
Data extraction tutorial for experimental human approach trials on
wild, GPS-collared wolves

Supplementary Presentation 3

Eriksen A, Versluijs E, Fuchs B, Zimmermann B, Wabakken P, Ordiz A, Sunde P, Wikenros
C, Sand H, Gillich B, Michler F, Nordli K, Carricondo-Sanchez D, Gorini L and Rieger S

(2022). A Standardized Method for Experimental Human Approach Trials on Wild Wolves.
Front. Ecol. Evol. 10:793307. doi: 10.3389/fevo.2022.793307

Contents
1 Introduction 1

2 Setup 2

3 Data preparation 2
3.1 Load and prepare data . 2
3.2 Visualize data . 4

4 Flight initiation distance (FID) 5
4.1 Prepare data for analysis . 5
4.2 Changepoint analysis . 6
4.3 Detecting flight initiation . 6

5 Wolf resettling position 7
5.1 Prepare data for analysis . 7
5.2 Changepoint analysis . 8
5.3 Detecting the resettling position . 8

6 Extracting flight variables 9
6.1 Calculating flight variables . 9
6.2 Final approach variables . 11

1 Introduction
This tutorial describes how GPS data from experimental human approaches on wolves can be prepared and
analysed as described in Eriksen & Versluijs, et.al. (2022). To illustrate this method, we used two data-sets
from an approach trial in which two observers approached a wolf on 30.01.2020 following the field protocol
described in Eriksen & Versluijs, et.al. (2022) Supplementary Presentation 1. The data-sets includes GPS
data from the wolf’s collar (Vectronics VERTEX Plus), and the track-log from a hand held GPS unit (Garmin
gpsmap 62) carried by the observers.

The following steps are described:

• Data preparation: prepare the data for flight initiation and resettling analysis
• Detecting the flight initiation with changepoint analysis
• Detecting the wolf’s resettling position with changepoint analysis

1

• Extracting variables based on the moment of flight initiation and resettling (flight duration, total
distance traveled, displacement, initial and overall speed, and initial and overall straightness)

2 Setup
The packages needed to run the code:
library(readr) # Reading the CSV file
library(dplyr) # Data manipulation
library(lubridate) # Handling dates and time formats
library(plotKML) # Reading GPX files
library(sp) # Re-projecting GPS coordinates
library(ggplot2) # Visualizing data
library(changepoint) # Running changepoint analysis
library(trajr) # Package for animal trajectory analysis
library(flextable) # Package for making tables

3 Data preparation
In this step we extract the wolf’s GPS data which only includes the approach and post-disturbance periods.
Additionally, we also extract the observer data and combine it with the wolf GPS data. It is advised to
visualize the approach trial in e.g. Qgis or within the software R, for example, using the package Movevis. The
example wolf data is in CSV format, while the observer data is in GPX (which includes tracks, way-points
and routes).

3.1 Load and prepare data
Firstly, we load the data into the environment, using the ‘reader’ package. In our case we have a semicolon
as delimiter (delim = “;”). However, in many occasions this might be a comma.
wolves <- read_delim(
file= "wolf_data.csv",
delim = ";", col_names = TRUE)

After loading the CSV, we can extract the relevant information for the defined period. In this example we
subset the relevant columns from the wolf GPS data and transform the DataTime column to a POSTIxct
time format and filter for the period between 12:00:00 and 17:05:00. This period includes both the approach
and post-disturbance periods. To ensure that the last position of the post-trial period is captured in our data
frame, we added extra five minutes for the selection. Additionally, we add an approachID (in this case we
call it ‘Example approach’) to make it easier to link extracted variables back to this approach trial.
wolves <- wolves %>%
select(DateTime,

wolfID = IndividId,
Latitude,
Longitude,
UTMZone,
UTMX,
UTMY) %>%

mutate(DateTime = dmy_hms(DateTime, tz ="Etc/GMT-1")) %>%
filter(DateTime >= "2020-01-30 12:00:00" & DateTime <= "2020-01-30 17:05:00") %>%
mutate(approachID = "Example approach")

