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Optimization details: 

General procedure for screening reactions: An oven-dried 10 mL glass vial was charged 

with Iodocyclo hexane (52.5 mg, 0.25 mmol), 4-bromomethyl benzoate (42.6 mg, 0.2 mmol), 

4CzIPN (3.1 mg, 2 mol%), tBu3N (111.2 mg, 3.0 eq), NiBr2
.L (10 mol%) and a PTFE-coated 

stirring bar and the glass vial was sealed with a PTFE septum. Under the positive pressure of 

argon, degassed solvent (2 mL) was added to the reaction vial. The reactions were placed in a 

temperature-controlled blue LED reactor (as shown in Figure S1) and the reaction mixture was 

irradiated with a 455 nm blue LED at 32 °C. After 40 h, a sample of this solution was analyzed 

by 1H NMR using benzyl alcohol as the internal standard to determine the yield of the reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Blue LED reactor with magnetic stirring plate 
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Table S1: Optimization of the Reaction Conditionsa 

 

a1a (0.25 mmol), 2a (0.2 mmol), 4CzIPN (2 mol%), tBu3N (3.0 eq), NiBr2 L1 (10 mol%), 1,4-dioxane (2 ml) at 32 

°C, 40 h b NMR yields using benzylalcohol as an internal standard. cIsolated yield.   
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X-ray Structure 

 

 

 

 

 

 

 

 

Figure S2: ORTEP of the X-ray crystal structure of 7 (trans). Thermal ellipsoids are drawn at a 20% 

probability level. 

 

Crystals of 7 (trans) for X-ray analysis were obtained from slow evaporation of 1:1 Methanol and 

Ethyl acetate at room temperature over 5 days. X-ray diffraction data were collected on a Bruker 

Kappa Apex-II CCD diffractometer at 296 K. 
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Table S2.  Crystal data and structure refinement for 7 (trans) 

 

  

 

  

Empirical formula  C16 H22 O3 

Formula weight  262.33 

Temperature  296(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P -1 

Unit cell dimensions a = 5.6173(18) Å = 95.098(10)°. 

 b = 11.605(4) Å = 95.073(10)°. 

 c = 11.772(4) Å  = 91.735(10)°. 

Volume 760.8(4) Å3 

Z 2 

Density (calculated) 1.145 Mg/m3 

Absorption coefficient 0.078 mm-1 

F(000) 284 

Crystal size 0.075 x 0.030 x 0.028 mm3 

Theta range for data collection 2.592 to 24.999°. 

Index ranges -6<=h<=6, -13<=k<=13, -13<=l<=13 

Reflections collected 17924 

Independent reflections 2674 [R(int) = 0.0853] 

Completeness to theta = 24.999° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.997 and 0.994 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2674 / 0 / 175 

Goodness-of-fit on F2 0.997 

Final R indices [I>2sigma(I)] R1 = 0.0526, wR2 = 0.1130 

R indices (all data) R1 = 0.1657, wR2 = 0.1631 

Extinction coefficient 0.024(5) 

Largest diff. peak and hole 0.135 and -0.147 e.Å-3 
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Mechanistic Studies: 

ON/OFF experiment: 

An oven-dried 10 mL glass vial was charged with iodocyclohexane (52.5mg, 0.25 mmol), 

methyl 4-bromobenzoate (43 mg, 0.2 mmol), 4CzIPN (3.1 mg, 2 mol%), nBu3N (111.2 mg, 

0.6 mmol), NiBr2.L1 (9.7 mg, 10 mol%), benzyl benzoate (0.2 mmol, internal standard), a 

PTFE-coated stirring bar and the glass vial was sealed with a PTFE septum. Under positive 

pressure of argon, degassed 1,4-dioxane (2 mL) was added to the reaction vial. The reactions 

were placed in a temperature-controlled blue LED reactor (as shown in Figure 1) and the 

reaction mixture was irradiated with a 455 nm blue LED. To monitor the reaction progress, a 

small aliquot was removed after specific time intervals and concentrated under reduced 

pressure, and analyzed by 1H NMR to determine the product yield. 
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Figure S3. ON/OFF experiment (The reaction profile during alternating irradiation shows 

that the reaction does only proceed in the presence of light). 
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Luminescence quenching experiments:  

Fluorescence spectra were collected on Fluorolog Horiba Jobin Yvon spectrofluorimeter. 

