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The following document contains supplementary text outlining our geothermometric

modelling to supplement that provided in section 5.3.1 in the main text. It also includes a

number of supplementary figures.

Text S1.
To estimate variations in lithospheric thickness across the Kaavi-Kuopio field, we have

estimated pressure and temperature of equilibration of clinopyroxene xenocrysts (data



from Lehtonen and O’Brien, 2009; Peltonen et al., 1999) using the thermobarometer of
Nimis and Taylor (2000) and calculated corresponding paleogeotherms with FITPLOT
(Mather et al., 2011). Clinopyroxene-based paleogeotherms for Pipes 2, 3,5, 7, 9, 10 and
14 suggest there is apparently some variability in lithospheric thickness beneath these
bodies (Supp.Fig. S3). Although the clinopyroxene data are limited for some bodies
(Pipes 9, 10 and 14), there appears to be no clear relationship between lithospheric
thickness and isotopic composition (Supp.Fig. S3H). This lack of relationship is
exemplified by Pipe 2 and Pipe 3 which are geographically adjacent and petrographically
nearly identical (Fig. 1, main text), have traversed lithospheric columns of very similar
thickness (Supp.Fig. S3), yet have distinct isotopic signatures (¢Hf( of +0.4 for Pipe 2

and -3.9 for Pipe 3; Fig. 2, main text; Supp.Fig. S3).

To evaluate the potential role of temperature in explaining the observed inter-pipe eHfjj
variability we have applied the olivine-chromite Fe-Mg exchange geothermometer
(Ballhaus et al., 1994; Fedortchouk and Canil, 2004; O'Neill and Wall, 1987) to the
Kaavi-Kuopio samples. To apply this geothermometer to samples lacking fresh olivine,
we have calculated olivine rim Mg# values for Pipes 2, 3 and 10 using the linear
relationship between chromite Mg# and olivine rim Mg# observed in the Kaavi-Kuopio
kimberlites (Supp.Table S1; Dalton et al., 2020). This approach provides temperatures
ranging from ~1240 °C (Pipe 14) to ~1140 °C (Pipe 10) with typical uncertainties of +50
°C (Fedortchouk and Canil, 2004; Supp. Table. S1; Supp.Fig. S4). Importantly, these
values do account for the thermal effects of mantle assimilation, an endothermic process

that is known to influence the major element composition of these melts (e.g., Dalton et



al., 2020a). To estimate the relative decrease in melt temperature associated with bulk
assimilation of mantle peridotite wall rocks we have employed the following equation

[1], which is modified from Kavanagh and Sparks (2009).

[1] Ty _ (TeX(fXCpwr+(A=F)XCp kim )+ XLwr—F XTwrXCpwR)
Kimb (A=)XCp kim)

Where Tg;,,p = temperature (K) of kimberlite melt prior to assimilation of mantle
peridotite; T, = equilibrium temperature (K) of kimberlite after peridotite assimilation,
calculated from the olivine-chromite Fe-Mg exchange thermometer; f = fraction of
mantle peridotite assimilated; C, ,, x= specific heat capacity of whole-rock peridotite
(1200 J kg* K1); Cp kim= specific heat capacity of kimberlite (1600 J kg™* K™); Ly =

latent heat of whole-rock peridotite (600000 J kg™).

It is difficult to place accurate constraints on the volume/fraction of peridotite material
assimilated by an ascending kimberlite. Recent calculations predict that less than 15%
(by mass) of orthopyroxene can be dissolved by kimberlites (Giuliani et al., 2020) while
estimates of bulk peridotite assimilation based on bulk-kimberlite PGE concentrations
vary between 5 and 35 vol.% for dikes of the Premier kimberlite (Tappe et al., 2020).
Here we estimate volume fraction of assimilation using the orthopyroxene dissolution
calculations of Giuliani et al. (2020b) applied to each Kaavi-Kuopio kimberlite
(Supp.Table S1). Whilst significant uncertainty may exist in the absolute estimates of
assimilation volumes, we stress that the relative differences among the Kaavi-Kuopio
kimberlites of importance here. We observe no simple relationship between temperature

(either before or after lithospheric mantle assimilation) and eHf{;) (Supp.Fig. S4). In



summary, it is evident that eHfj;) variations in the Kaavi-Kuopio kimberlites cannot be

readily explained by differences in melting temperature.

10 50% assimilation Depleted convectin
\ ‘/ mantle mel
@) z*
5 a g -
@) 50% assimilation
= 01 va
u—
L MARID
w A
_5 . 2
Ch
8
_10 g 83 & Nd=11ppm; Hf = 4 ppm
23 & Nd=1ppm; Hf =4 ppm
& Nd=11ppm; Hf = 0.5 ppm
& Nd=1ppm; Hf = 0.5 ppm
-10 -5 0 5 10
eEN Cl i)

