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1. Inter-modal forward stimulated Brillouin scattering in polarization maintaining fibers

Inter-modal forward stimulated Brillouin scattering (forward SBS) in polarization maintaining (PM) 
fibers has been described at length in a recent reference [1]. The process is presented briefly here for 
completeness and the convenience of the reader. Figure 1(a) shows a schematic cross-section of a 
panda-type, PM fiber, with a thin coating layer. The cladding cross-section includes two strain rods of 
silica doped with B2O3 glass. Expansion of the rods during fiber production induces permanent strain 
and birefringence between the slow 𝒙 axis and fast 𝒚 axis (see Fig. 1(a)). We denote the effective indices 
of the optical modes in the 𝒙 and 𝒚 polarizations as 𝑛𝑠,𝑓, respectively, and the difference between the 
two as Δ𝑛. The value of Δ𝑛 in panda-type PM fibers is of the order of 2-6×10-4 refractive index units 
(RIU) [2].  

The PM fiber cross section supports a large number of guided acoustic modes, which propagate in the 
axial direction 𝒛 [1]. We denote the normalized transverse profiles of material displacement in mode 
𝑚 as 𝒖𝑚(𝑥,𝑦) [m-1], where 𝑥,𝑦 are the transverse coordinates in the 𝒙 and 𝒚 directions, respectively, 
and 𝑚 is a positive integer. The profiles are normalized so that 1 𝜌1 ∬ 𝜌(𝑥,𝑦)|𝒖𝑚(𝑥,𝑦)|2d𝑥d𝑦 = 1. 
Here 𝜌(𝑥,𝑦) denotes the local equilibrium density, and 𝜌1 is the density of silica. The transverse profiles 
span the entire cross-section of the cladding and may also reach into thin coating layers [3,4]. Each 
mode is characterized by a cut-off frequency Ω𝑚, below which it may not propagate in the axial 
direction. The cut-off frequencies of modes relevant to this work are on the order of 100 MHz. Due to 
the lack of radial symmetry in the PM fiber cross-section, the displacement profiles 𝒖𝑚(𝑥,𝑦) are 
generally more complex than those of corresponding modes in standard, single-mode fibers [5,6]. For 
example, Fig. 1(b) shows the normalized transverse profile of the density oscillations magnitude 
∇ ∙ 𝒖𝑚(𝑥,𝑦) 𝜌(𝑥,𝑦), for one guided acoustic mode, with a cut-off frequency of 126 MHz. 

Consider two continuous optical pump tones of optical frequencies 𝜔𝑝 ± 1
2Ω, that co-propagate in the 

positive 𝒛 direction along a PM fiber. Here 𝜔𝑝 is a central optical frequency and Ω represents a radio-
frequency offset. The higher-frequency pump tone is polarized along the slow principal axis 𝒙, whereas 
the lower-frequency one is aligned with the fast axis 𝒚. We denote the complex magnitudes of the two 
waves (in Volts) as 𝐴1,2, respectively. The two pump tones induce an electro-strictive driving force per 
unit volume, given by [1,7]:

𝑭(𝑟,𝜙,𝑧,𝑡) =
1

4𝑛𝑐 𝒇(𝑟,𝜙)𝑃(Ω)exp(𝑗𝐾𝑧 ― 𝑗Ω𝑡) + 𝑐.𝑐. (1)

Here 𝑧 denotes the axial coordinate, 𝑡 stands for time, 𝑟 and 𝜙 are the radial and azimuthal transverse 
coordinates, respectively, 𝑐 is the speed of light in vacuum, and 𝑛 ≈ 𝑛𝑠,𝑓. Also, in Eq. (1) 𝑃(Ω) = 2𝑛𝜀0𝑐
𝐴1𝐴∗