Depending on how the data from the wolf collars is obtained (e.g. directly from the collar or downloaded
remotely), there is a possibility that the data from two wolves during one approach trial is combined into one

2

csv. Therefore, the data needs to be divided into different data frames. In our example, only one wolf is
present. However, here we show how you can extract a single wolf based on the collar id-number.
wolf <- wolves %>%
filter(wolfID == "M18-13")

When the wolf data is prepared a brief inspection of the first rows is useful to intercept any mistakes or errors.
head(wolf)

A tibble: 6 x 8
DateTime wolfID Latitude Longitude UTMZone UTMX UTMY approachID
<dttm> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 2020-01-30 12:00:10 M18-13 60.9 12.5 33 363926 6.75e6 Example a~
2 2020-01-30 12:01:08 M18-13 60.9 12.5 33 363923 6.75e6 Example a~
3 2020-01-30 12:02:06 M18-13 60.9 12.5 33 363925 6.75e6 Example a~
4 2020-01-30 12:03:08 M18-13 60.9 12.5 33 363923 6.75e6 Example a~
5 2020-01-30 12:04:08 M18-13 60.9 12.5 33 363925 6.75e6 Example a~
6 2020-01-30 12:05:08 M18-13 60.9 12.5 33 363923 6.75e6 Example a~

The observer data comes in a GPX format, therefore we use the function ‘readGPX’ from the ‘plotKML’
package to load the data. Thereafter we extract the saved positions during the approach trial to a new data
frame. In most cases the data is saved under ‘tracks’, in our case it was saved under ‘waypoints’.
observer <- readGPX("observer_tracklog.gpx")

observer <- data.frame(observer$waypoints)
names(observer)

[1] "lon" "lat" "time"

Often we want to change the column names from the original GPX file to aid readability. Often the
column names are long and unreadable, e.g. ‘X2020.01.30.13.16.32.Dag.lon’. The column ‘time’ is renamed to
‘DateTime’ to match the similar column in the wolf data. The data is filtered for the duration of the 1-minute
period. Filtering on shorter periods is possible as long as the data includes the whole trial period.
observer <- observer %>%
select(lon = lon,

lat = lat,
DateTime = time) %>%

mutate(DateTime = ymd_hms(DateTime, tz = "Etc/GMT-1")) %>%
filter(DateTime >= ymd_hms("2020-01-30 12:00:00", tz = "Etc/GMT-1") &

DateTime <= ymd_hms("2020-01-30 14:30:00", tz = "Etc/GMT-1"))

By looking at the first rows we can determine any errors. In this example we see that the GPS track starts at
12:56 and recorded with 1-second intervals.
head(observer)

lon lat DateTime
1 12.48137 60.91016 2020-01-30 12:56:19
2 12.48137 60.91016 2020-01-30 12:56:20
3 12.48138 60.91016 2020-01-30 12:56:21
4 12.48138 60.91016 2020-01-30 12:56:22
5 12.48138 60.91016 2020-01-30 12:56:23
6 12.48138 60.91016 2020-01-30 12:56:24

The observer data is recorded in the geographic coordinate system ‘WGS84 (EPSG:4326)’. We need to
transform coordinates into a projected coordinate system, for our data this would be ‘WGS84 UTM zone

3

33N (EPSG:32633)’. We use the function ‘spTransform’ from the ‘sp’ package to add the UTM coordinates.
By viewing the first five rows we see that the obsX and obsY contains now UTM coordinates.
observer$obsX <- observer$lon
observer$obsY <- observer$lat

coordinates(observer) <- c("obsX", "obsY")
proj4string(observer) <- CRS("EPSG:4326")

observer <- spTransform(observer, CRS("EPSG:32633"))

observer <- as.data.frame(observer)
head(observer)

lon lat DateTime obsX obsY
1 12.48137 60.91016 2020-01-30 12:56:19 363416.6 6755405
2 12.48137 60.91016 2020-01-30 12:56:20 363416.7 6755405
3 12.48138 60.91016 2020-01-30 12:56:21 363416.8 6755405
4 12.48138 60.91016 2020-01-30 12:56:22 363416.9 6755405
5 12.48138 60.91016 2020-01-30 12:56:23 363417.0 6755405
6 12.48138 60.91016 2020-01-30 12:56:24 363417.1 6755405

