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Summary 
 

Inferring ecological patterns from marine survey data is difficult due to the large spatial and 

temporal scales at which processes operate and the challenges associated with collecting 

comprehensive and balanced survey data. In this thesis I use large scale survey data and 

cutting edge modelling techniques to examine the drivers of species distribution in the 

Southern Ocean at three trophic levels – primary producers, grazers and top predators. I 

develop a model to predict phytoplankton abundance in a 3D environment from temperature, 

salinity and depth. This framework is widely applicable to other marine settings regardless 

of their survey design and provides a robust method for dealing with complex data sets. An 

important grazer on phytoplankton, Antarctic krill (Euphausia superba), has previously been 

regarded as passively drifting with large scale current systems. I provide quantitative 

evidence that they actively swim, demonstrating that krill consistently aggregate around 

resources over an immense survey area spanning 1.3 million km2. Krill distribution is patchy, 

and predators must locate these dynamic swarms across vast expanses of ocean. Islands may 

provide predictable and reliable feeding areas due to the Island Mass Effect. I find that krill 

swarms at the Balleny Islands, a Southern Ocean archipelago, are three times more numerous 

than in the adjacent open ocean, and are also denser and more compact. Around the islands, 

humpback whales (Megaptera novaeangliae) aggregate in areas of high productivity, 

medium krill density and waters greater than 350m deep. Two chapters of this thesis required 

manual processing of active acoustics data for detecting krill, which is time consuming and 

suffers from a lack of reproducibility. To automate this process, I developed an R package 

which drastically reduces processing time and is useful for any scientists using acoustic data. 

This thesis fills knowledge gaps about the mechanisms structuring the distribution of animals 

in the Southern Ocean and the statistical methods and software library developed are 

applicable to many other problems arising in complex environments. 
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Ecology and in particular ecosystem research requires the ability to detect signals using 

complex and often noisy data sets. It has long been recognised that this complexity is 

increased when studying marine ecosystems, which are more dynamic and challenging 

to survey than terrestrial ecosystems (Cassie, 1956). This thesis develops and applies 

sophisticated analytical techniques to answer key ecological questions in the Southern 

Ocean. These techniques range from advances in data processing, an area becoming 

increasingly important in ecology (Michener and Jones, 2012), to statistical approaches 

that enable us to ask new questions and detect ecological signals in large and highly 

correlated data sets. These methods allow us to unlock the potential of the many large 

and expensive marine data sets that already exist - in particular active acoustic data. 

 

The questions addressed in this thesis involve determining how key functional groups in 

the Southern Ocean food web are distributed and identifying the drivers behind these 

patterns. Key functional groups are groups with multiple links in the food web which 

include multiple dependent species and have a widespread distribution influenced by 

many drivers operating at different spatial and temporal scales (Mills et al., 1993). The 

processing and analytical techniques used in this thesis aim to tease apart the drivers of 

distribution when direct inference from the raw data is not possible as a result of 

unbalanced survey design, spatial autocorrelation or the spatial and temporal ranges the 

data were collected over. 

 

It is necessary to understand contemporary ecosystem conditions in order to accurately 

predict the future effects of climate change (Shaver et al., 2000). Key functional groups, 

such as primary producers, grazers and top predators, are important to study because their 

fate will affect many other species who depend on them as a food source or for providing 
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other ecosystem services (Mills et al., 1993, Grimm, 1995, Douglass et al., 2008). 

Developing models of species-environment relationships is a necessary first step in 

developing predictive models into which environmental and resource variables can be 

input to predict change in abundance and distribution (Guisan et al., 2006). The models 

developed in this thesis all have the capacity for prediction using new input, or predictor, 

data sets. However actually modelling predictions was beyond the scope of a 3-year 

thesis. Prediction remains an important future direction for work in this area. 

