contains representations of neural elements 

along a proposed pathway to the target-detecting neuron and the resultant processing 

enhances target discrimination in moving scenes. The model encodes high dynamic 

range luminance values from natural images (via adaptive photoreceptor encoding) and 

then shapes the transient signals required for target discrimination (via adaptive 

spatiotemporal high-pass filtering). Following this, a model for Rectifying Transient 

Cells implements a nonlinear facilitation between rapidly adapting, and independent 

polarity contrast channels (an ‘on’ and an ‘off’ pathway) each with center-surround 

antagonism. The recombination of the channels results in increased discrimination of 

small targets, of approximately the size of a single pixel, without the need for relative 

motion cues. This method of feature discrimination contrasts with traditional target and 

background motion-field computations. We improve the target-detecting output with 

inhibition from correlation-type motion detectors, using a form of antagonism between 

our feature correlator and the more typical motion correlator. We also observe that a 
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changing optimal threshold is highly correlated to the value of observer ego-motion. 

We present an elaborated target detection model that allows for implementation of a 

static optimal threshold, by scaling the target discrimination mechanism with a model-

derived velocity estimation of ego-motion. 

5.2.2 Introduction 

A fly, as it pursues another fly, in acrobatic and rapid movements, is performing an 

intriguing and challenging task. It must detect the other ‘small target' whilst both are 

moving at high velocities, often against complex moving backgrounds and in varied 

luminance and contrast conditions (Collett and Land, 1975, Wehrhahn, 1979). The fly 

has the capability to perform this task with only a million neurons, and a brain about the 

size of a grain of rice (Strausfeld, 1976). A humbling thought, considering engineering 

based applications of target detection and tracking. We record, via electrophysiological 

techniques, from neurons in the insect brain referred to as ‘small target motion 

detectors’ (STMD) (Nordström and O'Carroll, 2006, Nordström et al., 2006, Barnett et 

al., 2007). This neuron is size selective, and tuned to the velocity of small targets that 

move within a region of the visual field (Nordström and O'Carroll, 2006). They are 

contrast sensitive and some are direction-selective. The neurons respond to small targets 

even in the presence of complex, moving backgrounds. Interestingly, a subset of STMD 

neurons respond robustly, even when the velocity of the target and the background are 

matched (Nordström et al., 2006). 

There are many engineering based methods to emulate this capability of salient feature 

detection. Optical flow calculations are used to determine the motion of an object 

and/or surround and are based on a variety of mathematical approaches (Barron et al., 

1994, Beauchemin and Barron, 1995). Salient object detection, with and without 

background motion and overall ego-motion considerations, have a variety of proposed 

solutions (Choi et al., 2006, Tang et al., 2007, Wixson, 2000). In biological modeling of 

motion processing, the mathematical approaches are purposefully limited to those 

proposed to relate to the underlying physiological system. Hence, attention is focused 

on correlation-type motion detection (Hassenstein and Reichardt, 1956) (or equivalent 

‘motion energy’ models (Adelson and Bergen, 1985)) as there is a good deal of 

physiological evidence to support this as a biological motion framework (Haag et al., 

2004). 
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The first element along the neural pathway to the STMD is the photoreceptor, whose 

adaptive processing allow for the encoding of a large range of luminance values, in an 

approximately logarithmic manner. More detailed modeling of the photoreceptor 

incorporates a series of complex feed-forward and feed-back interactions (Brinkworth 

et al., 2006, Mah et al., 2005, van Hateren and Snippe, 2001).  Electrophysiological 

experiments have also defined parameters for the dynamic temporal filtering 

characteristics of the model photoreceptors (Mah et al., 2005). 

After the photoreceptors, the 1st-order interneurons, the Large Monopolar Cells (LMC) 

are believed to be on the motion processing pathway (Coombe et al., 1989, Douglass 

and Strausfeld, 2003, Keller, 2002) and their transient high-pass filtering characteristics 

(in both space and time) are well suited as inputs to typical elementary motion detector 

(EMD) models (Brinkworth and O'Carroll, 2007, Harris et al., 1999, Shoemaker et al., 

2005).  EMD modeling is usually based on elaborated versions of the Reichardt 

correlator (correlation-type motion detection) (Hassenstein and Reichardt, 1956), where 

signals indicate motion using a ‘delay-and-compare’ between two distinct spatial 

sampling points.  One of the most widely studied sensory neurons in the optic lobe of 

the fly – the lobula plate tangential cells (LPTC), can  encode ego-motion (Hausen, 

1993) and there is strong evidence that they are derived from an EMD-type framework 

(review, (Egelhaaf and Borst, 1993)). LPTCs are wide-field neurons proposed to 

spatially integrate over many EMD subunits (in a nonlinear manner) (Borst et al., 

1995). This is not limited to insects, as there is also evidence for EMD-derived motion 

processing in mammals, including humans (Clifford et al., 1997, Clifford and Ibbotson, 

2002). Traditionally, EMD models are dependent on contrast and spatial statistics, 

however, in the latest modeling approaches, nonlinear elaborations allow for reliable 

velocity estimation (Brinkworth and O'Carroll, 2007) due to contrast and motion 

adaptive mechanisms and the typical 1/f2 power spectrum of the spatial statistics in 

natural scenes (Dror et al., 2000). Figure-ground discrimination, such as in the small 

target detecting task, could be implemented via a local EMD subunit, that is inhibited 

from a wide-field LPTC (Egelhaaf, 1985c). However, this form of relative motion 

detection was not observed in responses from at least a subset of STMD neurons 

(Nordström et al., 2006). 
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We have previously proposed a mechanism for target discrimination bio-inspired from 

the ‘on-off’ unit in the fly brain (Jansonius and van Hateren, 1991) and from recordings 

of the Rectifying Transient Cell (RTC) in the fly medulla (Wiederman et al., 2008). We 

model the RTC to take LMC input and half-wave rectify the signal into separated ‘on’ 

and ‘off’ channels. These channels adapt independently and include strong center-

surround antagonistic interactions. Following this, a correlation type mechanism, but 

with opposite contrast phases (a delayed ‘off’ phase, with an undelayed ‘on’ phase) 

formed the basis of a dark target sensitive ESTMD (elementary) model. This processing 

would be integrated over space (similar to the LPTC) to form the position invariant 

receptive field of the STMD. 

The ESTMD model is a highly nonlinear matched filter for the spatiotemporal profile of 

a small moving target and can improve target discrimination with or without relative 

motion cues (Wiederman et al., 2008). In this manner, it matches the physiological 

responses of the STMD neuron. Importantly though, the effect of wide-field 

interactions and relative motion cues is a known component of insect visual processing. 

Behaviorally, bees use motion parallax for figure-ground discrimination (Srinivasan et 

al., 1990a). In the fly, both small-field motion and their respective inhibition from wide-

field counterparts, has been extensively studied (even to the extent of ablating the 

inhibitory neuron) (Egelhaaf, 1985c, Warzecha et al., 1993). Finally, dragonflies use 

motion camouflage (minimizing relative motion cues) to disguise themselves during 

aerial maneuvers (Mizutani et al., 2003).  

We therefore consider higher-order interactions beyond our ESTMD modeling, and the 

effect of an inhibitory EMD-derived component on our feature detection mechanism. 