We combine the wolf data with the observer data and calculate the distance (in meters) between the observer
and the wolf during the approach trial. The hand-held GPS recorded in 1-second interval, which gives the
possibility to join the data frames based on ‘DateTime’. We use the ‘left_join’ function from the ‘Dplyr’
package to join the ‘observer’ data with the ‘wolf’ data frame. When the join is successful we added a new
column called ‘dist_wolf_obs’ and calculated the Euclidean distance between the observer and wolf.
wolf <- left_join(wolf, observer, by = "DateTime")

wolf$dist_wolf_obs <- NA

for(i in 1:nrow(wolf)){
wolf$dist_wolf_obs[i] <- sqrt((wolf$UTMX[i]-wolf$obsX[i])ˆ2 +

(wolf$UTMY[i]-wolf$obsY[i])ˆ2)
}

summary(wolf$dist_wolf_obs)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
89.89 299.84 610.04 683.92 1074.28 2155.88 58

3.2 Visualize data
Visualizing the data by plotting ‘DateTime’ against ‘latitude’ (or ‘longitude’) gives a first impression of the
approach trial and the quality of the data. The following graph shows the DateTime against latitude and
gives an indication if data points are missing (gaps between consecutive data positions). It also shows if
the wolves responded spatially to the observer. With no movement, the latitude (or longitude) stays in a
horizontal line.

4

60.900

60.904

60.908

12:00 13:00 14:00 15:00 16:00 17:00
DateTime

La
tit

ud
e colour

Observer

Wolf

4 Flight initiation distance (FID)
4.1 Prepare data for analysis
For detecting the flight initiation distance (FID) based on Changepoint analysis, we need to extract the
1-minute positioning intervals. Since we need to data from the original prepared data later on, we prepare
the data into a new data frame (wolf_fid).
wolf_fid <- wolf %>%
filter(DateTime >= ymd_hms("2020-01-30 12:00:00", tz = "Etc/GMT-1") &

DateTime <= ymd_hms("2020-01-30 14:05:00", tz = "Etc/GMT-1"))

Hereafter, we can calculate the difference in time between consecutive positions using the function ‘difftime’,
and we calculate the euclidean distance and the speed in meters per minute (m/min)between consecutive
positions.
wolf_fid$difftime <- c(NA, difftime(wolf_fid$DateTime[-1],

wolf_fid$DateTime[-nrow(wolf_fid)],
units = "secs")

)

wolf_fid$dist <- NA
for(i in 2:nrow(wolf_fid)){

wolf_fid$dist[i] <- sqrt((wolf_fid$UTMX[i]-wolf_fid$UTMX[i-1])ˆ2 +
(wolf_fid$UTMY[i]-wolf_fid$UTMY[i-1])ˆ2)

}

wolf_fid$speed <- (wolf_fid$dist/wolf_fid$difftime)*60

wolf_fid <- wolf_fid[-1,]

summary(wolf_fid$speed)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.876 3.162 8.582 5.385 97.755

We then adjust the data to a gamma distribution by changing speed to 0.01 m/min when this was 0 m/min.
wolf_fid <- wolf_fid %>%
mutate(speed = if_else(speed == 0, true = 0.01, false = speed))

5

4.2 Changepoint analysis
We run changepoint analysis with the function cpt.meanvar from the ‘changepoint’ package, using the pruned
exact linear time (PELT) algorithm and a Gamma distribution. The penalty is set to “MBIC”. However, in
cases where changepoint analysis did not find any changepoints, but visual inspection showed a clearly a
spatial response of the wolf towards the observer the penalty can be set to “AIC”.
wolf_cpt <- cpt.meanvar(wolf_fid$speed,

method = "PELT",
penalty = "MBIC",
test.stat = "Gamma")