 

It is difficult to accurately assess species distribution and build robust predictive models 

from sparse data sets (Ovaskainen and Soininen, 2011). Marine data sets are often 

unavoidably sparse due to logistic difficulties in even getting to a study site, sampling 

underwater and the difficulty in using a balanced and replicated survey design over the 

huge scales involved in open ocean research (Lawless, 2014; pg 19). Many marine 

processes operate over large spatial and temporal scales that are difficult to fully sample 

and model, requiring analysis methods that can detect survey-wide patterns from discrete 

sampling locations and at the same time can incorporate the spatial and temporal 

dynamics of the data (Kaiser, 2011; pg 208, Godø et al., 2014). These problems are 

exacerbated in remote survey areas because of the limited time available for sampling 

and the large cost of the survey. The Southern Ocean is a prime example of a remote and 

harsh environment, where survey data often spans enormous areas and where both 

sampling effort and survey design vary as a result (Atkinson et al., 2012). 
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1. Why study the Southern Ocean? 

 

The Southern Ocean is a unique environment, dominated by large prevailing current 

systems including the Antarctic Circumpolar Current and the Antarctic Slope Front 

(Talley et al., 2011; pg 438). The Antarctic Circumpolar Current is one of the strongest 

currents in the world and, through its connection with three ocean basins, it is considered 

a vehicle of transport between the world’s oceans (Talley et al., 2011; pg 439). Sea ice 

plays an extremely important role in shaping the Southern Ocean ecosystem and 

contributes to the uniqueness of this environment. The wide ice sheets around the 

Antarctic continent have resulted in a shelf break that occurs 2 – 4 times deeper than 

around other continents (Knox, 2007; pg 4). Changes in sea ice influence the biology of 

the ecosystem, including productivity and the timing of krill spawning, both of which 

have flow-on effects on the rest of the ecosystem (Murphy et al., 2007, Smith and Nelson, 

1986). Extensive sea ice complicates in situ sampling because it is difficult for ships to 

travel through the ice and then observe the ecosystem in an undisturbed state. 

Autonomous Underwater Vehicles are a technological solution to this problem; the 

‘Autosub’ is now a proven technology which has been successful in measuring 

oceanographic conditions under ice sheets (Nicholls et al., 2008, Nicholls et al., 2006) as 

well as krill (Brierley et al., 2002). However, the Autosub is expensive, requires a 

research ship to support operations and is extremely limited in its range of operations. 

Another, much older high-latitude sampling method, although not without its risks (e.g. 

the sinking of the Endurance (Shackleton, 1920)), is simply allowing a ship to be 

surrounded by ice and carried as the ice drifts. The upcoming 2019-2020 Polarstern 

Arctic voyage aims to drift with the ice for one year (MOSAiC, 2016). 
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It is not only the physical features of the Southern Ocean that make the area unique, but 

also the management regime. The Antarctic Treaty, established in 1959, is an agreement 

between all nations involved in research below latitude 60oS and dictates the terms of 

research and cooperation in the Southern Ocean and Antarctic continent (Hanessian, 

1960). Ecosystem management is governed by the Commission for the Conservation of 

Antarctic Marine Living Resources (CCAMLR), including the management of 

commercial fisheries and research (Miller, 2011). Antarctic krill is an important 

component of CCAMLR ecosystem management as it is an important prey item to many 

marine predators including fish, squid, seals and whales and is also the target species of 

the Southern Ocean’s largest fishery (Siegel, 2016; pg 387, Nicol et al., 2012). 

 

The importance of the Southern Ocean to global climatic processes, its current 

vulnerability to climate change and the many species that have adapted to the harsh 

environmental conditions make the Southern Ocean an important area to study (Caldeira 

and Duffy, 2000, Constable et al., 2014). It may be argued that relative to some other 

marine ecosystems the Southern Ocean has been reasonably well studied, but there 

remains much work to be done, especially in the development of models that can make 

sound inference from the large and complex survey data that exists (Boyd, 2002). One of 

the benefits to studying animals in the Southern Ocean is the relatively simple food web 

(Figure 1). In this thesis I use sophisticated modelling techniques to study drivers of 

distribution and density of three key components of this food web: phytoplankton, 

Antarctic krill (Euphausia superba) and humpback whales (Megaptera novaeangliae). 
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Figure 1 Basic food web of the Southern Ocean. Animal images from Gemma Carroll, 

Macquarie University (with permission). 