2 [W] with 𝜀0 denoting the vacuum permittivity, and 𝐾 = ∆𝑛𝜔𝑝 𝑐 + 𝑛Ω 𝑐 ≈ ∆𝑛𝜔𝑝 𝑐 is the axial 
wavenumber of the electro-strictive driving force. Finally, the transverse profile 𝒇(𝑟,𝜙) of the driving 
force equals [1,7]: 



𝒇(𝑟,𝜙) = 2𝑎1
∂𝐸𝑇(𝑟)

∂𝑟 𝐸𝑇(𝑟) sin(2𝜙)𝒓 + cos(2𝜙)𝝓 .
(2)

In Eq. (2), 𝒓 and 𝝓 represent the unit vectors in the radial and azimuthal directions, respectively, and 𝐸𝑇
(𝑟) [m-1] is the normalized transverse profile of the optical mode which is assumed to be the same for 
both principal axes. The optical mode profile is normalized to 2𝜋∫ |𝐸𝑇(𝑟)|2𝑟d𝑟 = 1. The coefficient 𝑎1 
is drawn from elements of the photo-elastic tensor 𝒑 of silica: 𝑎1 = ― 𝑛4(𝑝11 ― 𝑝12) = 0.66 [5,7]. 

   

Supplementary Figure 1. (a): Schematic cross-section of a panda-type, PM fiber with a thin coating layer. (b): 
Calculated normalized transverse profile of the density oscillations magnitude for one guided acoustic mode of a 
coated PM fiber, with a cut-off frequency of 126 MHz. (c): Schematic illustration of frequency and wavenumber 
conservation in inter-modal forward SBS in a PM fiber. (d): Schematic illustration of photo-elastic cross-
polarization switching of an optical probe wave, due to guided acoustic waves that are stimulated in inter-modal 
forward SBS. The scattering of the probe wave is non-reciprocal: It may take place for probe waves of specific 
optical frequencies that counter-propagate with respect to the inter-modal forward SBS pumps. Probe waves of 
the same frequencies that co-propagate with the pumps are unaffected due to wavenumbers mismatch. (e): 
Schematic illustration of cross-polarization switching of a probe wave through Kerr four-wave mixing with the two 
forward SBS pump waves. The process adds up with the contribution of photo-elastic scattering. (f): Phasor 
addition of nonlinear coefficients of inter-modal Kerr effect four-wave mixing and forward SBS [8]. 



The electro-strictive driving force may stimulate the oscillations of guided acoustic modes of the PM 
fiber. Effective stimulation requires that the acoustic mode should match the frequency Ω and axial 
wavenumber 𝐾 of the driving force [1,5,7]. This condition can be met close to the modal cut-off, Ω ≈
Ω𝑚 [1,5,7] (see Fig. 1(c)). The axial wavenumber 𝐾 is of the order of 1,000 rad×m-1. This value is 2-3 
orders of magnitude larger than the axial acoustic wavenumbers in intra-modal forward SBS, such as 
in standard single-mode fibers [5,6]. Nevertheless, 𝐾 remains much smaller than the wavenumbers of 
bulk acoustic waves of the same frequency Ω in the silica cladding or the strain rods [1]. Therefore, the 
acoustic waves involved in inter-modal forward SBS are almost entirely transverse. The material 
displacement 𝒖𝑚 is largely confined to the transverse plane as well. 

The displacement (in meters) of acoustic mode 𝑚 stimulated by the electro-strictive driving force per 
unit volume 𝑭 can be expressed as: 

𝑼𝑚(𝑥,𝑦,𝑧,𝑡) = 𝐵𝑚(Ω)𝒖𝑚(𝑥,𝑦)exp(𝑗𝐾𝑧 ― 𝑗Ω𝑡) +𝑐.𝑐., (3)

with a modal magnitude 𝐵𝑚(Ω) [m2] that is given by: 

