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Abstract 

 This paper reports the development of a new smart ECG 

monitoring system, consisting of the related hardware, 

firmware, and IoT-based web service for AI assisted arrhythmia 

detection and a complementary Android application for data 

streaming. 

 The hardware aspect of this research proposes an ultra-low 

power patch sampling ECG data at 256 samples/s with 16-bit 

resolution. The battery life of the device is two weeks per 

charging, which alongside the flexible and slim (193.7 mm × 62.4 

mm × 8.6 mm) and lightweight (43 g) allows the user to continue 

real life activities while the real-time monitoring is being done 

without interruption. The power management is achieved 

through the usage of switching converters, ultra-low power 

component choice as well as intermittent usage of them through 

firmware optimization. A novel data encoding method is also 

proposed to allow compression of data and lower the runtime.    

 The software aspect, in addition to the web ECG analysis 

platform and the Android streaming and monitoring 

application, provides an arrhythmia detection service. The key 

innovations in this regard are the usage of a set of new factors in 

determining arrhythmia that grants higher accuracy while 

retaining the detection near-real-time. The arrhythmia 

detection algorithm shows 98.7% accuracy using Artificial 

Neural Network and K-Nearest Neighbors methods, and 98.1% 

using Decision Tree method on test data set. 

 Keywords— Arrhythmia Detection, Artificial Intelligence, 

Cardiovascular Diseases, Cloud Storage, Electrocardiogram 

(ECG), Internet of Things (IoT), Wearable Sensors 
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I. INTRODUCTION 

ardiovascular diseases (CVD) are the leading cause of 

death, estimated in 2019 to cause 18.6 million deaths per 

year worldwide [1], while 90% of such diseases are 

preventable [2]. Among them, cardiac arrhythmia is a 

common condition. Cardiac arrhythmia and fast heart 

beatings may lead to symptoms such as dizziness, pounding, 

shortness of breath, and forceful extra heartbeats [3]. These 

symptoms are often accompanied by chest pain or discomfort, 

diaphoresis, neck fullness, or vasovagal type of response with 

syncope, diaphoresis, or nausea in case of tachycardia [3]. On  

the other hand, all types of arrhythmia may be asymptomatic 

[3]. Asymptomatic cardiac arrhythmia may happen so 

sporadically that only through extensive ECG monitoring can 

it be detected  [4] . The rarity of such cases should not lead to 

underestimating their importance, as they can lead to 

syncope, cardiac arrest, or sudden death. However, 

accessibility is a major issue regarding CVD monitoring – not 

every artifact is expected to occur continuously or during the 

clinical setting of recording ECG signals [5]. Moreover, 

clinical ECG devices utilize several electrodes running 

through multiple cables, which can be challenging to set 

correctly by non-clinicians outside the health care facilities. 

On the other hand, limited Holter monitoring, four days and 

below, is proven to be insufficient in detecting sporadic 

arrhythmias. Due to limited battery life, the current Holter 

monitor devices do not allow extended monitoring periods 

with high resolution (Table II). Recent research has proven 

the efficacy of monitoring through single-lead ECG patches 

as an alternative to Holter monitoring. In a clinical study, 7-

day monitoring with a single-lead ECG patch yielded more 

accurate results than typical 24-hour Holter monitoring [6], 

and another 2021 study [7] showed a 40.5% rise in arrhythmia 

detection rate in 14-day monitoring than lower durations. In 

cases such as cerebral ischemic events, a minimum of 7-day 

monitoring is required to detect atrial fibrillation [8], which 

could be lifesaving. 

In 2020 and 2021, due to the health concerns regarding the 

COVID-19 pandemic, visiting clinics and hospitals for 

extended periods partially lost its feasibility, calling for 

alternative methods of monitoring ECG accurately at home 

and using telemetry for patient-doctor communication. 

Furthermore, ECG is proven to be a helpful measure for 

cardiovascular involvement in COVID-19 patients [9]. 

However, the utility of such devices is often overshadowed 

by existing hardware requiring the involvement of an 

independent analysis facility. Earlier efforts to create online 

and smartphone-based platforms that have been made are 

either rudimentary and outdated or lack the required detection 

capabilities compared to facility-based detection processes 

[10, Table II].  