Samples for the quenching experiments were prepared in a 4 mL glass cuvette with a septum 

screw cap. 4CzIPN was irradiated at 470 nm and the emission intensity at 570 nm was 

observed. In a typical experiment, the emission spectrum of a 0.00025 M solution of 4CzIPN 

in 1,4-dioxane was collected in presence of different quenchers. 

 

Tributylamine: The Increasing amount of tributylamine (2.8 mM to 14 mM) were added to a 

solution of the photocatalyst 4CzIPN in 1,4-dioxane (0.00025 M). 

 

As shown below, a significant decrease of 4CzIPN luminescence was observed in presence of 

tributylamine, suggesting that the mechanism might operate via a canonical photoredox cycle 

consisting of a reductive quenching with tributylamine. 

 

450 500 550 600 650 700 750

0

1000000

2000000

In
te

n
s

it
y

 (
A

u
)

Wavelength (nm)

 Bu
3
N, 0 mM

 Bu
3
N, 2.8 mM

 Bu
3
N, 5.6 mM

 Bu
3
N, 8.4 mM

 Bu
3
N, 11.2 mM

 Bu
3
N, 14 mM

 

Figure S4. Luminescence quenching experiment of Bu3N in presence of 4CzIPN 
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Figure S5. Stern Volmer plot of nBu3N in presence of 4CzIPN 
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The Increasing amount of substrate 4-bromomethyl benzoate and iodo cyclohexane were added 

directly to a solution of the photocatalyst (4CzIPN) in 1,4-dioxane (0.00025 M). In both cases, 

negligible 4CzIPN luminescence was observed. 
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Figure S6. Luminescence quenching experiment of Methyl 4-bromobenzoate (2) in presence of 

4CzIPN 
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Figure S7.  Stern Volmer plot of Methyl 4-bromobenzoate (2) in presence of 4CzIPN 
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Figure S8. Luminescence quenching experiment of iodo cyclohexane (1) in presence of 4CzIPN 
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Figure S9. Stern Volmer plot of Iodo cyclohexane (1) in presence of 4CzIPN 
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2, 2,6,6-Tetramethylpiperidine (TMP) and DABCO: The Increasing amount of TMP and 

DABCO (2.8 mM to 14 mM) were added to a solution of the photocatalyst 4CzIPN in 1,4-

dioxane (0.00025 M). As shown below, a significant decrease of 4CzIPN luminescence was 

observed in presence of tributylamine, suggesting the generation of the amino radical cation. 
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Figure S10. Luminescence quenching experiment of TMP in presence of 4CzIPN 
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Figure S11. Stern Volmer plot of TMP in presence of 4CzIPN 
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Figure S12. Luminescence quenching experiment of DABCO in presence of 4CzIPN 
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Figure S13. Luminescence quenching experiment of DABCO in presence of 4CzIPN 
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Radical Trapping Experiment: 

 

An oven-dried 10 mL glass vial was charged with iodocyclohexane (52.5 mg, 0.25 mmol), 

methyl 4-bromobenzoate (43 mg, 0.2 mmol), 4CzIPN (3.1 mg, 2 mol%), nBu3N (111.2 mg, 

0.6 mmol), NiBr2.L1 (9.7 mg, 10 mol%), TEMPO (62.4 mg, 0.4 mmol, 2.0 equiv), a PTFE-

coated stirring bar and the glass vial was sealed with a PTFE septum. Under positive pressure 

of argon, degassed 1,4-dioxane (2 mL) was added to the reaction vial. The reactions were 

placed in a temperature-controlled blue LED reactor (as shown in Figure 1) and the reaction 

mixture was irradiated with a 455 nm blue LED. After 40 h, a sample of this solution was 

analyzed by HRMS observed 1-(cyclohexyloxy)-2,2,6,6-tetramethyl piperidine (30). 