  

2. Phytoplankton, krill and whales: Key components of the Southern Ocean food 

web  

2.1. Phytoplankton 

Phytoplankton form the base of the food web and worldwide are responsible for almost 

half of global primary productivity, fixing an estimated 30 – 50 billion tonnes of carbon 

annually (Field et al., 1998, Falkowski, 1994, Saba et al., 2011). Annual primary 

productivity in the Southern Hemisphere below 50oS is estimated at 2.9 billion tonnes 

(Moore and Abbott, 2000). This means that phytoplankton have enormous influence over 

the world’s atmosphere and climate and so are an important component of earth system 

modelling. The Southern Ocean is characterised as a High-Nutrient/Low-Chlorophyll 

area, largely due to iron limitation (Boyd et al., 2000, Pollard et al., 2009). Phytoplankton 

levels in the East-Antarctic are higher near the ice-edge than in the open ocean during 

summer and are thought to be limited by iron levels and grazing by krill (Westwood et 

al., 2010, Wright et al., 2010). 
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2.2.  Antarctic krill 

 

Antarctic krill provide the largest link by biomass between primary producers and higher 

trophic levels, forming a major part of the diet for seabirds, seals and whales. Despite 

their small individual size, they have an estimated biomass of 379 million tonnes and 

occupy 19 million km2 of the Southern Ocean during summer (Atkinson et al., 2009). It 

is important that this substantial resource is appropriately managed, especially since 

Antarctic krill are the target of the world’s largest krill fishery and are an important food 

source for many predators. Krill distribution is highly patchy, with swarm density 

depending on environmental conditions and swarm shape varying with oxygen levels and 

predation risk (Godlewska et al., 1988, Brierley and Cox, 2010). This patchiness makes 

the analysis of krill distribution very difficult. Historically, krill were sampled using net 

sampling, although we know that they show net avoidance which biases biomass 

estimates (Atkinson et al., 2004, Wiebe et al., 2004). An alternative approach is to use 

active acoustics, and advances in computing power since the 1980s have made species 

identification and biomass estimation possible from active acoustics (Hewitt et al., 2004). 

Accordingly in situ sampling now typically occurs using echosounders (Horne, 2000). 

 

2.3.  Whales 

 

Whales are an iconic group in the Southern Ocean and are key predators of krill. It has 

been shown that they contribute significantly to ecosystem function through the input of 

iron and nitrogen into the water during defecation (Nicol et al., 2010, Lavery et al., 2014). 

Whales are also responsible for the transport of nutrients from the polar feeding grounds 

to the temperate and tropical breeding grounds (Roman et al., 2014). As wide-ranging, 
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highly migratory foragers they are difficult to sample systematically (Kaiser, 2011; pg 

209). The most common sampling method for whales are ship-based visual surveys 

(Kinzey et al., 2000), often undertaken concurrently with acoustic surveys for prey 

including fish and krill (Murase et al., 2006). Reconciling predator-prey distribution data 

is difficult because of a lack of available analytical techniques for data collected on 

different scales, which is often combined with opportunistic survey design (Fauchald et 

al., 2000). Spatial analysis of predator-prey relationships is important for understanding 

how habitat shapes predator distribution and vice versa (Willems and Hill, 2009). 

 

This classic phytoplankton-krill-whale food chain serves as a motivation for the selection 

of study species in this thesis. Improving our understanding of these species’ distribution 

will assist with describing ecosystem function, serve as a guide and framework for future 

work and enable other researchers to work with the mass of expensive but under-utilised 

data that already exists. 