4.3 Detecting flight initiation
The moment of flight initiation is defined as the wolf’s position at the first changepoint after the trial has
started. In this case the approach trial started at 13:07, therefore the changepoint must be after this moment.
plot(wolf_cpt)

Time

da
ta

.s
et

.ts
(x

)

0 20 40 60 80

0
20

60
10

0

DateTime from the changepoints
wolf_fid[cpts(wolf_cpt),]

A tibble: 1 x 16
DateTime wolfID Latitude Longitude UTMZone UTMX UTMY approachID
<dttm> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
1 2020-01-30 13:44:03 M18-13 60.9 12.5 33 363969 6.75e6 Example a~
... with 8 more variables: lon <dbl>, lat <dbl>, obsX <dbl>, obsY <dbl>,
dist_wolf_obs <dbl>, difftime <dbl>, dist <dbl>, speed <dbl>

In our case the changepoint is after the time when the approach started. The flight initiation can be extracted
from the ‘wolf_fid’ data frame and the flight initiation distance can be found in the column ‘dist_wolf_obs’.
wolf_changepoint <- wolf_fid[cpts(wolf_cpt),]

wolf_changepoint$dist_wolf_obs

[1] 89.89095

6

The flight initiation can be shown graphically as:

Changepoint

Flight initiation

0

25

50

75

100

0 10 20 30 40 50 60 70 80 90 100 110 120
Minutes after start 1−minute positioning.

sp
ee

d
(m

/m
in

)

wolf

ChangePoint

5 Wolf resettling position
We can calculate the wolf’s resettling position using changepoint analysis, which includes the following steps:

• Down-sample the 1-minute intervals to 10-minute intervals
• Calculate distance and speed based on 10-minute positions
• Run cpt.meanvar changepoint analysis

5.1 Prepare data for analysis
The data frame ‘wolf’ consist both 1-minute and 10-minute interval data, therefore we first need to down-
sample the 1-minute interval data to 10-minute intervals. We do this by creating a new data frame consisting
of exactly 10-minute intervals for the duration of the trial and post-trial period.
resettling_10min <- seq.POSIXt(as.POSIXct("2020-01-30 12:00", tz = "Etc/GMT-1"),

as.POSIXct("2020-01-30 17:00", tz = "Etc/GMT-1"),
by = "10 min")

Now we can join the data frame ‘wolf’ with the ‘resettling_10min’ by using the ‘data.table’ package. We
transform the data frames into the ‘data.table’ format and define the column ‘DateTime’ in ‘wolf_res’ as
the key link between the two data frames. If this is set, we can extract the data from the wolf_res to
the ‘resettling_10min’ by using ‘roll = “nearest” ’. This function from ‘data.table’ extract the ‘nearest’
observation of ‘DateTime from the ’wolf_res based on the ’resettling_10min’ data frame. We can check the
first five rows to check if the join is successful. Note that we call directly to the ‘data.table’ package, instead
of loading it via the function ‘library()’, this is to avoid problems as ‘data.table’ masks some functions from
the ‘dplyr’ package.
resettling_10min <- data.table::data.table(resettling_10min)
wolf_res <- data.table::data.table(wolf)

data.table::setkey(wolf_res, DateTime)

wolf_res <- wolf_res[resettling_10min, roll = "nearest"]

head(wolf_res)

DateTime wolfID Latitude Longitude UTMZone UTMX UTMY
1: 2020-01-30 12:00:00 M18-13 60.90132 12.49148 33 363926 6754399
2: 2020-01-30 12:10:00 M18-13 60.90132 12.49145 33 363925 6754398

7

3: 2020-01-30 12:20:00 M18-13 60.90135 12.49142 33 363923 6754402
4: 2020-01-30 12:30:00 M18-13 60.90133 12.49142 33 363923 6754400
5: 2020-01-30 12:40:00 M18-13 60.90135 12.49217 33 363964 6754401
6: 2020-01-30 12:50:00 M18-13 60.90128 12.49232 33 363972 6754392
approachID lon lat obsX obsY dist_wolf_obs
1: Example approach NA NA NA NA NA
2: Example approach NA NA NA NA NA
3: Example approach NA NA NA NA NA
4: Example approach NA NA NA NA NA
5: Example approach NA NA NA NA NA
6: Example approach NA NA NA NA NA