We examine the effects of this interaction at two spatial scales, thus forming two 

distinct elaborations to the model. At a smaller spatial scale, we examine the effects of 

‘near-local’ EMD inhibition, a type of antagonism between the two correlator forms. At 

a larger spatial scale, we examine how inhibition from a wide-field neuron (velocity 

estimator) can scale the ESTMD output to account for ego-motion and allow for a static 

optimal threshold of target discrimination. 
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5.2.3 Modeling, Simulation & Analysis 

5.2.3.1 Model Overview 

We implemented the ESTMD model and analysis tools in MATLAB (Mathworks, 

Natick, USA). Figure 1 shows an overview of the ESTMD model, which is described in 

the following sections. This present research details two extensions to an established 

modeling effort (1) ESTMD with near-local EMD inhibition and (2) ESTMD with ego-

motion rescaling. We provide outlines of the relevant stages of the basic model for 

clarity, however, detailed descriptions of this processing are found in previous 

publications. The use of panoramic HDR input imagery to serve as ‘real-world 

luminance’ data sets for vision models is described in Brinkworth and O’Carroll 

(Brinkworth and O'Carroll, 2007). The biomimetic representation of photoreceptors 

(Brinkworth et al., 2008, Mah et al., 2008a, van Hateren and Snippe, 2001), RTCs 

(Wiederman et al., 2007) and EMDs (Brinkworth and O'Carroll, 2007, Hassenstein and 

Reichardt, 1956, Shoemaker et al., 2005) forms the computational elements for the 

elaborations as described in this research. 

5.2.3.2 Bio-inspired & Biomimetic  

Model parameters are set with respect to the underlying physiological system, or their 

best estimates. The photoreceptor model is based on electrophysiological results from 

the hoverfly (Eristalis tenax) (Mah et al., 2008a). The LMC, has spatiotemporal 

filtering characteristics described for the blowfly (Calliphora vicina) (Juusola et al., 

1995) and Eristalis tenax (James, 1992). The RTC is a cell class we propose is well-

suited for feature discrimination (Wiederman et al., 2007) and this functionality is based 

on our own recordings from blowflies (Calliphora stygia) (Wiederman et al., 2008) and 

previous recordings from ‘on-off’ transient cells in Calliphora vicina (Jansonius and 

van Hateren, 1991). Parameters for wide-field motion selective units are derived from 

electrophysiological studies of Eristalis tenax (Nordström et al., 2008), We matched 

final model outputs to the properties as described in the STMD literature (Eristalis 

tenax). (Barnett et al., 2007, Nordström et al., 2006, Nordström and O'Carroll, 2006). 
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Figure 5-1. Elaborated Model Overview.  High dynamic range (HDR) panoramic images, captured 
from natural scenes are animated at varying velocities, simulating ego-motion (yaw) of the viewing 
platform. We spatially blur the images to emulate the optics of the fly. Naturally occurring large 
luminance variations are encoded within the limited dynamic range of the photoreceptor via two 
‘adaptive’ feedback mechanisms operating on different timescales. The photoreceptors also 
dynamically adjust temporal filtering characteristics based on the local conditions of the individual 
pixels. The Large Monopolar Cells high-pass filter the signal (relaxed), in both space and time, 
with adaptive filtering characteristics also dynamically set via the adaptation state. These transient 
signals serve as inputs to both correlation-type Elementary Motion Detectors (EMDs) and the 
Rectifying Transient Cells (RTCs). EMDs use a spatially separated ‘delay and compare’ 
facilitation, signaling the motion of ‘like’ contrast changes (a Reichardt correlator). They can be 
spatially integrated (wide-field) to provide an estimation of global velocity. The RTCs correlate 
‘unlike’ contrast changes (‘on’ and ‘off’) at a single location to indicate the passing of feature 
boundaries (bar, target). Facilitation between delayed ‘off’ and undelayed ‘on’ transients provides 
dark feature sensitivity, whilst center-surround antagonism provides small target selectivity. 
Interaction between the two correlation types supports two forms of elaborations to the modeling. 
Near-local EMD inhibition of the RTC, decreases false positives in highly textured environments, 
at the cost of missed ‘hits’, however, the overall result is an improvement in target discrimination, 
especially in more challenging scenes. A second model elaboration is inhibition from the wide-field 
velocity estimation, which allows a static optimal threshold to be set for target discrimination that 
is robust across the entire velocity range. 
 

5.2.3.3 Input Images 

To serve as model inputs we use a series of 18 high dynamic range (HDR) natural scene 

images each with varying luminance, contrast and spatial structure (Brinkworth and 

O'Carroll, 2007).  By capturing these images at a range of exposure levels, HDR values 

could be reconstructed (Debevec and Malik, 1997).  The images extended 360° 

horizontal (panorama) and 72° vertical with a resolution of 8000 x 1600 pixels. Each of 

the images exhibited a 1/f2 relationship between spatial frequency and power, typically 

of natural scenes (Field, 1987).  To determine the effectiveness of target discrimination 

we also replicate this set of 18 images but with 50 pseudo-randomly distributed targets 

(black squares, 1.6°x1.6°).  
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We retain only the ‘green’ channel of the RGB image, approximating the green-blue 

spectral sensitivity of fly photoreceptors involved in the motion processing mechanism 

(Srinivasan and Guy, 1990).  A spatial low-pass filter is applied (Gaussian with full 

width at half maximum of 1.4°) to replicate the optical blur of the compound eye 

(Stavenga, 2003). The image values are sampled in a hexagonal manner (like the facets 

of the fly eye), at a 1° spatial separation (Straw et al., 2006). With such limited spatial 

sampling resolution the targets to be detected are only 2.5 times the size of the area of a 

single pixel. In addition, due to the spatial blurring, the target luminance and contrast 

are varied across the distribution.  

We simulated ‘yaw’ ego-motion (self-motion) by animating the panorama, rotating it 

past the model inputs at varying velocities (using sub-pixel interpolation in the spatial 

domain to ensure a high temporal resolution, minimum 1kHz). This sampling provided 

a spatiotemporal (2D+t) data set (360 by 62 model subunits). 

During the target distribution, we maintained a minimum vertical separation of 5°, with 

no two targets on a single row (as the panorama was rotated horizontally). This ensured 

there were limited spatiotemporal interactions between the targets. Importantly, during 

the model simulations the distributed targets are embedded (fixed) to the background, 

removing any relative motion cues. Robustness of the target discrimination mechanism 

under varying relative motion conditions has previously been tested (Wiederman et al., 

2008). 

5.2.3.4 Early Visual Processing 

Each element in the 2D hexagonal array was processed through a complex 

photoreceptor model (Mah et al., 2008a).  This published model includes a variable 

feed-forward gain control and adaptive low-pass filtering. Both of these were set via an 

adaptation state (a low-pass filtered version of the luminance signal). For example, if 

luminance conditions are low, the gain is increased and corner frequency of the filter 

decreased (photoreceptor becomes slower and more integrative). Following this, two 

divisive feedbacks (via low-pass filters) representing two forms of adaptation, one a 

shorter term (a linear feedback) and the other longer term (an exponential feedback). 

Finally, we model a compressive ‘saturating’ nonlinearity with a Naka-Rushton 
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transform. With this processing, the photoreceptors could encode large luminance 

ranges as encountered in natural conditions. 

The next stage of processing was via the LMCs. Similar to human bipolar cells, these 

neurons remove redundant information from correlations in the scene in both space and 

time (Srinivasan et al., 1982). We modeled this with variable high-pass filtering (again 

dependent on adaptation state), including a small DC component. As overall luminance 

conditions increase, the LMC becomes less sustaining and more transient in nature, 

adjusting their filtering characteristics for signal to noise considerations. The spatial 

high-pass filtering is typical feed-forward center-surround antagonism with nearest 

neighbor units summed, delayed, and then subtractively inhibiting the center signal. 

This type of processing is ideal for forming the transient edge-like signals (in both 

space and time) that are well suited for the further correlation-type processing. 

5.2.3.5 Rectifying Transient Cells 

Following the LMC we include a model for the RTC, our proposed intermediate stage 

neuron in the small target-detecting pathway (Wiederman et al., 2007). The signal is 

high-pass filtered, removing any DC component. We half-wave rectify the transient 

signal into two components – an ON channel and an OFF channel (inverted). We create 

an adaptation state for each channel via a nonlinear low-pass filter with a variable time 

constant. If the input signal is increasing, the time constant is set low (response is fast) 

or if the input signal is decreasing the time constant is set high (response is slow). 