 

3. Thesis outline 

 

This thesis aims to fill knowledge gaps associated with drivers of productivity and animal 

distribution in the Southern Ocean. Each chapter builds on the previous as we move up 

the food chain from primary producers (Chapter 3) to grazers (Chapter 5) and finally to 

top predators (Chapter 6). In Chapter 2 I provide a theoretical review of statistical 

methods in ecology and in Chapter 4 I develop a software package for data processing, 

which is then applied in chapters 5 and 6. There are several analytical and data processing 

challenges that complicate statistical analyses of marine species distribution and can 

make the extraction of a true ecological signal difficult.  
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3.1.  Challenges when extracting ecological signals from marine data 

 

Marine data are generally highly complex and successfully extracting an ecological signal 

is difficult. Spatial autocorrelation, which occurs when points closer in space are more 

similar than those further away, potentially occurs in three dimensions – latitude, 

longitude and depth (Sahlin et al., 2014). Spatial correlation violates a fundamental 

assumption of many statistical models, i.e. the assumption that observations are 

independent of one another (Haining, 2015).  Autocorrelation can lead to incorrect model 

predictions and spurious inference, i.e. incorrectly attributing change (Diniz et al., 2003). 

 Given the difficulties in sampling the oceans on a regular spatial grid, or at regular time 

intervals, the data are generally irregularly positioned. This complicates analysis, 

especially where autocorrelation is concerned because many software packages cannot 

routinely account for 3-dimensional autocorrelation, particularly when sampling sites 

occur irregularly in space. This irregular sampling can also result in highly uneven 

between-group sample sizes. This problem is exacerbated in remote areas like the 

Southern Ocean, where inclement weather limits sampling opportunities. 

In addition to the logistic and statistical difficulties of conducting research in the oceans, 

surveying and understanding marine ecosystems is more complex than on land. Processes 

in the ocean are more dynamic on both small and large scales, which makes teasing them 

apart more difficult (Kaiser, 2011; pg 208). For example, food resources in the oceans 

are highly variable depending on the environment (e.g. phytoplankton blooms) and in the 

pelagic realm, often do not have a fixed location, making the predators’ search for prey 

more challenging than on land (Steele, 1989, Sims et al., 2006). Many of these processes 

that we aim to understand in the Southern Ocean are on scales that cannot be replicated 

in the laboratory, or affect organisms that cannot be held in captivity in order to conduct 
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manipulative experiments. A key example is understanding the effect of climate change 

on phytoplankton, where the processes are too subtle and much too complex to be 

represented accurately in the lab (Boyd et al., 2008). This makes field and modelling 

studies critical tools in answering these questions. As we have a limited ability to control 

factors that we are not interested in, statistical and sampling methodology must be 

sophisticated enough to avoid confounding ecological signal with noise or extraneous 

variables.  

It is important that we do not discount these challenges when modelling marine data. 

Ignoring characteristics of data such as pseudo-replication, spatial autocorrelation and 

sampling design can lead to incorrect inference. Overlooking spatial autocorrelation can 

bias coefficient estimates and reduce model goodness-of-fit (Dormann, 2007). Not 

accounting for pseudo-replication can increase Type I errors (false positive), through the 

underestimation of the true variation and misrepresentation of its sources (Heffner et al., 

1996). Overfitting reduces the reproducibility of the model and can lead to significant 

findings that are not actually true (Babyak, 2004). These problems are inherent in 

ecological data and analyses must consider them to avoid seriously impacting our 

conclusions. 

 

3.2.  Mixed models: a statistical solution to these problems? 

 

Mixed models are becoming more common in ecology due to their ability to handle 

complex data (Bolker et al., 2009). They are especially applicable for marine data, where 

we are often limited by the environment and high data collection costs and are hence 

unable to perfectly follow a desired survey design. The key feature of mixed models is 

that they can facilitate inference at the population level, which is very important when 
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we are interested in the overall processes operating over a large area but are using data 

collected at many sites through this area (Bolker et al., 2009). Mixed models can 

incorporate complex correlation structures, allowing for different spatial autocorrelation 

patterns, and variance structures, allowing for different within-group variances for data 

collected across different sites or groups. Mixed models are particularly useful for data 

sets which are pseudo-replicated and can include complex structures of nesting (Chaves, 

2010). Because there are many models available to ecologists, Chapter 2 of this thesis 

provides a theoretical overview of commonly used modelling methodology and 

introduces the analyses used in each subsequent chapter. 

