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1 Prelude

The scientific community has responded to the COVID-19 pandemic with
admirable global cooperation and solidarity, characterized by rapid sharing of
results and data in an effort to urgently re-focus research toward the common
goal of developing prevention and treatment modalities to help turn the tide of
the COVID-19 pandemic. As spoken by WHO Director-General Dr. Tedros
Adhanom Ghebreyesus at the 2020 Aspen Security Forum, “Our best way
forward is to stick with science, solutions and solidarity and together we can
overcome this pandemic.” World Health Organization (2020)

In this spirit, we are making this Statistical Analysis Plan (SAP) publicly
available at a relatively early and intermediate stage. The SAP is a work
in progress that will continue to be developed and refined over the coming
weeks. Our hope is that fellow statistical scientists and scientists of other
disciplines will bring new insights and offer input to maximize the scientific
knowledge pertaining to immune correlates of protection that can be learned
from COVID-19 vaccine efficacy trials. We invite collaboration and are ea-
ger to explore opportunities for working with others on COVID-19 immune
correlates analyses.

We envisage three applications of this SAP. First, as the Coronavirus Preven-
tion Network Statistical Center and COVID-19 Response Biostatistics Team
our group is responsible for statistical design and analysis of immune corre-
lates for the United States Government (USG)/COVID-19 Response Team
phase 3 trials, and this SAP serves as a master protocol-type SAP for har-
monized immune correlates analyses across the trials. Second, researchers
conducting additional clinical trials may work collaboratively with our group
to co-conduct the immune correlates analysis. Third, researchers conducting
clinical trials may use this SAP as a resource for immune correlates analyses
conducted on their own, either by implementing this SAP or components
therein, or by selecting methods and code from it to adopt for their own
SAPs.

We are implementing the SAP in R. The R scripts are hosted on a Github
code repository CoVPN/correlates reporting and will be made publicly avail-
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able as soon as they are ready. The first publicly available download will be
focused on immunogenicity characterization and correlates of risk analysis
and the second one will be focused on correlates of protection analysis. This
collaborative Github repository will include reproducible reports implement-
ing the SAP on a mock/practice COVID-19 vaccine efficacy trial data set.

Please direct communication related to this SAP to Peter B. Gilbert at the
Fred Hutchinson Cancer Research Center (pgilbert@fredhutch.org).

2 Introduction

2.1 Antibody Assays and Day 57 Markers

This SAP describes the statistical analysis of antibody markers measured
at a key time point post last vaccination as immune correlates of risk and
as various types of immune correlates of protection against primary and sec-
ondary endpoints in COVID-19 Response Team / CoVPN COVID-19 vaccine
efficacy (VE) trials. For definiteness, we assume this time point for antibody
measurements is Day 57, a typical time point for a two-dose vaccine; for a
one-dose vaccine the key time point would likely be around Day 29. The an-
tibody markers of interest are measured using one of three kinds of humoral
immunogenicity assays [more detail on assay types (2) and (3) can be found
in Sholukh et al. (2020)]:

(1) bAbs: Binding antibodies to the vaccine insert SARS-CoV-2 proteins;

(2) Pseudovirus-nAbs: Neutralizing antibodies against viruses pseu-
dotyped with the vaccine insert SARS-CoV-2 proteins; and

(3) Wild Type Live virus-nAbs: Neutralizing antibodies against live
“vaccine insert-matched” wild type SARS-CoV-2 (or recombinant “vaccine
insert-matched” SARS-CoV-2 harboring a reporter gene within the viral
genome).

For example, the following assays are expected to be used:

(1) bAb assay: The MSD-ECL Multiplex Assay (MSD-ECL = meso scale
discovery-electrochemiluminescence assay)

12
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The MSD assay measures binding antibody to antigens corresponding to:
Spike (an engineered version of the Spike protein harboring a double proline
substitution (S-2P) that stabilizes it in the closed, prefusion conformation
[McCallum et al. (2020)]); the Receptor Binding Domain (RBD) of the Spike
protein; and Nucleocapsid protein (N), which is not contained in any of the
COVID-19 vaccines.

This assay has a standard curve to interpolate arbitrary units/ml; an 8 point
dilution curve on each sample with 5-fold dilutions starting at 1:20; an 8
point dilution curve on VRC control sera; and includes Positive, Negative
and Intermediate controls. Binding antibody to N are not of interest as a
potential immune correlate; these data are included only for immunogenicity
evaluation. Based on the starting dilution of the standards and samples at
1:20, the lower limit of detection (LLOD) for the endpoint titer of the assay
is 1:20. Binding antibody readouts below the LLOD are assigned the value
LLOD/2 = 10. Values between the LLOD and the lower limit of quantitation
(LLOQ) are taken as their actual numeric value.

The bAb assay readouts are in units AU/ml, where AU stands for arbitrary
units from a standard curve. The process of validating the assay defined a
lower limit of detection (LLOD), an upper limit of detection (ULOD), a lower
limit of quantitation (LLOQ), an upper limit of quantitation (ULOQ), and a
positivity cut-off for each antigen that defines positive vs. negative response.
These values are as follows:

• bAb Spike:

– Pos. Cutoff = 1204.71 AU/ml

– LLOD = 34.18 AU/ml

– ULOD = 19,136,250 AU/ml

– LLOQ = 199.64 AU/ml

– ULOQ = 1,128,438.87 AU/ml

• bAb RBD:

– Pos. Cutoff = 517.86 AU/ml
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– LLOD = 58.59 AU/ml

– ULOD = 8,201,250 AU/ml

– LLOQ = 125.9678 AU/ml

– ULOQ = 598,133.3615 AU/ml

• N:

– Pos. cutoff = 9779.62 AU/ml

– LLOD = 39.06 AU/ml

– ULOD = 21,870,000

– LLOQ = 1870.70 AU/ml

– ULOQ = 239,449.31

The Vaccine Research Center established factors for converting the MSD
assay readouts from AU/ml to WHO International Units/ml, which is the
same thing as Binding Antibody Units/ml (BAU/ml). For the three binding
antibody variables CoV-2 Spike IgG, CoV-2 RBD IgG, and CoV-2 N IgG,
these conversion factors are 0.0090, 0.0272, and 0.0024, respectively. These
conversion factors are applied, such that all binding Ab readouts are reported
in WHO International Units/ml with notation BAU/ml, following the WHO
recommendation, for all analyses. These conversion factors are also applied
to yield the LLOD, ULOD, LLOQ, and ULOQ on the WHO BAU/ml scale.
The following shows the assay limits on the BAU/ml scale:

• bAb Spike:

– Pos. Cutoff = 10.8424 BAU/ml

– LLOD = 0.3076 BAU/ml

– ULOD = 172,226.2 BAU/ml

– LLOQ = 1.7968 BAU/ml

– ULOQ = 10,155.95 BAU/ml

• bAb RBD:
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– Pos. Cutoff = 14.0858 BAU/ml

– LLOD = 1.593648 BAU/ml

– ULOD = 223,074 BAU/ml

– LLOQ = 3.4263 BAU/ml

– ULOQ = 16,269.23 BAU/ml

• bAb N:

– Pos. Cutoff = 23.4711 BAU/ml

– LLOD = 0.093744 BAU/ml

– ULOD = 52,488 BAU/ml

– LLOQ = 4.4897 BAU/ml

– ULOQ = 574.6783 BAU/ml

All values below the LLOD are assigned the value LLOD/2. For immuno-
genicity reporting, values greater than the ULOQ are not given a ceiling
value of the ULOQ, the actual readouts are used. For the immune correlates
analyses, values greater than the ULOQ are assigned the value of the ULOQ.

(2) Pseudovirus-nAb assay: A firefly luciferase (ffLuc) reporter neutraliza-
tion assay for measuring neutralizing antibodies against SARS-CoV-2 Spike-
pseudotyped viruses

Based on the Duke assay from the Montefiori lab, serum inhibitory dilution
50% titer (ID50) and serum inhibition dilution 80% titer (ID80) values are
estimated based on a starting serum dilution of 1:10, with eight 5-fold di-
lutions. Thus 1:10 is the LLOD on the scale of the assay. The process of
validating the assay defined the LLOD, LLOQ, and ULOQ for ID50 and
ID80 as follows:

• ID50:

– LLOD = 10

– LLOQ = 18.5
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– ULOQ = 45118

• ID80:

– LLOD = 10

– LLOQ = 14.3

– ULOQ = 10232

ID50 and ID80 values below the LLOD are assigned the value 10/2 = 5.
Values between the LLOD and the LLOQ are taken as their actual numeric
value. For immunogenicity reporting, values greater than the ULOQ are not
given a ceiling value of the ULOQ, the actual readouts are used. For the
immune correlates analyses, values greater than the ULOQ are assigned the
value of the ULOQ. This is done so as to not unduly influence the correlates
analyses by high outlying values, given the expectation that the most relevant
marker dynamic range for correlates is much lower than the ULOQ.

ID50 and ID80 values are reported in international units based on the re-
port from David Montefiori “Reagent Calibration Report: First WHO In-
ternational Standard for SARS-CoV-2 Immunoglobulin in a Neutralization
Assay” (May, 2021). This report derived calibration factors based on arith-
metic means:

• Calibration factor ID50: 0.242

• Calibration factor ID80: 1.502

The original readouts are calibrated to the IU scale by multiplying each
original ID50 value by 0.242, and multiplying each original ID80 value by
1.502, and units are reported as calibrated ID50 (cID50) and calibrated ID80
(cID80). Consequently, the LLOD, LLOQ and ULOQ for cID50 and cID80
are as follows in International Units:

• cID50:

– LLOD = 2.42

– LLOQ = 4.477

– ULOQ = 10919
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• cID80:

– LLOD = 15.02

– LLOQ = 21.4786

– ULOQ = 15368

(3) Wild Type Live virus-nAb assay: An assay measuring antibody-
mediated neutralization of live wild-type SARS-CoV-2 (WA isolate, passage
3, Vero-E6 cells).

The WT live virus-nAb marker is defined as MN50 calculated using the
Spearman-Karber method. The Battelle assay has the following parame-
ters, in original MN50 units and in International Units (IU) with WHO IU
conversion factor 0.276:

• LLOD: 82.11 MN50 (22.66 IU)

• LLOQ: 159.79 MN50 (44.1 IU)

• ULOQ: 11,173.11 MN50 (3,083.74 IU)

Values below the LLOD are assigned the value LLOD/2. Values between the
LLOD and the LLOQ are taken as their actual numeric value. Values greater
than the ULOQ are assigned the value of the ULOQ.

Throughout this SAP we assume that all three types of assays have validated
versions that are applied uniformly to samples collected in one or several
late-stage SARS-CoV-2 vaccine efficacy trials. Samples from the same trial
are expected to be assayed by the same lab that performs one of these im-
munoassays.

Based on each immunoassay applied to paired serum samples collected from
participants on Day 1 (baseline, pre-vaccination) and Day 57 (post-vaccination
visit), the following set of antibody markers is defined for immunogenicity and
immune correlates analyses.

• For bAb: log10 IgG concentration (BAU/ml) at each time point, and
the difference in log10 concentration (Day 57 minus Day 1) representing
log10 fold-rise in IgG concentration from baseline to 28 days post dose
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two. These markers are defined for each antigen Spike, RBD, and N.

• For PsV nAb: log10 serum inhibitory dilution 50% titer (ID50) and serum
inhibition dilution 80% titer (cID80) at each time point, as well as the
log10 fold-rise of these markers over Day 1 to Day 57.

• For WT live virus nAb: log10 serum MN50 at each time point, as well
as the log10 fold-rise of this marker over Day 1 to Day 57.

For two-dose vaccines, the immunogenicity and correlates analyses may also
include the same antibody markers measured at the second-dose sampling
time point, which we refer to as the Day 29 time point. In this SAP we
include contingency sub-sections marked ‘[With Day 29 Markers]’ to describe
how the SAP is augmented to include the Day 29 antibody markers in the
analysis.

3 Study Cohorts and Endpoints

3.1 Study Cohort for Correlates Analyses

Finalization of the primary study cohort for correlates analysis will take place
before unblinding case/non-case and randomization arm information for cor-
relates analyses. The default is for the primary study cohort to be the same
as the cohort used in the primary analysis of vaccine efficacy against the pri-
mary endpoint in the protocol, except that availability of a Day 1 and Day
57 blood sample for antibody testing is also required. It may also be required
to have results from all tests for SARS-CoV-2 infection on Day 57 samples
[serology and/or nucleic acid amplification test (NAAT)].

Typically the primary analysis cohort is baseline SARS-CoV-2 negative par-
ticipants in the per-protocol cohort, with the per-protocol cohort defined as
those who received all planned vaccinations without any specified protocol
deviations, and who were SARS-CoV-2 RT-PCR negative at the terminal
vaccination visit. We refer to this cohort representing the primary popu-
lation for correlates analysis as the Per-Protocol Baseline Negative Cohort.
We will wait to fully understand all of the antigen and serology testing data
that are available in the data set to finalize the definition of the primary
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analysis cohort. If a vaccine has high vaccine efficacy, it is possible that
rare vaccine breakthrough cases will be individuals who were infected be-
fore the second vaccine dose, or soon after the first dose, but had unusually
long time periods between SARS-CoV-2 acquisition and symptomatic infec-
tion (COVID) diagnosis. This situation could complicate the interpretation
of correlates analyses. Therefore, we may conduct some correlates analyses
that use a stringent criterion to include vaccine breakthrough cases in the
analyses, such as requiring antigen negative tests at both the dose two visit
and Day 57 and all serologies negative through Day 57.

As the primary analysis of vaccine efficacy is conducted in baseline negative
individuals, correlates of risk (CoR) and correlates of protection (CoP) anal-
yses are only done in baseline negative individuals, and the analysis of data
from baseline positive individuals is for purposes of immunogenicity charac-
terization, given too-few anticipated vaccine breakthrough study endpoints
for CoR/CoP assessment (although if there are many baseline positive vac-
cine breakthrough endpoint cases that baseline positive subgroup analyses
may be considered). In baseline negative individuals, antibody marker data
in placebo recipients is relevant for verifying the expectation that almost all
Day 57 marker responses will be negative, given the lack of SARS-CoV-2
antigen exposure.

3.1.1 [With Day 29 markers]

If Day 29 markers are included, analyses of Day 29 correlates are done in
the same cohort as studied for the analyses of Day 57 markers, except the
time origin in correlates analyses is set at the Day 29 visit and the set of
participants included in the analysis is augmented with intercurrent cases.
Intercurrent cases are defined as participants who were diagnosed with the
COVID primary endpoint ≥ 7 days post Day 29 visit plus baseline negative
cases with endpoint ≥ 6 days post Day 57 visit. These intercurrent cases
are not included in the Day 57 marker correlates analyses for which cases are
counted starting 7 days after the Day 57 visit. Thus, intercurrent cases are
exactly the set of cases included in Day 29 correlates analyses but excluded
from Day 57 correlates analyses. Analyses that include both Day 29 and 57
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markers use the same cohort as for analyses of Day 57 markers only.

3.2 Study Endpoints

Endpoints for per-protocol correlates analyses of Day 57 markers are included
if they occur at least 7 days after the Day 57 visit, to help ensure that
the endpoint did not occur prior to Day 57 antibody measurement. Thus
participants with a per-protocol endpoint diagnosed earlier are excluded from
the Day 57 marker per-protocol correlates analyses.

Figure 1 defines five study endpoints that are assessed in COVID-19 vaccine
efficacy trials, where all trials use COVID (symptomatic infection) as the
primary endpoint. While the severe COVID endpoint is of paramount clinical
importance, likely the number of events at the time of the first correlates
analysis will be too small to assess correlates against this endpoint, such that
correlates analyses will be done once more endpoints have accrued through
longer-term follow-up.

In contrast, depending on the estimate of vaccine efficacy, there may be
enough data to assess correlates against the endpoints non-severe COVID,
SARS-CoV-2 infection (COV-INF), asymptomatic infection (ASYMP-COV-
INF) at or shortly after the time of the first correlates analysis, and viral
load at COVID diagnosis. Similar statistical methods can be used for each
endpoint, with some distinctions that we discuss below in “General Statistical
Issues in Correlates Assessment.”

When a correlates analysis is done, all available follow-up for participants is
included through to the time of the data base lock for the correlates analysis,
for every CoR and CoP analysis that is conducted. This means that the time
of right censoring for a given failure time endpoint will be the first event of
loss to follow-up or the date of administrative censoring defined as the last
date of available follow-up. For CoP analyses, which use both vaccine and
placebo recipient data and leverage the randomization, follow-up is censored
at the time of unblinding. In general all blinded follow-up is included and no
post-unblinding follow-up is included.
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3.2.1 [With Day 29 markers]

If Day 29 markers are included, analyses that study Day 29 markers count
study endpoints starting 7 days post Day 29 visit, instead of starting 7 days
post Day 57 visit. Analyses that include both Day 29 and Day 57 markers
(for correlates analyses this only includes the multivariable correlates of risk
superlearning objective) use the same cohort and endpoints as analyses of
Day 57 markers only.

4 Objectives of Immune Correlates Analyses of a Phase 3 Trial
Data Set

4.1 Characterize Vaccine Immunogenicity

There are two objectives to characterize the binding and neutralizing anti-
body immunogenicity of the vaccine:

Stage 1 To characterize vaccine immunogenicity (bAb, nAb) at Day 1, 29, 57

Stage 2 To characterize vaccine immunogenicity/durability (bAb, nAb) over time
(Day 1, 29, 57, 209, 394, 759)

4.2 Correlates of Risk and Correlates of Protection

We broadly classify the proposed analyses into two related categories: corre-
lates of risk (CoR) and correlates of protection (CoP) analyses. CoR analyses
seek to characterize correlations/associations of markers with future risk of
the outcome amongst vaccinated individuals in the study cohort. CoP anal-
yses seek to formally characterize causal relationships among vaccination,
antibody markers and the study endpoint, and use data from both vaccine
and placebo recipients. Table 1 summarizes these objectives and statistical
frameworks that are commonly used to these ends.

The advantage of CoR analyses it that it is possible to obtain definitive
answers from the phase 3 data sets, that is one can credibly characterize as-
sociations between markers and outcome. The advantage of CoP analyses is
that the effects being estimated have interpretation directly in terms of how
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an antibody marker can be used to reliably predict vaccine efficacy (the crite-
rion for use of a non-validated surrogate endpoint for accelerated approval).
The disadvantage of CoR analyses are that a CoR may fail to be a CoP, for
example due to unmeasured confounding, lack of transitivity where a vac-
cine effect on an antibody marker occurs in different individuals than clinical
vaccine efficacy, or off-target effects (VanderWeele, 2013). The disadvantage
of CoP analyses is that statistical inferences rely on causal assumptions that
cannot be completely verified from the phase 3 data, such that compelling
evidence may require multiple phase 3 trials and external evidence on mech-
anism of protection (e.g., from adoptive transfer or vaccine challenge trials).
Our approach presents results for both CoR and CoP analyses, seeking clear
exposition of how to interpret results, the assumptions undergirding the va-
lidity of the results, and diagnostics of these assumptions and assessment of
robustness of findings to violation of assumptions.

We conjecture that an antibody marker could qualify as a non-validated sur-
rogate endpoint (meeting accelerated approval criteria) based on meeting all
three conditions: (1) demonstration of a strong and robust CoR with con-
founding control; (2) external data supporting functionality and connection
to a mechanism of protection; and (3) CoP analyses supporting that the
biomarker is likely to be a CoP and not only a CoR. Mechanisms of protec-
tion as in (2) may be learned through passive antibody transfer studies and
vaccine challenge studies in animals and/or humans.
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Table 1: Correlates of Risk (CoRs) and Correlates of Protection (CoPs) Objectives for Day 57
Markers

Objective Type Objective

CoRs (Risk Prediction To assess Day 57 markers as CoRs in vaccine
Modeling) recipients

a. Relative risks of outcome across marker levels
b. Absolute risk of outcome across marker levels
c. Machine learning risk prediction for
multivariable markers

CoP: Correlates of VE To assess Day 57 markers as correlates of VE in
vaccine recipients
a. Principal stratification effect modification analysis
b. Assesses VE across subgroups of vaccine recipients defined by
Day 57 marker level in vaccine recipients

CoP: Controlled To assess Day 57 markers for how assignment
Effects on to vaccine and a fixed marker value would
Risk and VE alter risk compared to assignment to placebo

CoP: Stochastic To assess Day 57 markers for how stochastic
Interventional Effects shifts in their distribution would
on Risk and VE alter mean risk and VE (Hejazi et al., 2020)

CoP: Mediators of VE To assess Day 57 markers as mediators of VE
a. Mechanisms of protection via natural direct and indirect effects
a. Estimate the proportion of VE mediated by a marker or markers

4.2.1 [With Day 29 markers]

If Day 29 markers are included, then each of the objectives for Day 57 markers
is repeated for Day 29 markers. In addition, the multivariable CoR machine
learning objective includes models that include both Day 29 and Day 57
markers.

4.3 Synthesis of the Phase 3 Correlates Analyses for Decisions

Establishment of an immunologic biomarker for approval/bridging applica-
tions is generally not based on pre-fabricated criteria nor a single type of
correlates analysis. Therefore, the goal of the correlates analysis is to gener-
ate evidence about correlates from many perspectives, and to synthesize the
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evidence to support certain decisions. Consequently, we believe there is value
in assessing all of the types of correlates presented in Table 1 in each trial,
given that the analyses address distinct questions. Obtaining a set of results
from multiple distinct approaches that provide complementary and coherent
support may increase the rigor and robustness of an evidence package sup-
porting potential use of an antibody marker as a validated surrogate (for tra-
ditional approval) or as a non-validated surrogate (for accelerated approval)
(Fleming and Powers, 2012); these uses of a biomarker are summarized be-
low. However, the assumptions needed for valid inferences are somewhat
different across the methods, and some of these assumptions have testable
implications; therefore examination of the assumptions may lead to favoring
some methods over others, and affect the synthesis and interpretation of re-
sults, and moreover if diagnostics support that some necessary assumptions
are infeasible then certain analyses will be canceled, as described below.

Section 16 summarizes the approach to use and interpretation of the set of
multiple correlates of protection methods. Furthermore, depending on the
number of study endpoints in the vaccine and placebo arms at the time a
trial delivers primary results, some of the Day 57 marker correlates types
defined in Table 1 will be evaluable at the first correlates analyses, whereas
others will not be evaluable until additional evaluable vaccine breakthrough
endpoints have been observed.

As detailed in Table 4, some CoR analyses are done after there are at least
25 evaluable vaccine breakthrough cases, which is considered to be a minimal
number to achieve worthwhile precision. On the other hand, the most non-
parametric/flexible CoR analyses require more cases, as do the CoP analyses
in general, given the need to adjust for all potential confounders in order to
fully identify the causal effects parameters of interest and the greater chal-
lenge in estimation (compared to CoR analysis) posed by the need to deal
with missing potential outcomes.

Finally, we note that meta-analysis of multiple VE trials will provide im-
portant empirical support for potentially establishing an immunologic sur-
rogate endpoint, which underscores the necessity of standardizing the VE
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trials (common study endpoints, common labs and immunoassays, common
statistical methods and data analysis).

4.4 Additional Objectives Not Covered in this SAP

An additional objective that will be assessed, but will be described in a
separate SAP, is to assess antibody markers over time beyond Day 57 through
two years post vaccination, to assess “outcome-proximal correlates.” While
we do not formally develop methods to address this aim in this SAP, here we
very briefly outline approaches that may be pursued to address such aims.
For example, a CoR analysis might assess longitudinal markers in vaccine
recipients through estimation of the hazard ratio of outcome across levels of
the current value of the marker modeled via a linear mixed effects model (e.g.,
Fu and Gilbert, 2017). A CoP analysis might assess longitudinal markers as
mediators of VE (mechanisms of protection), for example by assessing the
proportion of VE mediated by the longitudinal marker(s) profile (e.g., Zheng
and van der Laan, 2017).

To potentially help addressing these aims, antibody markers should be mea-
sured at the time of COV-INF and COVID diagnosis. An open question is
whether and how these measurements may be used in outcome-proximal cor-
relates analyses, for example by assuming that the observed marker values
on or near the day of diagnosis were present on the date of SARS-CoV-2
acquisition. Justification for this assumption for the COVID endpoint would
derive from information that COVID tends to occur within only several days
of SARS-CoV-2 acquisition, implying insufficient time for the infection to
make new antibodies that would complicate the interpretation of the vaccine-
elicited antibodies. It is possible that this condition could only be verified in a
subset of cases, in which case validation-set missing data statistical methods
may be fruitful. More validation work will be required before methods would
be used treating marker values at diagnosis as present at endpoint diagnosis
and caused solely by the vaccine (i.e., not also caused by natural infection).
For the COV-INF endpoint it is less feasible / possible to use the COV-INF
sampling marker value to infer the marker value at acquisition, given the un-
known period of weeks or months that may have elapsed between acquisition
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and seroconversion.

Outcome-proximal correlates analyses may be especially relevant if Day 57
antibody markers tend to be generally high in vaccine recipients and this
fact leads to a failure of the correlates analyses to identify a Day 57 correlate:
if antibodies wane over time then the outcome-proximal correlates analyses
could be more sensitive to detect a correlate.

Additional objectives that may be addressed with the at-diagnosis samples
include: (1) to characterize abnormal responses, possibly relevant for safety
signals; and (2) to assess the effect of pre-existing antibodies on the active
immune response to infection and disease.

5 Applications of Immune Correlates Analyses: Vaccine Approval
Pathways and Standards of Evidence

Suppose that one or more phase 3 trials demonstrates beneficial vaccine ef-
ficacy against the primary clinical endpoint (e.g., symptomatic infection, i.e.
COVID) meeting pre-specified success criteria, and correlates analyses of Day
57 antibody marker data are conducted based on the clinical data and an-
tibody data from the phase 3 trial(s). These correlates analyses, combined
with additional data supporting the role of antibody markers as mechanisms
of protection or as surrogates of mechanisms of protection, can buttress two
potential applications of an antibody marker (Table 2).

Table 2: Two Potential Vaccine Approval Pathways Based on a Day 57 Antibody Marker Endpoint

Traditional If the marker is scientifically well-established to reliably predict vaccine
Approval vaccine efficacy, then subsequent efficacy trials may use the marker

as the primary endpoint
a. Same vaccine for different populations
b. Possibly new vaccines in the same class for the same or different populations

Accelerated If the marker is judged reasonably likely to predict vaccine efficacy but not yet
Approval scientifically well established, then accelerated approval based on the marker

endpoint may be possible (requires verification of beneficial clinical VE in
post marketing studies)
a. Same vaccine for different populations
b. Possibly new vaccines in the same class for the same or different populations
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Fleming and Powers (2012) defined a validated surrogate as a marker that is
appropriate for use as an outcome measure for traditional approval of a spe-
cific class of interventions against a specific disease, when such interventions
are deemed safe and have demonstrated strong evidence that risks from off-
target effects are acceptable. They also defined a non-validated surrogate as
a marker appropriate for use as an outcome measure for accelerated approval
as one established to be “reasonably likely to predict clinical benefit” for a
specific disease setting and class of interventions. These definitions provide
two goalposts for immune correlates analyses of COVID-19 VE trials.