𝐵𝑚(Ω) =
1

4𝑛𝑐𝜌1

∬ 𝒖†
𝑚(𝑥,𝑦) ⋅ 𝒇(𝑥,𝑦)d𝑥d𝑦
Ω2

𝑚 ― Ω2 ― 𝑗Γ𝑚Ω
𝑃(Ω) =

1
4𝑛𝑐𝜌1

𝑄(𝑚)
𝐸𝑆 𝐻𝑚(Ω)𝑃(Ω)

(4)

The modal magnitude depends on frequency according to 𝐻𝑚(Ω) ≡ 1 Ω2
𝑚 ― Ω2 ― 𝑗Γ𝑚Ω . It is 

maximal at the modal cut-off frequency, Ω = Ω𝑚. Γ𝑚 denotes the modal linewidth, which also signifies 
the decay rate of acoustic energy. The linewidth is determined by dissipation in silica, strain rods and 
coating, and also by the transmission of acoustic energy towards surrounding media. This latter 
dependence forms the basis of forward SBS sensors of coatings and liquids outside the fiber cladding, 
where light cannot reach [9]. The displacement magnitude of the stimulated acoustic mode scales with 
the overlap integral 𝑄(𝑚)

𝐸𝑆 ≡ ∬ 𝒖†
𝑚(𝑥,𝑦) ⋅ 𝒇(𝑥,𝑦)d𝑥d𝑦 between the transverse profiles of modal 

displacement and driving force [1,5,7]. 

The material displacement of the stimulated acoustic modes is associated with strain in the fiber. Strain, 
in turn, gives rise to perturbations of the dielectric tensor elements, through the mechanism of photo-
elasticity [5.7]. Since the optical fields as well as the acoustic displacements are almost entirely 
transverse, the analysis may be restricted to a 2×2 dielectric perturbations tensor in the transverse plane 
only. For the purpose of this study, the off-diagonal term of the dielectric perturbations tensor is the 
most relevant: 

𝛿𝜀𝑚,𝑥𝑦(𝑥,𝑦,𝑧,𝑡) = 𝐵𝑚(Ω)𝜇𝑚,𝑥𝑦(𝑥,𝑦)exp(𝑗𝐾𝑧 ― 𝑗Ω𝑡) +𝑐.𝑐., (5)

where: 

𝜇𝑚,𝑥𝑦(𝑥,𝑦) = ― 𝑛4𝑝44
∂𝑢𝑚,𝑥

∂𝑦 +
∂𝑢𝑚,𝑦

∂𝑥 .
(6)

In Eq. (6), 𝑝44 is an element of the photo-elastic tensor 𝒑 of silica, ― 𝑛4𝑝44 = 𝑎1 2 (0.33 in silica), 
and 𝑢𝑚,𝑥, 𝑢𝑚,𝑦 are the 𝒙 and 𝒚 components of the normalized displacement profile of the acoustic mode 
𝒖𝑚, respectively. The effect of the acoustic mode on the propagation of optical waves scales with the 
spatial overlap integral between the transverse profiles of perturbations to the dielectric tensor element 
and the optical mode: 

𝛿𝜀𝑚,𝑥𝑦(𝑧,𝑡) = 𝐵𝑚(Ω) 𝜇𝑚,𝑥𝑦(𝑥,𝑦)|𝐸𝑇(𝑥,𝑦)|2d𝑥d𝑦 exp(𝑗𝐾𝑧 ― 𝑗Ω𝑡) + 𝑐.𝑐.

= 𝐵𝑚(Ω)𝑄(𝑚)
𝑃𝐸 exp(𝑗𝐾𝑧 ― 𝑗Ω𝑡) + 𝑐.𝑐.

(7)

Here we have defined the overlap integral: 𝑄(𝑚)
𝑃𝐸 ≡ ∬ 𝜇𝑚,𝑥𝑦(𝑥,𝑦)|𝐸𝑇(𝑥,𝑦)|2d𝑥d𝑦 [m-2]. 