  

3.3.  Phytoplankton in vertical profiles 

Phytoplankton play a key role in global climate and are the base of the food chain in the 

Southern Ocean (Murphy and Hofmann, 2012). Phytoplankton blooms are strongly 

linked to environmental factors including light availability, nutrients, mixing of the water 

column and grazing (Barnes and Hughes, 2009; pg 32). In the Southern Ocean, sea ice 

levels are of great importance and melting ice can support blooms through the input of 

nutrients, seeding of algae and stabilisation of the water column (Sedwick and DiTullio, 

1997, Smith and Nelson, 1986). Phytoplankton and environmental data are often 

collected through the water column using profiling instruments. The conductivity 

temperature depth (CTD) probe is a commonly used instrument and can collect data 

through the depths of the water column to over 1 km deep (Thomson and Emery, 2014; 

pg 19).  
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When collecting data at fixed stations, such as CTD deployment sites, it is important to 

use techniques that account for pseudo-replication of measurements within each station 

as well as vertical correlation. As mentioned previously, ignoring this can result in 

spurious findings. Chapter 3 of this thesis develops a mixed model for assessing the 

drivers of phytoplankton distribution in the East Antarctic from CTD profiles that can 

deal with these problems. The model I developed quantifies trends across large survey 

areas while recognising that the data are grouped into spatially autocorrelated vertical 

profiles.  

 

3.4. Remote sensing: fisheries acoustics and data processing 

 

Fisheries acoustics is a highly valuable tool for collecting high resolution ecological data 

through the water column as the ship travels (Benoit-Bird and Lawson, 2016). Acoustic 

data enable rapid sampling and provide a non-extractive method of estimating the density, 

distribution and biomass of many pelagic species over large survey areas (Kaiser, 2011; 

pg 211). Active acoustics have been used since the 1980s to study krill and processing 

(Horne, 2000) and identification methods are constantly being improved (Fallon et al., 

2016, Korneliussen et al., 2016). 

 

Active acoustics data sets are often collected incidentally while a ship is conducting other 

research or commercially fishing and hence there are many data sets already in existence. 

There are a number of initiatives for collecting and making available acoustics data in the 

Southern Hemisphere. The Integrated Marine Observing System Bio-Acoustic program 

collects 38kHz data from participating scientific vessels and commercial fishing vessels 

as they travel through the ocean basins of the Southern Hemisphere (IMOS Bio-Acoustic, 
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2016). The Southern Ocean Network of Acoustics is a related initiative aiming to collect 

and catalogue acoustics data, with the aim of mapping and identifying changes in the 

distribution of mid-level trophic level organisms in the Southern Ocean (SONA, 2016).  

I have contributed to this expanding area of research by developing an R package (R 

Development Core Team, 2014), EchoviewR (Harrison et al., 2015) – a flexible approach 

to the automation of acoustic data processing. 

 

Acoustic data sets can be extremely large, often comprising of billions of raw data points 

that must be processed, integrated, cleaned to remove noise and then analysed 

appropriately. This is extremely time consuming since it must be done manually by 

human operators using available software programs. There is often a lack of automation 

and consistency when processing fisheries acoustic data. Reproducibility is difficult 

because often there is no record of the data processing techniques that have been applied 

to a given data set. If an error is subsequently found or an improvement in methods 

occurs, this requires reprocessing and must be done again manually. In Chapter 4 of this 

thesis I address these problems by developing an R package, EchoviewR, that automates 

data processing by acting as a scripting interface for one of the major acoustic processing 

software programs, Echoview (Echoview, 2015). EchoviewR contributes to reproducible 

research because the code script acts as a record of processing methods and can be 

modified and re-run on different data sets. This vastly cuts down the large number of 

hours required for manual active acoustics data processing. EchoviewR is of use to 

anyone using active acoustic data and applications may include biomass estimation of 

krill or fish, seafloor mapping or identification of features in the water column such as 

oil seeps.   
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3.5.  Drift or swim: what drives the distribution of krill? 

