method library and its application to solvation energy calculations at virus-scale

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

A high-performance and highly reusable fast multipole

Tingyu Wang

Department of Mechanical and Aerospace Engineering The George Washington University

N-body problems

- Particles interact with each other: stars, galaxies, atoms, data points
 - Astrophysics
 - Molecular dynamics
 - Machine learning

N-body problems

• Compute potentials induced by all charges

$$\phi_i = \sum_{j=1}^N G\left(\mathbf{x}_i, \mathbf{x}_j\right) q_j \quad i = 1, \dots, N$$

- Direct method: dense mat-vec, $\mathcal{O}(N^2)$
- 1986: Barnes-Hut algorithm (tree-code): $\mathcal{O}(N \log N)$
- 1987: Fast Multipole method (FMM): $\mathcal{O}(N)$
- Top 10 algorithms of 20th century (*Dongarra* & *Sullivan, 2000*)

position
$$\mathbf{x}_i$$
 charge q_j
kernel function, for example, $G(\mathbf{x}, \mathbf{y}) = \frac{1}{\|\mathbf{x} - \mathbf{y}\|}$

Advancement of FMM over the past 30 years

Astrophysics Molecular Dynamics Computer Science Applied Mathematics

Figure from: Dr. Yokota's presentation

Challenges

- Many high-performance implementations are experimental and thus not easy to use
 - Users need to have some expertise in programming to compile them
 - Applications have to written in low-level languages (C, C++, Fortran)
 - Open-source but no-longer actively maintained

• Lack a standard open-source FMM package that people outside of the FMM community can easily use

Motivation

- Develop ExaFMM that maximizes both performance and usability
 - Understand and combine many individual contributions in this field
 - Carefully design the software to make it highly reusable
 - Portable
 - Extensible
 - Provide interfaces in high-productivity language

Offer users an easy entry to this intricate algorithm

Introduction to kernel-independent FMM

FMM Algorithm

• Idea 1: a tree structure that partitions the domain adaptively

N particles

- Idea 2: split all interactions into near- and far-field contributions
 - Evaluate the near-field component directly (particle-to-particle)
 - Evaluate the far-field contribution using low-rank methods (box-to-box)

Each leaf box has O(1) particles

8	⊗	⊗	⊗	⊗	⊗
⊗	8	8	8	8	8
			8	8	⊗
			8	⊗	⊗
			⊗	⊗	⊗
⊗	8	8	8	⊗	8

FMM Algorithm

• Idea 3: interaction list

 $\mathcal{V}(B)$

 $\mathcal{V}(P(B))$

 $\mathcal{V}(P(P(B)))$

Kernel-independent FMM (KIFMM)

• Low rank representation in KIFMM: equivalent charges (on the red boxes below)

represent the influence from the charges in B to the potential in B's far-field.

downward equivalent density (local expansion) + source points --- downward check surface downward equivalent surface $\mathbf{x}^{B,d}, \phi^{B,d}$ 2 B $\mathbf{y}^{B,d}, q^{B,d}$

represent the influence from the charges in B's far-field to the potential in B

number of discretization points on each side

The complete algorithm

- Construct the tree ullet
- P2M (particle-to-multipole) for all leaf boxes
- M2M in post-order tree traversal
- M2L for all boxes
- L2L in pre-order tree traversal
- L2P (local-to-particle) for all leaf boxes
- P2P (particle-to-particle) for all leaf boxes (near-field interactions)

ExaFMM's features and performance

ExaFMM software features

- ExaFMM-t: <u>https://github.com/exafmm/exafmm-t</u>
 - Laplace, Yukawa, Helmholtz kernels
 - Compute both potential and gradient

• Easy to extend to new kernels

- Moderately object-oriented, easy to understand
 - Few user-defined types (class Node, Body and Fmm)
 - Simple data structures
- Portable
 - Only use C++ STL containers
 - Standard dependencies:
 - BLAS, LAPACK
 - FFTW3
 - OpenMP
- Straightforward parallelism
 - M2M, L2L: OpenMP task
 - Other operators: OpenMP loop