Physiologically, this represents a neural response with fast depolarization and slow 

repolarization. This adaptation state signal subtractively inhibits the unaltered passed-

through input signal. The result of this mechanism is one that suppresses rapid 

variations in the signal, only allowing a novel contrast change, or a large contrast 

change that can break-through the inhibited response. We apply this to each ON and 

OFF channel independently. Following this, we have a further center-surround 

antagonism between ‘like’ channels (subtractively inhibiting each other). Finally, the 

two are recombined by delaying the OFF and multiplying this with the undelayed ON 

channel in a correlation-type manner (but from a single point in space). 

For maximum responsiveness, we require a temporally novel (unadapted) ‘off’ contrast 

boundary within a limited spatial extent shortly thereafter followed by a temporally 
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novel ‘on’ contrast boundary, again within a limited spatial extent. This is a highly 

nonlinear matched spatiotemporal filter for the detection of small dark moving targets. 

5.2.3.6 Elementary Motion Detectors 

The LMCs also serve as inputs to a more traditional type of EMD, based on the 

Reichardt correlator (Hassenstein and Reichardt, 1956). The EMD extracts motion 

information by sampling from two distinct spatial points. One signal is delayed and 

multiplied by the spatially separated and undelayed second signal. This half-correlator 

is combined with another mirror symmetric version. The difference between the two 

half-correlators forms a motion opponent EMD. 
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Figure 5-2. Output of the elaborated ESTMD model.  Various stages of processing (snapshot in 
time, panorama velocity of 90°/s with embedded 1.6°x1.6° targets). ‘Luminance’ shows single 
green channel (spectral sensitivity), hex sampling (facets) and spatial blurring (compound eye 
optics). ‘Photoreceptors’ allow for feature discrimination to be viable within a large range of 
luminance conditions by the use of adaptive filtering and dynamic feedback mechanisms. Large 
Monopolar Cells (LMCs) extract edge-like features in both space and time with adaptive high-pass 
filtering. Elementary Small Target Motion Detectors (ESTMDs) extract target information from 
the LMC input signal by; fast independent polarity temporal adaptation, center-surround 
antagonism of ‘off’ and ‘on’ channels and a temporal nonlinear facilitation between these 
channels. The LMC’s also serve as inputs to Elementary Motion Detectors (EMD) and the ‘EMD 
(near-local)’ is the spatially averaged combination of 37 hex-arranged EMDs (6° across). The 
‘ESTMD (EMD inhibited)’ is divisively inhibited by the near-local motion detection which has the 
effect of sacrificing target detection for reduction of false positives in cluttered, motion rich 
regions. We determined an optimal strength of this inhibition by varying this parameter in model 
simulations and selecting the one with best target discrimination. At an optimal threshold we 
superimpose the ESTMD (EMD inhibited) outputs on the original luminance image [H: hits or 
true positives, M: misses or false negatives, F: false positives]. This set of images are relevant for 
display purposes only as they are 8-bit, gamma corrected, representations of the actual model data 
set. 
 



 
 

 
 

P a g e  | 113 

5.2.3.7 Near-local EMD inhibition 

Traditional figure-ground discrimination in insect vision models rely on opposing a 

local EMD unit with the motion of the surround (wide-field integration of EMD units). 

This computes a form of relative motion between target and background and there is 

physiological evidence that some types of figure-ground discrimination rely on this type 

of processing (Egelhaaf, 1985c, Warzecha et al., 1993). The interesting aspect of the 

STMD neuron is that it responds robustly, independent of the background motion, even 

when the target and background velocity are the same. Although the background has 

some effect on the ESTMD model (establishing adaptive state of the channels, center 

and surround), this is a limited effect, in contrast to relative motion computations. 

However, in the model elaborations, we move away from the biomimetic, to examine 

potential interactions between known physiological elements that would, in an 

engineering sense, aid in the target discrimination task. Rather than derive model design 

from the underlying physiology, we are constructing theoretical possibilities to search 

for in the biological system. 

From the output of the basic ESTMD modeling, it is clear that many false positives 

arise in areas of textured, motion rich surrounds. A method of increasing overall target 

discrimination is via contrasting our matched target filter output against local EMD-

derived motion, i.e. we suppress ESTMD output, with near-local EMD inhibition 

(across a 6° region). The philosophy behind this approach is that it is as important to 

suppress false positives as it is to extract target information. In a general sense we are 

opposing ‘target motion’ against any other form of motion (Figure 2). 

To derive an ‘optimal’ amount of near-local EMD inhibition we require quantification 

of target discrimination. This is determined via analysis of Receiver Operating 

Characteristic (ROC) curves and calculation of the Area under the ROC (AUROC) 

(Hanley and McNeil, 1982). From the model outputs at varying stages (luminance, 

photoreceptor, LMC, ESTMD) we find probability distribution functions of background 

values and of target location values and use these to construct ROC curves. To ensure a 

physiologically plausible range of false positives, we equate the 100% false positive 

fraction as equal to the total number of possible targets, i.e. the AUROC is integrated up 

to 50 false positives. We ran the simulation with varying strengths of near-local EMD 
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inhibition and determined the amount that provided the best AUROC results (target 

discrimination). 

 

 

Figure 5-3. ESTMD with inhibition.  (a) The Area Under the Receiver Operating Characteristic 
(AUROC) is a measure of target discrimination and is shown across the operating velocity range 
for a target size of 1.6°x1.6°. Each natural scene AUROC is shown with the normal ESTMD model 
(dark circles) and the elaborated version which includes near-local EMD inhibition (open circles, 
slightly offset for clarity). An image with the second highest mean AUROC values is tracked to 
represent a ‘high AUROC’ image. Similarly, for the ‘low AUROC’ case (image with second lowest 
average AUROC values tracked across velocities). There is little difference between the two model 
versions with respect to the images with high AUROC values (small dashed lines). However, there 
is a large improvement in target discrimination in the more challenging natural scenes (large 
dashed lines). For a near optimal example, at 100°/s there are initially 8 of 16 images below an 
AUROC of 0.5, whilst after near-local EMD inhibition there is only 2 of 16 below 0.5.  (b) At 100°/s 
we plot the percentage increase in AUROC value due to the model elaboration for the 18 images. 
Images with an initial low AUROC value reveal the largest improvement in target discrimination. 
 

Figure 3 shows the simulation AUROC values across all 18 images, and across the 

relevant velocity range, with the normal ESTMD model (closed circles) and with this 

first model elaboration – near-local EMD inhibition (open circles). Although the upper 

range of AUROCs indicates little improvement (small dashed line), it is in the natural 

scenes with low AUROC values (large dashed line), i.e. the most challenging natural 

scenes, where the model elaboration is most valuable. Hence the near-local inhibition 

model does no worse under conditions where target detection is easy, but does 

significantly better under more difficult conditions. 
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5.2.3.8 Ego-motion scaling 

Due to the correlation-type nature of the ESTMD model, as the velocity of the 

panorama (with embedded targets) increases, the entire distribution of output values 

also increases. At any given velocity, a threshold can be set that provides an ‘optimal’ 

value for discrimination (Figure 4A), however, if plotted against velocity these optimal 

thresholds vary across several orders of magnitude (with the underlying shifting 

distributions). We can account for the shift in these values by determining a reliable 

estimation of ego-motion velocity and scaling the ESTMD output accordingly. 