 

Antarctic krill are a key grazer on phytoplankton and provide the primary food source for 

many species in the Southern Ocean. Krill occur in large swarms which are distributed 

patchily throughout the Southern Ocean (Siegel, 2016; pg 279). The extent to which these 

swarms passively drift on large current systems, versus actively swimming, has been 

debated for decades. Larval krill are certainly passive drifters, relying on circulation to 

assist them in successfully completing their descent-ascent hatching cycle and transport 

them to suitable locations for maturation (Thorpe et al., 2004). Despite its ecological 

importance, passive drifting versus active swimming has been rarely studied in marine 

species (Putman et al., 2016). 

 

There are important implications for animals being passive drifters or active swimmers 

(Richerson et al., 2015). Active swimmers may be able to take advantage of patchy or 

sparsely distributed resources that passive drifters might not be able to access. Habitat 

models will vary based on whether the target animal shows habitat preferences and can 

follow these preferences (swimming) or whether they are simply physically transported 

around the habitat by circulation (drifting). It also has implications for energetics, with 

lab-based studies estimating that active swimming in krill could account for 73% of 

metabolic expenditure during summer (Swadling et al., 2005). The movements of krill 

may cause mixing in the water column (Leshansky and Pismen, 2010) and if this is true, 

whether they drift or swim could influence mixing patterns. Drifting versus swimming is 

an important consideration for management approaches, most of which assume that krill 

are passive drifters (Richerson et al., 2015). 
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Studies assessing krill swarm drifting versus swimming have mostly been theoretical or 

observational. Overlaying historical krill distribution over large scale circulation patterns 

shows similarities between the two (Nicol, 2006, Amos, 1984). Lagrangian particle 

tracking also suggests that passive transport of larval krill causes intermixing of 

populations in different areas (Hofmann and Murphy, 2004). However, there is also 

evidence that krill could be active swimmers. Life history modelling suggests that there 

are strong selection advantages for active swimming in krill, including a 70% increase in 

reproductive success (Richerson et al., 2015). Current profiling has also shown that krill 

swarms can move in relation to local currents (Tarling and Thorpe, 2014). 

 

The highly skewed and zero-inflated krill densities that arise from swarming make simple 

modelling of behaviour difficult because log-transformation is not possible with zeros 

present in the data. Some studies have side-stepped this issue by adding a constant before 

transformation of krill densities (Atkinson et al., 2004), however this approach can bias 

the fit of the model (O’Hara and Kotze, 2010). New modelling approaches, such as hurdle 

models, can be helpful here because they separate out the data into two separate models: 

i) presence/absence, where probability of presence is estimated and ii) conditional count, 

which models the remaining non-zero data (Zuur et al., 2009). In Chapter 5, I develop a 

hurdle model for assessing whether krill aggregate around resources. I have extended 

traditional hurdle models to incorporate continuous density data (hurdle models are 

currently only available for discrete count data) and to include a random effect at each 

level to allow for pseudo-replicated data within sites. There are other methods available 

for modelling skewed data that include zeros, such as generalised linear models, however 

these methods struggle to deal with the zero-inflation present in krill density data. 
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3.6.  Combining predator-prey observations: the Balleny islands 

 

Marine mammals are the predominant krill predators in the Southern Ocean and are 

estimated to be responsible for 30-60% of total krill predation by biomass (Siegel, 2016; 

pg 325). Observational data of marine mammals are often collected along with active 

acoustic observations of krill.  However due to the nature of the observations and a 

likelihood of mismatch in sampling scales, quantitative analysis is difficult. Krill data are 

continuously collected at high resolution along the ships track line (Hewitt and Demer, 

2000), but sparsely distributed marine mammal sightings occur only at the surface and 

visibility may depend on environmental variables and group size (Barlow et al., 2001). 