ExaFMM software features

• Concise in terms of lines of code

code	# lines
exafmm-t	6k
TBFMM	16k
ScalFMM	70k
PVFMM	20k

High-level interface in Python

```
import exafmm.laplace as laplace
# create sources and targets
# src_coords, src_charges are NumPy arrays
sources = laplace.init_sources(src_coords, src_charges)
targets = laplace.init_targets(trg_coords)
fmm = laplace.LaplaceFmm(p=10, ncrit=200, filename="laplace.dat")
tree = laplace.setup(sources, targets, fmm)
# trg_values is a NumPy array with potentials and gradients
trg_values = laplace.evaluate(tree, fmm)
```

- Kernel, tree, list and full FMM tests

• Access almost all C++ data structure via Python interface

• Multipole expansion coefficients as NumPy arrays

• Interaction list as a Python list

Optimizations

• Vectorization on P2P (near-field interactions)

- Performance improvement due to manual vectorization
 - Test case: P2P with 2×10^4 particles
 - 1 core of Intel Xeon 6148 CPU, support AVX-512

	Time with auto- vectorization (s)	Time with manual-vec (s)	Speedup
Laplace	1.19	0.124	9.6
Yukawa	4.64	0.308	15.1
Helmholtz	11.9	0.745	16.0

Single-precision

Double-precision

	Time with auto- vectorization (s)	Time with manual-vec (s)	Speedup
Laplace	1.37	0.271	5.1
Yukawa	5.58	0.729	7.7
Helmholtz	13.8	1.77	7.8

Optimizations

• Using FFT to accelerate M2L, M2L is memory-bound

- Performance improvement due to cache optimization on Hadamard (element-wise) product in M2L (from PVFMM)
 - Perform M2L interaction in sibling groups
 - Test case: 10^6 particles randomly distributed in unit cube, 5-level tree, on Intel i9-7940X CPU

Ρ	time w/o optimization (s)	time with optimization (s)	Speedup
4	0.16	0.064	2.5
7	1.99	0.52	3.8
10	6.44	1.04	6.2

Hadamard product time

Convergence

- Using all three kernels available in ExaFMM
- 1 million particles:
 - Uniform distribution
 - Non-uniform distribution
- FMM order p from 4 to 16
- Observed exponential convergence

Uniform distribution

Non-uniform distribution

Scalability

- 64-core Intel Xeon Phi 7210 CPU, support AVX-512
- Laplace problem with 10^6 particles
- tree construction time not included
- Two accuracy settings:
 - P = 4
 - P = 16

p = 4, single-precision

- parallel efficiency:
 - Single-precision: 52% with 32 threads
 - Double-precision: 85% with 32 threads

Compare with other codes

- Problem sizes: 10^4 to 10^6 particles
- 14-core Intel i9-7940X CPU
- three levels of accuracy
 - achieve 4, 7, 10 digits of accuracy in potential
- Optimal N_{crit} for each case
- Total time: include tree construction
- Evaluation time: only include FMM operators

	exafmm-t	exafmm-beta	PVFMM	ScalFMM
Expansion Type	equivalent charges	spherical harmonics	equivalent charges	interpolation
Threading Model	OpenMP	Intel TBB	OpenMP	OpenMP
SIMD	AVX-512	AVX-512	AVX	AVX-512
Language	C++	C++	C++	C++

FMM-accelerated Boundary Element method in biomolecular electrostatic applications

Joint work with:

- Dr. Christopher Cooper (USM)
- Dr. Timo Betcke (UK)

Boundary Element Method (BEM)