 

 

 

Figure S14. HRMS{ESI/Q-ORBITRAP} spectrum of the reaction mixture 
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An oven-dried 10 mL glass vial was charged with iodocyclohexane (52.5 mg, 0.25 mmol), 

methyl 4-bromobenzoate (43 mg, 0.2 mmol), 4CzIPN (3.1 mg, 2 mol%), nBu3N (111.2 mg, 

0.6 mmol), NiBr2.L1 (9.7 mg, 10 mol%), ethene-1,1-diyldibenzene (79.2 mg, 0.4 mmol, 2.0 

equiv), a PTFE-coated stirring bar and the glass vial was sealed with a PTFE septum. Under 

positive pressure of argon, degassed 1,4-dioxane (2 mL) was added to the reaction vial. The 

reactions were placed in a temperature-controlled blue LED reactor (as shown in Figure 1) and 

the reaction mixture was irradiated with a 455 nm blue LED. After 40 h, a sample of this 

solution was analyzed by 1H NMR using benzyl alcohol as the internal standard observed (2-

cyclohexylethene-1,1-diyl)dibenzene (31) in 20% yield. 

 

 

Figure S15. 1H NMR spectrum of the crude reaction mixture in presence of benzyl alcohol as internal 

standard. 
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Figure S16. HRMS{APCI/Q-ORBITRAP} spectrum of the reaction mixture 
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Employing different haloalkanes and haloarenes 

Reaction with Methyl 4-bromobenzoate with different Iodoalkanes afford the products as 

shown below. In TLC these products show the same polarity with respect to the 4CzIPN, 

separation is not possible. 

 

 

 

Figure S17. Cross-coupling products that are difficult to isolate through column chromatography. 

 

Haloalkanes and aryl bromides/chlorides do not work in our catalysis: 

 

 

 

Figure S18. List of the substrates that did not work in our catalysis 
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NMR data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S19. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 3 in CDCl3 at 

298K.  
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Figure S20. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 4 in CDCl3 at 

298K.  
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Figure S21. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 5 in CDCl3 at 

298K.  
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Figure S22. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 6 in CDCl3 at 

298K.  
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Figure S23. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 7 (major) in 

CDCl3 at 298K.  
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Figure S24. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 7 (minor) in 

CDCl3 at 298K.  
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Figure S25. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 8 in CDCl3 at 

298K.  
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Figure S26. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 9 in CDCl3 at 

298K.  
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Figure S27. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 10 in CDCl3 at 

298K.  
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Figure S28. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 11 in CDCl3 at 

298K.  
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Figure S29. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 12 in CDCl3 at 

298K.  
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Figure S30. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 13 in CDCl3 at 

298K.  
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Figure S31. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 14 in CDCl3 at 

298K. 
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Figure S32. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 15 in CDCl3 at 

298K.  
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Figure S33. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 16 in CDCl3 at 

298K.  
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Figure S34. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 17 in CDCl3 at 

298K.  
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Figure S35. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 18 in CDCl3 at 

298K.  
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Figure S36. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 19 in CDCl3 at 

298K.  
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Figure S37. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 20 in CDCl3 at 

298K.  
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Figure S38. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 21 in CDCl3 at 

298K.  
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Figure S39. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 22 in CDCl3 at 

298K.  
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Figure S40. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 23 in CDCl3 at 

298K.  
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Figure S41. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 24 in CDCl3 at 

298K.  
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Figure S42. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 25 in CDCl3 at 

298K.  
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Figure S43. 19FNMR Spectra (471 MHz) of 25 in CDCl3 at 298K.  
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Figure S44. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 26 in CDCl3 at 

298K.  
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Figure S45. 1H NMR (500 MHz, top) and 13C {1 H} NMR (125 MHz, bottom) Spectra of 27 in CDCl3 at 

298K.  
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Figure S46. 1H NMR (500 MHz, top) and 13C {1H} NMR (125 MHz, bottom) Spectra of 28 in CDCl3 at 

298K. 
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Figure S47. 1H NMR (500 MHz, top) and 13C {1H} NMR (125 MHz, bottom) Spectra of 29 in CDCl3 at 

298K. 
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Figure S48. 1H NMR (500 MHz, top) and 13C {1H} NMR (125 MHz, bottom) Spectra of 30 in CDCl3 at 

298K. 

 

 


