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SUPPLEMENTARY DATA IN SIX PARTS (Pindell & Heyn, 2022, Geol. Soc. Lon.) 
 
Part A. Ethiopia Cross section.  
Part B. Extended caption for Figure 3 of the Text. 
Part C. Igneous age compilations, central South Atlantic, providing detail for Figure 6. 
Part D. Additional seismic reflection data, Gulf of Mexico. 
Part E. Igneous age compilations, Gulf of Mexico, providing detail for Figure 8. 
Part F. Iceland as a quasi-analogue for the São Paulo Plateau 
 
Supplementary Data, Part A. Cross section, Main Ethiopian Rift.  
 
Supplementary Data, Fig. A1. Radar image of the Ethiopian region (see location in Fig. 2) showing the 
elevation profile along the indicated section across the dynamic high, modified from Sembroni et al. (2016). 
Central Main Ethiopian Rift (MER) is a local low due to tectonic subsidence but remains above sea level 
(+1000 m) due to the greater regional dynamic uplift. Active magma-rich rifting dominates the central portion 
of the section but diminishes outward in both directions. The smooth dashed white line below the black section 
location line shows an idealized estimate of future dynamic subsidence (dissipation of dynamic uplift) if the 
upward dynamic force from the plume were removed. We show a moderate magnitude that reaches 1.5 km in 
the centre, but the dynamic subsidence could be even greater. Because erosion and extensional faulting are 
strong (see topographic profile), we expect the area of today’s uplift would be negative after the dissipation. 
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Supplementary Data, Part B. Extended caption for Figure 3 of the text. 
 
Lithosphere–plume interactions. Lithosphere, beige; aesthenosphere, grey; magma-rich active rifting, red; areas 
already rifted but moving off the plume, rose. Pluton shapes (pink) signify complex magmatism at hotspots and 
magmatic segments (Ebinger and Casey 2001; Ebinger et al. 2017), white where magmatism is only rarely 
active. Beige arrows show sediment dispersal, flowing outward early on but then inward or in-situ when early 
accommodation develops. (a) Diachronous evolution of a point tracked by black arrows on a plate migrating 
over a quasi-stationary plume. Dynamic uplift is augmented by isostatic response to surface erosion and to 
thermal thinning of the base lithosphere. At time T1, marine sedimentation at water depth Y; time T2, 
shallowing, regressive sedimentation, offlap; T3, hot spot magmatism, thermal thinning of the base lithosphere 
and crustal thinning by surface erosion, with local subaerial deposition in lows (not shown); T4, end of most 
magmatism (white remnant diapirs), beginning of dynamic subsidence (dissipation of dynamic uplift) and 
thermal re-equilibration of base lithosphere (as shown only at base lithosphere in b4), with marine transgression 
and onlap onto eroded/magmatic surface; T5, return to basinal deposition (yellow), with the erosional 
unconformity Z deeper than Y due to erosional thinning; T6, continued marine sedimentation with sporadic 
record of former hot spot magmatism. (b0–b4) Symmetrical formation and migration of magma-rich conjugate 
margins over and off a stationary plume. (b0) Early stage of plume, with general uplift, flood basalt eruption 
and magmatic intrusion, initial outward transport of eroded sediments. (b1) Early magma-rich rifting (red) 
between two future plates with symmetrical displacement off a fixed central plume. Dynamic uplift and thermal 
erosion (thinning) of base lithosphere keep rift surface above sea level while lithosphere thins. Point P1 was 
once on the rift crest at P2 but is being displaced off the plume flank by lithospheric extension and magmatic 
addition. Both dynamic and thermal subsidence will begin near P1. (b2) Black and grey faults are active and 
inactive, marking zones of continued rifting (red) and rifted crust (rose), respectively. Point now marks the 
central sag basin undergoing both dynamic and thermal subsidence, where little further faulting or magmatism 
occurs, having moved off the plume flank. Sediment transport is split outward and inward depending on height 
and continuity of rift shoulders. P2 marks sag or salt section onlap onto the active central magma-rich rift high 
(P3), which is kept elevated by dynamic uplift. At some settings, magmatism (red zone) overwhelms thinning 
crust to create thick magmatic crust and further widening of the margins after actual continental breakup has 
occurred. At the hinge line, post-rift onlap occurs onto full-thickness continental crust which is drawn 
downward by flexural loading. (b3) Both margins are approaching their full tectono-magmatic extension. The 
central magmatic rift axis will fall below global sea level when tectonic subsidence of continental or magmatic 
crust dominates dynamic uplift, which is beginning to wane as more normal seafloor spreading is imminent. 
Transition from sag (yellow) to salt (dark pink) marks either a palaeogeographic connection of the basins to the 
world ocean, or subsidence below global sea level. Sag/salt section (now salt in b3) continues to onlap central 
magma-rich rift high and eventually buries it as it founders by rifting. P1 is receiving salt above the sag; P2 had 
marked the sag section onlap limit onto the central rift in b2, but is now downfaulted because it was at the 
former limit of rifting; P3 has only salt which is faulted with basement, and will undergo some syn-rift 
subsidence and then dynamo-thermal subsidence, potentially producing the thickest salt accumulation along the 
whole margin; P4 is where the magmatic crust will breakup and transition to seafloor spreading. If available, 
sediment transport begins to become mainly inward where it loads salt to cause salt deformation. (b4) Magmatic 
budget (plume intensity) continues to wane to that of normal seafloor spreading (in this model), although at 
shallower levels than normal (<2.6 km subsea) if the dynamic elevation is not yet fully diminished. Faulting 
largely ceases at P3 where salt is already thickest, and continued extension is taken up as seafloor spreading at 
P4–P5. Salt flows under gravity but can also be stretched by late rifting, with ‘crept’ salt spilling out onto the 
proximal fringe of the oceanic crust. Shallow water settings may exist out to P3, but basinward halokinesis will 
increase the average bathymetry of the salt. 
 
