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The following document contains supplementary text outlining our geothermometric 

modelling to supplement that provided in section 5.3.1 in the main text. It also includes a 

number of supplementary figures. 

To estimate variations in lithospheric thickness across the Kaavi-Kuopio field, we have 

estimated pressure and temperature of equilibration of clinopyroxene xenocrysts (data 



 

 

2 

 

from Lehtonen and O’Brien, 2009; Peltonen et al., 1999) using the thermobarometer of 

Nimis and Taylor (2000) and calculated corresponding paleogeotherms with FITPLOT 

(Mather et al., 2011). Clinopyroxene-based paleogeotherms for Pipes 2, 3, 5, 7, 9, 10 and 

14 suggest there is apparently some variability in lithospheric thickness beneath these 

bodies (Supp.Fig. S3). Although the clinopyroxene data are limited for some bodies 

(Pipes 9, 10 and 14), there appears to be no clear relationship between lithospheric 

thickness and isotopic composition (Supp.Fig. S3H). This lack of relationship is 

exemplified by Pipe 2 and Pipe 3 which are geographically adjacent and petrographically 

nearly identical (Fig. 1, main text), have traversed lithospheric columns of very similar 

thickness (Supp.Fig. S3), yet have distinct isotopic signatures (εHf(i) of +0.4 for Pipe 2 

and -3.9 for Pipe 3; Fig. 2, main text; Supp.Fig. S3). 

 

To evaluate the potential role of temperature in explaining the observed inter-pipe εHf(i) 

variability we have applied the olivine-chromite Fe-Mg exchange geothermometer 

(Ballhaus et al., 1994; Fedortchouk and Canil, 2004; O'Neill and Wall, 1987) to the 

Kaavi-Kuopio samples. To apply this geothermometer to samples lacking fresh olivine, 

we have calculated olivine rim Mg# values for Pipes 2, 3 and 10 using the linear 

relationship between chromite Mg# and olivine rim Mg# observed in the Kaavi-Kuopio 

kimberlites (Supp.Table S1; Dalton et al., 2020). This approach provides temperatures 

ranging from ~1240 °C (Pipe 14) to ~1140 °C (Pipe 10) with typical uncertainties of ±50 

°C (Fedortchouk and Canil, 2004; Supp. Table. S1; Supp.Fig. S4). Importantly, these 

values do account for the thermal effects of mantle assimilation, an endothermic process 

that is known to influence the major element composition of these melts (e.g., Dalton et 



 

 

3 

 

al., 2020a). To estimate the relative decrease in melt temperature associated with bulk 

assimilation of mantle peridotite wall rocks we have employed the following equation 

[1], which is modified from Kavanagh and Sparks (2009).  

 

[1]   𝑇𝐾𝑖𝑚𝑏 =  
(𝑇𝑒×(𝑓×𝐶𝑝,𝑊𝑅+(1−𝑓)×𝐶𝑝,𝐾𝑖𝑚)+𝑓×𝐿𝑊𝑅−𝑓×𝑇𝑊𝑅×𝐶𝑝,𝑊𝑅)

((1−𝑓)×𝐶𝑝,𝐾𝑖𝑚)
 

Where 𝑇𝐾𝑖𝑚𝑏 = temperature (K) of kimberlite melt prior to assimilation of mantle 

peridotite; 𝑇𝑒  = equilibrium temperature (K) of kimberlite after peridotite assimilation, 

calculated from the olivine-chromite Fe-Mg exchange thermometer; 𝑓 = fraction of 

mantle peridotite assimilated; 𝐶𝑝,𝑊𝑅= specific heat capacity of whole-rock peridotite 

(1200 J kg-1 K-1); 𝐶𝑝,𝐾𝑖𝑚= specific heat capacity of kimberlite (1600 J kg-1 K-1); 𝐿𝑊𝑅  = 

latent heat of whole-rock peridotite (600000 J kg-1). 

 

It is difficult to place accurate constraints on the volume/fraction of peridotite material 

assimilated by an ascending kimberlite. Recent calculations predict that less than 15% 

(by mass) of orthopyroxene can be dissolved by kimberlites (Giuliani et al., 2020) while 

estimates of bulk peridotite assimilation based on bulk-kimberlite PGE concentrations 

vary between 5 and 35 vol.% for dikes of the Premier kimberlite (Tappe et al., 2020). 

Here we estimate volume fraction of assimilation using the orthopyroxene dissolution 

calculations of Giuliani et al. (2020b) applied to each Kaavi-Kuopio kimberlite 

(Supp.Table S1). Whilst significant uncertainty may exist in the absolute estimates of 

assimilation volumes, we stress that the relative differences among the Kaavi-Kuopio 

kimberlites of importance here. We observe no simple relationship between temperature 

(either before or after lithospheric mantle assimilation) and εHf(i) (Supp.Fig. S4). In 
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summary, it is evident that εHf(i) variations in the Kaavi-Kuopio kimberlites cannot be 

readily explained by differences in melting temperature. 
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