With the down-sampled data we can calculate the distance and speed between the consecutive positions. The
time difference is known in this case, as we sampled to exact 10-minute intervals.
wolf_res$dist <- NA
for(i in 2:nrow(wolf_res)){

wolf_res$dist[i] <- sqrt((wolf_res$UTMX[i]-wolf_res$UTMX[i-1])ˆ2 +
(wolf_res$UTMY[i]-wolf_res$UTMY[i-1])ˆ2)

}

wolf_res$speed <- (wolf_res$dist/10)

wolf_res <- wolf_res[-1,]
wolf_res$id <- seq(1, nrow(wolf_res))

In this last step we change the speeds from 0 to 0.01 metres per minute to ensure a ‘Gamma’ distribution.
wolf_res <- wolf_res %>%
mutate(speed = if_else(speed == 0, true = 0.01, false = speed))

5.2 Changepoint analysis
The changepoint analysis are similar as for the flight initiation.
wolf_res_cpt <- cpt.meanvar(wolf_res$speed,

method = "PELT",
penalty = "MBIC",
test.stat = "Gamma")

5.3 Detecting the resettling position
Resettling is initiated during the first changepoint after the flight initiation, therefore the position after this
changepoint is defined as the resettling position. First we extract all the changepoints to a new data frame,
then we can define which changepoint was the first after the flight initiation. Thereafter, we can extract the
data for the position after this changepoint and extract the data to a new data frame ‘wolf_resettling’.
wolf_res_cp <- wolf_res[cpts(wolf_res_cpt),]

wolf_res_cp

DateTime wolfID Latitude Longitude UTMZone UTMX UTMY
1: 2020-01-30 13:40:00 M18-13 60.90122 12.49233 33 363972 6754386
2: 2020-01-30 15:40:00 M18-13 60.89766 12.39692 33 358783 6754192
approachID lon lat obsX obsY dist_wolf_obs dist
1: Example approach 12.48978 60.90152 363835.3 6754425 142.3224 8.944272
2: Example approach NA NA NA NA NA 338.881985

8

speed id
1: 0.8944272 10
2: 33.8881985 22
wolf_resettling <- wolf_res %>%
filter(id == (wolf_res_cp[2,]$id + 1))

wolf_resettling

DateTime wolfID Latitude Longitude UTMZone UTMX UTMY
1: 2020-01-30 15:50:00 M18-13 60.89766 12.39692 33 358783 6754192
approachID lon lat obsX obsY dist_wolf_obs dist speed id
1: Example approach NA NA NA NA NA 0 0.01 23

The resettling can be shown graphically as:

Changepoint Changepoint

1−minute positions

10−minute positions

Flight Initiation

Resettling

0

30

60

90

60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300
Minutes after start 1−minute positioning

sp
ee

d
(m

/m
in

)

wolf

Flight initiation and resettling with Changepoint

6 Extracting flight variables
Other variables which can be extracted are based on the flight initiation and resettling position.

6.1 Calculating flight variables
First we create a new data frame where we select the approach and wolf details (approachID and wolfID),
which also includes the flight initiation distance and the closest distance between observer and wolf.
wolf_data_summary <- wolf_changepoint %>%
select(approachID = approachID,

wolfID = wolfID,
fid = dist_wolf_obs) %>%

mutate(min_obs_wolf = min(na.omit(wolf$dist_wolf_obs)))

We add the time from the observer passing the passing position, obtained from the field form, in the same
format as the ‘DateTime’ column. Now we can calculate the time difference with the flight initiation using
the ‘difftime’ function.
pp_flight_timediff <- ymd_hms("2020-01-30 13:42:00", tz = "Etc/GMT-1")
wolf_data_summary$pp_flight_diff <- difftime(pp_flight_timediff,

wolf_changepoint$DateTime,
units = "mins")

The same function (‘difftime’) can be applied to calculate the total duration of the flight by calculating the
difference in minutes between the flight initiation and resettling.