The photo-elastic perturbations couple optical power between the two pump tones. Let us denote the 
power of the pump waves of frequencies 𝜔𝑝 ± 1

2Ω as 𝑃1,2(𝑧) = 2𝑛𝜀0𝑐|𝐴1,2(𝑧)|2 [W]. Neglecting linear 
losses over the comparatively short fiber lengths of interest, the power levels change along the fiber 
according to [1]: 

d𝑃1(𝑧)
d𝑧 = ―2Im

𝑚
𝛾𝑚(Ω) 𝑃1(𝑧)𝑃2(𝑧),

(8)

d𝑃2(𝑧)
d𝑧 = +2Im

𝑚
𝛾𝑚(Ω) 𝑃1(𝑧)𝑃2(𝑧).

(9)

In Eq. (8) and Eq. (9) we have defined the opto-mechanical nonlinear coefficient of forward SBS 𝛾𝑚(Ω)
, in units of W-1m-1: 

𝛾𝑚(Ω) =
𝑘𝑝𝑄(𝑚)

𝐸𝑆 𝑄(𝑚)
𝑃𝐸

8𝑛2𝑐𝜌1
𝐻𝑚(Ω) =

𝑘𝑝𝑄(𝑚)
𝐸𝑆 𝑄(𝑚)

𝑃𝐸

8𝑛2𝑐𝜌1

1
Ω2

𝑚 ― Ω2 ― 𝑗Γ𝑚Ω
.

(10)

Here 𝑘𝑝 is the vacuum wavenumber at the optical frequency 𝜔𝑝. The forward SBS coefficient assumes 
its largest magnitude at the cut-off frequency: 

𝛾0𝑚 ≡ 𝛾𝑚(Ω𝑚) = 𝑗
𝑘𝑝𝑄(𝑚)

𝐸𝑆 𝑄(𝑚)
𝑃𝐸

8𝑛2𝑐𝜌1Γ𝑚Ω𝑚
.

(11)

Since the imaginary part of the forward SBS coefficient is positive, Eq. (8) and Eq. (9) suggest that the 
higher-frequency optical pump wave is attenuated in the process, whereas the lower-frequency one is 
amplified. The modal linewidths Γ𝑚 are typically of the order of few MHz, at most. We may therefore 
approximate Ω ≈ Ω𝑚 within the modal linewidths, leading to: 

𝛾𝑚(Ω) ≈ 𝛾0𝑚
1

1 + 2𝑗 (Ω𝑚 ― Ω) Γ𝑚
. (12)

In addition to the coupling of power between the two pump tones, the acoustic waves generated in the 
inter-modal forward SBS process may also scatter an optical probe wave from one principal axis to the 
other [1] (see Fig. 1(d)). Cross-polarization switching via forward SBS adds up with similar scattering 
via the Kerr effect [8] (Fig. 1(e)). Both contributions are the most efficient for a specific offset in optical 
frequencies between pumps and probe [1]:

∆𝜔𝑜𝑝𝑡 =
2𝑛
∆𝑛 Ω. (13)

The optimal offset ∆𝜔𝑜𝑝𝑡 is simply proportional to the detuning Ω between the two pump tones. In 
panda-type PM fibers, the optimal frequency difference is on the order of THz [1]. Note that ∆𝜔𝑜𝑝𝑡 may 
vary with fiber position due to residual fluctuations in the PM fiber birefringence ∆𝑛. Polarization 
switching of probe light is non-reciprocal: Probe waves that counter-propagate with respect to the pump 
tones may be partially scattered to the orthogonal polarization, whereas co-propagating probe waves of 
the same frequencies are unaffected due to wavenumbers mismatch [1] (see Fig. 1(d)). 