Figure 4B shows a section of the velocity tuning curve that is derived from the wide-

field integration of EMD units and provides a reliable estimation of the panorama 

velocity (Brinkworth and O'Carroll, 2007, Shoemaker et al., 2005). Two velocity-tuning 

curves, one representing optimal thresholds (ESTMD), and the other the model-derived 

estimation of panorama velocity are valid across a physiologically relevant range 

(though ambiguous beyond this range). The optimal threshold is relevant even if the 

targets are not embedded in the panorama scene as it sets the level of false positives to 

be contrasted against, rather than establishing a required level for target responsiveness. 

As both correlator types (ESTMD and EMD) are multiplicative, we took the logarithm 

of both and found the linear regression equation (Figure 4C). We scaled the ESTMD 

outputs with a divisive inhibition (via the transform) of a model-derived wide-field 

velocity estimate. 
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Figure 5-4. Ego-motion rescaling technique.   (A) From the Receiver Operating Characteristic 
(ROC) curve we can determine an optimum threshold value by choosing either: 1) the threshold 
value that minimizes the distance to ‘best’, i.e. upper left corner with 100% hits, 0% false 
positives; 2) Maximizes the distance from the equal probability line (with probability of 1 defined 
as 50 false positives, equivalent to the total number of possible hits); 3) An arbitrary number of 
false positives (a physiologically plausible scenario). All three values are determined from model 
simulations and found to be consistent, with option 1 chosen for further analysis and design (B) 
The mean optimal threshold (minimized to best), across all 18 images at each velocity shows a 
typical velocity tuning curve (solid line), i.e. the changing speed of the panorama (with embedded 
targets) increases or decreases responses of both false positives and hits in the same manner, and 
the optimal value shifts along this curve. A typical panorama velocity (ego-motion) response (e.g. 
dashed line) produces another velocity-tuning curve. (C) Taking logarithms of both velocity 
response and the respective optimal threshold values reveals proportionality (due to power 
relationships inherent in the multiplicative nonlinearities of the two correlation type mechanisms). 
As ego-motion increases so does the correlation energy inherent in the ESTMD model, increasing 
the strength of the false positives (and in the embedded scenario, increasing strength of targets). 
Therefore, with a reliable estimation of ego-motion (which is also determined from the model) we 
can directly scale our ESTMD output to maintain a static optimal threshold. With the expected 
strength of false positives and optimal threshold established, we detect targets exceeding this value 
irrespective of whether they are embedded or moving relative to the background. 
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Figure 5-5. Ego-motion rescaled ESTMD.  (A) The ability to discriminate targets (AUROC) is 
similar between the ESTMD model and following ego-motion scaling (same image as shown in Fig 
2, 1.6°x1.6° targets). At any single panorama velocity, the ESTMD output is divisively inhibited 
with a scalar value (therefore not changing the AUROC). (B) Following ego-motion scaling, the 
optimal threshold values of the 18 natural scenes, remain relatively constant (closed circles), whilst 
in the normal ESTMD model the optimal threshold varied over many orders of magnitude, 
dependent on panorama velocity (open circles). 
 
To verify that this had no effect on the ability to discriminate targets, we show the 

similar AUROC values for a given image under both normal conditions, and following 

ego-motion rescaling (Figure 5A). We expect the same AUROC values as for any 

particular panorama velocity we are simply scaling the distributions by a scalar value 

(small differences are due to methodologies and simulation approximations). Figure 5B 

reveals that before ego-motion scaling the optimal target discrimination threshold is 

distributed over many orders of magnitude and that following the operation they are 

now relatively constant.  

Therefore, we can have a single (and optimal) value for target discrimination that is 

applicable under varying amounts of ego-motion. In effect, the velocity dependent 

ESTMD excitability of the overall system is being normalized, and this allows the 

target motion discriminator to work within a static range (and with a static optimal 

threshold).  

Figure 6 shows the transform in finer detail, with cumulative distribution functions (for 

the varying velocities) that shift after ego-motion scaling. As a suitable approximation, 

we chose this simple transform, however, a higher-order curve fit could establish a 

more accurate ego-motion scaling function (Figure 6E; lines could overlay). 
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Figure 5-6. Cumulative Distribution Functions. (CDF) at varying velocities (lines shift to the right 
as velocity increases). (A) CDF of target location values in the ESTMD model and (B) following 
ego-motion rescaling (note the logarithmic scales). (C) We show output values at all non-target 
locations (to indicate false positives) for the normal model and (D) under ego-motion scaling. In (E) 
we see the resultant effect of ego-motion scaling (from B and D, on a linear axis) which allows for 
both a static optimal threshold and maintains separation of the False Positive and True Positive 
CDFs, i.e. target discrimination (as also evidenced in Fig. 5A. AUROC values) 
 

5.2.4 Conclusion 

We find that near-local EMD inhibition increases target discrimination by suppressing 

false positives in highly cluttered and motion-rich regions. This design is similar to 

previously published models (Egelhaaf, 1985c, Higgins and Pant, 2004) where local 

EMD units are inhibited from wide-field integration of EMDs. However, in our 

modeling it is inhibition of target motion (ESTMD output) by the integration of 

surrounding EMD units. We have established an optimal amount for this suppression by 

varying the strength of the inhibitory influence and then calculating the respective 

AUROC values until target discriminability is maximized. This optimal value equates 

the benefits and costs of hits and false positives, whilst in a biological system these 

aspects are most probably unbalanced. As prey, this weighting should be determined 

from the metabolic costs of avoiding moving objects versus the cost of survival. As 

predator, the metabolic cost of target pursuit versus the required territorial and mating 

chase behaviors.  
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As we increase the spatial scale of integrated EMD inhibition, we find that the wide-

field (velocity estimator) inhibition serves to scale the ESTMD output to take into 

account overall ego-motion excitability. This allows for the implementation of a static 

optimal threshold for target discrimination under varying values of ego-motion. 

In these simulations we have dealt with the target embedded in the panorama and 

therefore without relative motion cues. Previously, in the non-elaborated model we 

have shown that target responses are robust, independent of relative motion between 

target and background (Wiederman et al., 2008). That is, the target speed determines 

the strength of ESTMD response, even in the presence of complex moving 

backgrounds.  

In the case of the elaborated model, the inclusion of motion antagonistic components 

will have important modulation effects on ESTMD output, whilst still allowing for the 

robustness of response without relative motion cues (as observed in physiology). We 

can test for these modulation effects in future electrophysiological experiments. If target 

speed across a detector is low, in an environment of high ego-motion, then we would 

not expect a strong neural response. Although intuitively this might be considered a 

model design constraint, in some scenarios this information from ‘low’ ESTMD 

responses could be a plausible neural approach to target pursuit. As long as a position 

dependent response had indicated the presence of a target then increased ESTMD 

responses would indicate increased motion of the target away from the center of pursuit. 

Further research will investigate such visual stimulus conditions, more akin to those 

found in insect visual ecology (with differing target speeds in the presence of 

translational and rotational ego-motion components).  

From the engineering perspective, we have elaborated the model to examine potential 

implementations of these bio-inspired processes in engineering applications. From the 

physiological perspective, the proposed elaborations allow new stimuli to be used in 

electrophysiological experiments in order to investigate whether such elaborative 

processes are found within the neural systems.  
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 CHAPTER 6:   

TESTING THE ESTMD MODEL WITH 

EXPERIMENTS ON STMDS 
 

6.1 CONTEXT 
This chapter is a manuscript in preparation for publication. In final form it is possible 

that this will be split into two manuscripts. At present it lacks the extensive background 

information that will be included in the final manuscript. This has already been 

provided in earlier chapters so I have omitted it here to avoid repetition. 
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6.2 COMPARISON OF THE ESTMD MODEL TO THE DRAGONFLY 
CSTMD RESPONSES 

6.2.1 Introduction 

The central aim of this thesis was to develop a robust and simple model for target 

discrimination in visual clutter based on specific tuning for features that are uncommon 

in typical natural scenes. The model presented in the earlier chapters provides a close fit 

to the basic tuning of typical fly or dragonfly STMDs in terms of their size tuning, 

velocity tuning and possibly even their sensitivity to contrast (i.e. preference for 

negative contrast). However, to verify whether this model captures processing typical of 

that in biological STMDs it is important to test its predictions in the presence of visual 

clutter against the quantitative responses of biological STMDs. 