Table 3 summarizes one possible set of requirements for a Day 57 anti-
body marker to be accepted as a validated surrogate for a COVID-19 disease
endpoint for use in approving COVID-19 vaccines for specific populations
(e.g., SARS-CoV-2 seronegative adults) using Fleming and Power’s definition.
These potential requirements are conjectures provided for conceptualization
purposes, and are not based on COVID-19 regulatory guidance documents.
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Table 3: Potential Traditional Approval Requirements for a Day 57 Antibody Marker

Requirements (1.-6. Required) Endpoints and Evidence Bar

1. Strong evidence for CoR and CoP COVID and VL endpoints: Highly
in vaccine recipients in animal significant and predictive
and/or human challenge models and Severe COVID : Point estimates

in the right direction
and COV-INF, ASYMP-COV-INF: No
countervailing evidence1

2. Strong evidence that the marker
is a mechanistic CoP or tightly Study endpoints used
correlated with a mechanistic CoP in challenge models
(likely deriving from animal challenge such as subgenomic
studies of vaccines or passively SARS-CoV-2 RNA
transferred antibodies)

3. Supportive evidence from natural history Same endpoints as in Phase 3 trial
studies of CoRs of re-infection in (COVID , severe COVID ,
SARS-CoV-2 infected individuals ASYMP-COV-INF, COV-INF, VL Dx)

4. Phase 3 trial strong evidence as a COVID and ≥ 1 other endpoint:
CoR in vaccine recipients Highly significant and predictive

and Point estimates in the right direction
for the other endpoints
Consistent results Day 29, 57 markers
Require consistent results from multiple trials

5. Phase 3 trial strong supportive evidence COVID
as CoP, for at least one CoP type, Point estimates of association/causal parameters
plus point estimates in the right in the right direction for the other endpoints2

direction for the other CoP types
(consistency of evidence) Require consistent results from multiple trials

6. Temporal ordering support for several
of the above results, e.g., CoRs
and CoPs are stronger for COVID COVID , severe COVID ,
occurrence proximal to vaccination ASYMP-COV-INF, COV-INF, VL Dx
than distal, synchronized with
pattern of biomarker waning

7. Additional support from non-vaccine COVID , severe COVID ,
interventions, e.g., demonstration of ASYMP-COV-INF, COV-INF, VL Dx
a neutralization CoP for a monoclonal Ab
1Countervailing evidence could be any observations that provide evidence against a CoP, e.g.,

relative to Bradford-Hill criteria (see Section 16).
2Because CoPs can differ by study endpoint Plotkin (2010) and vaccine efficacy can differ by

study endpoint, this criterion will not necessarily be important.
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A potential goalpost for a non-validated surrogate for accelerated approval
can be conceptualized as the same as that for traditional approval, with
modifications:

• The package of evidence for the seven sources listed in Table 3 may be
less stringent quantitatively, and not requiring success on all of the first
six categories.

• Source 4 (Phase 3 CoR in vaccine recipients) would need to have strong
evidence (highly statistically significant and highly predictive).

• The support for an immune correlate may be more restricted to a given
study endpoint.

• It may no longer be required to have replication of results across two or
more Phase 3 trials.

It is hypothesized that a single validated assay will yield a validated or non-
validated surrogate endpoint, e.g., based on binding antibody IgG concen-
tration or serum ID50 or cID80 titer to viruses pseudotyped with the Spike
vaccine insert protein (or live SARS-CoV-2). However, the goalposts could
potentially also be met by a synthesis biomarker aggregated from measure-
ments from multiple validated assays if this aggregation substantially im-
proves the correlate (e.g., a co-correlate Plotkin (2010); Plotkin and Gilbert
(2018)). However, the preferred approach, for parsimony and practical util-
ity, would be to define a correlates of protection as a single biomarker derived
from a single assay.

5.0.1 [With Day 29 markers]

If Day 29 markers are included, then a validated surrogate endpoint or non-
validated surrogate endpoint could be defined based on either a Day 57 time
point or a Day 29 time point, and possibly also requiring both time points
integrated into the same biomarker.
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6 Timeline/Sequencing of Correlates Analyses

The correlates analyses are initiated by the availability of (a) a data set de-
fined at or after the primary analysis data set triggered by the accrual of a
certain number of primary endpoints (typically approximately 150 in U.S.
phase 3 studies); and (b) Day 1, 57 antibody marker data from correlates-
eligible COVID primary endpoint cases from at least 25 baseline negative
vaccine recipients. The latter requirement ensures that there are enough
endpoint cases to achieve worthwhile precision for CoR analyses. The HVTN
505 trial serves as a precedent where 25 evaluable vaccine recipient cases
provided enough data to reasonably characterize correlates of risk for a pre-
ventive candidate HIV vaccine (Janes et al., 2017; Fong et al., 2018; Neidich
et al., 2019; Gilbert et al., 2020b). In addition, simulation studies show that
correlates analyses at 20 endpoints have notably lower precision.

Table 4 shows the minimum number of baseline negative vaccine recipient
endpoints evaluable for correlates analyses that are required before conduct-
ing the various planned correlates analyses.

Table 4: Minimum Numbers of Evaluable Endpoints in Baseline Negative Vaccine Recipients to
Initiate Correlates Analyses

Correlates Analysis Type Number

CoRs (Risk Prediction Modeling)
a. (Semi)parametric models with strongly parametrized associations:
Cox, hinge/threshold logistic regression 25
b. Flexible parametric models: Generalized additive model 35
c. Nonparametric thresholds: Donovan et al. (2019)/
van der Laan et al. (2020) 35
d. Superlearner estimated optimal surrogate 35

CoP: Correlates of VE 50
CoP: Controlled VE 50
CoP: Stochastic Interventional VE 50
CoP: Mediators of VE 50
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6.1 Timeline of Statistical Analysis Reports

We summarize the plans for analysis reports over the whole period of the
study. When the Day 1, 57 antibody data from the immunogenicity subcohort
are available, the first immunogenicity report will be produced. When Day 1,
57 antibody data on COVID cases are also available, the first correlates of risk
report will be produced, focusing on Stage 1 data only. When there is enough
follow-up to measure antibody markers at the later time points (i.e., Day
209, Day 394, possibly Day 759), additional immunogenicity and correlates
reports will be made, including those that assess outcome-proximal correlates
of risk and protection based on Stage 2 data. The initial correlates reports
will likely only include the symptomatic infection/COVID study endpoint;
as data sets become available for the other endpoints the reports will add
correlates analyses against the secondary endpoints.

7 General Statistical Issues in Immune Correlates Assessment

Throughout this section, we define the asymptomatic infection endpoint as
seroconversion without prior occurrence of the COVID endpoint.

Issue 1: Timing of endpoint definition, accounting for diagnosis at
presentation (i.e., date of virological confirmation of symptomatic
COVID – COVID diagnosis) or during post-COVID-19 diagnosis
follow-up.

• COV-INF: Defined at presentation (if COVID endpoint) or at first
positive serotest visit, whichever occurs first

• COVID: Defined at presentation/virologic confirmation

• Asymptomatic infection: Defined at first positive serotest (without
prior COVID endpoint)

• Non-severe COVID: Ascertained by post-COVID diagnosis follow-
up, where the failure time could be defined by the time of resolution of
symptoms
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• Severe COVID: Occurs at presentation or at any time during post-
COVID diagnosis follow-up

At COVID endpoint diagnosis, participants roll over onto a post-diagnosis
follow-up track (Figure 2). This is irrelevant for analysis of the first three
endpoints listed above, but for the non-severe COVID endpoint and the se-
vere COVID endpoint special considerations are needed for proper correlates
analyses. Survival analysis theory typically requires predictable processes,
such that non-severe COVID and severe COVID would have failure times
defined when the classification of the endpoint is known. However, alterna-
tively, the analysis could be simplified by defining the failure time for all three
endpoints COVID, severe COVID, and non-severe COVID to be the date of
presentation, even though at that time one needs to look into the future to
determine whether the COVID endpoint is severe or non-severe. Such an
approach could be justified by thinking of the data as a competing risks data
structure, where one observes the time to COVID, and each COVID endpoint
has an associated binary endpoint “type”, severe or non-severe. The analyses
will use this simplified approach. A justification of this simplified approach
is that severe COVID is a very rare event among vaccine recipients, and it is
the fact of having the event that is important, not whether it happened at
or 9 days post COVID diagnosis, such that using a more refined failure time
would be unlikely to carry additional meaningful information. If greater than
10% of COVID endpoint cases are missing the endpoint type, then methods
accounting for missing endpoint types will be used (e.g., Heng et al., 2020).

Issue 2: Is the endpoint appropriately analyzed using ordinary sur-
vival analysis or competing risks survival analysis?

For this issue, we consider use of a time-to-event method to assess vaccine
efficacy. In general, a competing risk of a given endpoint of interest is an
endpoint that, once it occurs, precludes the possibility of future occurrence
of the other endpoint.

1. COVID is a competing risk for asymptomatic infection

2. Severe COVID is a competing risk for non-severe COVID
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Therefore, the asymptomatic infection and non-severe COVID endpoints may
be best analyzed by competing risks methods. For example, instead of esti-
mating cumulative incidence P (T ≤ t|A = a) for a given randomization arm
A = a, where T is the time from enrollment until the endpoint, we analyze
cumulative incidence P (T ≤ t, J = 1|A = a), where T is the time to the first
event of J = 1 (event of interest) or J = 2 (competing event), and cumulative
VE(t) may be assessed using the parameter

VE(t) = 1− P (T ≤ t, J = 1|A = 1)

P (T ≤ t, J = 1|A = 0)
.

In addition, hazard-ratio-based VE may be defined as one minus the cause
(J = 1)-specific hazard ratio (Prentice et al., 1978; Gilbert, 2000).

It is also worth noting that:

1. Asymptomatic infection is not a competing risk for COVID, because
participants experiencing the asymptomatic infection endpoint continue
follow-up for the COVID endpoint (such that at asymptomatic infection
diagnosis it is not known whether the infection is truly asymptomatic
or pre-symptomatic), and it is not certain that seroconversion prevents
future COVID (if future knowledge supports this conclusion, then asymp-
tomatic infection could be treated as a competing risk).

2. Non-severe COVID is not a competing risk for severe COVID. At presen-
tation, if the COVID event does not qualify as severe, then post-COVID
diagnosis follow-up is required to determine whether the endpoint reg-
isters as non-severe or severe. One will only know the endpoint is not
severe after post-COVID diagnosis follow-up is completed (symptoms
resolve), such that the failure time is not known until the end of post
COVID diagnosis follow-up. Therefore, non-severe COVID is not a com-
peting risk for severe COVID, and the severe COVID endpoint can be
analyzed using ordinary survival analysis ignoring the non-severe COVID
endpoint.

In sum, the COV-INF, COVID, and severe COVID endpoints will be analyzed
by ordinary survival analysis methods, whereas the asymptomatic infection
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and non-severe COVID endpoints will be analyzed using competing risks
methods. Moreover, adding nomenclature precision, for the parent infection
endpoint, the daughter endpoints COVID and asymptomatic infection are
semi-competing risks data (nomenclature in the survival analysis literature),
and for the COVID parent endpoint, the daughter endpoints severe COVID
and non-severe COVID are semi-competing risks data.

In addition, one non-clinical endpoint may be important for correlates assess-
ment: SARS-CoV-2 viral load at COVID diagnosis (VL Dx) (e.g., measured
by nasal swab), or alternatively area under the viral load curve (AUC-VL)
from the COVID diagnosis date through to undetectable viral load, or to
an alternative threshold indicating low viral load. Viral load endpoints are
putative surrogates of disease progression and severity for the individual, and
are also putative surrogates for secondary transmission; moreover the quan-
titative nature of viral load endpoints may afford an opportunity to increase
statistical power.

Issue 3: Coarseness level of the failure time variable

1. COVID: Event time defined in ‘continuous time’ on the day of virolog-
ical confirmation.

2. Asymptomatic infection: Event time defined only at fixed infrequent
visits (e.g., Month 6, 12, 18, 24).

3. COV-INF: Event time defined as ‘mixed continuous and discrete’, equal
to the day of virological confirmation (if COVID) and by the first sero-
postive visit (if asymptomatic infection).

4. Non-severe COVID: Event time may be defined in continuous time,
as the number of days from enrollment to COVID diagnosis plus the
number of additional days until the COVID event is known to be non-
severe. However, following the decision made for Issue 1, we simplify and
define the event time at COVID diagnosis.

5. Severe COVID: Event time may be defined in continuous time, as the
number of days from enrollment to COVID diagnosis plus the number
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of additional days until the COVID event is known to be severe (which
may be zero days). However, following the decision made for Issue 1, we
simplify and define the event time at COVID diagnosis.

Issue 4: Binary endpoint vs. failure time endpoint

In general, in phase 3 trials with prospective follow-up for event occurrence
where right-censoring occurs (either due to administrative censoring or loss
to follow-up), it can be advantageous to conduct data analysis in a survival
analysis paradigm. Many of the correlates analyses are specified as such.
However, because the endpoints are rare, and the rate of loss to follow-up
is anticipated to be very low, reliable and interpretable answers may be ob-
tained based on simpler methods that use binary endpoints, and deal with
loss to follow-up in a cruder way. If retention is very high, such that bias and
precision may be minimally impacted by use of a binary endpoint, some of
the correlates analyses may use a binary endpoint. In settings with compet-
ing risks, such analyses would treat the endpoint as multinomial and utilize
methodology accordingly.

In sum, correlates methods are needed that consider time-to-event or binary
endpoints, with or without accounting for a competing risk. In addition, the
methods need to be able to handle continuous, discrete, and mixed continu-
ous/discrete failure times.

8 Case-cohort Sampling Design for Measuring Antibody Markers

Figure 3 illustrates the case-cohort (Prentice, 1986) sampling design that is
used for measuring Day 1, 57 antibody markers (and the later time points at
a later point in time) in a random sample of trial participants. The random
sample is stratified by the key baseline covariates: assigned randomization
arm, baseline SARS-CoV-2 status (defined by serostatus and possibly also
NAAT and/or RNA PCR testing), any additional important demographic
factors such as the randomization strata (e.g., defined by age and/or co-
morbidities), and underrepresented minority status within the U.S. Because
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the design uses a stratified random sample instead of the simple random
sample proposed by Prentice (1986), the design may also be referred to as
a “two-phase sampling design” (Breslow et al., 2009b,a), where “phase one”
refers to variables measured in all participants and “phase two” refers to vari-
ables only measured in a subset (thus the “case-cohort sample” constitutes
the phase-two data).

The case-cohort design enables obtaining marker data (Day 1, 57) for the
immunogenicity subcohort during early trial follow-up in real-time batches,
thereby accelerating the time until final data set creation and hence data
analysis and results on Day 57 marker correlates. The design allows using the
same immunogenicity subcohort to assess correlates for multiple endpoints,
relevant for the COVID-19 VE trials with multiple endpoints (Figure 1). This
makes the design operationally simpler than a case-control sampling design.

8.1 Prototype USG COVID-19 Response Team immunogenicity subcohort

Table 5 summarizes the size of the prototype USG COVID-19 Response Team
immunogenicity subcohort, by baseline factors used to stratify the random
sampling. In this subcohort 6 baseline demographic strata are used; if a trial
has a different number of baseline demographic strata, then the table would
be modified, holding the total sample size of the subcohort approximately
fixed. For U.S. strata, all USG COVID-19 Response Team trials specify
50:50 balance by underrepresented minority status Yes:No. The subcohort
sampling is implemented to create representative sampling across the entire
period of enrollment. Non-USG COVID-19 Response Team trial sampling
designs would likely be similar, with different baseline sampling strata per-
haps even the simplest case with no sampling strata and use of simple random
sampling. ‘At-risk’ refers to participants considered to be at heightened risk
of severe COVID-19 illness based on a specified list of conditions.
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Table 5: Planned Immunogenicity Subcohort Sample Sizes by Baseline Strata for Antibody Marker
Measurement

Baseline SARS-CoV-2 Negative2 Baseline SARS-CoV-2 Positive3

Bas. Cov. Strata1 1 2 3 4 5 6 1 2 3 4 5 6
Vaccine 150 150 150 150 150 150 50 50 50 50 50 50
Placebo 20 20 20 20 20 20 50 50 50 50 50 50

1This schema specifies 6 baseline covariate strata for stratified sampling, for example

1 = U.S. Age 18-64 Minority; 2 = U.S. Age 18-64 non-Minority; 3 = U.S. Age ≥ 65 Minority;

4 = U.S Age ≥ 65 non-Minority; 5 = non-U.S. Age 18-64; 6 = non-U.S. Age ≥ 65.
2The vaccine group baseline negative strata are assigned large sample sizes because the correlates of

risk analysis focuses on baseline negative vaccine recipients. The placebo group baseline negative strata

are assigned small sample sizes given the expectation that almost all Day 57 bAb and nAb readouts

will be negative/zero given the absence of prior exposure to SARS-CoV-2 antigens.
3Equal stratum sizes are assigned for the vaccine and placebo groups in order to compare bAb and

nAb responses in previously infected persons, studying potential differences in natural+vaccine-elicited

responses vs. natural-elicited responses.

If certain strata do not have enough eligible participants available for sam-
pling, then additional sampling is done from other strata to keep the total
immunogenicity subcohort sample size to close to 1620. A separate USG
COVID-19 Response Team Antibody Marker sampling plan describes the
algorithm, available upon request.

8.1.1 Additional sampling of participants missing the second dose

For trials with two doses of vaccine, the set of baseline negative strata for vac-
cine recipients is expanded to also include the subgroup that misses the second
vaccination and minimally has available samples at Day 57, and similarly the
corresponding subgroup to placebo recipients is added; these subgroups are
defined regardless of baseline demographic factors. For the vaccine subgroup,
a random sample of 150 (or the number available, whichever is smaller) par-
ticipants is sampled, and for the placebo subgroup, a random sample of 20
(or the number available, whichever is smaller) participants is sampled. This
additional sample may not be drawn until the last participant reaches 1 or 2
years of follow-up, to be able to ensure that sampled participants have many
samples available.
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The two objectives of the additional sampling are: (1) To compare long-term
antibody responses one dose vs. two doses; and (2) to increase power of the
Stage 2 analysis of outcome-proximal correlates.

8.2 Correlates Objectives Addressed in Two Stages

Figure 4 depicts the two stages of the immune correlates analyses. Stage 1 in-
cludes antibody marker data from all COVID and COV-INF cases diagnosed
through to the last date of: (1) the time that at least 25 evaluable vaccine
breakthrough COVID endpoint cases are available for analysis; and (2) the
time of a data-cut at or after the primary analysis used to define the data
base for the first correlates analysis. Only Day 1, 57 antibody markers, and
COVID and COV-INF diagnosis time point antibody markers, are measured
in Stage 1. The objectives of Stage 1 correlates analyses focus on Day 57
markers, which are the objectives listed in Table 1. Stage 1 focuses on Day
57 markers because in general validated or non-validated surrogate endpoints
for approved vaccines are based on the peak antibody time point, and this
approach fits the priority to develop a validated or non-validated surrogate
endpoint as rapidly as possible.

Stage 2 includes antibody marker data from all COVID and COV-INF cases
diagnosed after the Stage 1 cases through to the end of the trial, including all
available sampling time points (6–7 time points). For immunogenicity subco-
hort participants, the antibody markers at all available time points other than
Day 1, 57 are measured for Stage 2 correlates analyses (4–5 additional time
points). The Stage 2 clinical endpoint data and antibody marker data enable
assessment of longitudinal antibody markers as outcome-proximal correlates
of instantaneous endpoint risk and as various types of outcome-proximal cor-
relates of protection.

The Stage 1 immunogenicity subcohort sampling plan is finalized prior to
or shortly after study start. The Stage 2 sampling plan is not made until
after the results on vaccine efficacy at the primary analysis are known. The
Study Oversight Group may modify the scope of the set of samples for im-
munoassay measurements in Stage 2 based on analysis results. The essential
distinguishing mark of Stage 1 vs. Stage 2 is assessment of Day 57 marker
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correlates that can be done using antibody data only from Day 1, 57 markers
vs. assessment of outcome-proximal correlates that requires antibody data
longitudinally including at endpoint diagnosis dates.

8.2.1 Prioritize antibody marker measurement at COVID and COV-INF diagnosis
sampling time points

Conduct of the immunologic assays on diagnosis date samples for all COVID
and all COV-INF endpoint samples is of the highest priority, equal to the
priority of conducting the assays on the Day 1, 57 samples.

8.2.2 [With Day 29 markers]

Moreover, if Day 29 markers are included, then Stage 1 also focuses on Day
29 markers because if a correlate based on this time point is found to perform
as well as a Day 57 correlate, then it may be preferred given the practical ad-
vantage to be measured earlier and to not require a Day 57 post-vaccination
visit and blood draw. Another advantage of an earlier measurement is provid-
ing opportunity to include additional breakthrough COVID endpoint cases
(intercurrent endpoints) in the correlates analyses.

9 Unsupervised Feature Engineering of Antibody Markers (Stage
1: Day 1, 57)

9.1 Descriptive Tables and Graphics

9.1.1 Antibody marker data

Binding antibody titers to full length SARS-CoV-2 Spike protein, to the RBD
domain of the Spike protein, and to the Nucleocapsid (N) protein will be mea-
sured in all participants in the immunogenicity subcohort (augmented with
infected cases). N-specific binding antibody titers are not used for correlates
analyses or for graphical reporting; these data are only used for tabular re-
porting. Binding antibody IgG Spike, IgG RBD, IgG N, as well as fold-rise
in these three markers from baseline, are measured at each pre-defined time
point. Indicators of 2-fold rise and 4-fold rise in IgG concentration (fold rise
[post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) are measured at each pre-defined
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post-vaccination timepoint. Binding antibody responders to a given antigen
at each pre-defined timepoint are defined as participants with value above the
antigen-specific positivity cut-off. Binding antibody IgG 2FR (4FR) at each
pre-defined timepoint to a given antigen are defined as participants who had
baseline values below the LLOQ with IgG concentration at least 2 times (4
times) above the assay LLOQ, or as participants with baseline values above
the LLOQ with at least a 2-fold (4-fold) increase in IgG concentration.

Pseudovirus neutralizing antibody ID50 and cID80 titers, as well as fold-rise
in ID50 and cID80 titers from baseline, are measured at each pre-defined
time point. Indicators of 2-fold rise and 4-fold rise in ID50 titer (fold rise
[post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) are measured at each pre-defined
post-vaccination timepoint.

Neutralization responders at each pre-defined timepoint are defined as par-
ticipants who had baseline values below the LLOD with detectable ID50
neutralization titer above the assay LLOD, or as participants with base-
line values above the LLOD with a 4-fold increase in neutralizing antibody
titer. Neutralization 2FR (4FR) at each pre-defined timepoint are defined as
participants who had baseline values below the LLOQ with ID50 at least 2
times (4 times) above the assay LLOQ, or as participants with baseline values
above the LLOQ with at least a 2-fold (4-fold) increase in neutralizing anti-
body titer. While quantitative fold-rise is shown for both ID50 and cID80,
response above LLOD, 2FR and 4FR responder status are shown only for
ID50. (However, for superlearner analysis of multivariable CoRs, 2FR and
4FR responder status variables are included for each of pseudovirus-nAb ID50
and cID80, given the objectives of more comprehensive analysis in building
the estimated optimal surrogate.)

For WT live virus-nAb MN50, the same types of variables are analyzed/reported
as for pseudovirus-nAb ID50.

Note that for defining positive response, 2FR, and 4FR, a reason why values
below the LLOD are set to half the LLOD before calculating the indicator
of response, is to ensure that a vaccine recipient that has an unusually low
antibody readout at baseline and a post-vaccination value below or near the
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LLOD is not erroneously counted as a responder.

The following list describes the antibody variables that are measured from
immunogenicity subcohort and infection case participants.

1. Individual anti-Spike antibody concentration at each pre-defined time
point

2. Individual anti-Spike antibody fold-rise concentration post-vaccination
relative to baseline at each pre-defined post-vaccination time point

3. Individual anti-RBD antibody concentration at each pre-defined time
point

4. Individual anti-RBD antibody fold-rise post-vaccination relative to base-
line at each pre-defined post-vaccination time point

5. Individual anti-N antibody concentration at each pre-defined time point

6. Individual anti-N antibody fold-rise post-vaccination relative to baseline
at each pre-defined post-vaccination time point

7. 2-fold-rise and 4-fold rise (fold rise in anti-Spike antibody concentra-
tion [post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) at each pre-defined post-
vaccination time point

8. 2-fold-rise and 4-fold rise (fold rise in anti-RBD antibody concentra-
tion [post/pre] ≥ 2 and ≥ 4, 2FR and 4FR) at each pre-defined post-
vaccination time point

9. 2-fold-rise and 4-fold rise (fold rise in anti-N antibody concentration
[post/pre]≥ 2 and≥ 4, 2FR and 4FR) at each pre-defined post-vaccination
time point

10. Pseudovirus-nAb responders, at each pre-defined timepoint defined as
participants who had baseline values below the LLOQ with detectable
pseudovirus-nAb ID50 titers above the assay LLOQ or as participants
with baseline values above the LLOQ with a 4-fold increase in pseudovirus-
nAb ID50 titers

11. Wild type live-virus-nAb responders, at each pre-defined timepoint de-
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fined as participants who had baseline values below the LLOQ with de-
tectable WT live virus-nAb MN50 titers above the assay LLOQ or as
participants with baseline values above the LLOQ with a 4-fold increase
in WT live virus-nAb MN50 titers

Summaries of the immunogenicity data will be reported in tables. In partic-
ular, the tables will include, for each pre-defined post-baseline time point:

1. For each binding antibody marker, the estimated percentage of partici-
pants defined as responders, and with concentrations ≥ 2x LLOQ or ≥
4 x LLOQ, will be provided with the corresponding 95% CIs using the
Clopper-Pearson method.

In addition, the estimated percentage of participants defined as respon-
ders, participants with 2-fold rise (2FR), and participants with 4-fold
rise (4FR) will be provided with the corresponding 95% CIs using the
Clopper-Pearson method.

2. For the ID50 pseudo-virus neutralization antibody marker, the estimated
percentage of participants defined as responders, participants with 2-fold
rise (2FR), and participants with 4-fold rise (4FR) will be provided with
the corresponding 95% CIs using the Clopper-Pearson method

3. For the MN50 WT live virus neutralization antibody marker, the esti-
mated percentage of participants defined as responders, participants with
2-fold rise (2FR), and participants with 4-fold rise (4FR) will be provided
with the corresponding 95% CIs using the Clopper-Pearson method

4. Geometric mean titers (GMTs) and geometric mean concentrations (GMCs)
will be summarized along with their 95% CIs using the t-distribution ap-
proximation of log-transformed concentrations/titers (for each of the 5
Spike-targeted marker types including pseudovirus-nAb ID50 and cID80
and WT live virus-nAb MN50, as well as for binding Ab to N).

5. Geometric mean titer ratios (GMTRs) or geometric mean concentration
ratios (GMCRs) are defined as geometric mean of individual titers/concentration
ratios (post-vaccination/pre-vaccination for each injection)

6. GMTRs/GMCRs will be summarized with 95% CI (t-distribution ap-
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proximation) for any post-baseline values compared to baseline, and
post-Day 57 values compared to Day 57

7. The ratios of GMTs/GMCs will be estimated between groups with the
two-sided 95% CIs calculated using t-distribution approximation of log-
transformed titers/concentrations [the groups compared are vaccine re-
cipient Non-Cases vs. vaccine recipient breakthrough cases used for Day
57 marker correlates analyses (Primary cases) and vaccine recipient Non-
Cases vs. vaccine recipient breakthrough cases used for Day 29 marker
correlates analyses (Intercurrent cases and Primary cases)].

8. The differences in the responder rates, 2FRs, 4FRs between groups will
be computed along with the two-sided 95% CIs by the Wilson-Score
method without continuity correction (Newcombe, 1998) (the groups for
comparison are as described in the previous bullet).

All of the above point and confidence interval estimates will use inverse prob-
ability of antibody marker sampling weighting in order that estimates and
inferences are for the population from which the whole study cohort was
drawn. In two-phase sampling data analysis nomenclature, the “phase 1
ptids” are the per-protocol individuals excluding individuals with a COVID
failure event or any other evidence of SARS-CoV-2 infection < 7 days post
Day 57 visit. The “phase 2 ptids” are then the subset of these phase 1 ptids
in the immunogenicity subcohort with Day 1 and 57 Ab marker data avail-
able. Thus, marker data for the COVID endpoint cases outside the subcohort
will not be used in immunogenicity analyses; these cases are excluded from
immunogenicity analyses. Thus again, marker data for the COVID endpoint
cases outside the subcohort will not be used in immunogenicity analyses;
these cases are excluded from immunogenicity analyses.

The estimated weight ŵsubcohort.57x is the inverse sampling probability weight,
calculated as the empirical fraction (No. phase 1 ptids / No. phase 2 ptids)
within each of the baseline strata [(vaccine, placebo) × (baseline negative,
baseline positive) × (demographic strata)]. For individuals outside the phase
1 ptids, ŵsubcohort.57x is assigned the missing value code NA. All other individu-
als have a positive value for ŵsubcohort.57x, including cases not in the subcohort.
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This weight is only used for case outcome-status blinded immunogenicity
inferential analyses. Note that ŵsubcohort.57x is used for all immunogenicity
analyses, which are based solely on the immunogenicity subcohort, for Day 1
and Day 57 markers, and Day 29 markers if included (not used for correlates
analyses).