Let us consider an optical probe wave of frequency 𝜔𝑠𝑖𝑔 that is polarized along the fast 𝒚 axis and 
propagates in the ― 𝒛 direction. We denote the magnitude of the probe wave as 𝐴𝑠𝑖𝑔,𝑦. The probe is 
partially coupled to a new field component 𝐴𝑠𝑖𝑔,𝑥 of 𝒙 polarization and optical frequency 𝜔𝑠𝑖𝑔 ― Ω, 
which also propagates in the ― 𝒛 direction. The cross-polarization coupling is typically weak, and we 
may assume that 𝐴𝑠𝑖𝑔,𝑦 remains nearly constant and that |𝐴𝑠𝑖𝑔,𝑦| ≫ |𝐴𝑠𝑖𝑔,𝑥| at all fiber positions. At that 
condition, we obtain:



―
d𝐴𝑠𝑖𝑔,𝑥(𝑧,Ω)

d𝑧 = 𝑗
𝑚

𝛾𝑚(Ω) + 𝛾𝐾𝑒𝑟𝑟 𝑃(Ω)𝐴𝑠𝑖𝑔,𝑦exp(𝑗∆𝑘 ∙ 𝑧).
(14)

The negative sign on the left-hand side represents propagation of the probe wave in the negative ― 𝒛 
direction. In Eq. (14), 𝛾𝐾𝑒𝑟𝑟 [W-1m-1] is the nonlinear coefficient that quantifies the Kerr effect. Note 
that unlike the forward SBS coefficient, 𝛾𝐾𝑒𝑟𝑟 is purely real and does not depend on the difference Ω 
between the optical pump frequencies. The magnitude of the overall effective nonlinear coefficient, 
𝛾𝑒𝑓𝑓(Ω) ≡ ∑𝑚 𝛾𝑚(Ω) + 𝛾𝐾𝑒𝑟𝑟, is determined by phasor addition of the forward SBS and Kerr effect 
contributions [8] (Fig. 1(f)). Also in Eq. (14), the wavenumber mismatch term ∆𝑘 is defined as [1]: 

∆𝑘 = ∆𝑛 𝜔𝑠𝑖𝑔 ― 𝜔𝑝 ― ∆𝜔𝑜𝑝𝑡 𝑐 . (15)

Polarization switching of the probe wave is wavenumber matched when the difference in optical 
frequencies (𝜔𝑠𝑖𝑔 ― 𝜔𝑝) between pumps and probe equals the optimal value ∆𝜔𝑜𝑝𝑡 of Eq. (13) [1]. 
Following propagation along a uniform fiber section of length ∆𝑧, the magnitude of the scattered probe 
wave component is given by: 

𝐴𝑠𝑖𝑔,𝑥(∆𝑧,Ω) = ―𝑗𝛾𝑒𝑓𝑓(Ω)𝑃(Ω) ∙ sinc
∆𝑘 ∙ ∆𝑧

2 exp 𝑗
∆𝑘 ∙ ∆𝑧

2 𝐴𝑠𝑖𝑔,𝑦∆𝑧.
(16)

The cross-polarization switching of the probe wave varies with its optical frequency according to 
birefringence-related wavenumber matching considerations, and with the offset Ω between the two 
pump tones according to the inter-modal forward SBS spectrum. The above dependence on ∆𝑧 is strictly 
valid only for continuous-wave pump tones. When pump pulses are used, the finite lifetime of acoustic 
waves stimulation leads to differences between the contributions of Kerr effect and photo-elastic 
scattering (see greater detail in Supplementary Information 3 below). The exact spectrum of the probe 
wave scattering becomes time-variant. However, the decrease in scattering strength with |∆𝑘| remains. 

The nonlinear coefficient 𝛾𝑒𝑓𝑓(Ω) may be retrieved through measurements of 𝐴𝑠𝑖𝑔,𝑥 at 𝑧 = 0, the input 
end of the two pump tones and the output end of the probe wave. When a pulsed amplitude envelope is 
overlayed on top of the two pump tones, the measurement of 𝐴𝑠𝑖𝑔,𝑥 following a delay of 𝜏 seconds may 

be related to the local 𝛾𝑒𝑓𝑓(Ω) at a position 𝑧 = 1
2𝑣𝑔𝜏. Here 𝑣𝑔 denotes the group velocity of light in the 

fiber. The spatial resolution of the analysis is given by ∆𝑧 = 1
2𝑣𝑔∆𝜏, where ∆𝜏 is the pulse duration.