This article details our endeavor to design and manufacture 

a device and software that allows non-stop monitoring of 
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ECG signals via the Internet and the arrhythmia detection 

algorithm assisting in diagnosis. A variety of challenges were 

mentioned in different studies and this research project 

attempted to address them [11].  The device described is a 

power-efficient, ergonomic, portable, single-lead ECG 

monitoring patch, connectable to a smartphone via Bluetooth 

Low Energy, and accommodating local storage for a microSD 

card. The choice of components was focused firstly on 

efficient power consumption, to allow long term recording of 

ECG. The novel encoding format proposed allows highly 

compressed data to be sent over to smartphone and the 

analysis server easily via BLE, facilitating telemetry and 

allowing monitoring of ECG data on all ranges of Android 

devices with ease. Ease of use for with no prior training for 

patients was a major concept in regard to body design. The 

highly flexible design allows uninterrupted physical activity 

for real-time, nonstop monitoring. Furthermore, due to the 

financial efficiency of ECG patch monitoring devices over 

implanted looper recorders [12], the power management was 

aimed at allowing non-stop monitoring. The software aspect, 

including the DSP-based noise filtering, AI-assisted 

arrhythmia detection, patient profiling, the web service, and 

smartphone application that enables device-phone 

connection, real-time signal viewing, data collection, and 

storage. A novel aspect of the software section includes 

designing low runtime methods for real time diagnosis 

through usage of less commonly used factors in determining 

arrhythmic beats. 

This paper is organized as follows. Section I presents the 

design and manufacturing of the hardware. Section II presents 

the software design aspects. 

II. HARDWARE DESIGN 

A. Hardware Overview 

 Our objective is to introduce a lightweight, user-friendly, 

ultra-low-power alternative that can collect desired data, 

process it, store it, and send it to an Android device via a BLE, 

which can yield overall better results in terms of accuracy, 

resolution, sample rate and battery life than the current 

commercial devices. 

B. Block Diagram and Explanation of Each Part 

As shown in Fig. 1, the block diagram of the device 

includes an ARM Cortex M4F processor and multiple 

peripherals, including Bluetooth Low Energy 5 [13]. 

Moreover, the diagram shows a USB type C connected to a 

LiPo battery charger (for battery charging) [14], a microSD 

card connector (for the insertion of external memory and 

further data storage), a level translator (for communication 

between microSD card connector and MCU) [15], two 

pushbuttons (to turn the device on/off and to start Bluetooth 

advertising), a single-lead ECG Analog Front-End (which 

uses two electrodes and amplifies the differential voltage also 

known as ECG AFE) [16], an accelerometer (for motion 

detection of the user) [17], three LEDs and a buzzer (to 

indicate notifications), and two DC-DC step-down converters 

(which supply 1.8 Volt and 3.3 Volt power from the battery 

to all parts) [18]. 

1) Sensors - ECG AFE, Accelerometer 

Two sensors are integrated into the device: a single-lead 

ECG analog front-end (AFE) and an accelerometer. ECG 

AFE provides an electrocardiographic waveform through two 

electrodes connected via coaxial cables (shielded for noise 

reduction) to IPX connectors. MAX30003 was chosen for this 

purpose to provide a high level of configurability. The 

following features make this specific sensor a fitting choice. 

 

 
Fig. 1.  Block diagram of the ECG patch hardware – The sensors, the BLE 

unit and the microcontroller run on 1.8V except for microSD and the drivers 

connected to the interface elements running on 3.3V. Two step-down 

converters directly connect to the 3.3~4.2V LiPo battery to power the 

mentioned sectors. 

 

A lead-on/lead-off detection feature allows the 

microcontroller to detect sensor-body attachment to lessen 

power consumption. The amplifier voltage gain within the 

sensor is programmable, ranging from 20V/V to 160V/V. The 

ADC resolution is 18bits (the effective number of bits is 15.1 

so we use 16 most significant bits, and the peak-to-peak noise 

is 5.44 µV in the present device configuration). It also has 

high AC dynamic range (65𝑚𝑉𝑃−𝑃) preventing saturation. 

The power consumption of the ECG AFE is 180µW, 

according to its datasheet [16] and verified by measurement. 