I therefore performed intracellular recordings from CSTMD (centrifugal) neurons 

within the optic lobe of the dragonfly (Hemicordulia tau). These neurons have been 

shown to exhibit classical STMD type responses such as size selectivity, contrast 

sensitivity, and velocity tuning (O'Carroll, 1993, Geurten et al., 2007). While many 

STMDs in insects are small neurons and therefore difficult to record, the CSTMD 

neuron is large and easily recorded for prolonged periods. It therefore provides an ideal 

basis for quantitative comparisons between model predictions and biological responses.  

The aim of the experiment was to examine neural responses to natural scenes, in 

particular to an embedded target and responses to ‘false positive’ features, as predicted 

by our ESTMD modelling. In addition, by subtle digital manipulation of the images, I 

removed some of the model predicted ‘false positives’ from the visual stimulus thus 

generating testable predictions for variation in the CSTMD responses. 

6.2.2 Methods 

6.2.2.1 Electrophysiology 

Dragonflies (Hemicordulia tau) were caught in the wild and then immobilized with 

wax. A small hole was cut in the back of the head and the cuticle removed. Air sacs and 

other tissue were removed to provide clear access to the left lobula. The perineural 

sheath was left intact. The dragonfly was positioned approximately 15cm away from a 
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200 Hz CRT monitor, mean luminance of 100 cd·m-2. The visual stimuli were 

programmed in Python, using the VisionEgg stimulus software (www.visionegg.org).   

Micropipettes were pulled from 1 mm (O.D.) thick walled alumina-silicate glass 

capillaries (SM100F-10, Harvard Apparatus Ltd.), on a Sutter Instruments P-97 puller, 

and filled with 2 M KCl or 2 M potassium acetate. Electrode resistances were typically 

120-150 MΩ. 

The data were sampled at 5 kHz during acquisition, using a National Instruments 16-bit 

ADC. Data analysis was performed offline with Matlab. 

6.2.2.2 CSTMD Identification 

Neurons were recorded intracellularly in the left lobula of the brain. To identify the 

neuron as CSTMD, I mapped the receptive field (Figure 6-2). This was done by drifting 

a small black target (0.8°x0.8°) at 50°/s across the white screen in a series of 21 vertical 

and 21 horizontal scans (in both directions). I then determined size selectivity of the 

neuron by scanning across the monitor a series of variable height bars (at 0.8° width). 

The CSTMD gives no response to wide-field stimuli, such as sinusoidal gratings. 

6.2.2.3 Number of Trials 

Although I obtained partial recordings from a large number of animals, data presented 

here were obtained from two dragonflies in which the recordings were of long duration 

(total duration of 16 hours) and which were stable enough for the lengthy stimulus 

protocols. During prolonged recordings a receptive field scan (see 6.2.2.2), performed 

every two hours, allowed for testing of the health and viability of the cell. These scans 

revealed that the functionally of the entire CSTMD pathway was intact and healthy. 

Over this time, spontaneous spike rate varied, however, target responsiveness remained 

similar (maximum rate of ~250-300 spikes/s). 

6.2.2.4 Image preparation 

Two of our panorama natural images were selected (4.2.3.2), one ‘natural’ and the other 

‘urban’ (Figures 6.10-6.11). The images were cropped to a limited vertical extent (10°) 

and the top and bottom edges were altered to gradually fade to the background grey. 
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I ran these two images (without targets) through the ESTMD model (as previously 

described) so as to determine the location of the false positives. By using the Adobe 

Photoshop™ ‘healing hand’ tool, I was able to ‘remove’ these features in the image. 

Via this digital manipulation of the natural images, I constructed three different 

versions of the same scene; an unaltered image, the image with one false positive 

removed and the image with an embedded target. 

6.2.3 Results 

6.2.3.1 Spiking Receptive Field Mapping 

I mapped the receptive field, initially to identify the neuron as CSTMD. As I was to 

present natural scenes (with limited vertical extent) to the dragonfly, it was important to 

determine the region of the receptive field that contained the highest excitatory 

responses (the ‘hotspot’) and to examine the spatial homogeneity of this field. The 

presentation of the natural images could then be centred in this region. 

In Figure 6-1 we see a single scan of the receptive field mapping to the 0.8°x0.8° size 

target. A clear inhibition of the spike rate is evident as the target drifts across the left 

side of the dragonfly midline (ipsilateral side), i.e. in the visual field of the other eye. 

As the target crosses the midline and enters the contralateral side, the spiking rate 

increases. 

 

Figure 6-1. Single Scan through Receptive Field.   This response is to the 0.8°x0.8° target used in 
the receptive field mapping (Figure 6-2). The stimulus duration is indicated by the black bar. Soon 
after the target enters the monitor screen the spiking is inhibited whilst the membrane potential 
depolarises. As the target crosses the midline, the hotspot is reached (in the contralateral eye) and 
spiking rate increases. 
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Figure 6-2 shows the averaged spiking response over multiple trials. Note the excitatory 

receptive field runs along the midline of the dragonfly, between the two eyes (at 0° 

azimuth). The CSTMD neuron is weakly direction selective, i.e. responding in both 

directions, but preferring progressive target motion (upwards and to the right). 

Therefore, presentation of the natural scenes should be animated at a chosen velocity 

from left to right on the CRT monitor, centred on the hotspot. 

 

 

Figure 6-2. Spiking Receptive Field Scan. A small black target (0.8°x0.8°) is drifted across the white 
monitor screen and the strength of the spiking response is graphed. The response begins spiking as 
the target crosses the midline of the dragonfly eyes. The response is stronger to progressive target 
motion (up and to the right).  
 

The response to a near optimal target size reveals a high spiking rate over a large region 

of space. However, this ‘field of effect’ will vary dependent on the nature of the 

stimulus. As I will examine the responses of CSTMD to the natural scenes (each 

containing many variations of stimulus features), it is prudent to examine how the 

receptive field region changes in response to a different size feature. 
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I repeated a receptive field mapping with a single pixel stimulus (0.16°x0.16°). The 

interommatidial angle for Hemicordulia tau is 0.56° (Horridge, 1978), therefore this 

sub-pixel target is below the spatial resolution of the eye and thus is effectively a single 

ommatidium stimulus of low contrast. The neuron responded strongly in a small part of 

the visual field, corresponding to the hotspot in the previous mapping. This single trial 

experiment shows high contrast sensitivity for the dragonfly CSTMD. 

 

Figure 6-3. High Contrast Sensitivity.  Spiking response (spikes/s) to a drifted target of only 0.16° x 
0.16° (N=1). As the target is smaller than the interommatidial angle, a target of this size is 
effectively one of low contrast. This reduced contrast target reveals the strongest ‘hotspot’ of the 
CSTMD receptive field. 
 

6.2.3.2 Graded Receptive Field Mapping 

A further interesting result is seen in the graded generator potential of CSTMD during 

the receptive field mapping. An example scan is shown in Figure 6-1. Soon after the 

target appears on screen (see the stimulus duration bar), a depolarisation is observed. 

This occurs whilst the target is on the ipsilateral side and the spike rate is inhibited 

below the spontaneous rate.  

By using a spike removal algorithm, I determined the changes in this underlying 

potential and plotted a ‘graded’ receptive field map (Figure 6-4). These graded shifts 

were only evident during a limited period of the recording time, so the strength of their 

effect has been averaged out over the entire experimental duration. However, 

qualitatively this result does indicate that the changing voltage is present across a large 

region of the visual field (both the ipsilateral and contralateral side). Surprisingly, this 

graded response to the target is a depolarising shift that coincides with either the spiking 
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inhibition (ipsilateral) or the spiking excitation (contralateral). During the excitatory 

stage the generator potential is driven back towards the baseline potential. 

