

Supplementary Material:

1 SUPPLEMENTARY TABLES AND FIGURES

1.1 Figures

Figure S1. Potential-temperature–salinity plot, showing major water mass definitions for the phytoplankton samples considered in this study. Red circles: Atlantic, blue squares: Arctic, purple triangles: Barents, inverted cyan triangle: Melt, orange diamonds: Coastal. The criteria discriminating water masses are delineated by solid red (Atlantic), dashed blue (Arctic), long-dashed cyan (Melt) and dot-dashed orange (Coastal) boundaries. All samples not falling within these fields are considered to belong to the 'Barents' water mass. Plot produced in the R oce package (see main manuscript for citation).

Figure S2. $\cos\theta$ matrices computed from Redundancy Analysis (RDA), relating phytoplankton cell counts, pigments and absorption spectra to explanatory variables– (A), (B), (C), and by decomposed axes– (D), (E), (F). Samples are ordered by diatom contribution to microphytoplankton biomass to provide an intuitive impression of environmental dependencies across the samples. Differing gradients, for example over silicic acid concentration between cell counts and pigments, demonstrate that salient environmental dependencies across the phytoplankton samples depend on data type. PAR: 'Photosynthetically Available Radiation'. Depth: depth of sample. σ_{θ} : potential density. Stratification: depth of maximum buoyancy frequency.

Figure S3. $\cos\theta$ matrices computed from Redundancy Analysis (RDA), as in Figure S2, and re-ordered by month-of-sampling, to provide a summary of seasonal succession in functional structure across the datasets. PAR: 'Photosynthetically Available Radiation'. Depth: depth of sample. σ_{θ} : potential density. Stratification: depth of maximum buoyancy frequency.

Figure S4. Linear model of variation in specific absorption at 676 nm against chlorophyll-a concentration, demonstrating variation in pigment packaging.

Figure S5. RDA triplot produced for cell count data, for which diatom taxa had been removed. Compare with Figure 6A in the main manuscript file.

Figure S6. RDA space for variance-normalised pigment structure. Compare with Figure 6B in the main manuscript file.

1.2 Tables

Table S1. Rotation matrix relating principal components to original scaled environmental variables. PAR: 'Photosynthetically Available Radiation'. Depth: depth of sample. σ_{θ} : potential density. Stratification: depth of maximum buoyancy frequency. Numbers limited to 3 decimal places.

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Oxygen	0.367	-0.078	-0.218	-0.166	0.608	-0.476	0.345	0.085	0.248	-0.002
Salinity	-0.423	0.289	-0.105	-0.405	0.050	-0.059	0.044	0.069	0.037	0.740
σ_{θ}	-0.405	0.065	-0.116	-0.456	-0.258	-0.492	-0.014	0.023	-0.093	-0.541
Temperature	-0.220	0.487	-0.046	-0.135	0.429	0.548	0.122	-0.050	0.192	-0.394
Stratification	-0.305	0.202	0.178	0.521	-0.143	-0.197	0.709	0.038	-0.003	0.005
Ammonium	-0.267	0.256	-0.155	0.532	0.292	-0.352	-0.580	0.030	0.099	-0.005
Silicic acid	-0.271	-0.312	0.531	-0.079	0.273	-0.010	-0.040	-0.660	0.137	0.029
Nitrate	-0.305	-0.405	0.378	-0.029	0.229	0.094	-0.055	0.724	0.085	-0.054
PAR	0.250	0.402	0.489	-0.102	0.219	-0.157	-0.063	0.095	-0.664	0.001
Depth	-0.285	-0.373	-0.453	0.101	0.310	0.148	0.130	-0.119	-0.644	0.000

Table S2. Rank abundances of most common microphytoplankton taxa by cell count. Abbreviations employed sequentially by column.