- Partial differential equation in domain Ω with Dirichlet boundary conditions on Γ $\Delta u(\mathbf{x}) = 0 \quad \text{in } \Omega$

$$u(\mathbf{x}) = f$$
 on Γ

• Boundary integral formulation

$$u(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \frac{\partial}{\partial \mathbf{n}} u(\mathbf{y}) d\Gamma(\mathbf{y}) - \int_{\Gamma} \frac{\partial}{\partial \mathbf{n}} G(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\Gamma(\mathbf{y})$$

• Limit **x** to the boundary:

$$\frac{1}{2}u(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \frac{\partial}{\partial \mathbf{n}} u(\mathbf{y}) d\Gamma(\mathbf{y}) - \int_{\Gamma} \frac{\partial}{\partial \mathbf{n}} G(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\Gamma(\mathbf{y})$$

• Rewrite using boundary operators notations:

$$[V]\frac{\partial}{\partial \mathbf{n}}u = \left[\frac{I}{2} + K\right]u$$

$$[Vu](\mathbf{x}) := \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\Gamma(\mathbf{y})$$
$$[Ku](\mathbf{x}) := \int_{\Gamma} \frac{\partial}{\partial \mathbf{n}} G(\mathbf{x}, \mathbf{y}) u(\mathbf{y}) d\Gamma(\mathbf{y})$$

Single-layer potential boundary operator

Double-layer

Green's function

in Ω

on Γ

Boundary Element Method (BEM)

• With Galerkin discretization

$$[\mathbf{V}]\left[\frac{\partial u}{\partial \mathbf{n}}\right] = \left[\frac{1}{2}\mathbf{M} + \mathbf{K}\right][u]$$

where

$$V_{ij} = \int_{\Gamma} \psi_i(\mathbf{x}) \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \phi_j(\mathbf{y}) d\Gamma(\mathbf{y}) d\Gamma(\mathbf{x})$$

$$\approx \sum_t \psi_i(\mathbf{x}_t) \left[\sum_s G(\mathbf{x}_t, \mathbf{y}_s) \phi_j(\mathbf{y}_s) w_s \right] w_t$$
regula

Bottleneck: V is dense, many mat-vec in the iterative solver Conventional BEM: $\mathcal{O}(N^2)$ in time and space FMM-BEM: $\mathcal{O}(N)$

ar Gauss quadrature points

Bempp

- Open-source BEM platform
 - Python interface
 - OpenCL computational backends
 - Allows just-in-time compilation

Interface with Bempp

Singular integrals

$$Ax = P_{\text{test}}^T (G - C) P_{\text{trial}} x + Sx$$

- A: Matrix representation of a discretized boundary operator
- G: all interactions between all regular quadrature points (FMM)
- C: remove interactions between adjacent panels
- S: correct singular integral contributions

Bempp-ExaFMM in Biomolecular Electrostatic Applications

- What is solvation effect?
 - Solvation is the interaction between a solvent (water) and molecules or ions of a solute (protein).
 - Among various interactions, electrostatic interaction is one of the most important component.
- Why it is import?
 - Understand problems such as protein binding and folding, drug delivery, ...
- How to model the electrostatic interactions:
 - Treat water molecules explicitly: ex. Molecular dynamics
 - 4k compute nodes to simulate a H1N1 virus (*Durrant, 2020*)
 - Represent water as continuum medium: implicit solvent model
 - Classical theory of continuum electrostatics applies, we can use BEM

Bempp-ExaFMM to make virus-scale simulations accessible to every researcher

A. Warshel et al. (2006)

Implicit solvent model

Solute Region Ω_1 : proteins Solvent Region Ω_2 : water with ions

• Governing equations:

$$\Delta \phi_1 = \frac{1}{\epsilon_1} \sum_k q_k \delta\left(\mathbf{r}, \mathbf{r}_k\right) \quad \text{in } \Omega_1$$
$$\Delta - \kappa^2 \phi_2 = 0 \quad \text{in } \Omega_2$$

with interface conditions on Γ :

$$\phi_1 = \phi_2$$
$$\epsilon_1 \frac{\partial \phi_1}{\partial \mathbf{n}} = \epsilon_2 \frac{\partial \phi_2}{\partial \mathbf{n}}$$