Tables will be provided separately for (1) baseline negative individuals, (2)
baseline positive individuals, (3) baseline negative individuals by subgroup
defined as in Table 6, and (4) baseline positive individuals by the same sub-
groups as in (3). Each table will show data for all available time points and
for each of the vaccine and placebo arms.

Table 6: Baseline Subgroups that are Analyzed (May Vary Slightly by Protocol)1.

Age: < 65, ≥ 65
Heightened Risk for Severe COVID: At risk, Not at risk
Age x Risk for Severe COVID:
< 65 At risk, < 65 Not at risk, ≥ 65 At risk, ≥ 65 Not at risk
Sex Assigned at Birth: Male, Female
Age x Sex Assigned at Birth:
< 65 Male, < 65 Male, ≥ 65 Female, ≥ 65 Female
Hispanic or Latino Ethnicity: Hispanic or Latino, Not Hispanic or Latino
Race or Ethnic Group:
White Non-Hispanic2, Black, Asian, American Indian or Alaska Native (NatAmer)
Native Hawaiian or Other Pacific Islander (PacIsl), Multiracial,
Other, Not reported, Unknown
Underrepresented Minority Status in the U.S.:
Communities of color (Comm. of color), White2

Age x Underrepresented Minority Status in the U.S.:
Age ≥ 65 Comm. of color, Age < 65 Comm. of color, Age ≥ 65 White, Age ≥ 65 White

1All analyses are done within strata defined by randomization arm and baseline positive/negative
status, such that these variables are not listed here as subgroups for analysis.

2White Non-Hispanic is defined as Race=White and Ethnicity=Not Hispanic or Latino. All of the
other Race subgroups are defined solely by the Race variable, with levels Black, Asian, American

Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Multiracial, Other, Not
reported, Unknown.

For comparing antibody levels between groups, the following groups are com-
pared:
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• Baseline negative vaccine vs. baseline negative placebo

• Baseline positive vaccine vs. baseline positive placebo

• Baseline negative vaccine vs. baseline positive vaccine

• Within baseline negative vaccine recipients, compare each of the follow-
ing pairs of subgroups listed in Table 6: Age ≥ 65 vs. age < 65; risk
for severe COVID: at risk vs. not at risk; age ≥ 65 at risk vs. age ≥ 65
not at risk; age < 65 at risk vs. age < 65 not at risk; male vs. fe-
male; Hispanic or Latino ethnicity: Hispanic or Latino vs. Not Hispanic
or Latino; Underrepresented minority status: Communities of color vs.
White non-Hispanic (within the U.S.).

The entire immunogenicity analysis is done in the per-protocol cohort with
both Day 1 and Day 57 marker data available (the two-phase sample).

9.1.2 [With Day 29 markers]

If Day 29 markers are included, then participants in the immunogenicity
subcohort and outcome cases will have marker data at Day 1, 29, 57. All
immunogenicity analyses (graphical and tabular) of Day 57 markers are also
conducted for Day 29 markers.

9.1.3 Graphical description of antibody marker data

The Day 1, 57 antibody marker data collected from the immunogenicity sub-
cohort participants will be described graphically. These data are represen-
tative of the entire study cohort. Importantly, only antibody data from the
immunogenicity subcohort are included (i.e., no data from cases outside the
subcohort are included). This makes the analyses unsupervised (indepen-
dent of case-control status), enabling interrogation and optimization of the
antibody biomarkers prior to the inferential correlates analyses.

Plots are developed for the following purposes. All of the analyses are done
separately within each of the four subgroups defined by randomization arm
cross-classified with baseline negative/positive status. In addition, many of
the descriptive analyses will also be done separately for each demographic
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subgroup of interest listed above. For descriptive plots of individual marker
data points that pool over one or more of the baseline strata subgroups, plots
show all observed data points.

For each antibody marker readout, both Day 57 and baseline-subtracted Day
57 readouts are of interest. We will refer to the latter as ‘delta.’ All readouts,
including delta, will be plotted on the log10 scale, with plotting labels on the
natural scale. As such, delta is log10 fold-rise in the marker readout from
baseline.

The following descriptive graphical analyses are done.

1. The distribution of each antibody marker readout at Day 1 and Day 57
will be described with plots of empirical reverse cumulative distribution
functions (rcdfs) and boxplots (including individual data points) within
each of the four groups defined by randomization arm (vaccine, placebo)
and baseline positivity stratum (negative, positive). Inverse probability
of sampling into the subcohort weights are used in the estimation of the
rcdf curves; henceforth we refer to these weights (ŵsubcohort.57x) are used
in the estimation of the rcdf curves; henceforth we refer to these weights
as “inverse probability of sampling” (IPS) weights. Analyses of Day 1
markers always pool across vaccine and placebo recipients given that the
two subgroups are the same at baseline.

2. Plots are arranged to compare each Day 57 marker readout between
randomization arms within each of the baseline seropositive and baseline
seronegative subgroups.

3. Plots are also arranged to compare each Day 57 marker readout between
baseline serostatus groups within each randomization arm.

4. The correlation of each antibody marker readout between Day 1 and Day
57, and between Day 1 and delta, is examined within each of the base-
line strata subgroups, and within each randomization arm and baseline
positivity stratum. Pairs plots/scatterplots will be used, annotated with
baseline strata-adjusted Spearman rank correlations, implemented in the
PResiduals R package available on CRAN. For calculating the correlation
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within each randomization arm and baseline positivity stratum, because
PResiduals does not currently handle sampling weights, the correlation
estimates are computed as follows: For each re-sampled data set in the
second approach to graphical plotting, the covariate-adjusted Spearman
correlation is calculated. The average of the estimated correlations across
re-sampled data sets is reported.

5. The correlation of each pair of Day 1 antibody marker readouts are com-
pared within each baseline positivity stratum, pooling over the two ran-
domization arms. Pairs plots/scatterplots and baseline-strata adjusted
Spearman rank correlations are used, with covariate-adjusted Spearman
rank correlations computed as described above.

6. The correlation of each pair of Day 57 and delta antibody marker read-
outs are compared within each randomization arm within each baseline
positivity stratum. Pairs plots/scatterplots and baseline-strata adjusted
Spearman rank correlations are used, with covariate-adjusted Spearman
rank correlations computed as described above.

7. Point estimates of Day 57 marker positive response rates for the vaccine
arm by the baseline demographic subgroups and the baseline serostrata
are provided, as well as pooled over baseline demographic strata. The
point and 95% CI estimates include all of the data and use IPS weights.

9.2 Methods for Positive Response Calls for bAb and nAb Assays

As noted above, binding antibody responders at each pre-defined timepoint
are defined as participants with concentration above the specified positivity
cut-off, with a separate cut-off for each antigen Spike, RBD, N (10.8424,
14.0858, and 23.4711, respectively, in BAU/ml).

Pseudovirus neutralization responders at each pre-defined timepoint are de-
fined as participants who had baseline ID50 values below the LLOD with de-
tectable ID50 neutralization titer above the assay LLOD, or as participants
with baseline values above the LLOD with a 4-fold increase in neutralizing
antibody titer. Otherwise a value is negative for pseudovirus neutralization.
The same approach is used based on cID80 titer. Similarly, for the WT live
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virus-nAb MN50 marker, WT live virus neutralization responders at each
pre-defined timepoint are defined as participants who had baseline MN50
values below the LLOQ with detectable MN50 above the assay LLOQ or as
participants with baseline values above the LLOQ with a 4-fold increase in
neutralizing antibody titer. Otherwise a value is negative for WT live virus
neutralization.

9.3 SARS-CoV-2 Antigen Targets Used for bAb and nAb Markers

The homologous vaccine strain antigens are used for the immune correlates
analyses for the bAb markers, whereas the homologous vaccine strain with
D614G mutation is used for the pseudovirus nAb markers.

9.4 Score Antibody Markers Combining Information Across Individual bAb
and/or nAb Readouts

Depending on the number and features of antigens that are selected for defin-
ing antibody marker variables, feature extraction/selection techniques may
be employed to determine score/synthesis marker variables that are optimized
according to some criterion that would reflect maximum signal-relevant di-
versity (e.g., He and Fong, 2019). In addition, the unsupervised dimension-
ality reduction techniques such as principal components analysis (PCA) and
nonlinear extensions of PCA (e.g. FSDAM1 and FSDAM2; Fong and Xu,
2021) may also be used to define score variables that maximally capture the
main immune response signal and to study whether there are more than one
distinct signals that are associated with the outcome. If such synthesis fea-
tures are defined, then they will be included as input features in the machine
learning (superlearning) prediction modeling (multivariable CoR objective).

The purpose of the score markers is to seek to maximally capture the main
immune response signal and to study whether score markers can provide
strengthened association with outcome compared to the individual assay
markers.
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9.4.1 Systematic ranking of Day 57 antibody markers by signal-to-noise ratio

The signal-to-noise ratio of each Day 57 antibody marker is defined as the
ratio of biological variability over technical variability. If the requisite data
are available, the technical variability will be estimated as the median of the
variances across two technical replicates for each test sample, and the bio-
logical variability will be estimated as the variance of the average of the two
technical replicates across all test samples (without weighting for simplifica-
tion) minus the technical variability (analysis done in the cohort of interest
such as baseline negative vaccine recipients).

The ranking of the set of Day 57 antibody markers will be taken into account
in the interpretation of results.

9.5 Decisions on Antibody Markers to Advance to Correlates or Risk and Cor-
relates of Protection Analyses

The vaccine immunogenicity analysis characterizes SARS-CoV-2 directed an-
tibody levels based on five antibody biomarkers measured at each blood
storage time point: IgG concentration to Spike, IgG concentration to RBD,
pseudovirus-nAb ID50, pseudovirus-nAb cID80, WT live virus-nAb MN50.
It is likely that all five of the biomarkers at each of the Day 57 and Day
29 time points will be advanced to study as CoRs and CoPs for the ini-
tial correlates reports, given that all of the assays are validated. However,
an objective of the unsupervised learning immunogenicity characterization
is to determine if some markers should be prioritized (for example based on
broader biologically-relevant dynamic range), such that p-values and multi-
plicity adjustment for tests of correlates of risk would only be done for the
prioritized markers. In addition, it is possible that the unsupervised learning
could lead to decisions to pare down the list of markers (e.g., eliminating
markers that are very highly correlated with other markers, or eliminating
markers that are revealed to have unexpected technical issues). Because the
unsupervised learning is done based on immunogenicity subcohort data and
is thus independent of case/non-case status, decisions made based on this
learning do not compromise the validity of the CoR and CoP analyses. Deci-
sions about the set of antibody makers to use in the CoR and CoP analyses
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– and their priority level – will be made and documented in the SAP prior
to implementing the CoR and CoP analyses. Unless otherwise noted, the
multiplicity adjustment is applied to the full set of markers analyzed.

10 Baseline Risk Score (Proxy for SARS-CoV-2 Exposure)

A list of baseline covariates potentially relevant for SARS-CoV-2 exposure
and infection risk will be specified. Based on these covariates, a baseline
risk score is developed and controlled for in correlates analyses to adjust for
potential confounding. The risk score is defined as the logit of the predicted
outcome probability from a regression model estimated using the ensemble
algorithm superlearner (i.e. stacking), where this logit predicted outcome is
scaled to have empirical mean zero and empirical standard deviation one. The
settings of superlearner (i.e., loss function, cross-validation technique, library
of learners) that are used for implementation of superlearner for building a
baseline risk score are described in Section 12.7.

The development of risk score will involve training the superlearner using
placebo arm data and predictions made on vaccine arm data (CV-predictions
will be made on placebo arm data). In both arms, risk score development will
be restricted to baseline negative per-protocol subjects with cases as COVID
endpoints starting post-enrollment. The CV-prediction performance of su-
perlearner (CV-AUC calculation and CV-ROC curves) will be derived with
cases as COVID endpoint starting post-enrollment as well. The prediction
performance of superlearner (AUC calculation and ROC curve) in the vaccine
arm, however, will be restricted to the same set of vaccine recipients as used
in the correlates analyses with cases considered as COVID endpoints start-
ing 7 days post second vaccination visit and non-cases as participants with
follow-up beyond 7 days post second vaccination visit and never registered a
COVID endpoint.

Independent of the superlearner risk score, important individual risk factors
will also be specified for inclusion as adjustment factors in correlates analyses,
such as age, status of having a high-risk condition, and communities of color
status. For example, all or a subset of the baseline demographic strata used
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in the two-phase sampling design will be adjusted for, or a coarsened categor-
ical variable derived from the baseline strata will be adjusted for, where the
amount of coarsening may depend on the number of endpoints in the vaccine
arm.

Henceforth we refer to the baseline variables that are adjusted for in corre-
lates analyses as “baseline factors” which, depending on the risk score results
and performance, will consist of only the individual key risk factors, or key
individual risk factors plus the baseline risk score.

If a fully automated/pre-specified approach to defining the baseline factors is
required, then the following approach will be used: Advance the risk score,
the at-risk indicator, and the communities of color indicator. This choice is
justified by the epidemiological data showing that these two indicators are
strong infection and COVID-19 risk factors, and making use of the flexibility
of super learner to develop a model for how age relates to risk.

11 Correlates Analysis Descriptive Tables by Case/Non-Case Sta-
tus

The key tables summarizing the distribution of each of the five antibody
markers are listed below. For each table, for each time point Day 1, Day 57
separately, the positive response rate with 95% CI, and the GMT or GMC
with 95% CI, is reported for each of the case and non-case groups. In addition,
the point and 95% CI estimate of the difference in positive response rate (non-
cases vs. cases) and the GMT or GMC ratio (non-cases/cases), is reported.

1. Antibody levels in the baseline SARS-CoV-2 negative per-protocol co-
hort (vaccine recipients). Cases are baseline negative per-protocol vac-
cine recipients with the symptomatic infection COVID-19 primary end-
point diagnosed starting 7 days after the Day 57 study visit. Non-
cases/Controls are baseline negative per-protocol vaccine recipients sam-
pled into the immunogenicity subcohort with no COVID primary end-
point up to the time of data cut and no evidence of SARS-CoV-2 infection
up to six days post Day 57 visit.
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2. Antibody levels in the baseline SARS-CoV-2 positive per-protocol cohort
(vaccine recipients). Cases are baseline positive per-protocol vaccine re-
cipients with the symptomatic infection COVID-19 primary endpoint di-
agnosed starting 7 days after the Day 57 study visit. Non-cases/Controls
are baseline positive per-protocol vaccine recipients sampled into the im-
munogenicity subcohort with no COVID primary endpoint up to the
time of data cut and no evidence of SARS-CoV-2 infection up to six
days post Day 57 visit.

3. Antibody levels in baseline SARS-CoV-2 positive placebo recipients.
Cases are baseline positive per-protocol placebo recipients with the symp-
tomatic infection COVID-19 primary endpoint diagnosed any time af-
ter Day 1 or after Day 57 (by time of antibody measurement). Non-
cases/Controls are baseline positive per-protocol placebo recipients sam-
pled into the immunogenicity subcohort with no COVID primary end-
point up to the time of data cut.

4. Repeat Table 2 above for fold-rise from baseline (of interest given the
analysis cohort is baseline positive).

5. Repeat Table 3 above for fold-rise from baseline (of interest given the
analysis cohort is baseline positive).

The point and confidence interval estimates are computed using inverse prob-
ability sampling weights ŵsubcohort.57x defined in Section 12.3.1.

11.0.1 [With Day 29 markers]

If Day 29 markers are included, then two cases vs. non-cases comparisons
are done: primary cases vs. non-cases and intercurrent+primary cases vs.
non-cases. Non-cases/Controls are baseline negative per-protocol vaccine re-
cipients sampled into the immunogenicity subcohort with no COVID primary
endpoint by the time of data cut and no evidence of SARS-CoV-2 infection
up to six days post Day 57 visit. Thus the same set of Non-cases are used for
the two comparisons. In addition, descriptive plots show intercurrent cases
and primary cases separately. For intercurrent cases the weights ŵintercurrent.x
are used, described in Section 12.3.2.
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12 Correlates of Risk Analysis Plan

At first, this analysis plan for CoRs and CoPs as currently written focuses
on the COVID primary endpoint, with its continuous failure times (failure
time defined by the day of the event) and no competing risks. Later, it will
be extended to handle the special issues with secondary endpoints.

12.1 CoR Objectives

The following CoR objectives are assessed in baseline negative per-protocol
vaccine recipients:

1. Univariable CoR To assess each individual Day 57 antibody marker
as a CoR of outcome in vaccine recipients, adjusting for baseline factors
(See Section 10)

2. Multivariable CoR To build models predictive of outcome based on a
set of Day 57 antibody marker readouts, adjusting for baseline factors
(See Section 10)

12.1.1 [With Day 29 markers]

If Day 29 markers are included, then a Univariable CoR objective is added,
the same as above, except using the Day 29 versions of the markers instead
of the Day 57 versions.

In addition, the Multivariable CoR objective is repeated to build models
predictive of outcome based on a set of Day 29 antibody marker readouts. It
is also repeated to build models predictive of outcome based on a set of Day
29 and 57 antibody marker readouts used together.

12.2 Outline of the Set of CoR Analyses

The univariable CoR objective is addressed by Cox proportional hazards
regression and nonparametric threshold regression. The multivariable CoR
objective is addressed by superlearning. All of these analyses are implemented
in automated and reproducible press-button fashion.
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In addition, supportive exploratory analyses of the univariable CoR objective
are conducted using flexible parametric regression modeling: hinge/threshold
regression and generalized additive model regression.

12.3 Day 57 Markers Assessed as CoRs and CoPs

The following five Day 57 markers are assessed as CoRs and CoPs, usually
as quantitative variables and in some analyses as ordered trinary variables or
binary variables, all of which do not subtract Day 1 (baseline) values:

1. binding Ab to Spike (IgG BAU/ml)

2. binding Ab to RBD (IgG BAU/ml)

3. pseudovirus neutralization ID50 (IU)

4. pseudovirus neutralization cID80 (IU)

5. live virus neutralization MN50

For all univariable CoR analyses (first objective), the non-baseline subtracted
versions of the Day 57 antibody markers are studied; the baseline-subtracted
versions are not studied given that the analyses are done in the baseline
negative cohort for which Day 1 readouts will generally be negative. The
multivariable machine learning CoR analyses include synthesis markers that
combine information across the individual markers listed above, as well as
including 2FR and 4FR versions of variables.

12.3.1 Inverse probability sampling weights used in CoR analyses

In section 9.1, estimated inverse probability sampling (IPS) weights ŵsubcohort.57x

were defined for per-protocol immunogenicity subcohort members, for the
purpose of immunogenicity analyses. This section describes the IPS weight
used for Day 57 marker correlates analyses (ŵ57.x).

Consider the correlates analyses of Day 57 markers. For baseline sampling
stratum x [(vaccine, placebo) × (demographic strata)], the IPS weight w57.x

assigned to a non-case participant in stratum x is defined by ŵ57.x = 1/
π̂57(x) = Nx/nx, where Nx is the number of stratum x vaccine recipient non-
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cases in the Per-Protocol Baseline Negative (PPBN) cohort and nx is the
number of these participants that also have Day 1, 29, and 57 marker data
available, where participants with any evidence of SARS-CoV-2 infection
before 7 days post Day 57 visit are excluded from the counts Nx and nx. For
non-case participant i in the immunogenicity subcohort, ŵ57.i = 1/π̂57(Xi)
denotes the weight ŵ57.x for this individual’s sampling stratum. All Primary
cases are assigned sampling weight N1/n1 where N1 is the total number of
vaccine recipient cases in the PPBN cohort restricting to cases with event
time starting 7 days post Day 57, and n1 is the number of these participants
that also had the Day 1, 29, and 57 markers measured, and again participants
with any evidence of SARS-CoV-2 infection < 7 days post Day 57 visit are
excluded from the counts Nx and nx.

In terms of two-phase sampling data analysis nomenclature, for these Day
57 marker analyses “phase 1 ptids” are defined as the entire PPBN cohort
except excluding participants with any evidence of SARS-CoV-2 infection
< 7 days post Day 57 visit (there are expected to be a very small number
of such vaccine recipient cases, such that for vaccine recipients the phase 1
ptids is approximately representative of the target population). The “phase
2 ptids” are then the subset of these phase 1 ptids with Day 1 and Day
57 Ab marker data available. Thus the weight ŵ57.x is the inverse sampling
probability weight, calculated as the empirical fraction (No. phase 1 ptids
/ No. phase 2 ptids) within each of the baseline negative strata (14 strata
defined by PPBN vaccine group cases, PPBN placebo group cases, PPBN
vaccine group non-cases divided into the 6 demographic strata, and PPBN
placebo group non-cases divided into the 6 demographic strata). For baseline
negative individuals outside the phase 1 ptids, ŵ57.x is assigned the missing
value code NA. All other individuals have a positive value for ŵ57.x.

12.3.2 [With Day 29 markers]

For baseline sampling stratum x [(vaccine, placebo) × (demographic strata)],
the IPS weight w29.x assigned to a non-case participant in stratum x is de-
fined by ŵ29.x = 1/π̂29(x) = Nx/nx, where Nx is the number of stratum x
vaccine recipient non-cases in the PPBN cohort and nx is the number of these
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participants that also have Day 1 and Day 29 marker data available, where
participants with any evidence of SARS-CoV-2 infection before 7 days post
Day 29 visit are excluded from the counts Nx and nx. For non-case partici-
pant i in the immunogenicity subcohort, ŵ29.i = 1/π̂29(Xi) denotes the weight
ŵ29.x for this individual’s sampling stratum. All Intercurrent and Primary
cases are assigned sampling weight N1/n1 where N1 is the total number of
vaccine recipient cases in the PPBN cohort restricting to cases with event
time starting 7 days post Day 29, and n1 is the number of these participants
that also had the Day 1 and Day 29 markers measured, and again partici-
pants with any evidence of SARS-CoV-2 infection < 7 days post Day 29 visit
are excluded from the counts Nx and nx.

In terms of two-phase sampling data analysis nomenclature, for the Day
29 marker analyses “phase 1 ptids” are defined as the entire PPBN cohort
except excluding participants with any evidence of SARS-CoV-2 infection
< 7 days post Day 29 visit. The “phase 2 ptids” are then the subset of
these phase 1 ptids with Day 1 and Day 29 Ab marker data available. Thus
the weight ŵ29.x is the inverse sampling probability weight, calculated as the
empirical fraction (No. phase 1 ptids / No. phase 2 ptids) within each of the
baseline negative strata (strata defined by PPBN vaccine group cases, PPBN
placebo group cases, PPBN vaccine group non-cases divided into the baseline
demographic covariate strata, and PPBN placebo group non-cases divided
into the demographic covariate strata). For baseline negative individuals
outside the phase 1 ptids, ŵ29.x is assigned the missing value code NA. All
other individuals have a positive value for ŵ29.x. In sum, the weights ŵ29.x

are calculated in the same way as the weights ŵ57.x, except the relevant time
window for evidence of infection or COVID is at least 7 days post Day 29
visit instead of at least 7 days post Day 57 visit.

We refer to all COVID cases included in the Day 29 marker analyses but not
in the Day 57 marker analyses as “intercurrent cases,” where various graphical
descriptives show data for this subgroup of cases. The variable ŵintercurrent.x
inverse sampling probability weight, calculated as the empirical fraction (No.
phase 1 ptids / No. phase 2 ptids) within each of the baseline negative strata.
For baseline negative participants outside the phase 1 ptids, ŵintercurrent.x is
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assigned the missing value code NA. All other individuals have a positive
value for ŵintercurrent.x. The CoR inferential analyses that study both Day 29
and Day 57 Ab markers in the same analysis use the estimated weights for
the Day 57 marker analyses.

12.3.3 Univariable CoR: Marginalized Cox modeling

Time-to-event methods use the Day 57 visit date as the time origin.

The IPWCC Cox regression model designed for case-cohort sampling designs
will be used for estimation and inference on hazard ratios of outcomes by Day
57 marker levels, and for estimation and inference on marginalized marker-
conditional cumulative incidence over time. The models will be fit using the
survey R package available on CRAN, and will adjust for the baseline factors.
We use a method from the survey package that assumes without replacement
two-phase sampling and not Bernoulli sampling, which matches the sampling
design and approach to weight estimation (Lumley, 2010).

For models with a single antibody marker, a two-phase Cox model with im-
proved efficiency through calibrated weights (Breslow et al., 2009b,a) will be
used if there are baseline covariates that predict the antibody marker with
R2 > 0.4. Based on the phase-two sample, a superlearner model will be
fit (using the library specified in Table 7) to predict the antibody marker
from the set of collected baseline covariates. The criterion R2 > 0.4 will be
checked based on the association of the fitted values from superlearner and
the marker, where the association uses held-out marker values.

Based on the Cox model fit to all available data during blinded follow-up
(the period during which participants are blinded to randomization arm
assignment), a final time point tF near the time of the last observed out-
come will be defined. Let T be the failure time, S a Day 57 marker of
interest, and X the vector of baseline factors that are adjusted for. With
S1(t|s, x) = P (T > t|S = s,X = x,A = 1), the Cox model fit yields an
estimate of S1(t|s,Xi) for each individual i in the phase-two sample. The
marginalized conditional risk risk1(t|s) = EX [P (T ≤ t|s,X,A = 1)] through
time t (for all times t through tF simultaneously) is estimated based on the
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equation

risk1(t|s) =

∫
(1− S1(t|s, x))dH(x) (1)

where H(·) is the distribution of X in A = 1 individuals.

The function risk1(t|s) can be estimated by

r̂isk1(t|s) =
1

n

n∑
i=1

(1− Ŝ1(t|s,Xi)), (2)

where n is the number of vaccine arm participants with phase-one data (Xi

measured). The bootstrap is used to obtain 95% pointwise confidence inter-
vals for risk1(tF |s).

The bootstrap process will be performed by resampling with replacement
the subjects within the subcohort and the subjects outside the subcohort
separately within each stratum and by resampling with replacement subjects
with undetermined stratification variables. Across all bootstrap samples, the
number of participants in each stratum in the immunogenicity subcohort
remains fixed, but the number of cases does not stay the same.

If the sampling design is case-control instead of case-cohort, then a differ-
ent bootstrapping procedure is necessary. We will perform bootstrap for
case control studies by resampling cases, phase 2 controls, and non-phase 2
controls separately. Across bootstrap replicates, the number of cases does
not stay constant, neither do the numbers of ph2 controls by demographics
strata. Specifically, the procedure will 1) sample (with replacement) the orig-
inal phase 1 dataset to get dat.b. From dat.b, take only the cases, but also
the counts of phase 2 and non-phase 2 controls by stratum, and 2) sample
(with replacement) theses numbers of phase 2 and non-phase 2 controls by
strata from the original dataset.

The results of the above Cox modeling will be output in a variety of ways:

1. Plot r̂isk1(tF |s) vs. s with 95% CIs for continuous S = s varying over its

whole range. Include on the plot the estimate of r̂isk0(tF ) with a 95%
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CI for the placebo arm (horizontal bands), computed by a Cox model
marginalizing over the same baseline factors as for the analysis of the
vaccine arm.

2. Based on a fit of the Cox model to a nominal categorical antibody marker
defined as the tertiles of S, plot r̂isk1(t|s) for each category of S values
with 95% CIs, for all time points t from Day 57 through tF . If more
than 20% of vaccine recipients have S below the LLOD of the assay,
then the categories instead will be (1) values ≤ LLOD; (2) values below
the median of values > LLOD; (3) values above the median of values >

LLOD. Include on the plot the estimated curve r̂isk0(t) with 95% CIs
for the placebo arm, computed by a Cox model marginalizing over the
same baseline factors as for the analysis of the vaccine arm.

3. Tabular reporting of the hazard ratio per 10-fold change in the quanti-
tative Day 57 antibody marker with 95% confidence interval and 2-sided
p-value.

4. Tabular reporting of the hazard ratio for the Middle and Upper categories
of the categorical Day 57 antibody marker vs. the Lower category, with
95% confidence interval and 2-sided p-value, as well as a global general-
ized Wald two-sided p-value for whether the hazard rate of the endpoint
varies across the three categories. The table includes the attack rate
(with no. of cases / no. at risk) through tF for each of the three vaccine
marker subgroups and for the placebo arm.