Kaavi-Kuopio Kuusamo Orangeites/Lamproites
Pipe 1 O Lampi $2 Lentiira-Kuhmo-Kostomuksha
Pipe 2 VYV Kasma 47
Pipe 3 A Kasma 45
Pipe 5 O Kalettomanpuro
Pipe 9 [0 Kattaisenvaara
Pipe 10 Ultramafic Lamprophyre
Pipe 14 > Dike 15 UML

o
Y
A
CJ
@]
Lh
&

Supplementary Figure S1. Bivariate plot of eHf;, vs eNd; showing a binary mixing
relationship a geochemically depleted asthenospheric melt (composition from
the PREMA reservoir of Tovey et al. (2021)) and increasing proportions of MARID-
like, enriched lithospheric mantle (isotopic composition from Fitzpayne et al.
(2019), trace element abundances from range presented by Gregoire et al. (2002)
and Fitzpayne et al. (2018)). See Supplementary Table S2 for model parameters.
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Supplementary Figure S2. Bivariate plot of Hf(i) vs eNd(i) showing a binary
mixing relationship a geochemically depleted asthenospheric melt (composition
from the PREMA reservoir of Tovey et al. (2021)) and increasing proportions of
MARID-like, enriched lithospheric mantle (isotopic composition from olivine
lamproites in this study, taken as proxy for composition of local metasomatised
lithospheric mantle) and trace element abundances from range presented by
Gregoire et al. (2002) and Fitzpayne et al. (2018)). See Supplementary Table S2
for model parameters.
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Supplementary Figure S3: (A-G) Plots of P-T data for clinopyroxene xenocrysts
from the Kaavi-Kuopio kimberlites and (H) a comparison of lithospheric
thickness beneath each kimberlite with average kimberlite eHf;, compositions. A)
Pipe 2; B) Pipe 3; C) Pipe 5; D) Pipe 7; E) Pipe 9; F) Pipe 10; G) Pipe 14; H)
Lithospheric thickness, as calculated from A-G, vs. average gHf(;, compositions for
each kimberlite. P-T conditions calculated using the thermobarometer of Nimis
and Taylor (2000) and clinopyroxene data from Lehtonen and O’Brien (2009) and
Peltonen et al. (1999). Paleogeotherms derived using FITPLOT (Mather et al.,
2011) assuming a heat flow of 36 mW/m? and an isentrope of 1300 °C.
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Supplementary Figure S4: Plots of kimberlite melt temperatures and eHf;,
compositions for the Kaavi-Kuopio kimberlites. A) Kimberlite melt temperature
vs eHf; where temperatures are calculated based on olivine-chromite Fe-Mg
exchange geothermometer (Ballhaus et al., 1994; Fedortchouk and Canil, 2004;
O'Neill and Wall, 1987) and represents the physical conditions after assimilation
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of peridotitic wall-rock; B) Kimberlite melt temperature vs eHf;, where the
temperature is corrected for assimilation based on estimates for the fraction (%)
of orthopyroxene assimilated and using equation [1]; orthopyroxene
assimilation estimates calculated using the formulation of Giuliani et al. (2020);
C) Plots A & B overlain with arrows to indicate change in temperature before and
after assimilation. All values presented in Supplementary Table S1
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Supplementary Figure S5: eNd;, vs #Sr/%Sr; isotope composition of Kaavi-
Kuopio kimberlites and entrained xenoliths and xenocrysts. Xenolith and
xenocryst data are from Peltonen et al. (1999). Kimberlite literature data are

from O'Brien and Tyni (1999).
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Supplementary Figure S6: Bivariate plot of eHf; vs eNd;; for the Kaavi-Kuopio
kimberlites showing binary mixing relationship between a primitive kimberlite
source region and subducted material of various ages. A) Subduction at 3.5 Ga;
B) Subduction at 2 Ga. Subducted material is composed of 100% MORB (Gale et
al., 2013; Nowell et al., 2004). Compositions of subducted component adjusted to
account for subduction-induced, sediment-fluid modification following Stracke
et al. (2003). See Supplementary Table S2 for full model parameters.
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Supplementary Figure S7: Bivariate plot of eHf;, vs eNd; for the Kaavi-Kuopio
kimberlites showing binary mixing relationship between a primitive kimberlite
source region and subducted material of various ages. A) Subduction at 3.5 Ga;
B) Subduction at 3 Ga; C) Subduction at 2.5 Ga; D) Subduction at 2 Ga. Subducted
material is composed of 80% MORB (Gale et al., 2013; Nowell et al., 2004) and
20% Sediment (Sed.; GLOSS Il of Plank, 2014). Compositions of subducted
component adjusted to account for subduction-induced, sediment-fluid
modification following Stracke et al. (2003). See Supplementary Table S2 for full

model parameters.
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Supplementary Figure S8: Bivariate plot of eHf; vs eNd;;, for the Kaavi-Kuopio
kimberlites showing binary mixing relationship between a primitive kimberlite
source region and subducted material of various ages. A) Subduction at 3.5 Ga;
B) Subduction at 3 Ga; C) Subduction at 2.5 Ga; D) Subduction at 2 Ga. Subducted
material is composed of 90% MORB (Gale et al., 2013; Nowell et al., 2004) and
10% Sediment (Sed.; coarse sediment of Bayon et al., 2009). Compositions of
subducted component adjusted to account for subduction-induced, sediment-
fluid modification following Stracke et al. (2003). See Supplementary Table S2
for full model parameters.
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Supplementary Figure S9: Bivariate plot of eHf;, vs eNd; for the Kaavi-Kuopio
kimberlites showing binary mixing relationship between a primitive kimberlite
source region and subducted material of various ages. A) Subduction at 3.5 Ga;
B) Subduction at 3 Ga; C) Subduction at 2.5 Ga; D) Subduction at 2 Ga. Subducted
material is composed of 80% MORB (Gale et al., 2013; Nowell et al., 2004) and
20% Sediment (Sed.; coarse sediment of Bayon et al., 2009). Compositions of
subducted component adjusted to account for subduction-induced, sediment-
fluid modification following Stracke et al. (2003). See Supplementary Table S2
for full model parameters.
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Supplementary Table S1. Nd-Hf-Sr isotope results for samples in this study and results of
thermometry calculations

Table provided in a separate file
Supplementary Table S2. Inputs for binary mixing models
Table provided in a separate file

Full dataset available via the University of Melbourne Figshare Repository:

10.26188/c.5770949
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