 

Figure 6-4. Graded Receptive Field Scan.  The graded response (underlying change in generator 
potential) to a 0.8°x0.8° target. The amount of graded response varied throughout the experiment, 
however, when present, involved depolarisation at the same time as inhibition (ipsilateral) and 
excitation (contralateral) of the spiking response .  
 

6.2.3.3 Contrast Polarity Selectivity 

An inherent property of my ESTMD model is that it is selective for polarity of contrast 

i.e. responsive to dark targets and not to an equivalent contrast light target. In addition, 

as the natural images to be presented to the CSTMD will have both light and dark 

features within the one scene, then determining any contrast polarity selectivity of the 

CSTMD neuron will be invaluable in interpretation of those results.  

I investigated contrast polarity selectivity within the CSTMD, by presenting targets on a 

mean background (RGB value 0.5), and then varying the target RGB values, so as to 

present both light and dark contrasting targets (Figure 6-5). 
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Figure 6-5. Dark Target Selectivity of CSTMD.  A) The neuron response to varying target 
contrasts (0.8°x0.8°). The response to equivalent contrasts (RGB 0.24 - dark and 1 - light) reveals 
strong polarity selectivity. The dashed midline represents background RGB value. As target RGB 
value decreases below 0.5, target dark contrast increases. There is limited response to lighter 
targets than background. B) Repeated experiment with increased target height (1.6°). Three 
repeats at each RGB value, a line joins the means.  
 

An RGB value of 1 (white target) on a 0.5 background is the equivalent Michelson 

contrast (Michelson, 1927) as a value of 0.24 (dark grey) on the same background. 

Given a more appropriate contrast measure for targets on background (Weber contrast) 

and these RGB values result in contrasts of 0.52 (dark target) and 1 (white target). The 

CSTMD neuron is even unresponsive to a white target of double the contrast.  

I further verified this contrast polarity selectivity using both a dark target and a light 

target and in each case varying the target height (Figure 6-6). These results also show 

that regardless of the height of the white target, the CSTMD neuron will not respond to 

lighter targets. 

 

 



 
 

 
 

P a g e  | 129 

 

Figure 6-6.  Target Height Tuning (Dark and Light Polarity).  Target height sensitivity is shown for 
a dark target (RGB of 0.24) on a mean background (0.5), peaking at ~2.5°. Also on the mean 
background, an equivalent contrast light target (RGB of 1), with varying height is shown. Again, 
dark target selectivity is revealed. 
 

6.2.3.4 On and Off Channels in the Insect Visual System 

Previous intracellular recordings from the medulla of the blowfly (DeVoe and 

Ockleford, 1976) showed neural responses to a step increase in light intensity. To this 

stimulus the authors observed both neurons that increased in spike rate and neurons that 

decreased in spike rate. This indicates a potential separation of channels within the 

insect vision system. 

Figure 6-7 provides further evidence for this type of processing in an intracellular 

recording from a neuron in the medulla of the blowfly. The neuron has a decreased 

response to light increments, and then a sustained, increased spiking response to a step 

decrease in luminance level. This type of processing could underlie the rectification 

required for the previously described contrast polarity selectivity observed in the 

CSTMD. 
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Figure 6-7.   An Off channel in the medulla of the blowfly, Calliphora.  This intracellular recording 
shows a decrease in response to a step of increased luminance (from a high power LED). The 
response to lower intensity is sustained and spiking.  Note that the transient changes show a full-
wave rectified depolarization of the response. The spike histogram is the average over 10 cycles of 
the stimulus. 

 

6.2.3.5 Natural Image Experiments 

The ESTMD model is tuned to detect a spatiotemporal signature that is quite rare within 

natural scenes (see 2.2.4.9). However, given a natural image input, the model will 

generate some false positives. If we include targets within the natural image then, as 

expected, the model is responsive to those targets. 

The question then arises as to whether, given a similar natural image stimulus, the 

CSTMD neuron responds in the same manner? Is an embedded target within the scene a 

driver of the neuron and does the CSTMD respond to the same false positives in the 

same way? Furthermore, if we manipulate the image to remove the model false 

positives, can we induce the same response in the CSTMD? 
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In Figure 6-8 we see the ESTMD model responses to a region of the natural image 

variants. The first panel (A) shows the unaltered image and (B) the model response. In 

panel (C), a single false positive has been digitally removed from the natural scene and 

in (D) the model output no longer shows a response in that location. In panel (E) a 

target has been inserted and in (F) the strongest ESTMD response is to that target. 

Therefore, the ESTMD model identified false positives within the natural scene. One of 

these false positives (within the entire image) was removed via digital manipulation (the 

‘leaves’). The model simulation was run again, following the image alteration, to verify 

that this location no longer contained a false positive. Finally, we checked that the 

model response to target insertion was strong.  
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Figure 6-8.  ESTMD Model Responses to the Natural Images.  An unaltered natural scene (A) is 
input to the ESTMD model and the output (B) determines the false positives. A single false positive 
is digitally removed from the scene (C) and the model no longer responds in that location (D). 
Finally, I embed a target in the scene (E) and this provides the strongest model response (F). The 
panorama velocity is at 90°/s. Some example distances are also shown.  
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6.2.3.6  A Note on Space and Time 

The visual panorama stimulus is to be presented on the monitor and rotated past the 

dragonfly in the direction that will stimulate the directional CSTMD neuron (left to 

right). To portray the spiking responses of the neuron to this stimulus (over time), so 

that it correlates to the visual features within a scene (over space), we are left with no 

alternative but to either have the time axis presented from right to left (unconventional), 

or to provide a mirror symmetric representation of space. The later was chosen for the 

presentation of this data, however, this entails no significant changes to the 

interpretation. The presentation of all spatial dimensions (Figure 6.8-6.11) has been 

mirrored and the direction of velocity reversed. It is similar to what the ‘receptive field’ 

would look like from the CSTMD neuron on the other side of the brain (Figure 6-9). 

    

 

Figure 6-9. Mirrored Receptive Field.  The receptive field (mapped by the drifting target) is shown 
mirrored around the vertical midline. This allows for easier interpretation in our analysis of the 
neuronal responses over time. The white dashed lines represent the size of the natural scenes that 
are to be presented to the dragonfly. The neural response in this region is relatively homogenous, 
though features within the bottom part of the natural images are less likely to drive the neuron. 
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6.2.3.7 CSTMD Electrophysiological Responses to the Natural Images 

To see whether the CSTMD neuron responded in the way predicted from the ESTMD 

model output, I recorded intracellularly whilst stimulating the neuron with the series of 

natural images. I displayed these panoramas on the CRT monitor, centred on the 

hotspot derived from the receptive field mapping. 

Rotating the panoramas at 45°/s, in the preferred direction of the CSTMD ensured that 

we were driving the neuron with a near optimal velocity (Geurten et al., 2007). The 

ESTMD false positive predictions were simulated at 90°/s with a spatial sampling 

resolution of the fly, i.e. approximately 1°. With the 0.56° resolution of the dragonfly, 

the two different velocities (doubled), coinciding with the different spatial sampling 

(halved) and therefore should be roughly equivalent. 

The CSTMD neural responses to the visual stimulus are shown in Figure 6-10 and 

Figure 6-11.The spiking responses of the neuron are shown in both spike raster plots 

and spike histograms (mean ±SD). The time dimensions of the neural responses are 

aligned with the images so that it is coincident with the 0° azimuth in Figure 6-9 (near 

the hotspot). At any instant, a ~110° region of panorama is shown on the monitor 

screen. The CSTMD receptive field spatially integrates over this region, as represented 

in the ‘mirrored’ version in Figure 6-9. Note that the target is embedded in the scene, 

with no velocity disparity between the target and background. 