5. Report point and 95% CI estimates for the hazard ratio per 10-fold
change in the Day 57 antibody marker, for the entire per-protocol base-
line negative vaccine cohort and for each of the baseline demographic
strata subgroups defined in Table 6 (reported via forest plotting).

6. Westfall-Young (1997) q-values and FWER-adjusted p-values for the
generalized Wald tests are included in the table.

Grambsch and Therneau (1994) tests are applied to test the veracity of the
proportional hazards assumption. This testing is done to aid interpretation
of results, but not as a gateway to trigger the fitting of a more flexible version
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of the Cox model, as we seek to avoid computing new confidence intervals and
p-values contingent on goodness-of-fit-testing, as they would not have their
correct interpretations. Other correlates of risk methods explicitly model risk
flexibly as a function of the marker.

The bootstrap is used to calculate 95% pointwise CIs for risk1(tF |s) in s.
The 2-sided Wald p-value for testing the regression coefficient of the marker
in the Cox model provides a valid test of the null hypothesisH0 : risk1(tF |s) =
risk1(tF ) for all s, and is reported.

In addition, the same Cox model analysis will be used to estimate the alterna-
tive marginalized conditional risk parameter defined by risk1(t|S ≥ s) where
risk1(t|S ≥ s) = EX [P (T ≤ t|S ≥ s,X,A = 1)], which can be estimated by

r̂isk1(t|S ≥ s) =
1

n

n∑
i=1

(1− Ŝ1(t|S ≥ s,Xi)).

This parameter is useful because typically subgroups of interest are defined by
having marker response above a threshold. We will plot r̂isk1(tF |S ≥ s) vs. s
with 95% CIs for continuous S with s varying over the range of S in which the
number of cases to estimate Ŝ1(t|S ≥ s,Xi) is 5 or more. This type of analysis
is also included because it analyzes the same parameter as the nonparametric
threshold estimation method described below, providing a way to address the
threshold question both by Cox modeling and by nonparametric analysis.

12.3.4 Univariable CoR: Marginalized Cox modeling with influence-function based
analytic variance estimation

The previous section described estimation and inference for risk1(t|s) via the
bootstrap. This section describes how to alternatively conduct inference via
the influence function.

Data structure and parameter of interest

Consider a survival distribution involving iid data units (Y,∆, Z), in which
Y ≡ min{T,C} is the observed minimum of failure and right-censoring time,
∆ ≡ I{T ≤ C} is the event indicator, and Z = (W,A) is a vector of co-
variates. However, we assume a two-phase sampling structure in which we
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instead observe a coarsened version of this data structure in which we first
observe (Y1,∆1,W1), ..., (Yn,∆n,Wn)

iid∼ P0. We then construct a set of in-
dicator variables R1, ..., Rn based on our “phase 1 sample” and observe the
variable Ai for subject i if Ri = 1. Different methods exist to construct the
indicators R1, ..., Rn, but we will assume that Ri ∼ Bernoulli(π0(Yi,∆i,Wi))
for a known function π0. Importantly, the weights partition the observations
into a finite set of strata {1, ..., J} such that i and j are in the same stratum
if and only if π0(Yi,∆i,Wi) = π0(Yj,∆j,Wj); this is one way to define two-
phase sampling (Breslow et al., 2009a, 2009b). Let Ci denote the index of
the stratum to which observation i belongs. This yields a coarsened observed
data structure that can be summarized as follows (where P0 is redefined to
include the additional variables):

O1, ...,On ≡ (Y1,∆1,W1, R1, R1A1, C1), ..., (Yn,∆n,Wn, Rn, RnAn, Cn)
iid∼ P0.

For a fixed time t, the parameter of interest is the g-computed survival curve
defined as follows, where S0(t|w, a) = P (T > t|W = w,A = a) is the true
conditional survival function:

a 7→ S̄0(t|a) ≡ E0[S0(t|W,a)].

Our goal is to use the coarsened data structure to make pointwise inference
about S̄0(t|a) for a fixed value a. We proceed by assuming that the true
full-data distribution follows a Cox model and fitting an inverse-probability-
sampling weighted Cox model to estimate the conditional survival function
Sn. We then marginalize over the observed covariates, yielding the following
estimator, where βn is the estimator of the Cox model parameter vector β0

and Λn is the inverse probability sampling weighted version of the so-called
Breslow estimator of the baseline cumulative hazard function Λ0:

S̄n(t|a) ≡
n∑
i=1

Sn(t|wi, a) =
n∑
i=1

exp
(
−e(wi,a)′βnΛn(t)

)
.
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Our strategy for estimating Var
(
S̄n(t|a)

)
will be to derive the influence func-

tions of βn and Λn(t), apply the delta method to find the influence function
of Sn(t|w, a) for fixed w, and then account for the marginalization to derive
the influence function of S̄n(t|a).

Inverse probability sampling weighting using estimated weights

Inverse probability sampling (IPS) weighting allows us to identify various
quantities of interest in terms of the observed data structure. Although IPS
weighting based on the true weights πi ≡ π0(yi, δi, wi) can be used, we can
gain efficiency by using the following estimated weights:

π∗i ≡ π∗n(oi) ≡
∑n

j=1 I{ci = cj}rj∑n
j=1 I{ci = cj}

.

The denominator in the expression above represents the number of obser-
vations in stratum ci (the stratum to which observation i belongs) and the
denominator represents the number of observations in stratum ci selected in
the phase-two sample.

For a fixed function h, we will need to repeatedly use IPS weighting to esti-
mate terms of the form E0[h(O)] using the IPS-weighted estimator
n−1

∑n
i=1(ri/π

∗
i )h(oi). However, this estimator is not asymptotically linear,

since the π∗i terms depend on the entire sample within a given stratum.
Therefore, we will make use of the following equality, which can be derived
using the delta method and holds under mild regularity conditions, where
p0(c) ≡ P0(C = c) and p1

0(c) ≡ P0(C = c, R = 1):

1

n

n∑
i=1

ri
π∗i
h(oi) =

1

n

n∑
i=1

(
ri
πi
h(oi) +

(
1− p0(ci)ri

p1
0(ci)

)
E0 [h(O) |C = ci, R = 1]

)
+ oP0(n−1/2). (3)

Influence function of βn

The full-data influence function of the Cox model is given by ˜̀
0 ≡ I−1

0 `∗0,
where I0 is the efficient information and `∗0 is the efficient score. To pro-
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vide expressions for these quantities, it is useful to first define the following
expressions (where we use the notation X⊗2 ≡ XX ′):

S
(0)
0 (x) ≡ E0

[
eZ
′β0I{Y ≥ x}

]
S

(1)
0 (x) ≡ E0

[
ZeZ

′β0I{Y ≥ x}
]

S
(2)
0 (x) ≡ E0

[
Z⊗2eZ

′β0I{Y ≥ x}
]

m0(x) ≡ S
(1)
0 (x)/S

(0)
0 (x)

Mi(x) ≡ δiI{yi ≤ x} − ez′iβ0

∫ x

0

I{yi ≥ u}dΛ0(u).

We can then define the efficient score and information as follows (note that
we assume that Y is bounded above by τ):

`∗0(zi, δi, yi) ≡
∫ τ

0

(zi −m0(x)) dMi(x)

I ≡ E0

[
eZ
′β0

∫ τ

0

(Z −m0(x))⊗2 I{Y ≥ x}dΛ0(x).

]
According to equation (19) of Breslow and Wellner (2007) the following equal-
ity holds, given mild regularity conditions:

βn − β0 =
1

n

n∑
i=1

ri
π∗i

˜̀
0(oi) + oP0

(n−1/2).

Applying (3) to this equation, we can write the following:

βn−β0 =
1

n

n∑
i=1

(
ri
πi

˜̀
0(oi) +

(
1− p0(ci)ri

p1
0(ci)

)
E0

[
˜̀
0(O) |C = ci, R = 1

])
+oP0

(n−1/2).
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Thus, the influence function of βn under two-phase sampling with estimated
weights is given by:

˜̀∗
0 : oi 7→

ri
πi

˜̀
0(oi) +

(
1− p0(ci)ri

p1
0(ci)

)
E0

[
˜̀
0(O) |C = ci, R = 1

]
. (4)

Influence function of Λn

The IPS-weighted Breslow estimator is given by the following:

Λn(t) ≡
∑
{i:δi=1}

(ri/π
∗
i )I{yi ≤ t}∑n

j=1(rj/π
∗
j )I{yj ≥ yi}ez

′
jβn
.

To study this estimator, we first define the following:

S
(0)
0 (x, β) ≡ E0[e

Z ′βI{Y ≥ x}]

S(0)
n (x, β) ≡

n∑
i=1

ri
π∗i
ez
′
iβI{yi ≥ x}

F1,0(x) ≡ P0(Y ≤ x,∆ = 1)

F1,n(x) ≡
n∑
i=1

ri
π∗i
δiI{yi ≤ x}

Λ0(t, β) ≡
∫ t

0

dF1,0(x)

S
(0)
0 (x, β)

Λn(t, β) ≡
∫ t

0

dF1,n(x)

S
(0)
n (x, β)

.

It can be shown that Λ0(t, β0) is equal to the baseline cumulative hazard func-
tion Λ0(t) and Λn(t, βn) is equal to the IPS-weighted Breslow estimator Λn(t).

Also note that S
(0)
0 (x, β0) = S

(0)
0 (x). We will study the asymptotic behav-

ior of Λn(t) using the following expansion, which holds given mild regularity
conditions:
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Λn(t)− Λ0(t) = Λn(t, βn)− Λ0(t, β0)

= (Λn(t, β0)− Λ0(t, β0)) + (Λ0(t, βn)− Λ0(t, β0)) + oP0(n−1/2)

= (Λn(t, β0)− Λ0(t, β0)) +

(
∂

∂β
Λ0(t, β)

∣∣∣∣
β=β0

)
(βn − β0) + oP0(n−1/2).

Defining µ0(t) ≡ ∂
∂βΛ0(t, β)

∣∣∣
β=β0

=
∫ t

0 m0(x)dΛ0(x), this expansion can be

expressed as:

Λn(t)− Λ0(t) = (Λn(t, β0)− Λ0(t, β0)) + µ0(t)(βn − β0) + oP0
(n−1/2). (5)

Next, we study the asymptotic behavior of Λn(t, β0) through the following
expansion:

Λn(t, β0)− Λ0(t, β0) =

(∫ t

0

dF1,n(x)

S
(0)
n (x, β)

−
∫ t

0

dF1,n(x)

S
(0)
0 (x, β)

)
+

(∫ t

0

dF1,n(x)

S
(0)
0 (x, β)

−
∫ t

0

dF1,0(x)

S
(0)
0 (x, β)

)
. (6)

To study this expansion, we first apply result (3) to both S
(0)
n (x, β) and F1,n(x)

to obtain the following:

S(0)
n (x, β) =

1

n

n∑
i=1

(
ri
πi
I{yi ≥ x}ez

′
iβ +

(
1− p0(ci)ri

p1
0(ci)

)
E0

[
I{Y ≥ x}eZ

′β |C = ci, R = 1
])

+ oP0
(n−1/2)

(7)

F1,n(x) =
1

n

n∑
i=1

(
ri
πi
δiI{yi ≤ x}+

(
1− p0(ci)ri

p1
0(ci)

)
E0 [∆I{Y ≤ x} |C = ci, R = 1]

)
+ oP0(n−1/2). (8)

Define the following function for convenience:

ν0(oi, x, β) ≡
(

1− p0(ci)ri
p1

0(ci)

)
E0

[
I{Y ≥ x}eZ ′β |C = ci, R = 1

]
.
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Using the delta method, we can write the following, where in the last line we
have implicitly pulled out several second-order terms when substituting dF1,0

for dF1,n:

S(0)
n (x, β)− S(0)

0 (x, β) =
1

n

n∑
i=1

(
ri
πi
I{yi ≥ x}ez

′
iβ + ν0(oi, x, β)− S0(x, β)

)
+ oP0(n−1/2)

1

S
(0)
n (x, β)

− 1

S
(0)
0 (x, β)

=
1

n

n∑
i=1

S0(x, β)− (ri/πi)I{yi ≥ x}ez
′
iβ − ν0(oi, x, β)

(S0(xβ))
2 + oP0(n−1/2)

∫ t

0

dF1,n(x)

S
(0)
n (x, β)

−
∫ t

0

dF1,n(x)

S
(0)
0 (x, β)

=

∫ t

0

S0(x, β)− 1
n

∑n
i=1

(
(ri/πi)I{yi ≥ x}ez

′
iβ − ν0(oi, x, β)

)
(S0(xβ))

2 dF1,0(x) + oP0
(n−1/2).

Next, we define the following for convenience:

ν∗0(oi, t, β) ≡
(

1− p0(ci)ri
p1

0(ci)

)
E0

[
∆I{Y ≤ t}
S0(Y, β)

|C = ci, R = 1

]
.

This allows us to write the following:

F1,n(x)− F1,0(x) =
1

n

n∑
i=1

(
ri
πi
δiI{yi ≤ x}+

(
1− p0(ci)ri

p1
0(ci)

)
E0 [∆I{Y ≤ x} |C = ci, R = 1]− F1,0(x)

)
+ oP0

(n−1/2)

∫ t

0

d(F1,n − F1,0)(x)

S0(x, β)
=

1

n

n∑
i=1

(
riδiI{yi ≤ t}
πiS0(yi, β)

+ ν∗0 (oi, t, β)

)
− Λ0(t, β) + oP0

(n−1/2).

Combining this with the previous result, we have:

Λn(t, β)−Λ0(t, β) =
1

n

n∑
i=1

(
riδiI{yi ≤ t}
πiS0(yi, β)

+ ν∗0 (oi, t, β)−
∫ t

0

(
riI{yi ≥ x}ez

′
iβ + πiν0(oi, x, β)

πi (S0(x, β))
2

)
dF1,0(x)

)
+oP0

(n−1/2).

(9)

Returning to the expansion given in (6) and plugging in these equalities, we
can write the following:

Λn(t)− Λ0(t) =

1

n

n∑
i=1

(
riδiI{yi ≤ t}
πiS0(yi)

+ ν∗0 (oi, t, β0)−
∫ t

0

(
riI{yi ≥ x}ez

′
iβ0 + πiν0(oi, x, β0)

πi (S0(x))
2

)
dF1,0(x)− µ0(t)˜̀∗

0(oi)

)
+ oP0(n−1/2).
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Using the above and the equality
∫ t

0 h(x)dΛ0(x) =
∫ t

0 (h(x)/S
(0)
0 (x))dF1,0(x),

we can write the influence function of the IPS-weighted Breslow estimator as
follows:

ϕΛ
0 : oi 7→

riδiI{yi ≤ t}
πiS0(yi)

+ν∗0(oi, t, β0)−
∫ t

0

(
riI{yi ≥ x}ez

′
iβ0 + πiν0(oi, x, β0)

πiS0(x)

)
dΛ0(x)−µ0(t)˜̀∗

0(oi).

(10)

Influence function of S̄n(t|a)

Using several applications of the delta method on the influence functions
given by equations (4) and (10), we can write the following, where z is a
fixed covariate vector:

Sn(t|z)− S0(t|z) ≡ ez
′βnΛn(t)− ez

′β0Λ0(t)

= −1

n

n∑
i=1

S0(t|z)
(

Λ0(t)e
z′β0z′ ˜̀∗0(oi) + ez

′β0ϕΛ
0 (oi)

)
+ oP0

(n−1/2).

Thus, the influence function of Sn(t|z) is given by the following:

ωt0 : (oi, z) 7→ −S0(t|z)
(

Λ0(t)e
z′β0z′ ˜̀∗0(oi) + ez

′β0ϕΛ
0 (oi)

)
. (11)

Next, we can study the asymptotic behavior of S̄n(t|a) through the following
expansion, where we use the notation Pf ≡ EP [f(O)] for a given probability
measure P :

S̄n(t|a)− S̄0(t|a) = PnSn − P0S0 = (Pn − P0)S0 + P0(Sn − S0) + (Pn − P0)(Sn − S0). (12)

The first term is linear and can be written as follows:

(Pn − P0)S0 =
1

n

n∑
i=1

(S0(t|wi, a)− E0[S0(t|W,a)]) . (13)
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The second term can be represented as follows, which holds under mild reg-
ularity conditions on the remainder:

P0(Sn − S0) = E0[Sn(t|W,a)− S0(t|W,a)] =
1

n

n∑
i=1

E0

[
ωt0(oi, (W,a))

]
+ oP0(n−1/2). (14)

Plugging these two equalities into expansion (12) and assuming regularity
conditions hold such that (Pn − P0)(Sn − S0) = oP0

(n−1/2), we can write the
following:

S̄n(t|a)− S̄0(t|a) =
1

n

n∑
i=1

(
S0(t|wi, a)− E0[S0(t|W,a)] + E0

[
ωt0(oi, (W,a))

])
+ oP0(n−1/2).

Therefore, the influence function of S̄n(t|a) is given by:

ϕt,a0 : oi 7→ S0(t|wi, a)− E0[S0(t|W,a)] + E0

[
ωt0(oi, (W,a))

]
. (15)

The variance of S̄n can be estimated by estimating the second moment of
its influence function (15), as usual. However, since S̄n ∈ [0, 1], it may be
useful to form confidence intervals on the logit(S̄n) scale instead and then
transform the confidence limits back to the S̄n scale, to ensure that the entire
confidence interval lies within [0, 1]. This yields the following confidence in-
terval estimator, where ξ(x) ≡ logit(x), ξ̇(x) ≡ d

dx logit(x), ξ−1(x) ≡ expit(x),
Zα/2 is the relevant quantile of the standard Normal distribution, and ϕt,an is

an estimator of the true influence function ϕt,a0 , which we will define later:

ξ−1

ξ(S̄n(t|a))± Zα/2ξ̇
(
S̄n(t|a)

)√√√√1

n

n∑
i=1

(
ϕt,a0 (oi)

)2

 . (16)

Estimation of the influence function of βn under iid sampling: ˜̀
n

First, we define the following component function estimators:
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S(0)
n (x) ≡ 1

n

n∑
i=1

ri
π∗i
I{yi ≥ x}ez′iβn

S(1)
n (x) ≡ 1

n

n∑
i=1

ri
π∗i
ziI{yi ≥ x}ez′iβn

S(2)
n (x) ≡ 1

n

n∑
i=1

ri
π∗i
z⊗2
i I{yi ≥ x}ez′iβn

mn(x) ≡ S(1)
n (x)/S(0)

n (x).

We can then define our estimator as ˜̀
n ≡ I−1

n
˜̀∗
n, where In and ˜̀∗

n are defined
as follows:

In ≡
1

n

∑
{i:δi=1}

ri
π∗i

(
S

(2)
n (yi)

S
(0)
n (yi)

− (mn(yi))
⊗2

)

˜̀∗
n ≡ δi (zi −mn(yi))−

∑
{j:δj=1}

rje
z′iβnI{yj ≤ yi} (zi −mn(yj))

π∗jS
(0)
n (yj)

.

Estimation of the influence function of inverse probability sampling
weighted βn under two-phase sampling: ˜̀∗

n

A consistent estimator of ˜̀∗
0 is given by the following, where pn(c) ≡ 1

n

∑n
i=1 I{ci =

c} and p1
n(c) ≡ 1

n

∑n
i=1 I{ci = c}ri:

˜̀∗
n(oi) ≡

ri
π∗i

˜̀
n(oi) +

1

n

∑
{j:cj=ci,rj=1}

(
p1
n(cj)− pn(cj)ri

)
˜̀
n(oj)

(p1
n(cj))

2 .

Estimation of the influence function of the IPS-weighted Breslow
estimator: ϕΛ

n

The influence function ϕΛ
0 can be consistently estimated using the following:
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ϕΛ
n(oi) ≡

riδiI{yi ≤ t}
π∗i Sn(yi)

+ν∗n(oi, t, βn)− 1

n

∑
{j:δj=1}

I{yj ≤ t}

(
riI{yi ≥ yj}ez

′
iβn + π∗i νn(oi, yj , βn)

π∗i (Sn(yj))
2

)
−µn(t)˜̀∗

n(oi).

This involves the following nuisance estimators:

ν∗n(oi, t, βn) ≡
(
p1
n(ci)− pn(ci)ri

(p1
n(ci))

2

)1

n

∑
{k:ck=ci,rk=δk=1}

I{yk ≤ t}
Sn(yk)


νn(oi, yj, βn) ≡

(
p1
n(ci)− pn(ci)ri

(p1
n(ci))

2

)1

n

∑
{k:ck=ci,rk=1}

I{yk ≥ yj}ez
′
kβn


µn(t) ≡

1

n

∑
{j:δj=1}

I{yj ≤ t}S(1)
n (yj)(

S
(0)
n (yj)

)2 .

Estimation of the influence function of conditional survival Sn(t|z):
ωt0

The influence function ωt0 can be consistently estimated using the following:

ωtn(oi, z) ≡ ez
′βn

δiI{yi ≤ t}
S

(0)
n (yi)

− 1

n

∑
{j:δj=1}

ez
′
iβnI{yj≤t∧yi}

π∗j

(
S

(0)
n (yj)

)2 +

 1

n

∑
{j:δj=1}

I{yj ≤ t}(z −mn(yj))

π∗jS
(0)
n (yj)

′ ˜̀
n(zi, δi, yi)

 .

(17)

Estimation of the influence function of the target parameter S̄n(t|a):
ϕt,a0

Finally, the influence function ϕt,a0 can be consistently estimated using the
following:

ϕt,an (oi) ≡ Sn(t|wi, a) +
1

n

n∑
j=1

(
ωtn(oi, (wj, a))− Sn(t|wj, a)

)
. (18)
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12.3.5 Univariable CoR: Marginalized Cox modeling for an outcome subject to com-
peting risks (e.g. asymptomatic infection)

If the outcome under study is subject to competing risks, then the Cox model
is fit in the same way, except counting the competing risk as right-censoring.
Now the parameter being estimated is the marginal conditional cumulative
incidence function risk1(t, 1|s) = EX [P (T ≤ t, J = 1|s,X,A = 1)] where
J = 1 is the outcome of interest. To estimate this parameter, we use the
fact that the cause j-specific hazard λj1(t|s, x) is linked to the conditional
cumulative incidence Fj1(t|s, x) = P (T ≤ t, J = j|s, x, A = 1) via the formula

Fj1(t|s, x) =

∫ t

0

λj1(u|s, x)S1(u|s, x)

where S1 is the all-cause/overall conditional survival function for the first
event of asymptomatic infection or COVID-19, whichever occurs first (i.e.,
the COV-INF endpoint). Therefore, after fitting the cause J = 1 Cox model,
for any fixed t the above formula provides fitted values F̂j1(t|s,Xi) for each
participant i, and then the G-computation estimator of risk1(t, 1|s) is

r̂isk1(t, 1|s) =
1

n

n∑
i=1

F̂j1(t|s,Xi).

As for the analyses without competing risks, the bootstrap is used for calcu-
lating 95% confidence intervals and for testingH0 : risk1(tF , 1|s) = risk1(tF , 1)
for all s.

12.3.6 Univariate CoR: Nonparametric threshold regression modeling

The van der Laan et al. (2021) extension of the nonparametric CoR threshold
estimation method of Donovan et al. (2019) is applied to each of the five non-
baseline subtracted Day 57 antibody markers, using the version that defines
the binary outcome Y of interest as Y = 1 if a COVID endpoint occurred
during the blinded period of follow-up and Y = 0 otherwise. The analyses
adjust for the same baseline factors X as used in the Cox model CoR analyses.

The extension adjusts for baseline covariates by estimating the conditional
mean function E[Y |S ≥ s,X,A = 1] using discrete-SuperLearner and then
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empirically averaging over the baseline covariates X to estimate the marginal
risk riskY1 (S ≥ s) = EX [P (Y = 1|S ≥ s,X,A = 1)] for each threshold s of
the the antibody marker in a specified discrete set. We do not perform pooled
regression across the thresholds s, which ensures we are totally nonparametric
in estimating the threshold dependence of riskY1 (S ≥ s) on s. The Super-
Learner library includes a range of increasingly flexible parametric learners
including logistic regression (glm), bayesian logistic regression (bayesglm),
and L1-penalized logistic regression (glmnet). (Two of each learner is in-
cluded in the library, one with only main-term variables and another with
main-term and interaction variables.) An advantage of the nonparametric
CoR threshold method compared to Cox modeling that specifies a log linear
hazard ratio with the marker is that it can potentially detect a threshold
of very low risk. The method is implemented with and without the mono-
tonicity constraint that riskY1 (S ≥ s) is monotone non-increasing in s, where
the results assuming monotonicity are reported unless there is evidence for
violation of this assumption.

The results are reported in the same way that Donovan et al. (2019) reports
results in its Figure 2, where point estimates, pointwise 95% confidence bands,
and simultaneous 95% confidence bands for riskY1 (S ≥ s) are plotted for
a range of threshold values. The simultaneous confidence bands cover the
entire curve in s with at least 95% probability and are useful for judging
whether risk varies over threshold subgroups, whereas the pointwise 95%
confidence bands are useful for quantifying precision at particular threshold
values. The method uses the same empirical two-phase sampling estimated
weights (IPS weights) as used for the other univariable IPWCC CoR analyses.
In addition, for each pre-specified risk threshold c set to take values over
a grid with lowest value 0, the method is applied to estimate the inverse
function sc = inf{s : EX [P (Y = 1|S ≥ s, A = 1, X] ≤ c}, where sc is
estimated by substitution of the marginal risk function estimate. Note that
the substitution estimator of sc requires that the marginal risk function is
estimated for all thresholds, which is computationally infeasible. Instead,
we estimate the marginal risk function on a sufficiently large discrete set and
linearly interpolate to obtain marginal risk estimates for all thresholds outside
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the discrete set. In order for this estimand to be well defined, we operate
(for this estimand only) under the assumption that s 7→ riskY1 (S ≥ s) is
monotone. For the substitution-based estimator of the inverse function sc to
be well-defined, we require the estimate of s 7→ riskY1 (S ≥ s) to be monotone
as well. If there is evidence that the function estimate is not monotone then
we replace the estimate with its monotone projection, which preserves its
theoretical properties (Westling, van der Laan, Carone, 2020).

A plot of point and pointwise 95% confidence interval estimates of sc (over the
grid of c values) is provided to help indicate marker thresholds defining sub-
groups with very low risk of outcome. The confidence interval estimates for
sc are derived directly from the confidence interval estimates for the marginal
risk function s 7→ riskY1 (S ≥ s), and therefore its estimates are compatible
with those of the marginal risk function. In addition, a plot of point and
simultaneous 95% confidence interval estimates of sc (over the grid of c val-
ues) is provided, where the simultaneous confidence interval estimates for sc
are derived directly from the simultaneous 95% confidence band estimates
for the marginal risk function s 7→ riskY1 (S ≥ s), and therefore its estimates
are compatible with those of the marginal risk function. In particular, no
multiple testing adjustments are needed.

The analysis is done using targeted maximum likelihood estimation (TMLE)
as described in van der Laan, Zhang, and Gilbert (2020), and the point-
wise and simultaneous simultaneous confidence bands are of the Wald-type,
obtained from the asymptotic distribution of the TMLE.

12.4 Univariable CoR: Supportive Exploratory Flexible Parametric Risk Mod-
eling

For each of the five non-baseline subtracted Day 57 antibody markers, flexible
nonlinear modeling of outcome risk studied as a dichotomous outcome Y will
be conducted, as exploratory supportive analyses. Again, the analyses adjust
for the same baseline factors X as used in the Cox model CoR analyses.

The nonlinear relationship between the logit of risk and markers will be mod-
eled using two-phase polynomial regression models (Son and Fong, 2020; Fong
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et al., 2017), e.g., hinge model, or three-phase segmented models (Chen,
2020). The mean function of a qth order two-phase polynomial regression
model can be expressed as follows:

η(s,X) = α1 + αX2 z + β1,−(s− e)− + β1,+(s− e)+ + β2,−(s− e)2
− + β2,+(s− e)2

+

+ · · ·+ βq,−(s− e)q− + βq,+(s− e)q+,

where X is the baseline covariate vector, s is a fixed value of the immunologic
marker of interest, e is the threshold parameter, (s− e)+ = s− e if s > e and
0 otherwise, and (s− e)− = 0 if s > e and s− e otherwise.