Different research and hardware specifications were used as 

the basis of 256 sample/second ECG recording. Although 

Scher and Young [19] attributed the majority of healthy heart 

signals to the 0-100 Hz range, necessitating 200 

sample/second recordings (according to the Nyquist 

theorem), several researchers [20, 21, 22] have suggested the 

necessity of recording higher frequencies in case of certain 

cardiac complications. The sample rate configuration is also 

determined according to the data provided in the datasheet to 

maximize the recorded frequencies to meet the requirements 

set by the mentioned research. Despite being configured to 

256 samples/second, it is possible to ramp up the sampling 

rate to 512 samples/second without modifying the hardware 

if the conditions requiring higher frequencies are met. 

 A 3-axis accelerometer (LIS2DH12) is included to detect 

motion, track physical activity, and detect slips and falls. 

Furthermore, the data from the accelerometer enables 

detecting the noise caused by muscle artifacts and errors due 

to shakes. The said sensor works in low power mode i.e. 8 bit 

mode. Its power consumption is 20µW, according to its 

datasheet [17] and verified by measurement.  

2) Power Management 

A rechargeable 500 mAh lithium-ion polymer battery is 

used to power the circuit. Two step-down DC-DC buck 

converters (TPS62840) regulate the voltage to 3.3V and 1.8V. 

These converters are highly efficient to assist in achieving a 

high battery life (around 90% in the functioning voltage and 

current) [18]. In addition, an integrated linear battery charger 

(bq24091) supplied by a USB type C port is used to recharge 

the battery [14]. A complete cycle takes around three hours. 

The choice of 500 mAh battery capacity was made according 

to the overall current consumption of the device, i.e., 1.4 mA 

at 3.7 V battery voltage, enabling more than two weeks of 

battery life. 
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3) Microcontroller and Peripherals 

The processing core (nRF52832) is powered by a 32-bit 

ARM Cortex M4F running at 64 MHz. This processor was 

chosen due to its low power usage and hardware capabilities. 

Its power consumption varies from 0.3 µA in idle mode to 58 

µA/MHz when running from flash memory according to the 

datasheet. The microcontroller is equipped with 64 KBs of 

RAM and a 512 KB flash memory. SPI (Serial Peripheral 

Interface) is used for data transfer, with an instance for data 

from the sensors and another for microSD output. Serial Wire 

Debug (SWD) protocol was used to program this 

microcontroller. Two of the extra pins in the USB type C port 

were used for this process, one for SWDCLK and the other 

for SWDIO. A BLE 5 (Bluetooth Low Energy) transceiver 

sends data packets to and receives configurations from the 

connected Android device [13]. The MCU handles data 

encoding (further explained in Storage section) and BLE 

streaming (further explained in Android application section), 

as well as interface functions (further explained in LEDs, 

Buzzer, and Pushbuttons section). 

4) Storage 

A microSD card can be optionally inserted into the device 

to save a backup of the data collected from the sensors in a 

format designed to be compatible with the web application 

(Refer to the section on web application for further 

explanation). Furthermore, a level translator supplies the 

3.3V needed for the microSD as opposed to the 1.8V the 

microcontroller runs on [15].  

To simplify later analysis, the recordings are segmented 

into hourly files. The output is encoded into two separate files 

per hour. The accelerometer data is stored in the “.ACC” 

format and the ECG data in the “.ECG” format. The “.ACC” 

file stores the data from each axis in hexadecimal two’s 

complement format (2 characters per axis, 6 characters total), 

compatible with the 8-bit resolution of the accelerometer 

module. For example, an input of x = 20, y = −1, x3 =
−128 is stored as “14FF80” in string format.  

Delta-Sigma method has been deployed for lossless 

compression of the ECG data.  The first sample of each hourly 

file is stored in its first 4 characters, in hexadecimal two’s 

complement based on the 16-bit resolution the ECG data is 

recorded in. The consequent bytes store the difference of the 

new inputs from the initial 2 bytes, also in hexadecimal 

format. As an example, an input of x1 = −1, x2 = 20, x3 =
10 would be stored as “FFFF+15-A” in string format instead 

of “FFFF0014000A”. This can significantly decrease the file 

size, facilitating faster uploads to the server. Lead-on 

detection is marked by an “e:” in the file and lead-off is 

similarly marked by a “d:”. Each lead-on/off event starts a 

new line in the file and until the lead-on/off status changes no 

further output regarding its status is recorded. The lead-on/off 

reporting is done to avoid erroneous readings while the device 

is not properly seated on the body.  