Compute solvation energy from the reaction potential

$$\Delta G_{\text{solv}}^{\text{polar}} = \frac{1}{2} \sum_{k=1}^{N_q} q_k \phi_{\text{reac}} \left(\mathbf{r}_k \right)$$

with $\phi_{\text{reac}} = \phi_1 - \phi_{\text{Coulomb}}$

Boundary integral formulations

• Direct formulation (Yoon and Lenhoff, 1990), poorly conditioned but cheaper per iteration

$$\begin{bmatrix} \frac{1}{2}I + K_L & -V_L \\ \frac{1}{2}I - K_Y & \frac{\epsilon_1}{\epsilon_2}V_Y \end{bmatrix} \begin{bmatrix} \phi_{1,\Gamma} \\ \frac{\partial}{\partial \mathbf{n}}\phi_{1,\Gamma} \end{bmatrix} = \begin{bmatrix} \frac{1}{\epsilon_1}\sum_{k=1}^{N_q}\frac{q_k}{4\pi|\mathbf{r}_{\Gamma} - \mathbf{r}_k|} \\ 0 \end{bmatrix}$$

• Derivative formulation with exterior field (Lu et al., 2006), well-conditioned but operators are more involved

$$\begin{bmatrix} \frac{1}{2} \left(1 + \frac{\epsilon_1}{\epsilon_2} \right) I - K_Y + \frac{\epsilon_1}{\epsilon_2} K_L & V_Y - V_L \\ \frac{\epsilon_1}{\epsilon_2} D_Y - \frac{\epsilon_1}{\epsilon_2} D_L & \frac{1}{2} \left(1 + \frac{\epsilon_1}{\epsilon_2} \right) I + \frac{\epsilon_1}{\epsilon_2} T_Y - T_L \end{bmatrix} \begin{bmatrix} \phi_{2,\Gamma} \\ \frac{\partial}{\partial \mathbf{n}} \phi_{2,\Gamma} \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^{N_q} \frac{q_k}{4\pi\epsilon_2 |\mathbf{r}_{\Gamma} - \mathbf{r}_k|} \\ \sum_{k=1}^{N_q} \frac{\partial}{\partial \mathbf{n}_r} \left(\frac{q_k}{4\pi\epsilon_2 |\mathbf{r}_{\Gamma} - \mathbf{r}_k|} \right) \end{bmatrix}$$

• Thanks to Bempp user-friendly interface, we can try multiple formulations in our study with modest effort.

Subscript L, Y denote Laplace and Yukawa kernels

$$G_L(\mathbf{x}, \mathbf{y}) = \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|},$$
$$G_Y(\mathbf{x}, \mathbf{y}) = \frac{e^{-\kappa |\mathbf{x} - \mathbf{y}|}}{4\pi |\mathbf{x} - \mathbf{y}|}$$

Code verification via mesh refinement studies

- Problem setup:
 - Sphere with an off-center charge
 - Real biomolecule: 5PTI
- 5 meshes with a constant refinement ratio
- Parameters
 - FMM order set to 10
 - 6 regular quadrature points
- Observed linear convergence with respect to number of elements in both formulations

Result comparison with trusted software

- 9 proteins and compare the computed solvation energy with APBS.
- APBS: finite-difference PB solver, the "standard" software in biophysics community
- Use 3 meshes to obtain an extrapolated solvation energy for each software