Water mass	Arctic	Atlantic	Barents	Coastal	Melt
rank 1	Chaetoceros socialis	P. delicatissima	C. socialis	Scrippsiella spp.	C. furcellatus
rank 2	Fragilariopsis spp.	Attheya spp.	F. spp	P.delicatissima	Eucampia spp.
rank 3	Fossula spp.	coastal C. spp.	Fo. spp	S. spp. ($< 50 \mu m$)	F. spp.
rank 4	coastal C. spp.	P. seriata	P.delicatissima	<i>G. spp.</i> ($< 20 \mu m$)	S. spp. ($< 50 \mu m$)
rank 5	C. furcellatus	Cylindrotheca spp.	T. nordenskioeldii	coastal C. spp.	Pe. spp.
rank 6	Thalassiosira spp.	N. spp.	N. pelagica	broken dinoflagelates	Gyrodinium fusiforme
rank 7	Pseudo-nitzschia delicatissima	Leptocylindricus minimus	Ñ. spp.	Peridinium spp.	Cy. spp.
rank 8	T. nordenskioeldii	oceanic C. spp.	C. furcellatus	unknown dinoflagellates	T. spp.
rank 9	Navicula pelagica	<i>Gymnodinium spp.</i> (< 20µm)	L. minimus	G. spp. (> $20\mu m$)	M. spp.
rank 10	<i>Strombidium spp</i> . (< 50µm)	Mesodinium	T. rotula	T. spp.	broken dinoflagellates

Table S3. Rank abundances of most common microphytoplankton taxa by biomass. Abbreviations employed sequentially by column.

Water mass	Arctic	Atlantic	Barents	Coastal	Melt	
rank 1	Thalassiosira. spp.	Laboea spp.	F. spp.	L. spp.	S. spp. ($< 50 \mu m$)	
rank 2	Chaetoceros socialis	broken dinoflagellates	T. nordenskioeldii	broken dinoflagellates	broken dinoflagellates	
rank 3	Fragilariopsis	unknown dinoflagellates	C. socialis	S. spp. (< 50μ m)	Peridinium. spp.	
rank 4	T. nordenskioeldii	Protoperidinium depressum	Fo. spp.	Scrippsiella spp.	C. furcellatus	
rank 5	<i>Strombidium spp.</i> (< 50µm)	Strobilidium spp.	T. rotula	unknown dinoflagellates	Eucampia spp.	
rank 6	coastal C. spp.	M. spp.	T. spp.	S. spp. (> $50\mu m$)	Gyrodinium fusiforme	
rank 7	broken dinoflagellates	Pseudo-nitzschia seriata	T. anguste-lineata	St. spp.	M. spp.	
rank 8	unknown dinoflagellates	Rhizosolenia hebetata	Navicula. spp.	Leegardiella spp.	P. spp.	
rank 9	Mesodinium spp.	S. spp. ($< 50 \mu m$)	broken dinoflagellates	Gymnodinium spp. $(> 20 \mu m)$	T. spp.	
rank 10	Fossula spp.	S. $spp. (> 50 \mu m)$	P. depressum	P. depressum	L. spp.	

Table S4. Pure, term and marginal significance testing for explanatory variables. **Top**: proportion of explained variance, **Bottom (in brackets)**: p-value. Significant (*) (p<0.05) cells bold. PAR: 'Photosynthetically Available Radiation'. Depth: depth of sample. σ_{θ} : potential density. Stratification: depth of maximum buoyancy frequency. Numbers limited to 3 decimal places.

Variable:	O_2	Salinity	σ_{θ}	Temperature	Stratification	Ammonium	Silicic acid	Nitrate	PAR	Depth
Pure affect: cell counts	0.038	0.054	0.072	0.095	0.034	0.053	0.061	0.060	0.043	0.030
Fulle effect. Cell coullis	(0.090)	(0.013*)	(0.002*)	(0.001*)	(0.140)	(0.019*)	(0.007*)	(0.011*)	(0.052)	(0.240)
Dura affect: absorption spectra	0.029	0.034	0.060	0.200	0.010	0.018	0.065	0.088	0.120	0.060
i die enect. absorption spectra	(0.310)	(0.250)	(0.075)	(0.001*)	(0.740)	(0.540)	(0.061)	(0.025*)	(0.006*)	(0.056)
Pure effect: nigments	0.012	0.072	0.047	0.130	0.026	0.046	0.051	0.029	0.037	0.038
i die effect. pignients	(0.750)	(0.040*)	(0.150)	(0.004*)	(0.380)	(0.110)	(0.110)	(0.290)	(0.210)	(0.210)
Term effect: cell counts:	0.038	0.049	0.120	0.039	0.024	0.042	0.045	0.020	0.021	0.017
Term encet. een counts.	(0.046*)	(0.013*)	(0.001*)	(0.031*)	(0.220)	(0.014*)	(0.022*)	(0.420)	(0.330)	(0.620)
Term effect: absorption spectra:	0.028	0.019	0.250	0.037	0.014	0.015	0.018	0.025	0.023	0.022
Term enect: absorption spectra.	(0.180)	(0.350)	(0.001*)	(0.120)	(0.490)	(0.500)	(0.370)	(0.260)	(0.270)	(0.290)
Term effect: nigments:	0.012	0.073	0.140	0.054	0.025	0.010	0.071	0.010	0.012	0.008
Term encet. pigments.	(0.620)	(0.013*)	(0.002*)	(0.042*)	(0.270)	(0.740)	(0.024*)	(0.690)	(0.640)	(0.820)
Marginal effect: cell counts:	0.017	0.031	0.032	0.039	0.035	0.043	0.028	0.018	0.022	0.021
	(0.800)	(0.200)	(0.180)	(0.089)	(0.110)	(0.061)	(0.300)	(0.770)	(0.520)	(0.570)
Marginal effect: absorption spectra:	0.037	0.010	0.007	0.020	0.017	0.016	0.031	0.018	0.046	0.031
Warginar effect. absorption speetra.	(0.230)	(0.800)	(0.890)	(0.500)	(0.600)	(0.590)	(0.290)	(0.520)	(0.150)	(0.300)
Marginal effect: nigments:	0.031	0.059	0.058	0.041	0.016	0.012	0.045	0.009	0.009	0.010
marginal criect. pignients.	(0.270)	(0.074)	(0.072)	(0.180)	(0.590)	(0.710)	(0.130)	(0.810)	(0.850)	(0.80)