5) LEDs, Buzzer, and Pushbuttons 

Three LEDs are placed on the side of the device body, 

configured in three modes: alternating mode indicating BLE 

advertising, blinking mode indicating that the device is turned 

on and is functional, and a charging mode indicating the 

amount of battery charge as well as a buzzer to provide 

audible notifications of BLE being disconnected or a 

misplaced microSD. In addition, two pushbuttons are placed 

alongside the LEDs, one to exclusively enable Bluetooth 

advertising for one minute (marked with a Bluetooth logo), 

another for turning the device as well as Bluetooth advertising 

on normal press and turning the device off on long press 

(marked with a power on/off symbol).  

C. Printed Circuit Board Design 

The Printed Circuit Board (PCB), which is 0.8 mm thick, 

was designed to accommodate high-frequency parts and the 

industrial standards of body design. An electroless nickel 

immersion gold (ENIG) surface finish was chosen for the 

final manufactured board to ensure RoHS compliance (Fig. 

2). 

D. Firmware Functionality Flowchart 

The data collection timer affects the ECG data, recorded at 

256 samples per second, and the accelerometer data, recorded 

at 50 samples per second. Every 50 ms, a check runs as to 

whether a central BLE and/or a microSD is connected, and 

data from FIFO storage on the sensors is sent accordingly. 

Note that only FAT32 is currently supported for microSD 

storage. During the time no sensor interactions occur, the 

device goes into sleep mode. 

The ADC timer measures battery every 500ms. A resistor 

divider scales the battery voltage to the microcontroller 

voltage to send a percentage level and charging status via 

BLE. Also, an individual UI timer orchestrates the LEDs and 

the buzzer. 

As discussed in the previous section, the Bluetooth 

pushbutton calls an interrupt to initialize Bluetooth 

advertising and the power button to power the device on/off. 

Each sensor is individually configurable via BLE through the 

peripheral. The discussed procedure is shown in Fig. 3. 

 

 
Fig. 2.  Pictures from PCB top layout (top) and bottom layout (bottom). The 

critical parts and the PCB dimensions are marked. 

E. Body Design 

 The body frame is 3D printed using HP Multi Jet Fusion 

technology, with PA12 medical grade material [23] featuring 

a curved ergonomic design. The intended setup is setting the 

device upright, which puts both electrodes on a lead near the 

lead II (Fig. 4). Lead II was chosen since it  is more suitable 

for rhythm detection and gives a good view of the P wave 

[24]. The wings are curved in all three dimensions in two 

opposite directions aiming to allow unobstructed patient 

movement and improved signal accuracy and stability. The 

honeycomb design was adopted to provide more flexibility 

while improving the aesthetics. The outer curve of the wing 

conceals and protects the wiring connecting the patch to the 

             

          

                

              

          

               
      

      

       

       

                   

              

         



Bardia Baraeinejad et al. Design and Implementation of an Ultralow-Power ECG Patch and Smart Cloud-Based Platform 4 

circuit. The stainless-steel lid in the closed state covers the 

micro-SD slot and the USB Type-C jack. Furthermore, it 

increases the physical durability of the device. The medical 

practitioner can slide the lid upwards in its set constraints to 

access the slot and the jack. 

 

Fig. 3.  Firmware flowchart. The first SPI instance takes data from the 

accelerometer, the second takes microSD, and the rest of the firmware deals 
with interface elements from MCU input/output pins and device 

configuration via BLE. 

 

 The HP PA12 biocompatible material has a dense and 

strong structure with a balanced property profile [23]. The 

following certifications were considered in choosing this 

material: USP Class I-VI, US FDA guidance for Intact Skin 

Surface Devices, RoHS, EU REACH, and PAHs [23]. The 

side view, exploded view, critical parts and dimensions of the 

product are demonstrated in Fig. 5, Fig. 6, Fig. 7, and Fig. 8 

respectively. 