In addition, a generalized additive model with degree of smoothing estimated
by cross-validation is employed (Wood, 2017). Two-phase sampling designs
are accounted for through inverse probability weighting and confidence inter-
vals are obtained through the same bootstrap scheme as the Cox proportional
hazard model bootstrap inference.

12.4.1 [With Day 29 markers]

For CoR analyses of Day 29 markers, the same analyses are done, except
using the Day 29 visit date as the time origin and counting events starting 7
days after the Day 29 visit.

12.4.2 P-values and Multiple hypothesis testing adjustment for CoR analysis

In general, p-values are only reported from pre-specified and automated
(press-button) analyses. For the CoR analyses, p-values are reported for
the univariable Cox regression analyses of the five specified Day 57 antibody
marker variables. Two-sided p-values for hypothesis testing of a Day 57
marker CoR are calculated both for the Cox regression of quantitative mark-
ers (two-sided Wald tests), and for the Cox regression of markers binned into
tertiles (two-sided Generalized Wald tests). Therefore a total of ten 2-sided
p-values for CoRs are calculated.

It is not completely clear whether to perform multiple hypothesis testing
adjustment, given the expectation that the correlations among the markers
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are high, and possibly very high, meaning that multiplicity correction could
incur a relatively high cost on the false negative error rate.

However, given that robust evidence supporting an antibody marker as a CoR
will be required for qualifying a marker, we will conduct multiplicity adjust-
ment for CoR analysis, as the ability to make an inference that a marker
passed pre-specified multiplicity adjusted criteria should aid an overall ev-
idence package for establishing a validated or non-validated surrogate end-
point. Therefore, multiplicity adjustment is performed across the ten 2-sided
p-values.

A permutation-based method (Westfall et al., 1993) will be used for both
family-wise error rate (Holm-Bonferroni) and false-discovery rate (q-values;
Benjamini-Hochberg) correction. 104 replicates of the data under the null hy-
potheses will be created by randomly resampling the immunologic biomarkers
with replacement. For each Cox regression CoR analysis the unadjusted p-
value, the FWER-adjusted p-value, and the q-value is reported for whether
there is a covariate-adjusted association, where all p-values and q-values are
2-sided. The FWER-adjusted p-values and q-values are computed pooling
over both the quantitative marker and tertilized marker CoR analyses. As a
guideline for interpreting CoR findings, markers with FWER-adjusted p-value
≤ 0.05 are flagged as having statistical evidence for being a CoR. Addition-
ally, markers with unadjusted p-value ≤ 0.05 and q-value ≤ 0.10 are flagged
as having a hypothesis generated for being a CoR.

As described in this SAP, the FWER adjustment is done for all advanced Day
57 markers among bAb Spike, bAb RBD, PsV nAb ID50, PsV nAb cID80,
and WT LV MN50. If the antibody data set available for correlates analysis
does not yet contain the WT LV MN50 data (due to a longer time horizon
on performing the assay), then the multiplicity adjustment will be performed
for the available 4 markers.

12.4.3 [With Day 29 markers]

If Day 29 markers are included, the same multiplicity adjustment approach is
used as for Day 57 markers. The multiplicity adjustment is done separately
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for Day 29 markers and for Day 57 markers, given the high degree of correla-
tion of the analysis results (given that all endpoint cases starting 7 days post
Day 57 are common among the two analyses).

12.5 Univariate CoR: evaluating markers as endpoints

12.5.1 Objective

Follmann (2018) describe a method for comparing two endpoints in terms
of the sample size required to power a future study. In this approach, we
imagine that our goal is to compare two (or more) markers in terms of their
standardized effect size. Markers with stronger correlates signals will have
higher standardized effect sizes. We then present the comparison of effect
sizes in terms of a sample size ratio. For example, if the ratio of standardized
effect size for Day 57 binding Ab to Spike compared to Day 57 pseudovirus
neutralization ID50 is 2, then a future correlates study would need to enroll
twice as many participants to achieve a similar power to reject the correlates
null hypothesis for the inferior marker. The method provides, in essence, a
more interpretable means of comparing the magnitude of p-values for different
markers.

12.5.2 Approach

We will apply the approach to the univariate Cox models. The required out-
put for the method of Follmann (2018) is the same as for the IPWCC Cox
regression described above. For each marker, the Wald statistic for the asso-
ciated log hazard ratio is divided by the square root of the harmonic mean of
cases and non-cases in the phase 2 dataset to obtain the standardized associ-
ation. Denote by ∆̂m the standardized association for the m-th marker. We
define the comparison of the `-th and m-th marker’s standardized association
to be ω̂`,m = ∆̂`/∆̂m. This is mapped into an estimated ratio of sample sizes
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θ`,m via the following relationship

θ̂`,m =


ω̂2
`,m if ∆̂` < 0 and ∆̂m < 0

0 if ∆̂` > 0 and ∆̂m < 0

undefined if ∆̂` > 0 and ∆̂m > 0

∞ if ∆̂` < 0 and ∆̂m > 0

A 95% confidence interval for θ`,m can derived based on the bootstrap, though
some cared is needed to handle edge cases. Follmann (2018) describe the
following approach. For the b-th bootstrap sample (generated, as described

above), we compute ∆̂
(b)
` , ∆̂

(b)
m , and ω̂

(b)
`,m as described above. We then define

separate “versions” of θ̂
(b)
`,m,

θ̂
(b)
`,m(L) = I(∆̂` < 0, ∆̂m < 0)(ω̂

(b)
`,m)2 + I(∆̂` < 0, ∆̂m > 0)×∞

θ̂
(b)
`,m(U) = I(∆̂` < 0, ∆̂m < 0)(ω̂

(b)
`,m)2 + I(∆̂` > 0, ∆̂m > 0)×∞

+ I(∆̂` < 0, ∆̂m > 0)×∞

The lower bound of the bootstrap 95% confidence interval is the 2.5-th per-
centile of the bootstrap distribution of θ̂

(b)
`,m(L); the upper bound of the boot-

strap 95% confidence interval is the 97.5-th percentile of the bootstrap dis-
tribution of θ̂

(b)
`,m(U).

We will compare ratios of sample sizes of the following markers:

1. binding Ab RBD vs. pseudovirus neutralization ID50

2. binding Ab RBD vs. live virus neutralization MN50

3. pseudovirus neutralization ID50 vs. live virus neutralization MN50

12.5.3 Multi-variable extension

The above method extends naturally to multivariable models described be-
low, where a standardized association is computed by multiplying the gener-
alized Wald statistic by the number of “phase 2 ptids”.

77



12.6 Multivariable CoR: Superlearning of Optimal Risk Prediction Models

12.6.1 Objectives

The multivariable CoR objective is addressed through two sub-objectives:
first to build an ‘estimated optimal surrogate’ (Price et al., 2018), a model
that best predicts the outcome from Day 57 antibody markers and baseline
factors. The second sub-objective is estimation and inference on variable im-
portance measures for each Day 57 antibody marker, for ranking of antibody
markers by their importance/influence on predicting risk. The analysis plan
is patterned off of the analysis of the HVTN 505 HIV-1 vaccine efficacy trial
(Neidich et al., 2019). For these analyses both baseline-subtracted and non-
baseline subtracted versions of the Day 57 markers are used, in a broader
unbiased analysis to build models most predictive of outcome.

12.6.2 Input variable sets

Day 57 antibody markers are classified into the following four antibody
marker variable sets, with individual variables listed within categories:

1. Binding antibody anti-Spike (S-bAb)

a Day 57 anti-Spike IgG concentration

b delta (Day 57 - Day 1) anti-Spike IgG concentration

c indicator 2FR anti-Spike IgG concentration

d indicator 4FR anti-Spike IgG concentration

2. Binding antibody anti-RBD (RBD-bAb)

a Day 57 anti-RBD concentration

b delta (Day 57 - Day 1) anti-RBD concentration

c indicator 2FR anti-RBD concentration

d indicator 4FR anti-RBD concentration

3. Pseudovirus neutralizing antibody anti-Spike (pseudovirus-nAb)

a Day 57 anti-Spike ID50
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b Day 57 anti-Spike cID80

c delta (Day 57 - Day 1) anti-Spike ID50

d delta (Day 57 - Day 1) anti-Spike cID80

e indicator 2FR anti-Spike ID50

f indicator 4FR anti-Spike ID50

g indicator 2FR anti-Spike cID80

h indicator 4FR anti-Spike cID80

4. Wild Type Live virus neutralizing antibody anti-Spike (WT live virus-
nAb)

a Day 57 anti-Spike MN50

b delta (Day 57 - Day 1) anti-Spike MN50

c indicator 2FR anti-Spike MN50

d indicator 4FR anti-Spike MN50

The baseline factors without any marker data constitutes another set of vari-
ables to include in the superlearner modeling.

12.6.3 Missing data

We expect a very small amount of missing data from the five antibody marker
types (bAb Spike, RBD; pseudovirus-nAb ID50, cID80; WT live virus-nAb
MN50). However, there may be a small amount of missing data, with pos-
sibly different participants missing data for different markers. We take the
following approach to handle any missing data that occurs.

First, we define the two-phase sampling indicator ε as taking value of one
if a participant has Day 1 and Day 57 bAb data for both Spike and RBD,
where here we assume that the MSD platform is highly robust such that
it will have nearly 100% complete data for sampled participants. Second,
for the other three marker types (pseudovirus-nAb ID50, cID80; WT live
virus-nAb MN50), for participants with ε = 1 but the Day 1 and/or Day
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57 marker value is missing, we use single imputation to fill in any missing
values, ignoring the uncertainty in the imputations in the analysis, because
it should have negligible impact on results given the (very) small amount
of missing data. Multiple linear regression will be used to impute missing
values, separately for each antibody marker, based on the set of individuals
with that antibody marker measured at Day 1 and 57. Accurate imputations
are possible given the high correlations of the markers, especially between
ID50 and cID80 within the same immunoassay. This process means that the
two-phase data set has a simple ‘all-or-nothing’ missing data pattern where
participants with ε = 1 have all markers with Day 1 and Day 57 data, and
are included in IPWCC analyses, and participants with ε = 0 have some or
all markers missing and are excluded from IPWCC analyses. This means
that all IPWCC data analyses can use the same empirical frequency (IPS)
sampling weights.

For analysis methods that use the whole cohort (phase-one plus phase-two
data), the same phase-two data as described above are used. If some of
the phase-one baseline factors that are adjusted for variables are missing
with only a small amount of missing values, then single imputation will be
used to fill in the values, and, as for the immunologic marker imputations,
the uncertainty in the imputations will be ignored in the analyses. Simple
average values will be used to fill in baseline covariate missing values of the
baseline factors.

12.6.4 Implementation of superlearner

For baseline risk score development, Superlearner is applied to the placebo
arm only, as mentioned in Section 10. For multivariable immune correlates
of risk/estimated optimal surrogate development, Superlearner is applied to
the vaccine arm only. The following details are used in the implementation
of superlearner of the vaccine arm only:

• Pre-scale each quantitative and ordinal variable to have empirical mean
0 and standard deviation 1.

• For the immune correlates analysis, the final library of learners is selected
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accounting for the number of phase-two endpoint cases in the vaccine
arm. If the number of cases is limited, at or near 25 evaluable endpoint
cases, then the modeling will only allow learning algorithms to have a
maximum of 5 Day 57 antibody marker variables, and will use leave-
one-out cross-validation and the negative log-likelihood loss function, a
combination that tends to provide good performance in small sample
size settings. On the other hand, if there are larger numbers of endpoint
cases in the vaccine arm, then 5-fold cross-validation will be used, and
no more than floor(nv/6) input variables will be used in the model where
nv is the number of evaluable vaccine endpoint cases. The choices will
be finalized prior to case/control unblinded analysis.

• Include learning algorithms with and without screening of variables.
Screens used will be: 1) glmnet (lasso) pre-screening (with default tun-
ing parameter selection), 2) logistic regression univariate 2-sided p-value
screening (at level p < 0.10), and 3) high-correlation variable screening
(described below). The adaptive algorithms (SL.randomForest, SL.xgboost,
SL.gam, SL.polymars) are only used with these screens, given that the
limited number of endpoint cases may challenge use of these methods
with no variable screening. Moreover, the adaptive algorithms are not
used if there are only 25 (or close to it) endpoint cases. All of the selected
learners are coded into the SuperLearner R package available on CRAN.

• Include high-correlation variable screening, not allowing any pair of input
variables to have Spearman rank correlation r > 0.9. When a pair of
variables has r > 0.9, the variable with the highest ranked signal-to-
noise ratio (i.e., biological dynamic range) is selected; if these data are
not available or there is a tie then variables are selected in the following
order of priority: first WT live virus-nAb, second pseudovirus-nAb, third
bAb.

• The superlearner is conducted averaging over 10 random seeds, to make
results less dependent on random number generator seed.

• All of the learners are implemented with IPS weighting, using the weights
ŵ57.x defined in Section 12.3.1 to account for the two-phase sampling
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design.

• Two levels of cross-validation are used:

– Outer level: CV-AUC computed over 5-fold cross-validation repeated
10 times to improve stability

– Inner level: leave-one-out CV used to estimate ensemble weights (if
nv is near 25) and 5-fold CV if nv is larger.

• Results for comparing classification accuracy of different models are
based on point and 95% confidence interval estimates of cross-validated
area under the ROC curve (CV-AUC) and difference in CV-AUC as a
predictiveness metric (Hubbard et al., 2016; Williamson et al., 2020).
Results are presented as forest plots of point and 95% confidence inter-
val estimates similar to those used in Neidich et al. (2019) (Figure 3) and
Magaret et al. (2019). CV-AUC is estimated using the R package vimp
available on CRAN, including the IPS weights that are used for other
data analyses.

For the baseline risk score SuperLearner analysis of the placebo arm (Sec-
tion 10), the same approach is used, with the following modifications: (1)
5-fold cross-validation will be used with no more than max(20,floor(np/20))
input variables included in each model, where np is the number of evaluable
placebo arm cases; (2) no IPS weighting is needed; (3) the adaptive learning
algorithms are included.

Table 7 lists the learning algorithms that are applied to estimate the condi-
tional probability of the outcome based on the input variable sets considered
above. Most of the algorithms are non-data-adaptive type learning algo-
rithms, such as parametric regression models (e.g., generalized linear models
[glms]), which are simple, stable, and advantageous for an application with a
limited number of endpoint events. Data-adaptive type algorithms are also
included if the number of endpoint events is high enough, for increasing flexi-
bility of modeling and reducing the risk of model misspecification: SL.ranger,
SL.gam, SL.polymars, and SL.xgboost. All of the selected learners are coded
into the SuperLearner R package.
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Before fitting the superlearner models to the vaccine arm data, a decision
will be made on how to define the “baseline risk factors” input variable set,
based on prediction-accuracy results of the Superlearner analysis that built
the baseline behavioral risk score based on the placebo arm, as well as on
external knowledge of important individual risk factors. The set of baseline
risk factors will include a subset of individual risk factors and/or the baseline
risk score itself.

For the immune correlates objective the superlearner model is fit to each of
the following 12 variable sets, with immunological variables listed in Section
12.6.2:

1. Baseline risk factors

2. Baseline risk factors and the Day 57 bAb anti-Spike markers

3. Baseline risk factors and the Day 57 bAb anti-RBD markers

4. Baseline risk factors and the Day 57 pseudovirus-nAb ID50 markers

5. Baseline risk factors and the Day 57 pseudovirus-nAb cID80 markers

6. Baseline risk factors and the Day 57 live virus-nAb MN50 markers

7. Baseline risk factors and the Day 57 bAb markers and the Day 57
pseudovirus-nAb ID50 markers

8. Baseline risk factors and the Day 57 bAb markers and the Day 57
pseudovirus-nAb cID80 markers

9. Baseline risk factors and the Day 57 bAb markers and the Day 57 live
virus-nAb MN50 markers

10. Baseline risk factors and the Day 57 bAb markers and the combina-
tion scores across the five markers [PCA1, PCA2, FSDAM1/FSDAM2
(the first two components of nonlinear PCA), and the maximum signal
diversity score He and Fong (2019)].

11. Baseline risk factors and all individual Day 57 marker variables

12. Baseline risk factors and all individual Day 57 marker variables and all
combination scores (full model)
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Therefore in total, 12 variable sets are studied. The reason to include the first
variable set is to investigate how much incremental improvement in predicting
outcome is obtained by adding antibody marker variables on top of baseline
demographic/exposure factors. The other variable sets are designed to com-
pare the four immunoassay types by their predictiveness, to compare the two
pseudovirus neutralization readouts ID50 and cID80 for their predictiveness,
and to investigate incremental predictive value in using multiple immunoas-
says. The final variable set is included as the full model that considers all
variables together, which serves as another reference model.

Table 7: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome, for Building the Baseline Risk Score Based on the Placebo Arm1.

Screens/
Algorithms Tuning Parameters

SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)2

SL.bayesglm Low-collinearity and (All, Lasso, LR)
SL.glm.interaction Low-collinearity and (All, Lasso, LR)
SL.glmnet (alpha=1; All)
SL.gam Low-collinearity and (Lasso, LR)
SL.ksvm Low-collinearity and (kernel=“rbfdot”,“polydot”) and (Lasso, LR)
SL.polymars Low-collinearity and (Lasso, LR)
SL.xgboost3 All and (maxdepth,shrinkage,balance)= (4, 0.1, no)
SL.ranger3 All and balance = no
1All continuous and ordinal covariates are pre-standardized to have empirical mean 0 and

standard deviation 1.
2All = include all variables; Lasso = include variables with non-zero coefficients in the standard

implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank

correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.
3Covariate balancing (if requested) is done using option scale pos weight in SL.xgboost and

option case.weights in SL.ranger.
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Table 8: Learning Algorithms in the Superlearner Library of Estimators of the Conditional Prob-
ability of Outcome: Simplified Library in the Event of Fewer than 50 Vaccine Breakthrough Cases
for an Analysis, for Use in Multivariable CoR Analysis of Moderna COVE1.

Screens/
Algorithms Tuning Parameters

SL.mean None
SL.glm Low-collinearity and (All, Lasso, LR)2

SL.glmnet (All, alpha=0) (All, alpha = 1)
SL.xgboost (maxdepth,shrinkage,balance3)= (2, 0.1, yes) (2, 0.1, no) (4, 0.1, yes) (4, 0.1, no)
SL.ranger balance = (yes, no)

2All = include all variables; Lasso = include variables with non-zero coefficients in the standard
implementation of SL.glmnet that optimizes the lasso tuning parameter via cross-validation;
Low-collinearity = do not allow any pairs of quantitative variables with Spearman rank

correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value < 0.10.
3Covariate balancing (if requested) is done using option scale pos weight in SL.xgboost and

option case.weights in SL.ranger.

Given the class-imbalance issue, with many more non-case than case records,
all of the cross-validation for the multivariable immune CoR objective is done
stratified by case/non-case status.

In order to evaluate the relative performance of the superlearner estimated
models for each of the 12 variable sets, derived using the learning algorithms
specified in Table 7, the CV-AUC is estimated with a 95% confidence interval
(Hubbard et al., 2016; Williamson et al., 2020). The point and 95% confidence
interval estimates of CV-AUC are reported in a forest plot, which provide a
way to discern which Day 57 antibody assays and readouts/markers provide
the most information in predicting COVID or other outcomes. The specified
library of learners may be modified prior to SAP finalization (before breaking
the blind of case/non-case status).

As noted above CV-AUC is estimated using the R package vimp available
on CRAN, which uses augmented inverse probability weighting to properly
estimate CV-AUC accounting for the two-phase sampling design.

If there are fewer than 50 vaccine breakthrough cases included in a correlates
analysis, then the libary of learners will be simplified to that specified in
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Table 8.

In addition, for selected variable sets, similar forest plots will be made com-
paring performance of the various estimated models (e.g., by individual learn-
ing algorithm types such as lasso), including discrete superlearner and super-
learner models. The plot will be examined to determine which individual
learning algorithm types are performing the best. If there is an interpretable
algorithm that has performance close to the best-performing algorithm (which
is most likely to be the superlearner), then it will be fit on the entire data
set of vaccine recipients and the estimated model presented in a table.

Cross-validated ROC curves are plotted for the superlearner estimated models
for each of the input variable sets. In addition, boxplots of cross-validated
estimated probabilities of outcome by case-control status (as estimated from
the superlearner models) are plotted.

12.6.5 [With Day 29 markers]

The weights ŵ57.x are used even for models that include Day 29 markers but
not Day 57 markers, because only primary cases (starting 7 days post Day 57
visit) are included in the multivariable CoR analyses. Thus the Superlearner
analyses only used the weights ŵ57.x.

Regarding the 12 variable sets listed above, additional variable sets will be
included to represent Day 29 markers as input variables. In particular, vari-
able sets 2–12 will only include Day 57 markers. These variable sets will be
cloned into 11 new sets (13-23) including Day 29 markers in place of Day
57 markers. Lastly, another 11 variable sets (24–34) will be formed with
the same structure, where each input variable set includes both Day 29 and
Day 57 markers. This allows the Superlearning modeling to address whether
including markers from both time points improves prediction of outcome.
Therefore, if Day 29 markers are included, the number of input variable sets
is 34 instead of 12.
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12.6.6 Variable set and individual variable importance

The importance of variable sets (and individual variables) will be summarized
by the estimated gain in population prediction potential (also referred to as
the intrinsic importance) when comparing each variable set plus baseline risk
factors to baseline risk factors alone. Prediction potential (predictiveness)
will be measured using CV-AUC. Inference on the intrinsic importance will be
based off sample splitting; thus, both the estimated variable importance and
the estimated CV-AUC of each variable set when evaluated on independent
data from the data used to evaluate the CV-AUC of the baseline risk factors
will be reported. The class-balancing versions of SL.xgboost will be dropped
from the Super Learner library in the variable importance computation as
the regression carried out to account for the two-phase sampling will be based
on a continuous outcome (so there won’t be any imbalance).

12.7 Multivariable CoR: Multivariable Cox models

12.7.1 Objectives

A complementary analysis to the multivariable super learner analysis will
use several multivariable Cox models to examine associations between sets
of markers and the hazard of COVID-19. This approach has the benefit
over super learner of targeting more interpretable measures of the relative
importance of individual markers after adjustment for other markers. The
motivation is to provide additional evidence as to whether and to what extent
single vs. multiple markers exhibit stronger overall signal as a correlate.

12.7.2 Standardization of markers

In order for the magnitude of the estimated hazard ratios to be comparable
across markers, we will standardize all markers prior to inclusion in the Cox
model by scaling by their estimated standard deviation. Estimation of the
standard deviation should take inverse probability weights into account.
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12.7.3 Primary multi-variable Cox model

The primary multivariable models will be two models (one for Day 57 mark-
ers, one for Day 29 markers) fit as described in the univariable model section
above, but adjusting for sets of markers. In particular, our primary model
includes binding Ab to RBD, pseudovirus neutralization ID50, and live virus
neutralization MN50. A Wald test using the robust variance estimator as im-
plemented in the survey package will be used to evaluate the null hypothesis
of no association between any marker and hazard of COVID-19. Hazard ra-
tios will be reported per standard deviation increase alongside 95% confidence
intervals.

12.7.4 Secondary multi-variable Cox models

We fill additionally fit a series of exploratory, bivariate Cox models. These
models will be fit as above but will include only two markers. The sets of
two markers that we consider are

1. binding Ab to RBD and pseudovirus neutralization ID50

2. binding Ab to RBD and live virus neutralization MN50

As above, Wald tests will be used to evaluate the null hypothesis of no asso-
ciation between any marker and hazard of COVID-19. Hazard ratios will be
reported per standard deviation increase alongside 95% confidence intervals.

13 Correlates of Protection: Generalities

In general, for all of the correlate of protection analyses, the same antibody
markers are assessed that were analysed as correlates of risk: the Day 57
antibody markers not subtracting for the Day 1 baseline readout are used.
Each of the five Day 57 antibody biomarkers are separately studied as CoPs
by the different analysis approaches summarized below.
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13.0.1 [With Day 29 markers]

If Day 29 markers are included, then the same CoP analyses are done as for
each of the five Day 57 markers, where, as for the CoR analyses, now the
time origin is the Day 29 visit date and endpoint cases are counted starting
7 days after the Day 29 visit date.

14 Correlates of Protection: Correlates of Vaccine Efficacy Anal-
ysis Plan

For each of the five Day 57 antibody biomarkers, the method of Gilbert,
Blette, Shepherd, and Hudgens (2020) will be used to estimate V E(1), V E(0),
and V E(1) − V E(0), each with a 95% confidence interval and a 95% esti-
mated uncertainty interval (EUI), where V E(1) is vaccine efficacy for the
subgroup of vaccine recipients with Day 57 marker if assigned vaccine S(1)
above a specified cut-point value scut, and V E(0) is vaccine efficacy for the
subgroup of vaccine recipients with Day 57 marker if assigned vaccine S(1)
not greater than scut. That is,

V E(1) = 1− P (Y (1) = 1|S(1) > scut)

P (Y (0) = 1|S(1) > scut)

V E(0) = 1− P (Y (1) = 1|S(1) ≤ scut)

P (Y (0) = 1|S(1) ≤ scut)

The analysis will be done under the NEH assumption (“no early harm”)
of Gilbert et al. (2020). The cut point is defined as the percentile equal to
one minus the estimated vaccine efficacy in the primary analysis, with logic
that a maximally simple version of a perfect CoP would have binary marker
with S = 1 corresponding to protection and S = 0 corresponding to no
protection. If the estimated vaccine efficacy is high (say 90% or higher), it is
possible that this cutpoint will not yield stable results, because of sparse cells;
in this situation we will repeat the analysis using two additional cut-points
that creates greater balance in frequencies of S = 1 and S = 0 in the vaccine
group immunogenicity subcohort: 20th and 40th percentiles. If the estimated
vaccine efficacy is moderate (between 50% and 80%), we will also use the two
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additional cut-points the 20th and 40th percentiles. This analysis method
does not require closeout placebo vaccination (CPV) (Follmann, 2006) or a
good baseline immunogenicity predictor of the Day 57 antibody marker. The
method is implemented using Bryan Blette’s R package “psbinary” posted at
his Github repository.

A limitation of the Gilbert et al. method is that it only assesses a bi-
nary biomarker. Other analyses will be considered to estimate V E(s) over
biomarker values s over the entire range, treating S as a quantitative or cate-
gorical variable, and gaining efficiency by incorporating CPV and/or putative
baseline immunogenicity predictors (BIPs). Based on earlier simulation stud-
ies (Follmann, 2006; Huang et al., 2013, e.g.,), methods that only leverage
CPV data tend to have low power relative to methods that leverage BIP data
alone (BIP-only methods) or both BIP and CPV data (BIP+CPV methods).
Therefore, the key for improving efficiency will be the availability of a BIP.
VE curve analysis for continuous S will thus be conducted contingent on the
availability of a BIP that satisfies the R2 criterion outlined in Table 10. It
is anticipated that post-crossover immune response marker data will not be
available in early correlates analyses, and so BIP-only methods will be used
in these initial analyses. When CPV data becomes available, new BIP+CPV
analyses will be conducted that incorporate this new information. Details of
the BIPs used can be found at the end of this section.

Let Y (a) denote the potential binary outcome of interest if receiving inter-
vention a, with a = 1, 0 standing for assignment to vaccine and placebo,
respectively. Let S(a) denote the potential biomarker value if receiving inter-
vention a. The vaccine efficacy curve (Follmann, 2006; Gilbert and Hudgens,
2008) is defined as the curve of vaccine efficacy as a function of the immune re-
sponse biomarker if assigned vaccination (i.e., S(1)): V E(s) = 1−P (Y (1) =
1|S(1) = s)/P (Y (0) = 1|S(1) = s). It characterizes the percentage re-
duction in clinical risk under vaccine assignment compared to under placebo
assignment conditional on S(1) and informs about the magnitude of potential
immune response associated with certain levels of VE. Consider the existence
of BIPs X correlated with S(1) and/or a CPV component in the trial where
a subset of placebo recipients free of the outcome are vaccinated and have
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their immune response biomarkers measured as substitutes for S(1). Under
the NEE assumption and assuming the set of participants with S(1) available
is nested within the set of participants with BIP measures, the pseudo-score
estimation method (Huang et al., 2013; Zhuang et al., 2019) based on discrete
BIP measures allowing for adjustment of X will be adopted for estimating the
risk model P (Y (z) = 1|S(1), X) and subsequently V E(s) = 1−

∫
P (Y (1) =

1|S(1), x)dFX(x|S(1))/
∫
P (Y (0) = 1|S(1), x)dFX(x|S(1)). Hypothesis test-

ing will be conducted for testing the null hypothesis that the VE curve is
constant (Zhuang et al., 2019). Estimated parametric (Gilbert and Hudgens,
2008), semiparametric (Huang and Gilbert, 2011), or nonparametric (Li and
Luedtke, 2020) likelihood estimators of VE curves will be applied to contin-
uous BIPs. In scenarios where some BIPs are not measured from all trial
participants, VE curve estimators accounting for this monotone missingness
in X and S(1) will be adopted (Huang, 2018). If the data support positive
vaccine efficacy before Day 57, sensitivity analysis approaches will be con-
ducted for VE curve estimation under the NEH assumption. In the presence
of multiple candidate biomarkers and when a CPV component is present, a
multiple imputation approach as proposed in Dasgupta and Huang (2019) will
be utilized to impute missing S(1) data for selecting markers from multiple
candidates and deriving a univariate marker score for VE curve estimation.