In image ‘Bush’ (Figure 6-10), we first examine the neural responses to the original 

scene (1st panel). There are intermittent responses to the ‘leaves’ (the false positive to 

be removed, black arrow), but also a somewhat sensitive response as the tree trunk (and 

another feature) drags across the receptive field. In the second panel, the ‘leaves’ have 

been removed and there is a dramatic reduction in response. This is not an effect of 

habituation as all of these experiments were pseudo-randomly ordered with unadapting 

periods between the trials. In some more complex manner, the responses to the tree 

trunk are also gone (possibly a reduced sensitivity). In the third panel we have some 

intermittent responses returned to the false positive ‘leaves’ and now a strong response 

to the embedded target (red arrow). Any lack of neural responses to the tree trunk are 

now readily explained by the inter-ocular inhibition, as the target drifts through the 

inhibitory field before and during the passage of the tree (see distances in Figure 6-8).  
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Figure 6-10. CSTMD Neural Responses to the ‘Bush’ Images.  Images are rotated past the 
dragonfly (at 45°/s) and CSTMD neural responses (over time) are aligned with the image spatial 
dimension (centred at 0°, see Figure 6-9), so that correlation with features is shown. Monitor width 
displays ~110° of the 360° panorama, at any instant in time. The trials were not ordered (pseudo-
randomly distributed between all six images in Figure 6-10 and Figure 6-11) and pauses between 
the trials took into account adaptation effects. See in text for a description of the responses. 
 

In image ‘Car Park’ (Figure 6-11), we observe similar characteristics, with the same 

effect occurring by removing the false positive (black arrow). However, the CSTMD is 

tuned for slightly larger height selectivity (Figure 6-6) than the ESTMD modelling 

(Figure 2-7) and often intermittently responds to the passing columns (blue arrows). 

The response to the target in the third panel (red arrow) is more transient in nature 

(green arrow) in contrast to the target in image ‘Bush’. This is again explained by the 

influences of features within the inhibitory field suppressing the target response, an 

effect that does not occur in Figure 6-10.  
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Figure 6-11. CSTMD Responses to the ‘Car Park’ Images. Details as in the previous figure. 
 

6.2.4 Discussion 

The results of the CSTMD experiments provide some supporting evidence for an 

ESTMD-type framework (or equivalent) underlying the STMD mechanism. I showed 

that the CSTMD is responsive to feature types embedded within a scene, without the 

presence of any global velocity disparity between the features and background. Locally, 

motion energy is inhomogeneous and could still form an important cue for feature 

discrimination (5.2.3.7).  

The high contrast sensitivity (Figure 6-3) in response to the single pixel target 

(0.16°x0.16°) reveals that a non-optimal stimuli (small size, low contrast target) can 

generate a powerful response at an earlier stage of the visual pathway. The only 

difference to non-optimal stimuli in the natural scenes is that there is the presence of 

some contrasting surround (rather than a white background). This indicates that to 

produce the target selectivity there must be a powerful inhibitory component. Within 

the ESTMD model, this is via the strong spatial antagonistic surrounds (2.2.4.3) or in 

the elaborated model (see 5.2) via a motion-derived near-local antagonism. 
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Whilst mapping the receptive field, the inter-ocular interactions were immediately 

evident. This same result was indicated in earlier physiological experimentation 

(Geurten et al., 2007) and understanding these inhibitory interactions is presently a 

research focus of an ongoing PhD project in this laboratory (Douglas Bolzon, in 

preparation). The CSTMD is a higher-order neuron (complexity of visual processing) 

than what is observed in the STMD of the hoverfly. 

Sometimes during intracellular recordings, subtle changes in electrode position can 

provide deeper insight into the neuronal physiology. This was evident for a while in my 

experiments, as I was able to observe the changes in the underlying potential. At this 

stage, the recording of the neuron must have been far from the spike initiation zone, but 

experiencing a depolarisation (due to the presence of a target on the ipsilateral side). 

This influence extends too far to be due to any form of binocular overlap (maximum of 

10°) (Horridge, 1978) 

In Figure 6-12, we see a diagram of CSTMD morphology (reproduced from Geurten et 

al., 2007). From their experiments, the authors predicted that interactions between a 

symmetric pair of CSTMD neurons would be the likely cause for this inhibition. 
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Figure 6-12. Morphology of CSTMD.  Reproduced from Geurten et al (2007). Arrow indicates 
recoding area from centrifugal STMD (black). Geurten et al suggested area III as the dendritic 
input (near cell soma and spike initiation zone). Area I and II were suggested to be likely output 
arborizations (beaded).  
 

The primary input area for CSTMD (black) is in area III, on the contralateral side. The 

author’s suggested that a mirror symmetric CSTMD (red) would be excited by the 

target on the ipsilateral side and then inhibit the CSTMD (black) under 

electrophysiological observation (interaction in input area III). This can explain the 

inhibition of spikes (in the initiation zone, area III) but does not explain my observation 

for a depolarisation (at the recording site, arrow), in response to the presence of a target 

on the ipsilateral side. 

The question arises as to what is the benefit of this depolarisation? Perhaps the neuron 

is being primed (whilst the spiking is inhibited) for a target to translate into the 

contralateral hemisphere. Note though, that the mirror symmetric CSTMD would be 

weakly directional selective to the opposite direction of motion (progressive). Further 

electrophysiological investigation and modelling of these interactions is required. 
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Surprisingly, there has been limited investigation of STMDs and contrast polarity. In 

hoverfly, STMD responses to white targets have been observed, though they seemed to 

be only marginally beyond the spontaneous rate (Nordström et al., 2006). 

The dark target selectivity that I observe in CSTMD is interesting from the modelling 

perspective. This suggests an underlying mechanism that includes a partial rectification 

to separate the dark contrast (an ‘off’ channel). With EMD-derived models, targets 

should provide responses largely independent of the sign of the contrast. To provide this 

polarity selectivity with an EMD model, a half-wave rectification is required to separate 

the contrast decrements prior to their multiplication. The ESTMD model is inherently 

contrast polarity selective, as it already includes this rectification stage. 

CSTMD neural responses to the targets, in both images, are robust across many 

repeated trials, whilst the response to the other features appears more intermittent. The 

intermittent responsiveness to the bar-like features (columns in car park, blue arrows) is 

interesting, as the presentation of bars within a target height tuning scenario (on a white 

background) provides a continuous tuning curve, rather than intermittent spiking 

responses. 

The ESTMD model was tuned for fly visual parameters such as spatial sampling, 

optical blur, size-selective inhibition and the value of the correlation delay time-

constant. Therefore, an exact feature ‘matching’ (reliant on a spatiotemporal signature) 

between model and the dragonfly neuron was not expected. However, I had calculated 

that the differences in important attributes between the fly and dragonfly would cancel 

out in these experiments. 

Generally, the CSTMD responses matched my expectations with robust target response, 

similar generation of false positives and the induced changes due to the image 

manipulation. Further aspects of the response can be readily attributed to the higher-

order interactions previously described, such as a neural priming, temporal adaptation 

and inter-ocular inhibition.    

These interactions are complex, and it will take time and further research to elucidate 

the mechanisms involved. For now though, it is clear that subtle manipulation of the 

images (determined by the ESTMD model) has accurately predicted dramatic changes 

in the observed electrophysiological responses. . 
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 CHAPTER 7:   

CONCLUSIONS 
 

In this thesis I have presented a neuromorphic model (Chapters 2 and 3) for target 

discrimination in visual clutter based not on segregation of target motion from that of its 

background, but rather on its specificity for features. It is interesting to note that the 

stimuli for which biological STMD neurons are most sensitive appear to be relatively 

rare features in natural scenes allowing us to hone the thresholds for target 

discrimination (Chapters 4 and 5) so as to optimally reject the noise introduced by 

background clutter. Using optimal thresholds determined from modelling, my direct 

comparison between model predictions and STMD responses (Chapter 6) show that this 

model captures the performance of the biological system to a large degree. 