 

             
Fig. 4.  The device on the body (left) and a render of the device (right) 

 

 
Fig. 5.  A photograph of the final product 

 

  
Fig. 6.  A render of the exploded view of the body  

 

 
Fig. 7.  Critical parts of the main enclosure 
 

 
Fig. 8.  Body dimensions (all dimensions in millimeters) 

III. SOFTWARE DESIGN 

A. Software Overview 

 The software introduces a comprehensive platform for 

ECG signal viewing and processing, implemented as an 

Android application and a web application via Internet of 

Things (IoT). Server-side processing detects features such as 

R-to-R intervals and arrhythmias via artificial intelligence, 

and the Android application serves as a real-time signal 

viewer.  

B. Android Application and Web Application 

The following section covers the parts concerning the end-

users and medical practitioners using the service. 

1) Web Application 

A practitioner can create and modify patient profiles 

through a web application accessible through a web browser. 

All the APIs used in the Web Application, including those 

used for logging in, uploading data, annotating, and 

commenting on the signal were designed via the RESTful 

API. The cloud storage service was designed from scratch for 

this purpose. The signal analysis and arrythmia detection are 

only available online via the web service, but the device does 

not require Internet connection to record data prior to 

uploading on the server. It allows complete access to patient 

data on multiple devices (e.g. smartphones, laptops etc.). All 

interactions are encrypted via the SSL protocol. Spring 

Security was used as a means of security by only allowing 

access to server data to the authorized web application. The 

“.ECG” and “.ACC” files themselves hold no patient identity 

data and all ECG signals and data regarding patient 

information is encrypted on the server. 

2) Signal Analyzer Interface 

The microSD card data, alongside patient names, and 

sampling dates are saved on the cloud to enable viewing and 

              

                    

                    

         

                 

                          

       

                  

          



Bardia Baraeinejad et al. Design and Implementation of an Ultralow-Power ECG Patch and Smart Cloud-Based Platform 5 

analyzing ECG data remotely. Arrhythmia detection 

algorithms are triggered server-side, and then the output is 

shown on a webpage, visually marking arrhythmia, and R-to-

R intervals in milliseconds. The user can edit generated 

annotations, add comments on any selected signal segment 

and measure the interval between any two selected points in 

seconds. The result can be exported to a PDF file (Fig. 9). 

 

 
Fig. 9.  A screenshot of the web application, demonstrating the analyzer 
interface. 

3) Android Application 

The Android application was designed using the native 

Android SDK. After logging in, the data received through 

BLE is displayed in real-time and can be partially stored 

locally. An option to configure external devices also exists 

(Fig. 10). The Android application can also optionally send 

the sensor data to the server for analysis over WebSocket 

protocol, although the offline functionalities are available 

without an Internet connection.  The JSON Web Token 

(JWT) method was used to ensure the security of the data 

transfer and to stop any unauthorized access to the server 

data. 

 

      
Fig. 10.  A screenshot of the Android application demonstrating the signal 
before and after filtering in dark (left) and light (right) themes. 

4) Request Handling 

All HTTP requests sent from the web application and the 

android application (e.g., login forms) are received and 

processed through RESTful web service and stored on the 

server whenever needed. In addition, all patient and 

practitioner data are stored on a SQL-based database 

(MySQL), and recorded signal files are stored individually on 

the server, easily accessible by the uploader through the 

Internet (Fig. 11). 

C. Server-Side Processing 

 The following sector covers the server-side data analysis. 

 

 

 
Fig. 11.  The diagram of the web platform using IoT 

1) Pre-Processing and Filtering 

The industrial standard for modern ECG recording is a 

bandpass ranging from 0.5 Hz to 100 Hz or 150 Hz [25]. 

Baseline wandering (BW) and Power Line Interference (PLI) 

are two significant noise sources in ECG signals. BW is a 

low-frequency artifact moving the x-axis higher or lower than 

the intended fixed position. Patient movement, breathing, and 

improper electrodes can lead to BW noise. The frequency 

content range of BW noise is in the range of 0.5 Hz. Another 

primary source of noise in ECG signals is power line 

interference (PLI). The frequency content range of PLI is 

either 50 Hz or 60 Hz (based on the location) and the 

associated harmonics [26]. The sample rate of the ECG Patch 

is 256 samples per second, so its Nyquist frequency is equal 

to 128 Hz, which covers the frequency content of the ECG 

signal. Therefore, based on the frequency range of ECG 

signals, it can be concluded that the desired filter should pass 

every frequency content in the range of 0.5 Hz up to 100 Hz 

except for 50 Hz (or 60 Hz) in particular. 