Finally, for scenarios with very rare events such that methods described above
lack precision even with a CPV component but where the available BIP still
satisfies the R2 criterion outlined in Table 10, we will adopt sensitivity anal-
ysis methods that model the placebo risk conditional on the counterfactual
S(1) based on a sensitivity parameter that varies over some pre-specified
range.

Among different strategies to identify BIPs, the following will be tried. First,
for vector vaccines, we will study Day 1 bAb or nAb response to the vector as
a BIP for the Day 57 markers of interest. Second, we will check whether Day
1 bAb or nAb to Nucleocapsid protein is a BIP for the anti-Spike/anti-RBD
Day 57 markers of interest. The rationale for this latter analysis is that some
studies have shown cross-reactive responses to Nucleocapsid protein and to
common circulating human coronaviruses.
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We will also evaluate using a multivariate BIP that corresponds to all of
these aforementioned candidate univariate BIPs, which may help to achieve
the target R2 (see Table 10). When doing this, a separate BIP W will be
used for each vaccine-induced immune response marker S(1). Let Y (a) be
the counterfactual outcome of interest — e.g., a COVID disease endpoint by
a prespecified time — if randomization assignment had been set to A = a.
The analyses conducted will provide unbiased estimates of the estimands of
interest when Y (a) ⊥ W |S(1) for a ∈ {0, 1}. The BIP W will be a learned
function of baseline covariates L — that is, W = f(L) for a function f that
will be learned based on the available data. All available baseline covariates
will be considered for inclusion in L, including age, BMI, and Day 1 bAb
or nAb to Nucleocapsid protein. If available, measurements of prior immune
response to the vaccine vector (e.g., Day 1 bAb or nAb response to Ad26 for
an Ad26 vector-based vaccine) will always be included in L.

If the trial of interest has more than 100 events on the vaccine arm in the
subgroup of interest, then f will be chosen to be an estimate of the following
population-level optimization problem:

minimize E[{S − f(L)}2|A = 1]

subject to f(L) ⊥ Y |A = 1, S.

The rationale for choosing f to (approximately) solve this optimization prob-
lem is that the BIP should be maximally predictive of S, while also satisfying
the needed conditional independence assumption Y (a) ⊥ W |S(1) when a = 1.
Moreover, the needed conditional independence assumption Y (a) ⊥ W |S(1)
for the case that a = 0 is most plausible when this assumption is also satis-
fied for the case that a = 1. Also, because W = f(L) for some function f ,
Y (0) ⊥ W |S(1) is always more plausible than Y (a) ⊥ L|S(1).

The solution to the above optimization problem is given by:

f(`) := θ(`)− E[θ(L)r(L)]

E[r(L)2]
r(`)

where θ(`) := E{S|A = 1, L = `}, r(`) := m(`)
E[m(L)] −

1−m(`)
1−E[m(L)] and m(`) :=

E[Y |A = 1, L = `]. The following strategy is used to estimate this solution:
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1. Obtain an estimate θ̂ of the function θ by running a Superlearner of
S against L in the vaccine arm, where inverse probability of sampling
weights are used to account for two-phase sampling of the marker.

2. Obtain an estimate m̂ of m by using Superlearner to regress Y against
L in the vaccine arm.

3. Obtain an estimate r̂ via a plug-in estimator, where E[m(L)] is estimated
by taking the empirical mean of m̂(L).

4. The final estimate f̂ of f is given by

f̂(`) := θ̂(`)− Ê[θ̂(L)r̂(L)]

Ê[r̂(L)2]
r̂(`),

where Ê denotes an empirical expectation.

Each Superlearner will be run using the same library and settings described
in Table 9. If the trial has fewer than 100 events on the vaccine arm, then
the function f will be learned via Step 1 above only — that is, we will take
f̂ = θ̂. All standard errors will be obtained via the bootstrap, with the above
fitting of f̂ redone within each bootstrap sample.

15 Correlates of Protection: Interventional Effects

In these analyses, we seek to understand whether, how, and to what ex-
tent Day 57 antibody markers impact vaccine efficacy in causal ways. We
describe three approaches to this problem. Each involves consideration of
a binary counterfactual outcome Y (a, s) (e.g., indicator of the COVID dis-
ease endpoint by a pre-specified time) under a hypothetical intervention that
both sets randomization assignment A = a and sets the Day 57 immunologic
marker S to a fixed value or based upon a random draw from a analyst-
specified distribution. Below, we assume that S is scalar-valued, but some
of the approaches below naturally extend to the case where a vector of im-
munologic markers are considered (currently such analyses are not planned).
Given the central goal to develop a parsimonious surrogate endpoint based
on a single immunoassay, the main analysis will use each of the methods to
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assess each of the five quantitative readouts (not baseline-subtracted) sepa-
rately as CoPs, adjusting for the same set of baseline covariates as used in
the CoR analyses previously described in Section 12.

15.1 CoP: Controlled Vaccine Efficacy

We first describe the controlled vaccine efficacy curve defined as

CVE(s) = 1− P (Y (1, s) = 1)

P (Y (0) = 1)
.

The value CVE(s) takes represents the relative decrease in endpoint frequency
achieved by administering vaccine and setting Day 57 immunologic marker
level to s compared to the placebo control intervention. Under our approach,
the value of CVE(s) is assumed to be monotone non-decreasing in s; in other
words, vaccine efficacy can only potentially be improved by setting greater
marker levels. The extent to which the marker plays a role in determining
vaccine efficacy can be determined by the degree of flatness of the graph of
CVE(s) versus s.

In addition, because the primary study cohort for correlates analysis is naive
to SARS-CoV-2, each of the Day 57 markers S has no variability in the
placebo arm [all values are ‘negative,’ below the assay lower limit of detection
(LLOD)]. Therefore, advantageously in this setting CVE (s) has a special
connection to the mediation literature, where CVE (s = LLOD) is the natural
direct effect, and vaccine efficacy is 100% mediated through S if and only if
CVE (s = LLOD) = 0. Thus inference on CVE (s = LLOD) evaluates full
mediation.

Since P (Y (0) = 1) = P (Y = 1 |A = 0) in view of vaccine versus placebo ran-
domization, the controlled vaccine efficacy CVE(s) at level s can be identified
using the fact that

P (Y (1, s) = 1) = E [P (Y = 1 |S = s, A = 1, X)]

whenever Y (1, s) and S are independent given A = 1 and a vector X of
covariates, and P (S = s |A = 1, X) > 0 almost surely. In other words,
identification of the controlled vaccine efficacy requires that a rich enough
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set of covariates be available so that deconfounding of the relationship be-
tween endpoint Y and marker S is possible in the subpopulation of vaccine
recipients, and that marker level S = s may occur within each subpopulation
defined by values of the covariates X (positivity).

For each s, the identified parameter corresponding to CVE(s) is an irregular
parameter within nonparametric models, making its estimation at root-n rate
impossible; this significantly complicates estimation and inference on CVE(s).
Fortunately, the monotonicity of s 7→ CVE(s) provides an opportunity to cir-
cumvent these difficulties. Similarly to Westling et al. (2020a)’s approach for
the causal dose-response function, we will use the general methodological
template proposed in Westling and Carone (2020) to derive (i) a nonpara-
metric Grenander-type estimator of CVE(s) and (ii) a plug-in confidence
interval for CVE(s) based on an asymptotic Chernoff limit. This estimator
will require, as an intermediate step, estimation of several nuisance functions,
including the outcome regression P (Y = 1 |S = s, A = 1, X = x) and the
propensity score P (S = s |X = x,A = 1). These nuisance functions will be
estimated using the Superlearner ensembling algorithm with a rich library
including both parametric regression methods as well as flexible machine
learning tools.

The monotonicity-based procedure we will develop facilitates statistical in-
ference for CVE(s) for each s separately, where point estimates and 95%
confidence intervals for CVE(s) will be presented. However, it is also of in-
terest to investigate whether the Day 57 marker plays a role in determining
vaccine efficacy. To do so, we will formally test the null hypothesis

H0 : CVE(s) is constant in s

against various alternatives. We will first adapt the approach of Westling
(2020) to devise a nonparametric omnibus test of this null hypothesis. We
will also construct a nonparametric directional test of this hypothesis tailored
to alternatives under which CVE(s) is monotone in s, along the lines of Hall
and Heckman (2000), for example. Leveraging the known monotonicity of
the controlled vaccine efficacy will provide greater power than omnibus tests.
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15.1.1 Conservative (upper bound) inference and sensitivity analysis for the Cox
model correlates of risk analysis

While the above nonparametric approach is considered to be the best sci-
entific approach because it takes the greatest care to avoid the correctness
of inferences depending on parametric modeling assumptions that cannot
be fully verified, we also apply the same Cox modeling approach described
in Section 12.3.3, augmented with a sensitivity analysis, which harmonizes
with the CoR analysis, and sensitivity analysis is generally warranted when
a no unmeasured confounders assumption is made. The sensitivity analysis
quantifies the rigor of evidence for a controlled VE CoP after accounting for
potential bias from unmeasured confounding.

Gilbert et al. (2020a) details the sensitivity analysis approach, which was
applied to the CYD14 and CYD15 dengue phase 3 data sets (Moodie et al.,
2018); we plan to apply it in the same way to the COVID-19 data sets (as
the structure of the problem is the same). We summarize here the essential
details needed for application to the COVID-19 data sets.

We define S to be a controlled risk CoP if P (Y (1, s) = 1) is monotone non-
increasing in s with P (Y (1, s) = 1) > P (Y (1, s′) = 1) for at least some s < s′,
where point and 95% confidence interval estimates of P (Y (1, s) = 1) versus
s, with built in robustness to unmeasured confounding, describe the strength
of the CoP in terms of the amount and nature of decrease. Suppose the CoR
analysis based on the Cox model is conducted as described in Section 12.3.3.

Let marginalized conditional risk

rM(s) = risk1(tF |s)

and controlled risk
rC(s) = P (Y (1, s) = 1).

Given that CoR analysis is based on observational data — the biomarker
value is not randomly assigned — a central concern is that unmeasured or
uncontrolled confounding of the association between S and Y could render
rM(s) 6= rC(s), biasing estimates of the controlled risk curve rC(s) and of
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controlled risk ratios of interest

RRC(s1, s2) = rC(s2)/rC(s1) .

Because we can never be certain that confounding is adequately adjusted
for, sensitivity analysis is warranted, as considered in extensive literature —
see, e.g., VanderWeele and Ding (2017) and references therein. Sensitivity
analysis is useful to evaluate how strong unmeasured confounding would have
to be to explain away an observed causal association, that is, to determine the
strength of association of an unmeasured confounder between S and Y needed
for the observed exposure-outcome association to not be causal, rM(s) 6=
rC(s). We follow the recommendation of VanderWeele and Ding (2017) to
report the E-value as a summary measure of the evidence of causality, or,
in our application, evidence of whether S is a controlled risk CoP based on
variation in the controlled risk curve. We also include other closely related
measures of sensitivity.

The E-value is the minimum strength of association, on the risk ratio scale,
that an unmeasured confounder would need to have with both the exposure
(S) and the outcome (Y ) in order to fully explain away a specific observed
exposure–outcome association, conditional on the measured covariates [Van-
derWeele and Ding (2017); VanderWeele and Mathur (2020)]. If, as in CoP

analyses, the estimated marginalized risk ratio R̂RM(s1, s2) = r̂M(s2)/r̂M(s1)

for s1 < s2 is less than one, then the E-value for R̂RM(s1, s2) is calculated as

eRR(s1, s2) =
1 +

√
1− R̂RM(s1, s2)

R̂RM(s1, s2)
. (19)

We include the argument (s1, s2) in the notation, with s1 < s2 by convention,
to be clear that the E-value depends on specification of two specific marker-
level subgroups.

To illustrate the interpretation of an E-value, suppose S is binary and re-
gression analysis yields an estimate R̂RM(0, 1) = r̂M(1)/r̂M(0) = 0.40 with
95% confidence interval (CI) (0.14, 0.78). An E-value e(0, 1) of 4.4 means
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that a marginalized risk ratio RRM(0, 1) at the observed value 0.40 could be
explained away (i.e., RRC(0, 1) = 1.0) by an unmeasured confounder associ-
ated with both the exposure and the outcome by a marginalized risk ratio
of 4.4-fold each, after accounting for the vector X of measured confounders,
but that weaker confounding could not do so.

In addition, we follow the recommendation of VanderWeele and Ding (2017)

to also report the E-value eUL(s1, s2) for the upper limit ÛL(s1, s2) of the

95% CI for the observed marginalized risk ratio R̂RM(s1, s2), computed as 1

if ÛL(s1, s2) ≥ 1 and, otherwise, as

1 +

√
1− ÛL(s1, s2)

ÛL(s1, s2)
,

which in the example equals eUL(0, 1) = 1.88. This E-value for the upper
limit indicates, for given s1 < s2, the strength of unmeasured confounding at
which statistical significance of the inference that RRC(s1, s2) < 1 would be
lost. The two E-values above are useful for judging how confident we can be
that an immunologic biomarker is a controlled risk CoP, with E-values near
one suggesting weak support and evidence increasing with greater E-values.

RRC(s1, s2) = (1−CV E(s2))/(1−CV E(s1)), evidence for RRC(s1, s2) < 1 is
equivalently evidence for CV E(s1) < CV E(s2). Thus in a placebo-controlled
trial RRC(s1, s2) can be interpreted as the multiplicative degree of superior
vaccine efficacy caused by marker level s2 vs. marker level s1, and E-values
equivalently quantify evidence for whether CV E(s1) differs from CV E(s2).

It is also useful to provide conservative estimates of controlled risk ratios
and of the controlled risk curve, accounting for unmeasured confounding.
We approach these tasks based on the sensitivity analysis, or bias analysis,
approach of Ding and VanderWeele (2016). We give their main result and
refer readers to the paper for details. We begin by defining two (possibly
context-specific) fixed sensitivity parameters. First, we set RRUD(s1, s2) to
be the maximum risk ratio for the outcome Y comparing any two categories
of the unmeasured confounders U , within either exposure group S = s1 or
S = s2, conditional on the vector X of observed covariates. Second, we set
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RREU(s1, s2) to be the maximum risk ratio for any specific level of the un-
measured confounder U comparing individuals with S = s1 to those with
S = s2, with adjustment already made for the measured covariate vector X.
Thus, RRUD(s1, s2) quantifies the importance of the unmeasured confounder
U for the outcome, and RREU(s1, s2) quantifies how imbalanced the expo-
sure/marker subgroups S = s1 and S = s2 are in the unmeasured confounder
U . The values RRUD(s1, s2) and RREU(s1, s2) are always specified as greater
than or equal to one. We suppose that RRM(s1, s2) < 1 for the fixed values
s1 < s2 — this is the case of interest for immune correlates.

Define the bias factor

B(s1, s2) =
RRUD(s1, s2)RREU(s1, s2)

RRUD(s1, s2) +RREU(s1, s2)− 1

for s1 ≤ s2, and define RRU
M(s1, s2) the same way as RRM(s1, s2), except

marginalizing over the joint distribution of X and U . Then, RRU
M(s1, s2) ≤

RRM(s1, s2) × B(s1, s2), where RRU
M(s1, s2) = E{r(s2, X

∗)}/E{r(s1, X
∗)}

with X∗ = (X,U) and r conditional risk defined near equation (??).Ding
and VanderWeele (2016)

Translating this result to our problem context, under the positivity assymp-
tion, we have that RRU

M(s1, s2) = RRC(s1, s2) and so, it follows that

RRC(s1, s2) ≤ RRM(s1, s2)×B(s1, s2) . (20)

This inequality states that the causal risk ratio is bounded above by the
marginalized risk ratio multiplied by the bias factor. It follows that a conser-
vative (upper bound) estimate of RRC(s1, s2) is obtained as R̂RM(s1, s2) ×
B(s1, s2), and a conservative 95% CI is obtained by multiplying each con-
fidence limit for RRM(s1, s2) by B(s1, s2). These estimates for RRC(s1, s2)
account for the presumed-maximum plausible amount of deviation from the
no unmeasured confounders assumption specified by RRUD(s1, s2) and
RREU(s1, s2). An appealing feature of this approach is that the bound (20)
holds without making any assumption about the confounder vector X or the
unmeasured confounder U .
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The above approach does not directly provide a conservative estimate of the
controlled risk curve rC(s), because additional information is needed for ab-
solute versus relative risk estimation. To provide conservative inference for
rC(s), we next select a central value scent of S such that r̂M(scent) matches
the observed overall risk, P̂ (Y = 1|A = 1). This value is a ‘central’ marker
value at which the observed marginalized risk equals the observed overall risk.
Next, we ‘anchor’ the analysis by assuming rC(scent) = rM(scent), where pick-
ing the central value scent makes this plausible to be at least approximately
true. Under this assumption, the bound (20) implies the bounds

rC(s) ≤ rM(s)B(scent, s) if s ≥ scent (21)

rC(s) ≥ rM(s)
1

B(s, scent)
if s < scent. (22)

Therefore, after specifying B(scent, s) and B(scent, s) for all s, we conserva-
tively estimate rc(s) by plugging r̂M(s) into the formulas (21) and (22). Be-
cause B(s1, s2) is always greater than one for s1 < s2, formula (21) pulls the
observed risk r̂M(s) upwards for subgroups with high biomarker values, and
formula (22) pulls the observed risk r̂M(s) downwards for subgroups with low
biomarker values. This makes the estimate of the controlled risk curve flatter,
closer to the null curve, as desired for a sensitivity/robustness analysis.

To specify B(s1, s2), we note that it should have greater magnitude for a
greater distance of s1 from s2, as determined by specifying RRUD(s1, s2) and
RREU(s1, s2) increasing with s2 − s1 (for s1 ≤ s2). We consider one specific
approach, which sets RRUD(s1, s2) = RREU(s1, s2) to the common value
RRU(s1, s2) that is specified log-linearly: logRRU(s1, s2) = γ(s2 − s1) for
s1 ≤ s2. Then, for a user-selected pair of values s1 = sfix1 and s2 = sfix2

with sfix1 < sfix2 , we set a sensitivity parameter RRU(sfix1 , sfix2 ) to some value
above one. It follows that

logRRU(s1, s2) =

(
s2 − s1

sfix2 − sfix1

)
logRRU(sfix1 , sfix2 ), s1 ≤ s2.

We anchor the sieve analysis by setting s1 = sfix1 at the 15th percentile of the
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Day 57 antibody marker and s2 = sfix2 at the 85th percentile of the Day 57
antibody marker.

The sensitivity analysis is done for each of the two Cox model CoR analyses
described in Section 12.3.3, first for tertiles of the Day 57 marker and sec-
ond for the quantitative marker. For the former, E-values are reported for
both the point estimate and the upper 95% confidence limit for RRC(0, 1),
where category 1 is the upper tertile, category 0 is the lower tertile, and the
intermediate middle tertile subgroup of vaccine recipients is excluded from
the analysis. In addition, setting RRUD(0, 1) = RREU(0, 1) = 2, such that
B(0, 1) = 4/3, we report conservative estimation and inference on the causal
risk ratio RRC(0, 1) and equivalently on the ratio of controlled vaccine efficacy
curves (1− CV E(1))/(1− CV E(0)).

Next we repeat the analysis treating S as a quantitative variable, where
P (T ≤ t|S = s,X,A = 1) is again estimated by two-phase Cox partial likeli-
hood regression and now RRM(s1, s2) is the marginalized risk ratio between
s1 and s2. We will plot point and 95% confidence interval estimates of the
observed marginalized risk and controlled risk curves, for the latter using the
sensitivity analysis described in Section 15.1.1.

For validity the method requires the positivity assumption, and thus the
method will only be applied if the data are reasonably supportive of the
positivity assumption. To check positivity, we study the antibody marker
distribution in vaccine recipients within each subgroup of the covariates X
that are adjusted for. For the tertiles analysis we require evidence that within
each subgroup some vaccine recipients have lower tertile responses and some
vaccine recipients have upper tertile responses. For the quantitative S anal-
ysis, we look for evidence that S varies over its full range within each level
of the potential confounders that are adjusted for.

15.2 CoP: Stochastic Interventional Effects on Risk and Vaccine Efficacy

Another approach to studying correlates of protection involves estimating the
effect of shifting the immune response marker distribution in the vaccinated
individuals (Hejazi et al., 2020a). Specifically, we can consider the effect on

101



risk of a given endpoint of a controlled intervention that shifts the distribu-
tion of an immune response by δ units, where δ is an analyst-specified real
number. Considering a counterfactual scenario in which we are able to in-
tervene so as to modify the immune response induced by the vaccine (e.g., a
hypothetical change in dose or other re-formulation of the vaccine), we take
this hypothetical intervention to lead to an improved (if δ > 0) or lessened
immune response (if δ < 0) relative to the current vaccine (at δ = 0). Using
this framework, we can query the counterfactual risk of the endpoint under
this hypothetical vaccine. Using notation established above, this quantity
can be expressed as the mean of the counterfactual variable Y (1, S(1) + δ).

This approach is similar to the controlled effects approach described in Sec-
tion 15.3, but with an important distinction. In the controlled effects ap-
proach, one assumes that it is possible to set S = s for all individuals in
the population. For high values of s, this assumption may be unrealistic if
the vaccine fails to be strongly immunogenic for some subpopulations. On
the other hand, with the interventional approach, it is only required that
individuals’ immune responses be shifted relative to their observed immune
response, which may be more plausible for some vaccines.

Under assumptions (Hejazi et al., 2020a), the main two of which being no
unmeasured confounding and positivity (forms of both are also required
for the Controlled VE CoP analyses), the counterfactual risk of interest
E[Y (1, S(1) + δ)] is identified by

E[P (Y = 1 | A = 1, S = S + δ,X = x) | A = 1, X] .

Examining this quantity across a range of δ provides insight into the relative
contribution of a given immune response marker in preventing the endpoint
of interest.

Hejazi et al. (2020a) proposed nonparametric estimators that rely on esti-
mates of the outcome regression (as described above) and the conditional
density of the immune response marker in vaccinated participants. Their es-
timators efficiently account for two-phase sampling of immune responses and
are implemented in the txshift package (Hejazi and Benkeser, 2020) for the
R language and environment for statistical computing (R Core Team, 2020),
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available via both GitHub at https://github.com/nhejazi/txshift and
the Comprehensive R Archive Network at https://CRAN.R-project.org/

package=txshift.

These estimators will be applied to each of the five Day 57 antibody mark-
ers (without baseline adjustment) controlling for the same set of baseline risk
factors that are controlled for in other analyses previously discussed. As with
the mediation analysis approach described in Section 15.3, the procedure will
leverage low-dimensional risk factors alongside parametric regression strate-
gies and flexible conditional density estimators for endpoints with fewer than
100 observed cases (pooling over the randomization arms); however, more
flexible learning techniques will be employed for modeling the outcome pro-
cess for endpoints with a greater number of observed cases.

In particular, conditional density estimates of immune response markers will
be principally based on a nonparametric estimation strategy that reconstructs
the conditional density through estimates of the conditional hazard of the
discretized immune response marker values (Hejazi et al., 2020a,d,c); this
approach is an extension of the proposal of Dı́az and van der Laan (2011).
A Super Learner ensemble (van der Laan et al., 2007) of variants of this
nonparametric conditional density estimator and semiparametric conditional
density estimators based on Gaussinization of residuals will be constructed
using the sl3 R package (Coyle et al., 2020). In settings with limited numbers
of case endpoints, the outcome process will be modeled as a Super Learner
ensemble of a library of parametric regression techniques (as recommend by
Gruber and van der Laan, 2010), while the library will be augmented with
flexible regression techniques — including, for example, lasso and ridge re-
gression (Tibshirani, 1996; Tikhonov and Arsenin, 1977; Hoerl and Kennard,
1970), elastic net regression (Zou and Hastie, 2003; Friedman et al., 2009),
random forests (Breiman, 2001; Wright et al., 2017), extreme gradient boost-
ing machines (Chen and Guestrin, 2016), light and efficient gradient boosting
machines (Ke et al., 2017), multivariate adaptive polynomial and regression
splines (Friedman et al., 1991; Stone et al., 1994; Kooperberg et al., 1997),
and the highly adaptive lasso (van der Laan, 2017; Benkeser and van der
Laan, 2016; Hejazi et al., 2020b) — as the number of endpoint cases grows.
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These algorithm libraries will be coordinated to match those used in other
CoP analyses.

Additionally, we recall that P (Y (0) = 1) = P (Y = 1 | A = 0) (in view of
vaccine versus placebo randomization, as stated previously in Section 15.1)
and may be estimated in the same way as for the analysis of controlled vaccine
efficacy, thus yielding an estimate of stochastic interventional VE defined by

SV E(δ) = 1− E[P (Y = 1 | A = 1, S = S + δ,X = x) | A = 1, X]

P (Y (0) = 1)
.

Output of the analyses will be presented as point and 95% point-wise confi-
dence interval estimates of E[Y (1, S(1)+δ)] and of SV E(s) over the values of
s for each of the Day 57 antibody markers, for each of a range of δ spanning
-2 to 2 on the standard unit scale for each antibody marker.

Lastly, just as for the controlled VE CoP analyses, these analyses will only
be performed if diagnostics support plausibility of the positivity assumption.
Importantly, however, the positivity assumption for the stochastic interven-
tional effects differs from that usually required. That is, where the positivity
assumption for effects defined by static interventions requires a positive prob-
ability of treatment assignment across all strata defined by baseline factors
(i.e., that a discretized immune response value be possible regardless of base-
line factors), the positivity assumption of these effects is

si ∈ S =⇒ si + δ ∈ S | A = 1, X = x

for all x ∈ X and i = 1, . . . n. In particular, this positivity assumption does
not require that the post-intervention exposure density, q0,S(S−δ | A = 1, X),
place mass across all strata defined by X. Instead, it requires that the post-
intervention exposure mechanism be bounded, i.e.,

P{q0,S(S − δ | A = 1, X)/q0,S(S | A = 1, X) > 0} = 1,

which may be readily satisfied by a suitable choice of δ.

More importantly, the static intervention approach may require consideration
of counterfactual variables that are scientifically unrealistic. Namely, it may
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be inconceivable to imagine a world where every participant exhibits high
immune responses, given the phenotypic variability of participants’ immune
systems. This too may be resolved by considering an intervention δ(X),
allowing the choice of δ to be a function of baseline covariates X (Hejazi
et al., 2020a; Dı́az and van der Laan, 2012; Haneuse and Rotnitzky, 2013;
Dı́az and van der Laan, 2018).

15.3 CoP: Mediation of Vaccine Efficacy

Using mediation methods, we can decompose the overall VE into so-called
natural direct and indirect effects. We will estimate this decomposition for
each Day 57 antibody marker individually (focusing on the non-baseline sub-
tracted markers as for the other CoP analyses described above), as well as
when considering all antibody markers together (although this SAP currently
restricts to analysis of the individual markers).

For simplicity, as before, we describe this approach using a binary outcome,
noting that extensions to time-to-event (with competing risks) are possible.
The total effect of the vaccine can be represented by one minus the risk ratio

RR =
P (Y (1, S(1)) = 1)

P (Y (0, S(0)) = 1)
.

The natural direct and indirect effects are, respectively,

RRDE =
P (Y (1, S(0)) = 1)

P (Y (0, S(0)) = 1)
and RRIDE =

P (Y (1, S(1)) = 1)

P (Y (1, S(0)) = 1)
.