				APBS					Bempp		
ID	N_{atoms}	coarse	Error medium	fine	ΔG_{solv}	Order(1/h)	coarse	Error medium	fine	ΔG_{solv}	$\operatorname{Order}(1/N)$
1AJJ	513	4.40e-02	1.33e-02	4.00e-03	-266.15	1.73	2.75e-02	1.12e-02	4.59e-03	-268.67	1.29
1VJW	826	3.09e-02	1.45e-02	6.77e-03	-297.06	1.09	4.92e-02	2.23e-02	1.01e-02	-302.50	1.14
5PTI	892	3.68e-02	1.38e-02	5.14e-03	-311.69	1.42	5.12e-02	2.23e-02	9.67 e-03	-314.34	1.20
1R69	997	4.31e-02	2.10e-02	1.02e-02	-261.02	1.04	5.09e-02	2.34e-02	1.08e-02	-265.02	1.12
1A2S	1272	5.25e-02	2.40e-02	1.10e-02	-456.56	1.13	4.21e-02	1.93e-02	8.86e-03	-461.25	1.12
1SVR	1433	5.28e-02	2.21e-02	9.28e-03	-393.45	1.25	6.48e-02	2.89e-02	1.29e-02	-398.83	1.16
1A63	2065	4.51e-02	1.88e-02	7.82e-03	-559.39	1.26	5.82e-02	2.60e-02	1.16e-02	-567.24	1.16
1A7M	2804	4.13e-02	1.88e-02	8.53e-03	-524.29	1.14	4.93e-02	2.24e-02	1.02e-02	-531.48	1.14
1F6W	8247	6.45e-02	2.78e-02	1.20e-02	-1277.51	1.21	4.18e-02	1.80e-02	7.76e-03	-1301.08	1.22

The difference in the solvation energy is between 0.8% and 1.8% across 9 proteins.

Performance Analysis using a sphere

- Problem setup:
 - Spherical molecule with 100 charges inside
 - Five discretizations: with number of elements from 8k to 2m
 - 6 quadrature points
 - FMM order set to 5

Time breakdown in GMRES

Time spent on 1 Laplace and Yukawa FMM call

Performance comparison with APBS

- 1RCX: 40k atoms, 130Å in diameter
- A fair comparison: reaching the same accuracy
- Mesh
 - Bempp: 4 meshes, 237k to 2m boundary elements
 - APBS: 3 meshes: Δx set to 0.78, 0.58, 0.44 A
- Error measured against the *extrapolated* solution
- Bempp-ExaFMM has a *better scaling* in both time and space

Crossover point: 3% error mark

Boundary element approach displays an advantage in

- solving bigger problems
- applications that require higher accuracy

Results for Zika virus

- Structure: 1.6m atoms, Diameter: ~ 470Å
- Mesh: 10m boundary elements
- Parameters:
 - 3 quadrature points per element
 - FMM order of 4 (achieving 4 digits of accuracy)
- Machine: 1 compute node with 40 cores (GWU pegasus)
- Derivative formulation: 2hr 20min total time, 80 min in GMRES
- < 1% difference compared to results from PyGBe (-117261.1 kcal/mol)

	$ig \Delta G_{ m solv} \ (m kcal/mol)$	total time (s)	assembly time (s)	GMRES time (s)	$\begin{array}{c} \mathrm{memory} \\ \mathrm{(GB)} \end{array}$	ŧ
direct derivative	-116587.5 -116254.9	$11005.4 \\ 8370.3$	$1534.5 \\ 3553.9$	$9470.9 \\4816.4$	$109.7 \\ 152.0$	

- N-body problem with 30 million particles:
 - 5s per Laplace FMM call
 - 13s per Yukawa FMM call

iterations

10518

Conclusion

- ExaFMM
 - High-order accurate, able to reach 12 digits of accuracy
 - Competitive single-node performance
 - reusable: portability, extensibility, simple dependencies, interfaces in high-productively languages
- Bempp-ExaFMM in biomolecular electrostatic applications:
 - Code Verification
 - Performance comparison with APBS
 - Perform virus-scale simulations on a Jupyter Notebook
 - Interactive computing: Testbed for studying different formulations, preconditioning