2. Nonlinear polarization switching of an optical probe wave as a function of its wavelength and 
the frequency difference between the two pump waves.

Figure 2(a) presents a two-dimensional scan of the normalized cross-polarization switching of the probe 
wave as a function of both its wavelength 𝜆𝑠𝑖𝑔 and the difference Ω between the optical frequencies of 
the two pump waves. Measurements were taken on a 60 meters long section of PM fiber coated with 
polyimide. The central wavelength of the two pump waves was 1550 nm. (For details of the 
measurement setup, see Main Text). The intensity of the pump tones was modulated by 600 ns long 
pulses. Data was collected when the pumps pulse was in complete overlap with the section of fiber 
under test (see Supplementary Information 3 below). Inter-modal forward SBS in that section has a 
resonance frequency at 123 MHz (see Main Text). The difference between the probe wavelength of 
maximum polarization switching and that of the pumps increases with Ω, as predicted by Eq. (13) above. 

Figure 2(b) shows the measured normalized nonlinear coefficient 𝛾𝑒𝑓𝑓(Ω). For each frequency Ω, the 
reading at the probe wavelength 𝜆𝑠𝑖𝑔 of maximum scattering was used. A baseline of probe wave 
polarization switching is observed for all values of Ω, due to Kerr effect four-wave mixing. The additional 
contribution of photoelastic scattering due to stimulated acoustic waves is observed near 124 MHz. 
The phasor addition of the two contributions manifests in a maximum spectral slope at the frequency 



of the inter-modal forward SBS resonance. Figure 2(c) shows the normalized magnitude of the probe 
wave scattering as a function of 𝜆𝑠𝑖𝑔, for Ω = 2π123.5 MHz. Maximum scattering is observed at a probe 
wavelength of 1543.5 nm. The scattering magnitude follows a sinc squared dependence on the 
detuning of the probe wavelength from its optimum value, as suggested by Eq. (16). 

 

Supplementary Figure 2. (a): Measured normalized magnitude of an optical probe wave that is nonlinearly 
scattered from the fast axis to the slow axis of a PM fiber, as a function of its wavelength and the difference in 
frequencies Ω between two pump tones. A 60 meters-long section of fiber coated with polyimide was used. The 
pump waves propagated in the positive 𝒛 direction, whereas the probe wave was launched from the opposite end 
and propagated in the ― 𝒛 direction. The mean wavelength of the pump waves was 1550 nm. The duration of the 
pumps pulse was 600 ns. Data was sampled when the pumps pulse was in complete overlap with the section under 
test (see Section 3 below). The difference between the probe wavelength of maximum switching and that of the 
pumps scales with Ω, as anticipated. (b): Measured normalized nonlinear coefficient 𝛾𝑒𝑓𝑓 as a function of 
frequency Ω. For each frequency, data at the probe wavelength of maximum polarization switching was used. 
Nonlinear scattering of the probe wave is observed at all values of Ω due to Kerr effect four-wave mixing. 
Additional contribution due to photoelastic scattering by stimulated acoustic waves is obtained near 124 MHz. 
The phasor addition of the two contributions manifests in a maximum spectral slope at the frequency of the inter-
modal forward SBS resonance. (c): Measured normalized magnitude of the nonlinear probe wave scattering as a 
function of wavelength, with Ω set to 2π123.5 MHz. Scattering is the strongest at a wavelength of 1543.55 nm 
and follows a sinc squared dependence on detuning from this optimum value as suggested by Eq. (16).