Note that RR = RRDERRIDE, showing that the total effect decomposes into
the direct times indirect effect. Another quantity of interest is the proportion
mediated, which could be expressed as

PM = 1− log(RRDE)

log(RR)
.

We note that PM=1 if and only if RRDE = 1, i.e., no direct effect means that
the marker fully mediates VE. We will estimate PM defined in this way.

As above, we must assume all confounders X of S and Y have been mea-
sured. We also assume there are no confounders of the mediator-outcome
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relationship that are affected by treatment. Moreover, we require an overlap
assumption that

P (S = s|A = 0, X = x) > 0 implies P (S = s|A = 1, X = x) > 0 (23)

for all subgroups X = x (i.e., a.e.). Under these assumptions, P (Y (a, S(a′) =
1) is identified by

E[P (Y = 1 | A = a, S,X)|A = a′, X] .

In our immune CoP application it is expected that, for analyses restricting to
baseline negative individuals, the conditional density of the immune response
marker in the placebo arm will be a point mass at 0, that is with S below
the LLOD. In other words, we do not expect any placebo recipients to have a
positive value of the immune response marker. This implies the identification
result that for a = 0, 1, P (Y (a, S(0)) = 1) = E[P (Y = 1 | A = a, S = 0, X)].
While P (Y (0, S(1) = 1) is not identified, it is not necessary to estimate this
term in order for estimation of the parameters of interest (natural direct
effect, natural indirect effect, PM).

For a highly immunogenic vaccine, it may be the case that the needed over-
lap assumption (23) will be violated. This could happen, for example if each
baseline negative placebo recipient has antibody marker value below the as-
say’s LLOD (which is expected), and every vaccine recipient has antibody
marker value above the LLOD. We will only include antibody markers for
mediation analysis if at least 10% of vaccine recipients have marker value
equal to the value in placebo recipients.

Benkeser et al. (2021) provide a multiply robust targeted minimum loss-based
plug-in estimator of natural direct and indirect effects that is appropriate
for case-cohort sampling. The estimator requires estimation of several re-
gressions, which are used in an augmented inverse probability of treatment
weighted estimator. The propensity score will be estimated by a main terms
logistic regression model to account for chance imbalances across randomiza-
tion arms. The sequential outcome regressions used by the approach will be
based on a super learner with the 14 algorithms listed in Table 9.
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Table 9: Learning Algorithms in the super learner Library for mediation methods1.

Screens2/
Algorithms Tuning Parameters

SL.mean All
SL.glm Low-collinearity and (All, Lasso, LR)
SL.glm.interaction (All, Lasso, LR)
SL.gam Low-collinearity and (Lasso, LR)
SL.glmnet All
SL.xgboost All
SL.ranger All

1 some nuisance parameters have binary outcomes, others quantitative. For the former, we used
family = binomial() input to the SuperLearner function; for the latter, we used family =

gaussian().
2All = include all variables; Lasso = include variables with non-zero coefficients in the standard

implementation of SL.glmnet that optimizes the lasso tuning parameter via 10-fold
cross-validation; Low-collinearity = do not allow any pairs of quantitative variables with

Spearman rank correlation > 0.90; LR = Univariate logistic regression Wald test 2-sided p-value
< 0.10.

The estimator is implemented in the natmed2 package available on GitHub
(https://github.com/benkeser/natmed2). The baseline covariatesX adjusted
for are the same as for the other analyses (e.g. of CoR and of Controlled vac-
cine efficacy).

16 Summary of the Set of CoR and CoP Analyses and Their Re-
quirements and Contingencies, and Synthesis of the Results,
Including Reconciling Any Possible Contradictions in Results

Table 10 summarizes all of the Stage 1 / Day 57 marker correlates analyses
that are done, including contingencies for whether and when each analysis is
done. The quantitative version of each marker S, and the tertiles version of
each marker S, is common across all of the analyses. All of the Day 57 mark-
ers are the versions that are not baseline subtracted, given that the cohort
for analysis is baseline negative. Most of the analyses focus on univariate
Day 57 markers. The primary reason to do this is the goal to identify a
parsimonious correlate based on a single marker without needing to run the
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set of assays, and secondary reasons are: (1) the assay readouts are expected
to be highly correlated, especially for the ID50 and cID80 readouts from the
same pseudovirus neutralization assay, and (2) there is ample precedent for
univariate markers being accepted as immunological surrogate endpoints for
approved vaccines (Plotkin, 2010).

Table 10: Summary of Stage 1 Day 57 Marker CoR and CoP Analyses with Require-
ments/Contingencies for Conduct of the Analysis (Same Considerations Apply for Day 29 Markers)

Structure Requirements/Contingencies
of Min No. Vaccine

Analysis Day 57 Marker(s) Endpoints Other

CoR Cox Model Tertiles of S1 25 None
Quant. S = s2 25 None
Quant. S ≥ s1 25 None

CoR Nonpar. threshold Quant. S ≥ s1 35 None

CoR GAM Quant. S = s2 35 None
CoR threshold log. regr. Quant. S = s2 25 None

CoR Superlearner3 Quant. S = s, 2FR, 4FR 35 None

CoP: Correlates of VE Binary S 50 None
Quant. S = s 50 BIP with R2 ≥ 0.25

CoP: Controlled VE Quant. S = s 50 Feasibility of positivity4

Tertiles of S = s 50 Feasibility of positivity4

CoP: Stoch. Interv. VE Quant. S = s 50 Feasibility of positivity4

CoP: Mediators of VE Quant. S = s 50 Feasibility of positivity4

Tertiles of S 50 Feasibility of positivity4

1These analyses are harmonized in addressing the same scientific question of how does endpoint
risk vary over vaccinated subgroups defined by S above a threshold.

2These exploratory supportive analyses are harmonized in addressing the same scientific question
of how does endpoint risk vary over vaccinated subgroups defined by S equal to a given marker

value.
3Only this Superlearner analysis uses data from multiple assays and multiple readouts as input

features; the other analyses consider one Day 57 biomarker at a time. 4The positivity
assumptions are as follows. Controlled VE: P (S = s |A = 1, X) > 0 almost surely. Stochastic

Interventional VE: si ∈ S =⇒ si + δ ∈ S | A = 1, X = x for all x ∈ X and i = 1, . . . n. Mediators
of VE: P (S = s |A = 1, X) > 0 almost surely and

P (S = s|A = 0, X = x) > implies P (S = s|A = 1, X = x) > 0. The quantitative analysis will
require that the largest value S observed in the placebo is larger than the smallest value of S

observed in the vaccine recipients. This assumption would naturally be satisified for the tertiles
analysis. For quantitative S, the assumption is weaker for the Stochastic Interventional VE

analysis, such that it is possible that only this analysis of the three will be done.

108



Some of the analyses include parametric assumptions for characterizing asso-
ciations (Cox model and threshold analyses, Cox model versions of Controlled
VE analyses) and others are nonparametric or approximately so (all other
analyses). If parametric and nonparametric analyses of the same type (e.g.,
Cox model vs. nonparametric CoR analysis of the same association param-
eter; Controlled VE Cox model vs. nonparametric monotone dose-response)
suggest contradictory results, then the interpretation from the nonparamet-
ric analysis will be prioritized, given it is more robust and less likely to be
an incorrect result. The diagnostic testing of the parametric assumptions
will aid this interpretation. As noted above, if the nonparametric analysis
suggesting a contradictory result requires a positivity assumption, then its re-
sults will only be prioritized if diagnostics support feasibility of the positivity
assumption.

16.1 Synthesis Interpretation of Results

To structure the interpretation of the whole set of CoR and CoP results, we
consider the Bradford-Hill criteria for supporting causality assessments:

1. Temporal sequence of association (vaccination causes generation of an-
tibodies, which precede occurrence of the clinical disease outcome)

2. Strength of association (CoR magnitude)

3. Consistency of association (across studies and methods)

4. Biological gradient (may be interpreted as dose-response with greater
Day 57 antibody corresponding to lower risk and greater VE)

5. Specificity (that the antibody marker is induced by vaccination not nat-
ural infection, and the antibody impacts the particular clinical endpoint
being analyzed)

6. Plausibility [(supported by other COVID vaccines through study in effi-
cacy trials and challenge (animal or human) trials, and by other potential
studies such as natural history re-infection studies and monoclonal an-
tibody prevention efficacy studies that could be challenge (animal or
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human) or field trials])

7. Coherence (the causality assumption does not appear to conflict with
current knowledge)

8. Experimental reversibility (if VE wanes to a low level then the antibody
marker also wanes coincidently; if the Day 57 marker is a strong correlate
for outcome during the period of high VE, then it becomes a weaker
correlate against endpoints occurring during the later period of low VE;
also could be supported if vaccine breakthrough cases tend to occur very
early or late in follow-up when antibody levels are known to be relatively
low)

9. Analogy (supported by other respiratory virus vaccines, and natural his-
tory studies or challenge studies of other respiratory virus vaccines)

We discuss evaluation of these criteria for Day 57 markers, where the same
evaluations accounting for Day 29 markers are similarly relevant.

On temporal sequence, because the analyses are done in baseline negative
individuals, generally the Day 57 antibody responses must be generated by
the vaccine, and if the outcome occurs well after Day 57, then there is clear
temporal ordering of vaccination causing antibodies followed by outcome.
The nuance is outcome cases with event times near 7 days post Day 57, some
of which could have been infected with SARS-CoV-2 prior to Day 57 and have
relatively long incubation periods, possibly perturbing temporal ordering by
creating naturally-induced rather than vaccine-induced antibody. However,
the knowledge about the distribution of the time period between SARS-CoV-
2 acquisition and symptomatic COVID, and the time needed for an infection
to create an adaptive immune response, suggests that this issue could only
haves a minor impact, and overall the temporal sequence criterion readily
holds. Yet, the correlates analysis that stringently only includes cases with
documented antigen negativity at both Day 29 and Day 57 may be helpful
for evaluating the temporal sequence criterion.

On strength of association, this is directly quantified in all of the analyses as a
core output of each method, quantified by point estimates and confidence in-
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terval estimates of covariate-adjusted association parameters or causal effect
parameters.

On consistency of association, checking for similar estimates and inferences
across the multiple vaccine efficacy trials will be relevant. The fact that
all of the tested vaccines are designed to protect through induction of an-
tibody to Spike protein suggest that consistency is plausible. The vaccine
platform needs to be accounted for in this evaluation, where consistency may
be expected for vaccines of a given type (e.g., mRNA vaccines, Spike protein
vaccines, viral vector vaccines with a similar vector), whereas across types
a consistent body of evidence would be very helpful, but not a requirement.
FDA guidance has stipulated that a surrogate endpoint for one vaccine plat-
form is not necessarily expected to hold for another, and that evidence for one
platform would not be seen on its own as support for a surrogate endpoint
for another.

In addition, we will plan to study predictiveness of the estimated optimal
surrogate built on each single trial data set applied to the other trial data
sets, quantified by AUC on new data sets. Moreover, consistency of associ-
ation may be assessed in another sense - by studying whether the different
CoR methods tend to reveal a consistent directionality and pattern of an an-
tibody marker correlated with risk, and whether the different CoP methods
tend to reveal a consistent directionality and pattern of an antibody marker
connected to vaccine efficacy (as measured by the various causal effect pa-
rameters) and with different versions of vaccine efficacy. A common core
element of all of the CoR and CoP methods is covariate-adjusted estimation
of marker-conditional risk in vaccine recipients, e.g. of marginal conditional
risk EX [P (T ≤ tF |S = s, A = 1, X)] or EX [P (T ≤ tF |S ≥ s, A = 1, X)].
Generally, if an estimate of this function shows strongly decreasing risk with
s, then likely all of the CoR analyses will detect such a decrease, and the CoP
analyses will detect a version of vaccine efficacy increasing in s. A nuance
in looking for consistency of results across methods stems from the fact that
different methods have different power to detect the same effect; because of
this fact, consistency in magnitude (point estimate) and directionality are
more important than consistency in inference/statistical significance.
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The fact that all of the methods adjust for the same set of baseline covari-
ates X will aid the ability to compare the results across methods in an in-
terpretable manner. This discussion highlights the relevance of adjusting for
the same set of baseline covariates across the different efficacy trials, although
our choice to do covariate-adjustment through marginalization (rather than
through conditional association parameters) lends some resilience to this is-
sue.

Our comments on consistency of association have supposed a given study
endpoint, such as COVID. Another dimension of consistency evaluation could
include comparing results across endpoints. On the one hand, consistency in
evidence across endpoints could strengthen the case for a CoP, especially for
endpoints in the same ‘class’ such as moderate disease and severe disease.
On the other hand, the greater the difference between endpoints, the less
relevant consistency may be, because the vaccine may protect through differ-
ent mechanisms against each endpoint (one potential example is prevention
of asymptomatic infection vs. prevention of severe disease). Thus evidence
for a CoP for a given endpoint should not necessarily be down-graded based
on evidence that the same marker does not appear to be a CoP for another
endpoint.

On biological gradient, many of the methods are flexible and designed to
detect a dose-response pattern of antibody with risk or antibody with vaccine
efficacy, with tabular and graphical output of point and confidence interval
estimates designed to reveal dose-response.

On specificity, as noted above antibodies generally are almost surely vaccine-
induced given the analysis is done in baseline negative individuals, although
with nuance that care is needed to evaluate whether some vaccine break-
through cases may have had SARS-CoV-2 acquisition unusually early in
follow-up (e.g., prior to second vaccination). In addition, the assays are val-
idated for measuring specific anti-SARS-CoV-2 antigen response. Moreover,
the Day 57 antibody markers can be verified to be negative in all or almost
all baseline negative placebo recipients. Therefore, the specificity criterion
should readily hold, with the proviso of the complication of the possible in-
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clusion of unusually early infections as vaccine breakthrough cases in some
analyses.

On coherence, the results will be interpreted in the light of knowledge of im-
mune correlates of protection for the same vaccine in animal challenge stud-
ies (and human challenge studies as available), where multiple studies have
demonstrated that both binding and neutralizing antibodies are a correlate
of protection.

The results will also be interpreted in light of any knowledge available on
passively administered SARS-CoV-2 monoclonal antibodies for prevention of
SARS-CoV-2 infection or COVID disease, either in challenge studies (animals
or humans) or efficacy trials. In addition, the results will be interpreted in
light of results on the antibody markers as correlates of re-infection in natural
history studies. Note we are cautious to not use correlates studies in already-
infected individuals, because the fact of infection may readily change the
nature of a correlate of protection.

On experimental reversibility, we will evaluate whether the strength of asso-
ciation of the Day 57 CoRs and CoPs weakens when restricting to outcomes
occurring more distal to vaccination. If the vaccine efficacy is found to wane
over time, and the antibody marker wanes over time, then this decrease in the
strength of association would be consistent with antibody as a correlate of
protection. In contrast, if vaccine efficacy and antibody waned over time, but
the strength of a Day 57 CoR and CoP was the same regardless of the timing
of outcomes, it might call into question the role of the antibody marker as a
CoP. The Stage 2 correlates analyses will also be helpful, where experimen-
tal reversibility could be supported simply by coincident waning of VE and
waning antibody.

Experimental reversibility may also be supported by “population-level” cor-
relates analyses, a term sometimes used in reference to meta-analysis that
associates the level of VE with the population-level of a Day 57 marker across
subgroups or trials; e.g. the population-level Day 57 marker response may be
summarized by the geometric mean titer or geometric mean concentration.

On analogy, perhaps the most relevant vaccines to consider are vaccines
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against other respiratory viruses, including influenza vaccine and RSV vac-
cines. The fact that neutralizing antibodies are a CoR and CoP for both
inactivated and live virus vaccines supports that neutralizing antibodies can
be a CoP for SARS-CoV-2. In addition, there is ongoing correlates of protec-
tion analysis of Novavax’s Phase 3 RSV vaccine efficacy trial, that is evaluat-
ing binding antibody and neutralizing antibody CoRs and CoP correlates for
severe respiratory disease in infants of vaccinated pregnant mothers (submit-
ted). Once those results are available, they will aid in checking the analogy
(and coherence) criterion.

The univariate CoR analyses essentially assess five Day 57 antibody biomark-
ers. The questions arise as to how do we select which biomarker seems to be
the best-supported CoP, and do we need to be concerned about multiplicity
adjustment issues? Given the multifactorial nature of the assessment involv-
ing biology and statistics, we for the most part avoid an approach that tries
to pre-specify a quantitative ranking system; rather our approach presents
the results of each marker side by side and allows human synthesis and in-
terpretation. To guard against errors in this subjective process, we suggest
that consistent results across analyses of a given trial, and consistent results
(and predictive validation) across multiple trials, will provide particularly
strong guidance for interpreting results. For example, if a particular Day 57
antibody marker shows remarkably consistent results in being a strong CoR
and supported CoP but the other readouts do not, it may emerge as the
best-supported CoP. In addition, the superlearning CoR estimated optimal
surrogate objective has a special place of importance, because it includes
variable importance quantification, providing some quantitative guidance on
ranking the predictivneness of markers. This variable importance will be de-
fined both internal to a given trial and based on external validation on the
other efficacy trials. The metrics of CV-AUC and AUC on new trials quan-
tifies evidence for signal in the data in a way that is protected from risk of
false positive results, by virtue of having two layers of cross-validation used to
estimate CV-AUC and hence avoid over-fitting. In addition, the CoR anal-
yses use multiple hypothesis testing adjustment to help ensure clear signals
and not false positive results (see Section 12.4.2). We also need a plan for
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minimizing the risk of false positive results for CoP analyses, which we now
address.

16.2 Multiple Hypothesis Testing Adjustment for CoP Analysis

For the univariable CoP analyses of the prioritized set of Day 57 antibody
markers among the five specified marker variables, the analysis plan seeks
evidence of a CoP through four different causal effect approaches. Because of
this looking for evidence through different lenses, for CoP analysis we do not
focus on family-wise error rate adjustment, because FWER-adjustment aims
to control the risk of making even a single false rejection. Rather, in an effort
to build a body of consistent evidence and to ensure that a large fraction of
that evidence is reliable, for CoP analysis we focus on false discovery rate
correction. To do this, we use the same permutation-based method (Westfall
et al., 1993) that is used for CoR analysis. The multiplicity adjustment is
performed across the Day 57 markers and across the set of CoP methods that
are applied, in a single suite of hypothesis tests with calculation of q-values.
As a guideline for interpreting CoP findings (but not meant to be a rigid
gateway), markers with unadjusted p-value ≤ 0.05 and q-value ≤ 0.10 are
flagged as having statistical evidence for being a CoP.

17 CoP: Meta-Analysis Analysis Plan

We provide a brief summary of the overall plan, where the details will be de-
veloped closer to the time that data are available for meta-analysis of multiple
phase 3 vaccine efficacy trials.

Once data sets are available from the set of USG COVID-19 Response Team
phase 3 trials, the data sets will be combined for additional analyses to sup-
port development of immune CoPs. Data analysis of the combined data
sets provides interpretable results based on the standardization of the USG
COVID-19 Response Team phase 3 trial protocols – including harmonized
study endpoints, follow-up, and blood storage time points – and on the com-
mon statistical analysis plan and laboratories/immunoassays (where the use
of the Duke pseudovirus assay in some USG COVID-19 Response Team tri-
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als and the Monogram pseudovirus assay in other USG COVID-19 Response
Team trials implies that the statistical analysis will make use of concordance
testing data for making results interpretabile referenced to one of the assays.)
Meta-analysis surrogate endpoint evaluation methods will be applied to the
combined data sets, both for assessing Day 29 and Day 57 antibody markers
(Stage 1) as surrogate endpoints for COVID and for secondary outcomes, and
for assessing the antibody markers over time (Stage 2) as surrogate endpoints
for COVID and for secondary outcomes.

Both individual-level and trial-level meta-analysis will be applied, where the
latter studies the association of vaccine effects on an antibody marker with
vaccine effects on a study outcome, for example assessing how GMT nAb
cID80 titer associates with the level of vaccine efficacy against COVID. Meta-
analysis has a special role in being the only correlates approach that can
potentially assess immunologic markers as CoPs that are measured using
sampling types that were not stored from most trial participants (e.g., PBMC
for measuring T cell responses). While the current statistical analysis plan
focuses on assessing antibody markers as correlates, in the future plans may
be devised to incorporate T cell response data (and potentially other data
types) from phase 1-2 studies into meta-analysis evaluation.

In addition to applying formal meta-analysis surrogate endpoint evaluation
methods, some of the CoR and CoP statistical methods applied to the indi-
vidual phase 3 trial data sets will be adapted for application to the combined
data sets. This will allow addressing the following objectives: (1) to as-
sess consistency of CoRs and CoPs across trials, subpopulations, and vaccine
platforms; (2) to evaluate how well an antibody marker CoR for an outcome
developed in one phase 3 trial predicts the same outcome in the other phase
3 trials (cross-validation prediction accuracy); and (3) to provide data for
prediction modeling of what would be the efficacy of a new vaccine based on
its distribution of antibody markers. Objective (2) provides some empirical
data for considering appropriateness of use of a CoP across vaccine platforms.

We will consider two meta-analytic statistical frameworks for evaluating can-
didate surrogate endpoints: (1) Gabriel et al. (2016, 2019) “generalized
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surrogate” approach and (2) Molenberghs et al. (2000, 2007) meta-analytic
approach.

17.1 Method of Gabriel et al. (2016, 2019)

Gabriel et al. (2016, 2019) describe a non-parametric Bayesian hierarchical
framework for the modeling of vaccine efficacy and one or more potential
surrogate endpoint markers. The framework enables evaluation of a trial-
level general surrogate (TLGS): the ability to predict the efficacy of a vaccine
based on trial-level observations of a surrogate marker distribution. The
model does not require individual-level data as input; instead, the effects of
the vaccine on the true endpoint (i.e. vaccine efficacy) and on the surrogate
endpoint (i.e. a vaccine-induced immune response) are modeled from each
observed randomized trial using a bivariate normal distribution. From the
Bayesian posterior it is then possible to predict the vaccine efficacy (with
95% credible interval) in a new setting based on the observed distribution
of the surrogate marker. In concept the model is similar to that of locally
weighted linear regression (LOESS). With this framework it is possible to
evaluate the strength of surrogacy using absolute prediction error, compare
multiple candidate surrogates based on relative prediction error and predict
vaccine efficacy in a new setting.

The Gabriel et al. framework is implemented in R using code adapted from
their publication (https://github.com/sachsmc/DPpackagemod; 2019). We
will use the estimates of vaccine efficacy and candidate surrogate marker dis-
tributions from all available Phase 3 randomized, placebo controlled trials;
inclusion will be contingent on normalization of the surrogate marker to the
WHO or some other human convalescent serum (HCS) standard. Perfor-
mance will be measured as the absolute difference between the predicted and
observed vaccine efficacy (on the log relative-risk scale) with the mean taken
across trials in a leave-one-out cross-validation framework (i.e. the efficacy
for trial A is predicted based on the surrogate marker in trial A and the
efficacy and marker distributions in the other trials). An example analysis
is provided using the ratio of the virus neutralization titer in vaccine recipi-
ents to human convalescent sera (HCS) as the surrogate marker (Figure 5);
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a similar analysis was also performed using the ratio of the binding IgG an-
tibody (ELISA) to the same measure in HCS (Figure 6). In the example,
vaccine efficacy was estimated from Phase 3 trials while the central value of
the marker distribution were estimated (mean and 95% confidence interval)
from Phase 1/2 trials in comparable populations. Details of the data sources
are available in Earle at al. (2021).

17.2 Method of Molenberghs et al.

Buyse, Molenberghs et al. originally proposed a meta-analytic framework for
evaluating a surrogate endpoint by building on Prentice’s (1989) surrogacy
criteria and generalizing to a multi-trial setting. Similar to the Prentice
criteria, the approach is based on a system of three linear regressions of:
(i) the treatment effect on the true endpoint, (ii) the treatment effect on
the surrogate endpoint and (iii) the association of the surrogate endpoint
with the true endpoint. This model is expanded to a multi-trial setting,
each potentially with a distinct treatment (i.e. vaccine). Unlike Gabriel
et al. (2016, 2019), the model is fit using individual-level data; the fitted
parameters of the model enable assessment of the strength of a surrogate
endpoint for each trial as well as overall. Originally they proposed a metric of
surrogacy called the relative effect (RE), which was the ratio of the regression
coefficient indicating the treatment effect on the true endpoint divided by
that of the treatment effect on the surrogate. The relative effect indicates
the extent to which the treatment effect on the true endpoint can be predicted
by measuring the treatment effect on the surrogate.

In more recent work, Alonso and Molenberghs (2007) used information theory
and developed a similar metric, R2

h, which generalizes to settings with non-
normal true and surrogate endpoints. The information theoretical framework
is helpful because it provides an intuitive framing of the issue of surrogate
marker validation: we want to gain information about the unobserved treat-
ment effect on the true endpoint using the known treatment effect on the
surrogate. The R2

h metric is similar to RE in that when R2
h ≈ 1 the potential

surrogate is promising and the interpretation is that once the surrogate is
known, almost all of our uncertainty about the true endpoint is gone.
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The information-theoretic Molenberghs et al. approach is implemented in
their R package surrogate. The analysis takes as input the individual-level
data for multiple trials, including the true and surrogate endpoints. Like
implementation of the Gabriel at al. framework, inclusion of trials will be
contingent on normalization of the surrogate markers to the WHO Interna-
tional Units. The output of the analysis will be estimates of the parameter
R2
h for each trial and overall including a point-estimate and 95% confidence

interval.

18 Estimating a Threshold of Protection Based on an Established
or Putative CoP (Population-Based CoP)

For each antibody marker studied as a CoP, we will apply the Chang-Kohberger
(2003) / Siber (2007) method to estimate a threshold of the antibody marker
associated with the estimate of overall vaccine efficacy observed in the trial.

This method makes two simplifying assumptions: (1) that a high enough an-
tibody marker value s∗ implies that individuals with S > s∗ have essentially
zero disease risk (perfect protection) regardless of whether they were vacci-
nated; and (2) P (Y = 1|S ≤ s∗, A = 1)/P (Y = 1|S ≤ s∗, A = 0) = 1 (zero
vaccine efficacy if S ≤ s∗). Based on these assumptions, s∗ is calculated as
the value equating 1 − P̂ (S ≤ s∗|A = 1)/P̂ (S ≤ s∗|A = 0) to the estimate
of overall vaccine efficacy. This estimate is supplemented by estimating the
reverse cumulative distribution function (RCDF) of S in baseline negative
vaccine recipients and calculating a 95% confidence interval for the thresh-
old value s∗ as the points of intersection of the estimated RCDF curve with
the 95% confidence interval for overall vaccine efficacy (as in the figure in
Andrews and Goldblatt, 2014).

This method essentially assumes that S has already been established as a
CoP, and under that assumption estimates a threshold that may be consid-
ered as a benchmark / study endpoint for future immunogenicity vaccine trial
applications.

It is acknowledged that this approach makes highly simplified assumptions;
nonetheless it may yield a useful benchmark and complementary information
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on a threshold correlate of protection.

19 Considerations for Baseline SARS-CoV-2 Positive Study Par-
ticipants

As stated above, if enough COVID cases in baseline positive vaccine and/or
placebo recipients occur, then additional correlates analyses may be planned
in baseline positive individuals. For example, the same or similar correlates
of risk analysis plan that is used to analyze Day 57 marker correlates of risk in
baseline negative vaccine recipients could be applied to assess Day 1 marker
correlates of risk in baseline positive placebo recipients. In addition, analyses
could be done to assess how vaccine efficacy in baseline positive participants
varies with Day 1 markers. It is straightforward to make this analysis rigorous
because Day 1 markers are a baseline covariate, such that regression analyses
are valid based on the randomization.

20 Avoiding Bias with Pseudovirus Neutralization Analysis due
to Use of Anti-HIV Antiretroviral Drugs

Because the lentivirus-based pseudovirus neutralization assay uses an HIV
backbone, the presence of anti-retroviral drugs in serum will give a false pos-
itive neutralization signal. This can be easily screened for using an MuLV
pseudotype control. Therefore, Day 1 and Day 57 samples of all study par-
ticipants with data included in correlates analyses will be tested for presence
of anti-retroviral drugs. Participants with any of the samples at Day 1 and
Day 57 positive for antiretroviral use are excluded from analyses, for all anal-
yses that include pseudovirus neutralization. Analyses that do not consider
pseudovirus neutralization are unaffected by this issue.