Putative input elements and electrophysiological recording 

Although my data make a compelling case for a relatively simple solution to a complex 

problem, much further work needs to be carried out before we conclude that the model I 

present is indeed the solution that has evolved in biology. Perhaps the biggest challenge 

facing future work to establish whether this is the case, lies in the tiny size of the 

retinotopically organized input elements in the insect visual pathway, particularly in the 

medulla. Although the results occupy only a few pages of text (Chapter 2), a major 

component of my research involved performing intracellular recordings from ‘on-off’ 

units within the medulla of the blowfly (Calliphora stygia), now referred to as the 

rectifying, transient cells (RTC). The ‘on-off’ units had previously been found to be 

temporally sluggish, an unlikely characteristic for an element within the target detection 

pathway. I examined the temporal responsiveness of the RTC to a more optimal 

stimulation (the doublet), examined the transient response, and discovered that these 

units had an equivalent frequency response to earlier neurons in the visual pathway. 

Generally, this approach may be useful in studying other highly adaptive, transient 

systems, where the steady-state responses are not functionally relevant. The discovery 

of these temporal characteristics, combined with the previously reported spatial 

properties, led to a newly hypothesised role in target discrimination.  
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While recording from other putative input elements proposed in my model would seem 

a natural next step in validating this model, neurons within the medulla of the fly are 

notoriously difficult to record from due to their small size and this then constrains the 

duration of the experiments. To obtain this RTC data set (independent adaptation and 

temporal responsiveness) I had to overcome many problems with electrophysiological 

techniques. This included finding the appropriate age window for the flies (4 to 7 days), 

finding a dissection method to access the medulla and development of a fly Ringer 

solution. In the end, recordings were of typically short duration, and the data presented 

are the end results of hundreds of hours or recording effort. These technical issues 

should be considered carefully by future researchers wishing to adopt a similar 

approach.  

On-Off units 

I developed a model of the ‘small target motion detector’ (STMD) neuron that included 

an RTC-type processing component and showed that it effectively discriminated targets 

from a cluttered surround. This finding revealed that within natural scenes, the target 

signature that biological STMDs are tuned to detect is quite rare. It is this rarity that 

allows the nonlinear filtering to aid in target discrimination. This is not to assert that 

RTCs or ‘on-off’ units are the elements along the pathway to the STMD neurons, but 

rather, that this research identified the suitability of this form of processing for the 

target detection task. Regardless of how much further computation is required in 

biological target discrimination, this mechanism is a good spatiotemporal pre-filter for 

the task, designed from known elements within the insect visual system. 

As noted above, electrophysiological experiments from RTCs are a technically 

challenging task, though one worthy of further investigation. Now that we have 

examined some of the temporal properties, the next focus is to study the spatial 

characterisation of the RTC. This would involve experiments searching for any spatial 

antagonism and if found, the extent of these interactions. Due to the limited 

experimental duration when recording from RTCs, this requires an efficient visual 

stimulus apparatus designed for the task. Note that James and Osorio (1996) have 

successfully applied very rapid 2-dimensional white noise techniques to characterize 

spatial interactions within medulla columnar neurons in the locust, so application of this 

approach to the fly neurons may be informative.  
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Flicker versus motion and future modelling 

The ESTMD model is not a true motion detector, but rather a temporal filter for a 

specific local flicker signature (with surround inhibitory interactions). This complex 

spatiotemporal signature is encountered with the motion of a dark target, but also with a 

localised black target appearance and then disappearance (flicker). An experiment with 

STMD neurons, with the visual stimulation of localised flicker targets, is unlikely to 

produce a neural response. Even STMD responses to two point ‘apparent motion’ are 

limited (Barnett, personal communications). It would seem that some form of higher-

order signal integration, spatial or temporal, is required for robust STMD responses. 

This very robustness of the response to the features for which they are tuned makes 

investigation of STMDs with ‘elementary’ stimuli challenging.  

STMDs can be direction selective, which from the perspective of this modelling, could 

emerge from either asymmetric inhibition or spatial facilitation during pooling of 

ESTMD units. Both of these aspects would require a directed target stimulus to drive 

the STMD neuron. Either of these directional aspects could be included in future 

modelling of the neuron.  

Higher order receptive field structure 

One of the most intriguing (indeed tantalizing) outcomes of my experiments to verify 

the model against biological STMD recordings (Chapter 6) was the observation that 

very subtle image manipulation of false positive features in natural scenes caused 

surprisingly large changes in the response of the neuron, not only at the location where 

those features had been obliterated, but at other regions within the larger receptive field. 

This highlights the complexity of the receptive field of the high-order neuron (the 

dragonfly CSTMD1) and a fundamental problem with my approach. My rationale for 

studying this particular neuron was that its large size created the possibility of the 

prolonged experiments required for quantitative analysis of responses to targets 

embedded in complex scenes. However, the trade-off is that (as revealed by my 

characterization of the receptive fields in chapter 6) the complex interaction of the 

inhibitory inputs from the contralateral visual hemisphere are clearly playing an 

important role in shaping the responses within these natural scenes. The CSTMD 

experiments revealed that the features predicted by our ESTMD model to be highly 

significant, when altered, had a dramatic effect on the output of the dragonfly CSTMD. 

These results revealed a complicated physiological system, with higher-order 
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complexities ensuring a complete interpretation is a challenging task. Nevertheless, 

these elaborate interactions did not mask the fact that we were able to invoke dramatic 

changes in neural response as predicted via the subtle image manipulations. This result 

is highly significant and should be investigated further.  

An emergent hypothesis to explain my results is that release from this inhibition as 

targets cross the mid-line of the visual fields might ‘prime’ the global response to 

amplify the local excitation as the target enters the receptive field ‘hot spot’. This 

hypothesis can be addressed with further careful experiments using multiple target 

stimuli, but also highlights the need for additional modelling of the higher order 

receptive field properties. Hence, further modelling is required to include spatial 

integration over the receptive field. That is, a transition of my model from an ETSMD 

(i.e. a local stage of processing) to that for a true STMD. When integrating over the 

ESTMD outputs, it will be important to set the level of the threshold on each input 

appropriately. Too high, and target features within the receptive field are missed, and 

too low will cause spatial integration of ‘feature noise’. This is an area ripe for future 

investigation. The higher order aspects of the CSTMD can also be modelled, including 

the inter-ocular inhibitory interactions. These models will then form the basis for 

integration into pursuit algorithms, taking the target detection task into the realm of 

target tracking. 

The model elaborations (5.2) have provided some theoretical considerations that can 

subserve the design of further electrophysiological investigation of higher order 

properties. The ESTMD model predicts robust target detection, without relative motion 

cues, as observed in the physiological system. However, a modulation of the STMD 

responses is expected if the system includes the mechanisms as described in the model 

elaborations. Careful design of the visual stimuli may be able to determine if this is the 

case. 

In engineered systems, computer vision processing may be performed on moving 

platforms (e.g. UAVs). Approaches to feature detection mechanisms that are 

normalised to account for ego-motion are therefore a relevant area of investigation. 

Although preliminary, the algorithms as highlighted in this thesis may subserve this 

task. 
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The natural image inputs to the model can also be extended to include video input more 

akin to a 2D+t representation of visual ecology, including both rotatory and translatory 

components. The ability of the ESTMD (particularly with model elaborations) to 

discriminate targets embedded in these natural videos could be determined.   

The scientific arena for the investigation of biological target detection is vast and 

further understanding will come from future endeavours in both electrophysiological 

and modelling efforts. 
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