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Theorem 1 (Time-Rescaling Theorem): Let 0 < t1 <
t2, ..., tN < T be a realization from a point process with
conditional intensity function λ(t|Ht), define

zj =
∫ tj

tj−1

λ(t|Ht) dt (1)

for j = 1, ..., N and t0 = 0. Then, zj are independent
exponentially distributed random variables with rate pa-
rameter 1.

I. Appendix A
II. Monte Carlo Estimate of the Integral

Λ̂MC =
Li∑

j=1
(tj − tj−1)

(
1

Nτ

Nτ∑
k=1

λ(τk)
)

(2)

where, τk ∼ U(tj−1, tj) and Nτ is the number of points
used for evaluation. This allows for an unbiased estimate
of the integral as E(Λ̂MC) = Λ (Proof in supplementary
materials). Similarly, the gradients can be approximated
using:

∇Λ̂MC =
Li∑

j=1
(tj − tj−1)

(
1

Nτ

Nτ∑
k=1

∇λ(τk)
)

(3)

Λ̂MC =
Li∑

j=1
(tj − tj−1)

(
1

Nτ

Nτ∑
k=1

λ(τk)
)

(4)

E[Λ̂MC] =
Li∑

j=1
(tj − tj−1)

(
1

Nτ

Nτ∑
k=1

E[λ(τk)]
)

(5)

As τk ∈ (tj−1, tj) are i.i.d, they have the same expectation
E[τj ].

E[Λ̂MC] =
Li∑

j=1
(tj − tj−1) (E[λ(τj)]) (6)

The support of E[τj ] lies in (tj−1, tj),

E[λj ] =
∫ tj

tj−1

1
(tj − tj−1)λ(s) ds (7)

substituting in Eq. 6,

E[Λ̂MC] =
Li∑

j=1
(tj − tj−1)

(∫ tj

tj−1

1
(tj − tj−1)λ(s) ds

)
(8)

Table I: Dataset statistics
Dataset |Y| Seq. Length # of Seq.

Mean Train Val Test
Retweets 3 109 20000 2000 2000

StackOverflow 22 72 4777 530 1326
MIMIC-II 75 4 527 58 65
Financial 2 2074 90 10 100

StarCraft II 16 78 6141 1316 1317

simplifying,

E[Λ̂MC] =
Li∑

j=1

∫ tj

tj−1

λ(s) ds (9)

E[Λ̂MC] =
∫ T

0
λ(s) ds = Λ ■ (10)

Thus, the Monte Carlo approximation is unbiased.

III. Implementation Details
Dropout [1] probability of 0.1 is used to reduce over-

fitting. We also make use of Layer Normalization in the
input-to-graph update and edge update stages to prevent
explosion of gradients and activations to stabilize training.
ADAM is used as the optimizer [2] and the learning rate
is chosen to be 10−4. The final complete loss function to
be minimized is:

L = Lλ + βyLy + βtLt (11)

In the loss function L, βy is set to 1 while βt is set to 100
to scale the L2 error. The hyper-parameters for various
datasets are shown in table II. The learning rate was 10−4

for all the datasets and the optimizer used was ADAM [2].
LeakyReLU parameter was set to α = 0.2. The model was
trained till 50 epochs for all the datasets. We stack 2 layers
of GAT for graph-to-graph update. Additionally, we add
a residual connection that allows for skipping through the
GAT Layer for better flow of gradients

Table II: Hyper-parameters
Dataset din = dv = du de # Heads TBPTT steps

Retweets 256 16 8 20
StackOverflow 256 16 16 20

Financial 256 16 16 20
MIMIC II 128 16 8 20

StarCraft II 256 32 8 40

The hyper-parameters for THP were the ones prescribed
by the authors and the official github implementation was
used for results. For StarCraft II, the model parameters



were M = 256, K = V = 64, dinner = 2048, # Heads =
8.

For RMTPP, NHP and THP, instead of performing∫∞
tj

t p(t|Ht) dt to find the time of the next event, we add
a FC layer to the models to directly predict the time of
the next event t̂ using the latent embeddings. We modify
RMTPP to use the same λ∗ expression as ours instead of
the original one proposed by the authors as it restricted the
conditional intensity expression to the exponential family
for a tractable likelihood computation. This also allows for
a fair comparison between the models. This is not done
for NHP because NHP allows for latent embeddings to
be generated at any time t, thus we have used the one
proposed by the authors.

IV. StarCraft II Dataset
StarCraft II is a real time strategy game in which players

play against each with the objective of building an army
and defeating the opponent. The vast event space of the
game leads to significant complexity and has led to the
game becoming a popular AI testbed. The large amount
of available human replay files make it possible to create a
suitable dataset for this work. To achieve dataset creation,
we build a data generation tool based on the open source
PySC2 environment and the StarCraft II machine learning
API supported by the game developer. The generation tool
runs the original game environment and an observer agent
that gathers data from the game environment through
the PySC2 interface. It performs data extraction based on
specific observation rules defined by the user to generate
data accordingly. As shown in Fig. 1, for the dataset used
in this work, we define an observation rule that records
certain player actions as event sequences from observing
the game environment running the replay files of one
versus one games.

There are different types of buildings in StarCraft II
and each serves different purpose. For example, there are
buildings that produce army and buildings that develop
technology. The location of buildings also has impor-
tant influences. For example, players can choose to put
buildings in clusters in order to more effectively protect
them or they can choose to put buildings in separate
locations so that the opponent has more difficulties in
finding them. Therefore, the strategy that a player adopts
can be largely reflected in the building construction in-
formation. In addition, the evolution of strategy taken by
each player has a dynamic that depends on interaction
with its opponent. The correlation between two players’ s
actions thus contains important information about their
strategies.

Based on the preceding discussion, for data used in this
work, we choose to extract sequences of building construc-
tions. To achieve this, the observation rule is defined with a
list of action-of-interests related to building constructions.
The observer agent extracts building construction actions
of both players in the game. It records three dimensions of

each actions: building type, building time and building lo-
cation. Each extracted data point contains two sequences:
one for each player.

A part of a game replay used in the event-to-event
sequence is illustrated in Fig. 2: the player construct a
Pylon type building at the beginning, which provides
resources for building more units. This is followed by a
Gateway building for army production at time of 1:42.
Later in the game, the player build a Nexus, which is
used for resource gathering, at a remote location. This
move is performed to expand the occupied territory. It
is also worth noting that the shown visualization is for
demonstration purpose only, and the data extraction tool
as described does not rely on the fully rendered game.
It extracts information from the API directly to improve
data generation efficiency.
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