Various techniques like IIR notch filtering, FIR filtering, 

adaptive filtering, and filtered residue method have been 

proposed for ECG noise removal [27]. FIR filters were 

chosen for this purpose since they have finite impulse 

responses, which stabilizes the filter. Furthermore, they can 

be designed to have a linear phase and require no feedback. 

Also, designing an FIR filter tends to be a controlled process. 

The simplest method of FIR filter design is the windowing 

method, branching into different window types [28]. Kaiser 

window provides a better ripple ratio and better main lobe 

width characteristic than other windows [29]. Therefore, as 

shown in Fig. 12, in the first stage of the filter, two FIR filters 

with the Kaiser Windowing method were utilized in parallel 

to remove PLI. 

 Moreover, median filters are a common means in BW 

removal [30, 31]. Therefore, to increase the efficiency of BW 

removal, we used a median filter in the second stage. Thus, 

as shown in Fig. 13 and Fig. 14, the designed filter can 

remove PLI and BW simultaneously. 

2) R-peak Detection 

The ECG signal contains five significant peaks, known as 

Fiducial points, shown by letters P, Q, R, S, T [32], as seen in 

Fig. 15. Since the R-peak in the QRS complex is the most 

noticeable parameter for analyzing ECG signals, many 

algorithms have been proposed to detect R-peaks [33]. Some 

of these algorithms were examined and compared in terms of 

accuracy and runtime speed by running each individually on 

the MIT-BIH dataset. To evaluate the accuracy of each 

algorithm, the equation in Table I is used to calculate the 

duration between where an R-peak occurs (as marked in the 
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MIT-BIH data) from the detected R by each algorithm. We 

have used the NeuroKit algorithm in our server since it results 

in higher accuracy in lower runtime. 

 

 
Fig. 12.  Filter specifications – Initially, the signal is divided into two bands 

to discard the 50 Hz PLI noise and frequencies greater than 99 Hz. 

Subsequently, a median filter is applied to remove the baseline wander. 

 

  
Fig. 13.  PLI removal results using the proposed filter. The constant 50 Hz 

PLI noise is removed after the application of the filter. 

 

 
Fig. 14.  BW removal results using the proposed filter. The resulting signal 

(red) has a fixed baseline after the application of the filter. 

 
TABLE I 

Algorithm 

Runtime on a 

60 min ECG 
signal 

∑|𝑅𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑅𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑|

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

 

Hamilton [34] 1.44 s 69 ms 

Christov [35] 15.39 s 28 ms  

Englese and 

Zeelenberg [36] 
6.22 s 130 ms 

Pan and Tompkins 

[37] 
6.24 s 67 ms 

Stationary Wavelet 
Transform [38] 

0.75 s 59 ms 

NeuroKit (slightly 

modified) [39] 
0.13 s 15 ms 

 

Comparison of different R-peak detection algorithms. Our modified 
version of the open-source NeuroKit algorithm significantly 

outperformed the other available methods in terms of runtime and 

accuracy. 

3) Dataset Analysis 

We use the MIT-BIH to provide an approach that can 

detect two significant types of arrhythmia. Unlike most prior 

works focused on only 2-class classification [40-45], we have 

examined three types of heartbeat annotation: normal, 

ventricular ectopic beat, and supraventricular ectopic beat. 

The labels 'A', 'S', 'a' and 'J' were used for supraventricular 

beat class, 'V' and 'E' for ventricular beat class, as well as 'N', 

'.', 'L', 'R', 'e' and 'j' for normal class [45, 46]. Overall, there 

are 98476 heartbeats which include 88462 normal, 7235 

ventricular beats, and 2779 supraventricular. 

4) Feature Extraction 

Before feature extraction, a median filter shown in Fig. 12 

is used for BW removal on each recording of the MIT-BIH 

dataset. We use the following segmentation method, which 

relies on R-peak detection, to separate every heartbeat signal, 

including all Fiducial points. As seen in Fig. 15, for each 

segment, the interval between the previous R-peak to the 

current is marked by Rn-1Rn. The last third of the Rn-1Rn 

interval marks the beginning of each segment. The first two-

thirds of the RnRn+1 interval marks the end of the segment. 