9

wolf_data_summary$flight_duration <- difftime(wolf_resettling$DateTime,
wolf_changepoint$DateTime,
units = "mins")

The initial flight speed, i.e. the average speed for the first 10 minutes of the flight, is calculated by extracting
only the first 10 minutes of the flight from the 1-minute positioning interval data frame (wolf_fid). Hereafter
the average speed can be calculated.

For the overall speed, i.e. the average speed for the whole flight, the method is the same. We use the 10-minute
positioning interval data frame to extract the total flight and to calculate the average speed.
wolf_data_summary$initial_speed <- wolf_fid %>%
filter(DateTime >= wolf_changepoint$DateTime &

DateTime <= wolf_changepoint$DateTime + minutes(10)) %>%
summarise(initial_speed = mean(speed)) %>%
pull(initial_speed)

wolf_data_summary$overall_speed <- wolf_res %>%
filter(DateTime >= wolf_changepoint$DateTime &

DateTime <= wolf_resettling$DateTime) %>%
summarise(overall_speed = mean(speed)) %>%
pull(overall_speed)

To obtain the distance, displacement and overall straightness we used the ‘trajr’ package. Where we first
change the data frame to a trajr object and then we use the function ‘TrajLength’ to calculate the total
distance traveled and the function ‘TrajDistance’ to calculate the linear displacement of the wolf.
wolf_10min_trajr <- wolf_res %>%
filter(DateTime >= wolf_changepoint$DateTime &

DateTime <= wolf_resettling$DateTime) %>%
select(x = UTMX,

y = UTMY,
time = DateTime)

wolf_10min_trajr <- TrajFromCoords(wolf_10min_trajr)

wolf_data_summary$flight_distance <- TrajLength(wolf_10min_trajr)
wolf_data_summary$flight_displacement <- TrajDistance(wolf_10min_trajr)

The total flight duration is not on the same between different approaches. Therefore, we adjust the overall
straightness by calculating the average straightness index across the flight based on the straightness between
every three consecutive positions.

for(i in 1:nrow(wolf_10min_trajr)) {
wolf_10min_trajr$straightness[i] <- TrajStraightness(wolf_10min_trajr[i:(i+2),])

}

wolf_data_summary$overall_straightness <- mean(na.omit(wolf_10min_trajr$straightness))

For the initial straightness we also use the ‘trajr’ package, but then for only the first 10 minutes of the flight.
We can now also calculate the initial straightness with the ‘TrajStraightness’ function.
wolf_1min_trajr <- wolf_fid%>%
filter(DateTime >= wolf_changepoint$DateTime &

DateTime <= wolf_changepoint$DateTime + minutes(10)) %>%
select(x = UTMX,

y = UTMY,

10

time = DateTime)

wolf_1min_trajr <- TrajFromCoords(wolf_1min_trajr)

wolf_data_summary$initial_straightness <- TrajStraightness(wolf_1min_trajr)

6.2 Final approach variables
Now we can look at all the variables we obtained based on the flight initiation and resettling of the wolf.

Variable name Result

ApproachID Example approach
WolfID M18-13
Flight/No flight Flight
Minimum wolf-observer distance 89.9
Flight initiation distance (FID) 89.9
Passing-flight time difference -2.05 mins
Initial speed 25.4
Initial straightness 0.96
Flight duration 126 mins
Flight displacement 5172
Total distance traveled 5790
Overall speed 45.6
Overall straightness 0.975

11

	Introduction
	Setup
	Data preparation
	Load and prepare data
	Visualize data

	Flight initiation distance (FID)
	Prepare data for analysis
	Changepoint analysis
	Detecting flight initiation

	Wolf resettling position
	Prepare data for analysis
	Changepoint analysis
	Detecting the resettling position

	Extracting flight variables
	Calculating flight variables
	Final approach variables