Table S5. Pure, term and marginal significance testing for decomposed explanatory variables. **Top**: proportion of explained variance, **Bottom (in brackets)**: p-value. Significant (*) (p<0.05) cells bold. Numbers limited to 3 decimal places.

Variable:	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
Dure effect: cell counts	0.051	0.074	0.054	0.035	0.079	0.043	0.020	0.016	0.015	0.026
i die eneet. een counts	(0.027*)	(0.005*)	(0.009*)	(0.140)	(0.003*)	(0.062)	(0.560)	(0.880)	(0.940)	(0.380)
Dura offact: absorption spectra	0.050	0.180	0.018	0.009	0.051	0.094	0.009	0.016	0.023	0.007
i die eneet. absorption speetra	(0.110)	(0.001*)	(0.550)	(0.780)	(0.110)	(0.017*)	(0.800)	(0.610)	(0.430)	(0.880)
Pure effect: nigments	0.050	0.060	0.050	0.016	0.083	0.070	0.007	0.031	0.007	0.040
i ure eneet. pigments	(0.120)	(0.064)	(0.120)	(0.650)	(0.019*)	(0.040*)	(0.910)	(0.290)	(0.920)	(0.130)
Term effect: cell counts:	0.051	0.074	0.050	0.035	0.079	0.043	0.020	0.016	0.015	0.026
Term enect. cen counts.	(0.008*)	(0.001*)	(0.005*)	(0.054)	(0.001*)	(0.026*)	(0.300)	(0.650)	(0.740)	(0.170)
Tarm affact: absorption spectra:	0.051	0.180	0.018	0.009	0.051	0.093	0.009	0.016	0.023	0.007
Term eneet. absorption spectra.	(0.070)	(0.002*)	(0.370)	(0.670)	(0.064)	(0.004*)	(0.690)	(0.420)	(0.240)	(0.790)
Term effect: nigments:	0.050	0.060	0.049	0.016	0.083	0.070	0.007	0.031	0.007	0.045
Term encet. pigments:	(0.070)	(0.032*)	(0.051)	(0.510)	(0.009*)	(0.021*)	(0.840)	(0.200)	(0.860)	(0.093)
Marginal effect: cell counts:	0.051	0.074	0.054	0.035	0.079	0.043	0.022	0.016	0.015	0.026
	(0.006*)	(0.001*)	(0.009*)	(0.050)	(0.001*)	(0.016*)	(0.340)	(0.670)	(0.740)	(0.170)
Marginal effect: absorption spectra:	0.074	0.140	0.022	0.014	0.050	0.081	0.008	0.017	0.028	0.013
Warginar effect. absorption spectra.	(0.017*)	(0.001*)	(0.350)	(0.570)	(0.048*)	(0.008*)	(0.760)	(0.460)	(0.210)	(0.590)
Marginal effect: nigments:	0.050	0.060	0.049	0.016	0.083	0.070	0.007	0.031	0.007	0.045
Marginar encet. pignients.	(0.068)	(0.034*)	(0.059)	(0.500)	(0.012*)	(0.027*)	(0.840)	(0.200)	(0.850)	(0.081)