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Appendix C: Supplemental Statistical Methods 
 
Mixed-effects model specification (expiration data) 

For the expiration trials, a linear mixed-effects model 1 was fit for additive effects 

of disease status (MND vs control) and task (cough vs. FVC), with linear adjustments 

for age, sex, and trial duration, and incorporating random intercepts for participants. 

This is a standard random-offset model for repeated measures, where participant 

means after adjustment for the model effects are assumed to vary normally about a 

common mean. For added flexibility, task-specific heteroskedastic residuals were 

modeled, where within-subject variances are modeled for each task as independent 

normal deviations about the participant trial means for the task. For parameter 

covariance calculations, the commonly-used Huber-White robust ("sandwich") 

covariance estimator2,3 was employed over the repeated measures for the 24 

participants in order to adjust for possible violations of the standard model covariance 

assumptions. 

Hurdle model specification (inspiration data) 

The inspiration data was not amenable to a standard mixed-modeling treatment 

due to the large number of zero responses: of the 144 trials, only 28 (19%) logged any 

nonzero response for the presence of periodicity during inspiration. The zero-inflated 

inspiration data was therefore handled using an exponential Cragg hurdle model,4 a 

standard analytic choice for zero-inflated data of this type. A hurdle model is a joint 
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regression model that contains a mean response submodel for the value of an 

observation conditional on it being nonzero, and a selection submodel for the probability 

of having a nonzero response as a function of covariates. For the mean response 

submodel, the same covariates as in the model for expiration data were used with an 

additional assessment of the importance of a sex-by-disease interaction term. Neither 

age nor trial duration were important predictors of mean response for any inspiration-

phase outcome. For the selection submodel, disease status, sex, age, and trial duration 

were included with an evaluation of the relative strength of their influence on the 

probability of observing periodicity in the airflow signal. As in the linear mixed-effects 

model, the cluster-robust Huber-White sandwich covariance estimator was employed to 

account for the correlation in responses induced by the clustering of repeated measures 

for individual participants. 

Effects as contrasts of model predictions 

Comparisons between factor levels were estimated using conditional marginal 

effects (i.e. contrasts of model predictions, integrated over all other model parameters) 

with confidence intervals calculated via the Korn and Graubard population-variance 

estimator.5 These comparisons are consistent estimates of the cross-sectional 

difference in response in two independent populations caused by having different levels 

of the factor in each population. 

Estimating correlations among measures 

Within-subject correlations among the periodicity, magnitude, and kurtosis 

measures on expiration events were estimated using Bland and Altman’s method,6 

implemented as a fixed-effects within-subjects regression7 of one variable on the other 
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(the order is arbitrary); degrees of freedom for the significance calculations were taken 

as 𝑛𝑛𝑛𝑛 (1 + (𝑚𝑚− 1) ⋅ 𝐼𝐼𝐼𝐼𝐼𝐼)⁄ − 3, where 𝑛𝑛 = 24 is the number of subjects, 𝑚𝑚 = 6 is the 

number of trials per subject (across both the cough and FVC tasks), and 𝐼𝐼𝐼𝐼𝐼𝐼 represents 

the intraclass correlation coefficient estimated by the within-subject model. Correlations 

between periodicity and vocal fold kinematics and airflow measures were explored only 

for the cough tasks because vocal fold kinematic and airflow data was not collected for 

the FVC tasks in the Britton et al. (2014) study.8 The correlations were estimated as 

partial correlations from structural equation models9 where the two measures to be 

correlated were adjusted for the known factors of disease status, task, sex, and age in 

order to enable assessment of the potential influence of unmeasured factors on both 

variables; this influence represents unexplained correlation between the variables. The 

structural equation models were estimated using full-information maximum likelihood 

with the robust Huber-White sandwich covariance estimator, as above. 

Measures of significance and effect size 

Effect significance was reported in terms of a z-score representing the directional 

deviation from the null (zero) value for the association in question, as measured in units 

of the effect's standard error. For all comparisons, the sign of the z-score indicates the 

direction of departure of the MND group away from the control group value, or of the 

FVC task from the cough task, or of females from males; for example, if the z-score is 

negative then the MND group has lower values of the outcome. Z-scores larger than 

approximately 1.65 in magnitude (in either direction) are suggestive of significant 

effects, and any larger than about 3 in magnitude are highly salient in the sample. In the 

case of regression coefficients or predictive contrasts from one of the models mentioned 
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above, the z-score for the effect is calculated in the usual way, dividing the effect 

estimate by its model-based standard error. In the case of partial correlations estimated 

from the within-subject models or structural equation models, the correlation value was 

transformed using the Fisher z-transformation (i.e. hyperbolic arctangent) and scaling 

by the degrees of freedom calculated as described above. It is important to remember 

that z-scores themselves are not measures of effect size, but rather effect significance 

(in the limited statistical sense of "surprising if the null hypothesis is true"). To allow 

comparisons of effect size in a standardized way that does not depend on the units of 

measurement, the Hedges's g measure of effect size10 was reported, as it is a typical 

choice of effect size metric for studies of our size due to its robust small-sample bias 

correction. 
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