 
 
Supplementary Data, Part C. Igneous age compilations, central South Atlantic, providing detail for 
Figure 6. 
 
Supplementary Data, Figs. C1a,b,c. Same maps as in Figure 6a,b,c but showing published or observed (in 
seismic data) occurrences of igneous activity around the times of each map. Sources of information are tied to 
the key by symbols, and the references are given below. 
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Fig. C1a. 
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Figs. C1b. 
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Figs. C1c. 
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References cited in Supplementary Data, Part C.  
 
References used for the isopach lines of Supplementary Data, Fig. C1c. 
 
Assine et al. (2008), Contreras et al. (2010), Contreras (2011), de Melo Garcia et al. (2012), Evain et al. (2015), 
Gomes et al. (2012), Gordon and Mohriak (2015), Jackson et al. (2015), Kumar et al. (2013), Lebit et al. (2019), 
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References used for the igneous ages for Supplementary Data, Part C, including those for the isopach 
lines in Supplementary Data, Fig. C1c. 
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pp.1952–1980. https://doi.org/10.1016/j.marpetgeo.2010.06.007 
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margin. Doctoral dissertation. Universität Heidelberg. 171 p. 
 
de Assis Janasi, V., de Freitas, V.A. and Heaman, L.H. 2011. The onset of flood basalt volcanism, Northern 
Paraná Basin, Brazil: a precise U–Pb baddeleyite/zircon age for a Chapecó-type dacite. Earth and Planetary 
Science Letters, 302(1–2), pp.147–153. https://doi.org/10.1016/j.epsl.2010.12.005 
 
Deckart, K., Féraud, G., Marques, L.S. and Bertrand, H. 1998. New time constraints on dyke swarms related to 
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of Volcanology and Geothermal Research, 80(1–2), pp.67–83. https://doi.org/10.1016/S0377-0273(97)00038-3 
 
de Melo Garcia, S.F., Letouzey, J., Rudkiewicz, J.L., Danderfer Filho, A. and de Lamotte, D.F. 2012. Structural 
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and Petroleum Geology, 35(1), pp.337–353. https://doi.org/10.1016/j.marpetgeo.2012.02.009 
 
Dias, J.L., Sad, A.R.E., Fontana, R.L., and Feijó, F.J. 1994, Bacia de Pelotas, Boletim de Geociencias da 
Petrobras, v. 8, p. 235–245. 
 
Evain, M., Afilhado, A., Rigoti, C., Loureiro, A., Alves, D., Klingelhoefer, F., Schnurle, P., Feld, A., Fuck, R., 
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Supplementary Data, Part D. Additional seismic reflection data, Gulf of Mexico. 
 