3. Interplay of probe wave scattering contributions due to Kerr effect four-wave mixing and 
stimulated acoustic waves. 

Figure 3(a) illustrates the build-up of stimulated acoustic waves along a fiber section, at several 
instances following the arrival of two pulsed pump tones. Figure 3b presents corresponding 
measurements of nonlinear scattering spectra of a counter-propagating probe wave. Measurements were 
taken over a 60 meters-long section of PM fiber coated with polyimide, using 600 ns-long pulses. As 



the leading edge of the pumps pulse reaches the section under test (noted as (1) in both panels), 
scattering of the probe wave is dominated by the Kerr effect. Scattering is therefore independent of the 
frequency difference Ω between the two pump waves. Following 300 ns (instance (2) in panel (a) and 
trace (2) in panel (b)), the inter-modal Brillouin stimulation of guided acoustic modes near 123 MHz 
and 133 MHz frequencies becomes appreciable, and photo-elastic contributions appear in the probe 
scattering spectrum. 

Supplementary Figure 3. (a): Illustrations of pulsed envelope of two pump tones along a section of fiber under 
test, and of the normalized magnitude of acoustic waves generated in an inter-modal forward SBS process. Five 
instances are shown: (1) immediately upon arrival or the pumps pulse; (2) during the build-up of the stimulated 
acoustic waves; (3) when the acoustic waves magnitude approaches its potential steady-state value; (4) as the 
pumps pulse is leaving the section under test and the acoustic waves begin to decay; and (5) towards the end of 
the acoustic waves decay. (b): Measured normalized magnitude of probe wave nonlinear switching as a function 
of the frequency difference Ω between the two pump tones, in a 60 meters long section of PM fiber coated with 
polyimide. The duration of pumps pulses was 600 ns. The five traces show data taken at different times delays 
following the arrival of the leading edge of pulsed pump tones: 100, 300, 600, 800 and 1300 ns. The five delays 
correspond to the different stages of the process illustrated in panel (a). Scattering of the probe wave due to Kerr 
effect four-wave mixing is instantaneous: it increases with time as the leading edge of the pulsed pumps fills the 
length of fiber under test and decreases as the trailing edge leaves that section (trace (1)). The contribution due to 
forward SBS builds up and decays more slowly due to acoustic modal lifetimes. The phasor addition of the Kerr 
effect and photo-elastic contributions manifests in a maximum spectral slope at the frequencies of inter-modal 
forward SBS resonance (traces (2) through (4)). Towards the end of the process (trace (5)), contributions of photo-
elastic scattering alone appear as spectral peaks at the same frequencies. 

The build-up of the acoustic waves manifests in a maximum spectral slope in the probe wave scattering 
near the two resonance frequencies, due to the interplay of Kerr and photo-elastic contributions. In 
addition, the baseline of scattering magnitude increases, as the pumps pulse is filling the entire length 
of the fiber section under test. The scattering magnitude reaches a maximum following 600 ns (3), when 
the Brillouin stimulation of acoustic waves approaches its steady-state magnitude. When the pumps 
pulse begins to leave the fiber section (time stamp (4), following 800 ns), the Kerr effect contribution 
drops accordingly while the stimulated acoustic waves decay more slowly according to their lifetimes. 

Finally, the Kerr baseline vanished completely when the pumps pulse had left the fiber entirely ((5), 
1300 ns). The scattering of the probe wave due to stimulated acoustic waves persists for additional 
hundreds of ns. Note that the scattering spectrum at this stage takes up the peaks shape that is 
characteristic of SBS alone. Peaks in trace (5) appear at the same frequencies where maximal spectral 
slopes are observed in traces (2) through (4). The continued oscillations of stimulated acoustic waves 



after the pumps pulse had ended lead to non-local artifacts in the distributed analysis of forward 
scattering and restrict its spatial resolution to the order of tens of meters. This limitation does not affect 
the analysis of Kerr forward scattering alone, when Ω is detuned from forward SBS resonances.
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