We have extracted ten relatively quickly calculable features 

on each segment for different classes, which are variance of 

each segment to variance of corresponding recording ratio, 

skewness, kurtosis, RR interval, mean frequency, median 

frequency, OBW (frequencies occupying 99 percent of the 

bandwidth), band-power, previous RR interval to following 

RR interval ratio, and second derivative of RR interval. In 

addition to visual inspection with scattering features of 

different classes, shown in Fig. 16-a and Fig. 16-b, the Fisher 

score of each feature was calculated to separate effective 

features efficiently [47]. 

According to our findings on the MIT-BIH dataset, the 

following features tend to be more separative in classifying 

ventricular beats, supraventricular beats, and normal 

segments: second derivative of RR interval, previous RR 

interval to the following RR interval ratio, kurtosis, and 

Skewness. 

 

 
Fig. 15.  A depiction of Fiducial points and segmentation selection. 

5) Pattern Classification 

After extracting features, artificial neural network (ANN), 

decision tree (DT), and K-nearest neighbor (KNN) were used 

for classification and compared in terms of accuracy and 

learning time. 

a) Artificial Neural Network (ANN) 

For ANN, we have used nprtool toolbox of MATLAB. The 

number of hidden neurons was set as 32 with 150 maximum 

number of iterations to avoid overfitting. All ten features 

were used in the process. Eighty percent of heartbeats were 

set as training data, and the other 20 percent were set as test 

data randomly. We tested three different training methods to 

reach higher accuracy, including Bayesian Regularization, 

Levenberg-Marquardt optimization, and scaled conjugate 

gradient. Based on our findings, Bayesian Regularization 
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tends to have higher accuracy than other training algorithms. 

The confusion matrices of ANN with the Bayesian 

Regularization algorithm are shown in Fig. 17. 

b) Decision Tree (DT) 

The maximum number of splits is set as 1024 in the 

Decision Tree method to avoid overfitting, equal to 1.04 

percent of total heartbeats samples. Identical training and test 

sets were used to provide a fair comparison between DT, 

ANN, and KNN. Also, the same features were used in all 

classifiers. The confusion matrices of the Decision Tree are 

shown in Fig. 18.  

Fig. 16-a.  The charts demonstrate the scattering of the features in recording 

119 of MIT-BIH. As visible in the chart, the chosen criteria has a definitive 

separative quality. 

c) K-Nearest Neighbors (KNN) 

For KNN, we have used fitcknn function of MATLAB. 

The parameter k, which decides how many neighbors will be 

chosen for KNN is set as 12. In addition, the distance function 

is set as seuclidean. The training set, test set, and features in 

the three classifiers are equal. The confusion matrices of the 

KNN are shown in Fig. 19. 

In comparing the three classifiers, although Decision Tree 

seems to be the fastest and the most understandable classifier, 

ANN and KNN yield more accurate results in test data. 

6) Dataset Collection 

At the time of writing this article, this section of research 

is being evaluated for human subject research by National 

Committee for Ethics in Biomedical Researches (NCEBR) 

Institutional Review Board (IRB). ECG and accelerometer 

signals will be recorded and stored from patients and healthy 

candidates, who sign an agreement for anonymous inclusion 

of the recordings in a dataset. Random excerpts of recordings 

are to be evaluated and annotated by a medical doctor and 

uploaded on https://dataset.biosengroup.com for open-source 

usage. The findings of personal evaluation will be compared 

to the findings of our AI algorithm for debugging purposes. 

Upon further validation of the set, we plan to expand the 

training of our algorithm beyond the MIT-BIH set and 

improve its accuracy. 
 

 

 
Fig. 16-b.  The charts demonstrate the scattering of the features in recording 

118 of MIT-BIH. 

IV. COMPARISON WITH EXISTING SYSTEMS 

 This work was conceived as a research project to evolve 

into a commercial product. One of the primary factors was 

the commercial feasibility and offering enhanced 

connectivity and recording timeframe than the existing 

devices and software platforms. For this matter, we refrain 

from comparison with research concluded in a strictly 

academic environment with no large-scale commercial usage. 