Figure Supp Data D1. 3D line off western Campeche (SD3, see Figure 8c of the main paper for location, 
courtesy of ION). Continental crust is not visible. “Basement” comprises faulted layered igneous flows or 
SDRs, probably inner SDRs comprising interbedded lava flows and sediments above deeper continental half 
grabens (true basement). The top of the SDRs defines a top R1 rift unconformity (TRU1). A sag section with 
little or no magmatism or faulting overlies the TRU1 and approaches 3 km thickness. Basinward this sag section 
expands and is probably lightly faulted (R2 faults) and intruded by igneous material, and may be fault controlled 
from off the section, as well. The sag is overlain with no apparent erosion by a base-salt unconformity and an 
average of 2 km of salt. We consider this margin had a magma-rich syn-rift history, but not enough of the zone 
of breakup can be seen to comment on the magmatism during breakup. 
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Supplementary Data, Fig. D2. MX-080 off NW Yucatán (SD4, see Figure 8c of the main paper for location). 
Thinned continental crust lies at depth and reaches the yellow circle, underlying a thick section of volcano-
sedimentary strata with seaward dipping reflector character, probably comprising interbedded lava flows and 
sediments. In the outer portion of the margin, these strata may reach Moho. This volcano-sedimentary section 
represents material fill of the R1 syn-rift phase, but serves as basement in the outer margin, posing a semantic 
issue. There is a base-sag surface that becomes faulted basinward (dashed). The overlying sag section 
approaches 3 km thickness and shows no magmatism. Basinward, the sag becomes faulted by R2 syn-rift faults. 
The sag is overlain with no apparent erosion by a base-salt unconformity and an average of 2 km of salt. The sag 
and base of salt are cut by the outer R2 faults. There is a well-displayed outer marginal detachment (OMD) 
which relays tectonic extension above. Accepting the outer volcano-sedimentary fill as basement, then basement 
steps up by ~1 km to the oceanic crust. However, the base of salt steps down to the oceanic crust because the 
sag is thick, possibly downdip from an important fluvial source. We consider this margin had a magma-rich syn-
rift history, but breakup was magma-poor or magma-moderate. 
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Supplementary Data, Figs. D3 a–d. (a) (c) ION strike line from the southern North Louisiana Basin showing 
possible Early Jurassic–Bajocian half graben and sag section above inferred CAMP magmatic level, see SD 5a 
of Fig. 8c for location. (b) simplified shaded version of (a). (c,d) progressive reconstructions of (b) to original 
base level (near sea level) for top and base salt time. The reconstructions were made by slicing the original 
interpreted line into ~40 vertical strips, and then returning the horizon in question to base level by removing the 
overburden above the horizon. We estimated the original amount of salt, lost by diapirism and southward 
draining, by assessing regionals of onlap patterns from numerous surrounding seismic lines (note shown). The 
analysis shows the perceived R1 rift configuration along the line prior to and after salt deposition. The presence 
of a thin sag section just beneath the salt is possible, depending on whether the faults drawn were reactivated or 
are true R1 faults. Our suggestion that the interpreted volcanic section at depth in (a) pertains to CAMP 
magmatism is crucial for the inference that the rifted half graben beneath the salt is Lower Jurassic to Bajocian 
in age, but this remains unproven. Given the pre-salt geology of the US Gulf margin (e.g. Snedden and 
Galloway 2019; Frederick et al. 2020 and references in both) an alternative interpretation could be that the rifted 
half graben structure is middle Triassic in age (related to deposition of the Eagle Mills Formation). However, 
such an age would not explain the large subsidence observed in the North Louisiana Salt Basin (and other 
Interior basins) and the US coastal plain. If the faulting were Triassic, the development of Middle Jurassic 
subsidence would have effectively no faulting or lithospheric attenuation to drive it. Thus, we are confident that 
the section shows Lower Jurassic–Bajocian rifting. 
 
References cited in Supplementary Data, Figs. D3a–d  
 
Frederick, B.C., Blum, M.D., Snedden, J.W. and Fillon, R.H. 2020. Early Mesozoic synrift Eagle Mills 
Formation and coeval siliciclastic sources, sinks, and sediment routing, northern Gulf of Mexico basin. GSA 
Bulletin, 132(11–12), pp.2631–2650. https://doi.org/10.1130/B35493.1 
 
Snedden, J.W. and Galloway, W.E. 2019. The Gulf of Mexico Sedimentary Basin Depositional Evolution and 
Petroleum Applications. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/9781108292795 
 
(a) 
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(Figs. D3 b,c,d) 
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Supplementary Data, Part E. Igneous age compilations, Gulf of Mexico, providing detail for Figure 8. 
 
Supplementary Data, Figs. E1a–c. Same maps as in Figure 8 but showing published or observed (in seismic 
data) occurrences of igneous activity around the times of each map. Sources of information are tied to the key 
by symbols. References are given below. 
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References cited in Supplementary Data, Part E.  
 
References used for Mexico and the Northern Andes: 
 
A: Torres et al. (1999), Villarreal-Fuentes et al. (2014) ; B : Barboza-Gudiño et al. (2010), Bartolini (1998), 
Lawton et al. (2020) ; C : Lawton et al. (2020) ; D : Barboza-Gudiño et al. (2010), Lawton et al. (2020) ; E : 
Anderson and Schmidt (1983), Ortega-Flores et al. (2014) ; F : Alzaga-Ruiz et al. (2009) ; Cantú‐Chapa 
(1992) ; G : Lawton et al. (2020), Ortega-Flores et al. (2021), Silva-Romo et al. (2015) ; H: Damon et al. (1981), 
Godínez-Urban et al. (2011), Weber et al. (2005) ; I : Maldonado et al. (2018), Martens et al. (2012), 
Ratschbacher et al. (2009) ; J, K, L: Bayona et al. (2019), Gómez et al. (2020). 
 