If Day 29 markers are included, then the antiretroviral testing is applied to
Day 29 samples as well as to Day 1 and Day 57 samples. And, participants
with any of the samples at Day 1, 29, 57 positive for antiretroviral use are ex-
cluded from analyses, for all analyses that include pseudovirus neutralization.
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21 Accommodating Crossover of Placebo Recipients to the Vac-
cine Arm

We consider how the SAP would be impacted by a scenario where at some
point most placebo recipients receive the study vaccine, which has been oc-
curring in general for the USG public-private partnership trials. The plan for
assessing correlates of risk in vaccine recipients would be minimally affected,
because the analysis is based on vaccine recipients alone. If crossed over
placebo recipients have study visits and blood sample storage on the same
schedule as if they had originally been assigned to the vaccine arm, then the
new follow-up data from the crossed over placebo recipients will be included
in correlates of risk analyses, which is expected to yield improved power and
precision given the expanded sample size of vaccine recipients. Yet, the first
CoR analyses will restrict to the blinded period of follow-up, for purity of
interpretation of the results.

The plan for assessing correlates of protection, on the other hand, would be
more altered based on crossover. The plan would be revised to only assess
correlates of protection over follow-up through to the point that there is no
longer a placebo cohort under blinded follow-up. Moreover, if immune marker
data from crossed-over placebo recipients are available, then correlate of VE
CoP analyses will be conducted that leverage the additional closeout placebo
vaccination data.

22 COVID Correlates Analysis Report

This SAP is being implemented over time on a mock/practice COVID-19
vaccine efficacy trial data set, as discussed in the Prelude. The report is
provided at the public GitHub repository CoVPN/correlates reporting.
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Figure 1: A) Structural relationships among study endpoints in a COVID-19 vaccine efficacy trial
(Mehrotra et al., 2020).. B) Study endpoint definitions.
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Figure 2: Example at-COVID diagnosis and post-COVID diagnosis disease severity and virologic
sampling schedule, in a setting where frequent follow-up of confirmed cases can be assured. Partic-
ipants diagnosed with virologically-confirmed symptomatic SARS-CoV-2 infection (COVID) enter
a post-diagnosis sampling schedule to monitor viral load and COVID-related symptoms (types,
severity levels, and durations).
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Figure 3: Case-cohort sampling design (Prentice, 1986) that measures Day 1, 57 antibody markers
in all participants selected into the subcohort and in all COVID and COV-INF cases occurring
outside of the subcohort.
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Figure 4: Two-stage correlates analysis. Stage 1 consists of analyses of Day 57 markers as correlates
of risk and of protection of the primary endpoint and potentially also of some secondary endpoints,
and includes antibody marker data from all COVID and SARS-CoV-2 infection cases (COV-INF)
through to the time of the data lock for the first correlates analyses. Stage 2 consists of analyses
of Day 57 markers as correlates of risk and of protection of longer term endpoints and analyses
of longitudinal markers as outcome-proximal correlates of risk and of protection, and includes
antibody marker data from all subsequent COVID and COV-INF cases. Stage 1 measures Day 1,
57 antibody markers and COV-INF and COVID diagnosis time point markers; Stage 2 measures
antibody markers from all sampling time points and COV-INF plus COVID diagnosis sampling
time points not yet assayed. The same immunogenicity subcohort is used for both stages. If Day
29 markers are included, then Day 29 markers are included for the same participants with Day 57
markers measured.
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Figure 5: Randomized vaccine effect on the true endpoint (y-axis, i.e. vaccine efficacy) versus
vaccine effect on a candidate surrogate endpoint (x-axis) from 7 COVID-19 vaccines (black data
points). Candidate surrogate endpoint is the ratio of the geometric mean virus neutralization titer
(GMT) across vaccine recipients to the GMT for human convalescent serum (HCS). Estimates of
vaccine efficacy are based on Phase 3 clinical trials, while estimates of the surrogate endpoint are
based on Phase 1 or 2 data in a comparable population (see Earle et al., 2021 for details). For
each trial the vaccine efficacy is also predicted (red, Bayesian posterior estimate and 95% credible
interval) from the observed surrogate endpoint as well as efficacy and surrogate endpoint data from
each of the other six trials (a “leave-one-out” cross-validation framework)
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Figure 6: Randomized vaccine effect on the true endpoint (y-axis, i.e. vaccine efficacy) versus
vaccine effect on a candidate surrogate endpoint (x-axis) from 7 COVID-19 vaccines (black data
points). Candidate surrogate endpoint is the ratio of the binding IgG antibody (ELISA) among
vaccine recipients to the same measure in human convalescent serum). Estimates of vaccine efficacy
are based on Phase 3 clinical trials, while estimates of the surrogate endpoint are based on Phase 1
or 2 data in a comparable population (see Earle et al., 2021 for details). For each trial the vaccine
efficacy is also predicted (red, Bayesian posterior estimate and 95% credible interval) from the
observed surrogate endpoint as well as efficacy and surrogate endpoint data from each of the other
six trials (a “leave-one-out” cross-validation framework)
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23 Appendix: Simulation of COVID-19 Vaccine Efficacy Trial
Data Sets

24 Simulating COVID VE Trial Data Sets

24.1 Notation

1. A: randomization assignment to vaccine or placebo (1=vaccine, 0=placebo)

2. B: baseline SARS-CoV-2 status (0 if all SARS-CoV-2 diagnostic tests by
Day 1 are negative and 1 if some are positive: 0=negative, 1=positive)

3. X: baseline covariate vector with components X1, · · · , X5

(a) X1: Indicator At-risk for COVID

(b) X2: Sex assigned at birth (1=female, 0=male)

(c) X3: Indicator of minority

(d) X4: Age in years (≥ 18)

(e) X5: BMI

4. S1: Vector of antibody markers measured at Day 1 (dose 1 visit), with
components IgG Spike, IgG RBD, PsV ID50, PsV cID80, WT LV MN50

5. S29: Vector of the same antibody markers measured at Day 29 (dose 2
visit)

6. S57: Vector of the same antibody markers measured at Day 57 (≈ peak
immunogenicity time point)

7. R: Indicator a participant is randomly sampled into the subcohort for
measurement of (S1, S29, S57)

8. T29: Number of days from Day 29 visit until COVID endpoint starting
7 days post Day 29 visit (failure time of interest for studying Day 29
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markers as correlates)

9. C29: Number of days from Day 29 visit until right-censoring

10. ∆29: Indicator of T29 ≤ C29

11. T̃29 = min(T29, C29)

12. T57: Number of days from Day 57 visit until COVID endpoint starting
7 days post Day 57 visit (failure time of interest for studying Day 57
markers as correlates)

13. C57: Number of days from Day 57 visit until right-censoring

14. ∆57: Indicator of T57 ≤ C57

15. T̃57 = min(T57, C57)

Next, in turn we describe the three steps for simulating a data set. First,
we simulate the covariates in all participants, second we simulate the Day
57 onwards failure time information in all participants, third we fill in the
Day 29 to Day 57 failure time information, and fourth we define R and set
(S1, S29, S57) values to NAs for those with R = 0 and ∆29 = 0 (non-cases).

24.2 Simulation of the covariates

First, A and B are drawn as independent Bernoulli random draws with suc-
cess probabilities Pa=1 and Pb=1, respectively specified by the user. Then, for
each of the four baseline strata A = a,B = b with (a, b) ∈ {0, 1}×{0, 1}, the
20-vector

W = (XT , ST1 , S
T
29, S

T
57)

T

is simulated. As X1, X2, and X3 are the only binary variables, for simplicity
we first simulate them as independent Bernoulli random variables.

1. X1 is drawn from a Bernoulli distribution with specified success proba-
bility P1 = P (X1 = 1)

2. X2 is drawn from a Bernoulli distribution with specified success proba-
bility P2 = P (X2 = 1)

138



3. X3 is drawn from a Bernoulli distribution with specified success proba-
bility P3 = P (X3 = 1)

Next, we define a latent 17-vector variable WL that has a multivariate normal
distribution with mean vector.

µL = (µX4, µX5, µ
T
S1, µ

T
S29, µ

T
S57)

T

with variance elements Σdiag = 17-vector of variances for the elements of WL.
The covariance elements are defined by specifying the correlation parameters
ρ[i, j] for all i = 1, · · · , 17, j = 1, · · · , 17 such that the (i, j)th element of the
variance-covariance matrix Σ of WL is

ρ[i, j] ∗
√

Σdiag[i]Σdiag[j].

Based on specification of all of the input parameters, WL is drawn. Then the
following steps are done to attain W based on WL:

1. X4 is taken to be WL
1 rounded to the nearest year at enrollment

2. X5 is taken to be WL
2

3. S1j is taken to be WL
S1.j for j = 1, · · · , 5, and in the analysis one follows

the convention that values below the LLOD are set to LLOD/2 and
values above the ULOQ are set to ULOQ.

4. S29.j and S57.j are also taken to be WL
S29.j and WL

S57.j, respectively, for
j = 1, · · · , 5, again following the convention that values below the LLOD
are set to LLOD/2 and values above the ULOQ are set to ULOQ.

24.2.1 Input parameters for simulating covariates

The following lists the set of input parameters that are needed to simulate
the covariate data, and indicates default values.

1. N = Total number of enrolled trial participants

2. Pa=1: P (A = 1) = Probability an individual is randomized to vaccine
A=1 (default 0.5)

3. Pb=1: P (B = 1) = Probability an individual is baseline SARS-CoV-2
positive (default 0.10)
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4. P1: P (X1 = 1) (default 0.3)

5. P2: P (X2 = 1) (default 0.5)

6. P3: P (X3 = 1) (default 0.3)

7. µL (defaults listed below)

Vaccine baseline negative (a = 1, b = 0):

µL = c(55, 30, 0, 0, 0, 0, 0, 4.4, 4.2, 2.2, 1.8, 2.2, 5.9, 5.7, 3.2, 2.8, 3.2)

Placebo baseline negative (a = 0, b = 0):

µL = c(55, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Vaccine baseline positive (a = 1, b = 1):

µL = c(55, 30, 3.9, 3.7, 1.8, 1.5, 1.7, 4.5, 4.3, 2.3, 1.9, 2.3, 6.0, 5.8, 3.3, 2.9, 3.3)

Placebo baseline positive (a = 0, b = 1):

µL = c(55, 30, 3.5, 3.3, 1.4, 1.3, 1.5, 4.1, 4.0, 2.0, 1.8, 2.0, 5.6, 5.5, 3.0, 2.7, 3.1)

8. Σdiag (defaults listed below)

Vaccine baseline negative (a = 1, b = 0):

Σdiag = c(22.32, 72, 0.2, 0.2, 0.2, 0.2, 0.2, 0.62, 0.72, 0.82, 0.82, 0.82,

0.72, 0.82, 0.982, 0.982, 0.942)

Placebo baseline negative (a = 0, b = 0):

Σdiag = c(22.32, 72, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,

0.2, 0.2, 0.2, 0.2, 0.2)

Vaccine baseline positive (a = 1, b = 1):

Σdiag = c(22.32, 72, 0.62, 0.72, 0.82, 0.82, 0.82, 0.62, 0.72, 0.82, 0.82, 0.82,

0.72, 0.82, 0.982, 0.982, 0.942)

Placebo baseline positive (a = 0, b = 1):

Σdiag = c(22.32, 72, 0.62, 0.72, 0.82, 0.82, 0.82, 0.62, 0.72, 0.82, 0.82, 0.82,

0.72, 0.82, 0.982, 0.982, 0.942)
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9. Correlation parameters ρ (defaults listed below)

Vaccine baseline negative (a = 1, b = 0):

ρ[i, j] = 0.25 + 0.1I(i = 3, j = 4) + 0.2 ∗ I(i = 5, j = 6) : i = 1, · · · , 6, j > i

ρ[i, j] = 0.6 + 0.1I(i = 8, j = 9) + 0.2 ∗ I(i = 10, j = 11) : i = 7, · · · , 11, j > i

ρ[i, j] = 0.7 + 0.1I(i = 13, j = 14) + 0.2 ∗ I(i = 15, j = 16) : i = 12, · · · , 16, j > i

Placebo baseline negative (a = 0, b = 0):

ρ[i, j] = 0.15 + 0.05I(i = 3, j = 4) + 0.1 ∗ I(i = 5, j = 6) : i = 1, · · · , 6, j > i

ρ[i, j] = 0.2 + 0.05I(i = 8, j = 9) + 0.1 ∗ I(i = 10, j = 11) : i = 7, · · · , 11, j > i

ρ[i, j] = 0.25 + 0.05I(i = 13, j = 14) + 0.1 ∗ I(i = 15, j = 16) : i = 12, · · · , 16, j > i

Vaccine baseline positive (a = 1, b = 1):

ρ[i, j] = 0.55 + 0.1I(i = 3, j = 4) + 0.2 ∗ I(i = 5, j = 6) : i = 1, · · · , 6, j > i

ρ[i, j] = 0.6 + 0.1I(i = 8, j = 9) + 0.2 ∗ I(i = 10, j = 11) : i = 7, · · · , 11, j > i

ρ[i, j] = 0.7 + 0.1I(i = 13, j = 14) + 0.2 ∗ I(i = 15, j = 16) : i = 12, · · · , 16, j > i

Placebo baseline positive (a = 0, b = 1):

ρ[i, j] = 0.55 + 0.1I(i = 3, j = 4) + 0.2 ∗ I(i = 5, j = 6) : i = 1, · · · , 6, j > i

ρ[i, j] = 0.6 + 0.1I(i = 8, j = 9) + 0.2 ∗ I(i = 10, j = 11) : i = 7, · · · , 11, j > i

ρ[i, j] = 0.7 + 0.1I(i = 13, j = 14) + 0.2 ∗ I(i = 15, j = 16) : i = 12, · · · , 16, j > i

In the above correlation specification, note that extra correlation is added
to IgG Spike and RBD readouts (same assay), as well as to PsV ID50 and
cID80 (same assay). After ρ[i, j] is define for all i < j, we set ρ[j, i] = ρ[i, j]
for all j < i.

24.3 Simulation of the failure time data

The failure time variables to simulate are T29, C29, T̃29,∆29, T57, C57, T̃57,∆57.
First, in the placebo arm the event time T57 is simulated dependent on
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A,B,X∗4 , where X∗4 is a standardized version of age X4 that has empiri-
cal mean 0 and empirical standard deviation 1. Second, in the vaccine arm
T57 is simulated dependent on A,B,X∗4 , S

∗
57.1, where S∗57.1 is the first Day 57

marker (IgG Spike). The positive correlations among the different marker
variables implies that T57 depends on the other Day 57 markers as well, but
for a simple simulation model we only specify dependence on S∗57.1. Alterna-
tively, the simulations could be designed with the failure time connected to
a latent variable that is an average of the markers.

Third and fourth, we implement a parallel approach to simulate T29 in the
placebo arm and T29 in the vaccine arm, now using S∗29.1 instead of S∗57.1. These
new simulations add intercurrent failures between the Day 29 visit and the
Day 57 visit. Then calculations are made to enforce structural relationships
between T29 and T57.

24.3.1 Input parameters for simulating the failure time information

Let W ∗ be the vector W with each of the 17 normally distributed variables
(elements 4 through 20) centered and scaled to have empirical mean zero
and standard deviation one. The following parameters simulate failure time
information starting from the Day 57 visit.

1. τ : final time point (in days) for analysis post Day 57 visit (default 180)

2. P0b(τ): P (T57 ≤ τ |A = 0, B = b,W ∗ = 0) = placebo arm baseline cu-
mulative failure probability for baseline status group b (default P00(τ) =
0.10, P01(τ) = 0.05)

3. V Eb = 1− λ1b0

λ0b0
for b = 0, 1, where λab0 = λ(t|A = a,B = b,W ∗ = 0) for

a = 0, 1 (default V E0 = V E1 = 0.90)

4. β0b = Placebo group log hazard ratio per year increase in age X4 for
baseline stratum b. Once β0b and Σdiag[1] are specified, the parameter
β∗0b in the Cox model (24) below is calculated as β∗0b = β0b

√
Σdiag[1].

(default: β0b = log10(1.1) for each b = 0, 1)

5. β1b = Vaccine group log hazard ratio per year increase in age X4 for
baseline stratum b. Once β1b and Σdiag[1] are specified, the parameter
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β∗1b in the Cox model (25) below is calculated as β∗1b = β1b

√
Σdiag[1].

(default: β1b = log10(1.1) for each b = 0, 1)

6. γ1b = Vaccine group log hazard ratio per unit change in the marker S57.1

(i.e., per 10-fold change in the marker on the natural/antilog10 scale).
Once γ1b and Σdiag[13] are specified, the parameter γ∗1b in the Cox model
(25) below is calculated as γ∗1b = γ1b

√
Σdiag[13]. (default: γ1b = 0 for

each b = 0, 1 (null case))

7. FollowupRange = range of days since enrollment until the date of data
cut for the analysis, accounting for staggered enrollment (default Fol-
lowupRange = c(4*7, 6.5*7))

8. PLFU(τ): Probability loss to follow-up (prematurely) by τ (default PLFU(τ) =
0.05)

The following parameters simulate failure time information between the Day
29 and Day 57 visits (“intercurrent” failure defined in terms of T29), specified
in parallel fashion to the failure time information for T57. With the exception
of the intercurrent vaccine efficacy parameter, the following parameters are by
default defined according to the Day 57 failure time simulation parameters.

1. P0b.intcur(57): P (T29 ≤ 28|A = 0, B = b,W ∗ = 0) = placebo arm baseline
cumulative intercurrent failure probability for baseline status group b

(default P0b.intcur(57) = P0b(τ) ∗ 28/τ , which specifies the same placebo
arm incidence of failure from Day 29 to Day 57 as after Day 57)

2. V Eb.intcur = 1 − λ1b0.intcur

λ0b0.intcur
for b = 0, 1, where λab0.intcur = λ(t|A = a,B =

b,W ∗ = 0) for a = 0, 1 (default V Eb.intcur = 0.7 ∗ V Eb for each b = 0, 1)

3. β0b.intcur = Placebo group log intercurrent hazard ratio per year increase
in age X4 for baseline stratum b. Once β0b.intcur and Σdiag[1] are specified,
the parameter β∗0b.intcur in the Cox model (26) below is calculated as
β∗0b.intcur = β0b.intcur

√
Σdiag[1]. (default: β0b.intcur = β0b for each b = 0, 1)

4. β1b.intcur = Vaccine group log intercurrent hazard ratio per year increase
in age X4 for baseline stratum b. Once β1b.intcur and Σdiag[1] are specified,
the parameter β∗1b.intcur in the Cox model (27) below is calculated as
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β∗1b.intcur = β1b

√
Σdiag[1]. (default: β1b.intcur = β1b for each b = 0, 1)

5. γ1b.intcur = Vaccine group log intercurrent hazard ratio per unit change
in the marker S29.1 (i.e., per 10-fold change in the marker on the nat-
ural/antilog10 scale). Once γ1b.intcur and Σdiag[8] are specified, the pa-
rameter γ∗1b.intcur in the Cox model (27) below is calculated as γ∗1b.intcur =
γ1b.intcur

√
Σdiag[8]. (default: γ1b.intcur = γ1b for each b = 0, 1)

24.3.2 Exponential/proportional hazards models for T57

For the placebo arm, we assume the following simple proportional hazards
models for T57, separately by baseline status:

λ0b(t|W ) = λ0b0e
β∗0bX

∗
4 (24)

where, assuming an exponential distribution, λ0b0 = λ(t|A = 0, B = 0,W ∗ =
0) is determined by the equation

1− e−λ0b0τ = P0b(τ)

and the parameters β∗00 and β∗01 specify how strongly X∗4 (standardized age)
associates with COVID.

For the vaccine arm, we assume the following proportional hazards models
for T57, again separately by baseline status:

λ1b(t|W ) = λ1b0e
β∗1bX

∗
4 +γ∗1bS

∗
571 (25)

where λ1b0 is determined by the equation

V Eb = 1− λ1b0

λ0b0
,

where V Eb (proportional hazards vaccine efficacy at central covariate level
W ∗ = 0) is input by the user.

24.3.3 Simulating T57

Once a participant’s values A,B,X∗4 , S
∗
S57.1 are generated, then we simulate

the participant’s T57 value from an exponential distribution with rate param-
eter defined by the input parameters and the Cox model (24) or (25).
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24.3.4 Simulating C57 and ∆57

First, a random variable C157 is simulated from a Uniform distribution over
the range FollowupRange. Second, an exponential random variable C257 is
simulated with rate parameter λcens determined by

1− e−λcensτ = PLFU(τ).

Then, we set C57 = min(C157, C257), and next set T ∗57 = min(T57, C57) and
∆57 = I(T57 ≤ C57). Note that, because in the analysis outcomes for Day
57 correlates analyses are only counted starting 7 days post Day 57 visit,
cases with T57 < 7 are excluded from the analysis (this is handled in the data
analysis code, not in the data set construction code).

24.3.5 Exponential/proportional hazards models for T29 intercurrent failure

For the placebo arm, we assume the following simple proportional hazards
models for T29, separately by baseline status:

λ0b.intcur(t|W ) = λ0b0.intcure
β∗0b.intcurX

∗
4 (26)

where, assuming an exponential distribution, λ0b0.intcur = λ(t|A = 0, B =
b,W ∗ = 0) is determined by the equation

1− e−λ0b0.intcur∗57 = P0b.intcur(57)

and the parameters β∗00.intcur and β∗01.intcur specify how strongly X∗4 (stan-
dardized age) associates with COVID. For the vaccine arm, we assume the
following proportional hazards models for T29 intercurrently, again separately
by baseline status:

λ1b.intcur(t|W ) = λ1b0.intcure
β∗1b.intcurX

∗
4 +γ∗1b.intcurS

∗
291 (27)

where λ1b0.intcur is determined by the equation

V Eb.intcur = 1− λ1b0.intcur

λ0b0.intcur
,

where V Eb.intcur (proportional hazards vaccine efficacy at central covariate
level W ∗ = 0) is input by the user.
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24.3.6 Simulating T29

Once a participant’s values A,B,X∗4 , S
∗
S29.1 are generated, then we initially

simulate the participant’s T29 value from an exponential distribution with
rate parameter defined by the input parameters and the Cox model (26) or
(27). If T29 < T57 + 28, then the value of T29 is kept. If T29 ≥ T57 + 28, then
we set the final value of T29 = T57 + 28 plus a a draw from a random uniform
distribution over -3 to 3 days rounded to the nearest day (to account for visit
window variability).

24.3.7 Simulating C29 and ∆29

For simplicity, we do not allow dropout between the Day 29 visit and the Day
57 visit. Therefore, we set C29 = C57 + 28. Then we set ∆29 = I(T29 ≤ C29).

Note that, because in the analysis outcomes for Day 29 correlates analyses
are only counted starting 7 days post Day 29 visit, cases with T29 < 7 are
excluded from the analysis (this is handled in the data analysis code, not in
the data set construction code).

24.4 Simulating the subcohort indicator R

The subcohort indicator R is one if a participant is sampled for measurement
of (S1, S29, S57).

24.4.1 Input parameters for simulating R

We simulate R following Table 5 in this SAP, where the six baseline demo-
graphic strata are:

1. X4 ≥ 65 and X3 = 0 (minority)

2. X4 ≥ 65 and X3 = 1 (non-minority)

3. X4 < 65 and X1 = 1 (at-risk) and X3 = 0

4. X4 < 65 and X1 = 1 (at-risk) and X3 = 1

5. X4 < 65 and X1 = 0 (not at-risk) and X3 = 0
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6. X4 < 65 and X1 = 0 (not at-risk) and X3 = 1

For each of the 24 subgroups/cells defined by (a, b) cross-classified with the
above 6 demographic subgroups (as in Table 5), define the total numbers to
be sampled into the immunogenicity subcohort, n2(a, b, c) for a = 0, 1, b =
0, 1, c = 0, · · · , 6. Then, for each subgroup (a, b, c), R is set to 1 for a random
sample of size n2(a, b, c) without replacement. Lastly, all non-cases (with
∆ = 0) and R = 0 have all three values (S1, S29, S57) set to NA.

The default settings for n2(a, b, c) to match Table 5 in the SAP are as follows:

• n2(1, 0, c) = 150 for c = 1, · · · , 6

• n2(0, 0, c) = 20 for c = 1, · · · , 6

• n2(1, 1, c) = 50 for c = 1, · · · , 6

• n2(0, 1, c) = 50 for c = 1, · · · , 6

24.4.2 Per-protocol indicator

Lastly, we simulate the per-protocol (PP ) indicator variable, which is 1 if
both immunizations at Day 0, 29 were received and there were no specified
protocol violations.

Input parameter:

PPP=1 = Probability a participant is per-protocol (default = 0.99)

PPP=1 is simulated from a Bernoulli random variable with success probability
PPP=1. The Day 57 marker correlates analyses are done in individuals with
PPP=1.

24.4.3 Variables output for the data set

The following collates all of the variables defined for the simulated data set.

• A

• B

• X1, · · · , X5
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• PP

• R

• S1.1, · · · , S1.5

• S29.1, · · · , S29.5

• S57.1, · · · , S57.5

• T̃29,∆29

• T̃57,∆57

25 Appendix: Notes on Planning for Stage 2 Correlates Analyses

The paper Sun, Zhou, Gilbert (submitted) “Analysis of Cox model with Lon-
gitudinal Covariates with Measurement Errors and Partly Interval-Censored
Failure Time, with Application to an AIDS Clinical Trial” may be a suitable
method for assessing antibody markers over time as correlates of the SARS-
CoV-2 infection endpoint, once there is follow-up data for more than a year
with antibody markers measured at all time points up to at least a year.
The paper extends Fu and Gilbert (2017) from right-censored failure time
data to partly interval-censored failure time data, which means a compos-
ite endpoint is analyzed with one component subject to right-censoring and
the other component subject to interval censoring. In our application, the
COVID primary endpoint is subject to right-censoring, and seroconversion is
subject to interval-censoring.

26 Appendix on Stochastic VE Analysis Project

We consider an approach that simply implements the stochastic VE analysis
as specified in the SAP, using a grid of mean shifts, and then the results
are interpreted by marking the mean shifts corresponding to expected shifts
under each of the SARS-CoV-2 variants considered in the Montefiori panel
used in the phase 1 study. With this mindset, this is a data analysis project,
not a new methods project.
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Let S0 denote D57 antibody level to the D614G strain, and Sv denote D57
antibody level to variant v. Let pcc be the density of baseline covariates L in
the case-cohort study. We make the following assumption:

A.1 Ecc[S0|L] = EPh1[S0|L].

Let Êcc[S0|L] be an estimator of Ecc[S0|L] from the case-cohort data.

Suppose there are n participants in the phase 1 study with data on S0 and L.
Let µstd.cc0 be the mean of S0 in the phase 1 sample standardized/transported
to the distribution of L in the case-cohort study. We estimate µstd.cc0 by

µ̂std.cc0 =
n∑
i=1

Êcc[S0|Li]p̂cc(Li),

where assumption A.1 is needed for this estimate to be unbiased.

Next, we need a way to estimate µstd.ccv . This is challenging given that Sv is
only measured in between 10 and 28 vaccine recipients in the phase 1 trial.
Because of the small sample size, we make the assumption that

Ecc[Sv|L]− Ecc[S0|L] = Eph1[Sv]− Eph1[S0],

and then we estimate Ecc[Sv|L] by

Êcc[Sv|L] = Êcc[S0|L] +
(
S̄v − S̄0

)
,

where S̄0 is the sample average of the S0 measurements in the phase one trial
and similarly for Sv.

In conclusion, for a given variant v, the mean shift of focus for interpreting
the result of the stochastic VE analysis is

∆v = Êcc[S0|L]− Êcc[Sv|L].

26.1 Remarks

The estimator of µ̂std.cc0 requires that we have data on the same baseline
covariates L that are used in the case-cohort study for estimation of Ecc[S0|L].
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If we do not, then we may need to simplify the estimator of Ecc[S0|L] to only
include a few covariates L collected in both studies. In the most extreme case,
with no L available in the phase one study, we simply take as the estimate of
µ̂std.cc0 the sample average of S0 values in the phase 1 study, S̄0. In this case
∆v is simply taken to be S̄0 − S̄v.
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