As demonstrated in Table II, measures taken to extend the 

battery life appear to prolong the recording timeframe longer 

than the available commercial alternatives. In addition, the 

connectivity methods and platform availability reduce the 

need for third-party involvement in the analysis process.  

Furthermore, signal losses occurring due to artifacts, 

sudden muscle movements, and device-body disconnection 

appears to be rare due to the flexible structure. 

https://dataset.biosengroup.com/
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The main challenge of the detection section was using a 3-

class system as opposed to the 2-class system commonplace 

in similar research while maintaining high accuracy. Table III 

demonstrates a comparison of various arrhythmia detection 

algorithms. Note that decreasing the server load required a 

decrease in the runtime of our algorithm. However, many 

similar researchers refrain from discussing runtime 

adequately to provide a comparison value. 

 

         
Fig. 17.  ANN Train and Test Confusion Matrix (‘S’ stands for 

supraventricular ectopic beats, ‘V’ for ventricular ectopic beats, and ‘N’ for 
normal beats) 

 

       
Fig. 18.  DT Train and Test Confusion Matrix (‘S’ stands for 
supraventricular ectopic beats, ‘V’ for ventricular ectopic beats, and ‘N’ for 

normal beats) 

 

       
Fig. 19.  KNN Train and Test Confusion Matrix (‘S’ stands for 
supraventricular ectopic beats, ‘V’ for ventricular ectopic beats, and ‘N’ for 

normal beats) 

V. CONCLUSION 

The hardware developed in this project shows promise as 

an alternative to Holter monitoring and common ECG patch 

devices due to better battery performance and higher 

resolution and sample rate. In addition, longer recording 

timeframes allow the detection of more sporadic arrhythmias. 

The general hardware design needs little to no modification 

as of writing. Further research might focus on powering the 

device with a body energy harvester for prolonged or 

indefinite recording periods and the use of such recordings. 

The new proposed ECG and accelerometer encoding format 

allows compression of the data and facilitates the real-time 

monitoring applications of the device.  

 Cloud-based storage allows more accessible storage and 

management of data than similar products. The detection 

algorithm shows an improvement over existing research 

performed on the MIT-BIH dataset and could be improved 

upon by integrating the collected data set into the training set. 

Also, further research in the software component could be 

performed on the usage of accelerometer data to removal 

noise caused by motion artifacts. 
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TABLE II 

Device 

Name 

Data 

Storage 

Timeframe 

ECG 

Channel 

Count 

ECG 

Resolution 

(bits) 

ECG 

Sample 

Rate (Hz) 

Data 

Transmission 

ZIO Patch 14 days 1 10 200 

Return of the 

device for 
data retrieval 

SEEQ 

MCT 
7.5 days 1 16 200 

Bluetooth 
and cellular 

transmission 

QardioCore 24 hours 1 16 600 

Bluetooth, 
internal 

device 

memory 

Savvy 7 days 1 16 125 Bluetooth 

Generic 

ECG Holter 

Monitors 

24-72 
hours 

3 to 12 Variable Variable 

Local 

download in 

clinic 

This 

Work 
 > 14 days 1 16 256 

BLE, 

microSD 
Card 

A comparison of this work and commercial devices [48, 49, 50, 51]. 

 

TABLE III 

Accuracy Classifier(s) Features Type Detection 
 

Ref. 

92.25% 

KNN, DT, 

Probabilistic 

Neural 

Network 

8 Features  

Premature 

Ventricular 

Contractions 

 

[40] 

98.90% 

Learning 
Vector 

Quantization 

Neural 

Network  

Lyapunov 

Exponent 

Curve 

Premature 

Ventricular 

Contractions 

 

[41] 

95.40% 
Multilayer 

Perceptron  
11 features 

Premature 

Ventricular 

Contractions 

 

[42] 

99.70% KNN 

Deep learning 

model to 

extract spatial 

features 

Premature 

Ventricular 

Contractions 

[43] 

91.10% Random forest  16 features 
Supraventricular 

Tachycardia 

 

[44] 

98.7% 
ANN, DT, 

and KNN 
10 features 

Ventricular and 

Supraventricular  

beats 

 

This 

Work 

A comparison of this project and similarly arrhythmia detection papers. 
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