References used for the igneous ages for Part E. 
 
Albayrak, K.S. 2019. 3-D Potential Field Inversion Camp Clubhouse Crossroads Mafic Intrusive Pluton, 
Coastal Plain, South Carolina. MSc thesis, University of South Carolina. 67 pp. 
 
Alzaga-Ruiz, H., Lopez, M., Roure, F. and Séranne, M. 2009. Interactions between the Laramide Foreland and 
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Mexico. Marine and Petroleum Geology, 26(6), pp.951–973. https://doi.org/10.1016/j.marpetgeo.2008.03.009 
 
Anderson, T.H. and Schmidt, V.A. 1983. The evolution of Middle America and the Gulf of Mexico–Caribbean 
Sea region during Mesozoic time. Geological Society of America Bulletin, 94(8), pp.941–966. 
https://doi.org/10.1130/0016-7606(1983)94%3C941:TEOMAA%3E2.0.CO;2 
 
Baratoux, L., Söderlund, U., Ernst, R.E., De Roever, E., Jessell, M.W., Kamo, S., Naba, S., Perrouty, S., 
Metelka, V., Yatte, D. and Grenholm, M. 2019. New U–Pb Baddeleyite Ages of Mafic Dyke Swarms of the 
West African and Amazonian Cratons: implication for their configuration in supercontinents through time. In 
Srivastava R., Ernst R., Peng P. (eds) Dyke Swarms of the World: A Modern Perspective. Springer Geology. 
Springer, Singapore. pp. 263–314. https://doi.org/10.1007/978-981-13-1666-1_7 
 
Barnett, R.S. 1975. Basement structure of Florida and its tectonic implications. Transactions of the Gulf Coast 
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Barboza-Gudiño, J.R., Zavala-Monsiváis, A., Venegas-Rodríguez, G. and Barajas-Nigoche, L.D., 2010. Late 
Triassic stratigraphy and facies from northeastern Mexico: Tectonic setting and provenance. Geosphere, 6(5), 
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Formation, north-central Mexico. PhD thesis. The University of Texas at El Paso. 
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Supplementary Data, Part F. Iceland as a quasi-analogue for the São Paulo Plateau. 
 
 Supplementary Data, Fig. F1 shows Iceland as a subaerial NE-SW trending portion of the mid-
Atlantic Ridge, elevated by above-average magmatism and dynamic uplift, both caused by a deep mantle plume 
(Schoonman et al. 2017; Barnett-Moore et al. 2017). Iceland has a central axial zone of extensional faulting and 
magmatism (Árnason 2020) between relatively dormant onshore zones where erosion and deposition control 
relief at least as much as active rifting. These onshore zones transition offshore where subsidence outpaces 
magmatic growth or dynamic uplift. Given this tectonic setting where plume magmatism, dynamic uplift and 
rifting of thick magmatic crust co-exist, both thermal and dynamic subsidence should be operating at the flanks 
of Iceland, whereas the onshore rift axis should be heavily influenced by tectonic subsidence, while being held 
high by dynamic uplift. 
 

 
 How would Iceland evolve if the plume-driven excess magmatic supply and dynamic uplift drastically 
waned while tectonic extension continued? We suggest the regional Iceland high would subside by a 
combination of dynamic (dissipation of the dynamic uplift) and thermal subsidences, i.e. the dynamo-thermal 
curve in Fig. 4, and that the central rift axis would subside even faster due to ongoing tectonic subsidence. Fault 
motions responsible for that extension and subsidence would post-date most magmatism. If we considered such 
a setting within a restricted evaporite basin such as the central South Atlantic, salt precipitation would begin 
while the magmatic crust was still near sea level. Salt’s fast potential rate of precipitation could allow deposition 
to keep pace with the three combined subsidences in the rift axis. The result would be rapid (faster than allowed 
by thermal subsidence alone) accumulation of shallow water salt on the little-faulted flanks of the central rift 
axis, and extremely rapid accumulation of salt within the central rift axis. With a lack of magmatism, the central 
rift axis could extend during continued salt deposition to a condition of very thin crust, and subside to an 
isostatic level approaching that of mantle covered to global sea level by salt, which would be on the order of 8 
km. 
 We contend that this scenario is effectively that which we have interpreted for the early São Paulo 
Plateau (zones 3 and 4 of Fig. 5), following continental breakup when the magmatic plateau filled the void 
between the continental limits of Brazil and Africa (Fig. 6c,d). Figures 6e,f complete the breakup picture 
further, integrating the African margin using ION CongoSPAN data. 
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