Complications include this spatial discrepancy between sightings and prey, opportunistic 

survey designs, non-linear predator-prey relationships and perception bias in marine 

mammal sightings. Distance sampling is a widely used method that accounts for 

perception bias in line and point transect data, and involves correcting for the fact that 

animals further away are less likely to be seen (Thomas et al., 2002). 

 

Coincident predator-prey data are collected for many reasons. They are not only useful 

for quantifying predator-prey interactions, but also to characterise valuable regions in a 

survey area for conservation planning (Schmitt et al., 2016). This type of data can also 

be used to answer ecological questions and estimate energetics, which can then be used 

in population and species distribution modelling (Hatton et al., 2015, Trainor et al., 2014). 

Mapping prey distribution is especially important when prey is a patchily distributed and 

mobile resource, that itself relies on environmental features and habitat of the survey area, 

as this will affect a predator’s foraging choices (Vijayan et al., 2017). Productivity is also 

an important consideration because it can indicate areas with a general enhancement of 
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the water column (Perissinotto et al., 1992). Productivity in the oceans is non-uniform 

and bathymetric features, frontal zones and islands are known to be highly productive. 

The increase in productivity around islands is termed the Island Mass Effect (Elliott et 

al., 2012). This can occur through the input of nutrients such as iron from upwelling and 

the stabilisation of the water column from melting ice and freshwater runoff (Planquette 

et al., 2007, Perissinotto et al., 1992). The fixed location of islands may be attractive for 

migratory predators seeking high food availability in a large expanse of ocean. 

 

The Balleny Islands (67oS, 164oE) are a Southern Ocean archipelago that have received 

little research time due to their remote location, but are a known humpback whale feeding 

ground (Constantine et al., 2014). In Chapter 6 I investigate whether the waters around 

the Balleny Islands contain more krill swarms than the surrounding open ocean to assess 

why whales are attracted to the islands. I then use coincident whale sighting, krill acoustic 

and environmental data to describe habitat use of whales around the islands using a 

density surface model. Density surface models are a recent statistical advance that 

incorporate i) distance sampling to correct for perception bias, ii) generalised additive 

models to account for non-linear relationships, iii) survey design to account for 

opportunistic surveys with unequal effort and iv) a spatial surface to map unexplained 

spatial variability (Miller et al., 2013). This makes them a very useful technique for 

extracting predator-prey-environment information over large survey areas.   

In summary, I have developed a suite of analytical techniques to assess interactions 

between key functional groups in the Southern Ocean food web and their environment 

and energy sources. The different nature and complexities of the three key components 

studied – phytoplankton, Antarctic krill and humpback whales – meant that they required 

different approaches. The models developed in this thesis can be used to predict future 
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distributions and abundance under different environmental scenarios and are readily 

adaptable for other marine ecosystems. Active acoustic data for sampling krill requires a 

large amount of manual processing so I developed automated processing software, 

EchoviewR, which I then applied in the final two chapters in this thesis. The statistical 

techniques used in this thesis are complex and a review of current methods has been 

conducted in Chapter 2 as a preface to the applied chapters. Except for this theoretical 

review in Chapter 2, the chapters of this thesis were written for publication and each 

contains the relevant background information, methodology and discussion. 
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This chapter focuses on the modelling techniques that are available for the analysis of 

ecological data and introduces the methods that I have used in my thesis. This review was 

undertaken because it is essential to choose modelling methods appropriate to the systems 

being studied and the data available. This review has been compiled to fulfil the mandate 

that modelling biological systems is undertaken to enable a better understanding of their 

function as well as providing a mechanism by which to predict future outcomes with the 

best chance that the predictions are correct. 

There are two main approaches to statistical modelling: frequentist and Bayesian. There 

is a prolonged debate on the pros and cons of each method, and disagreement over which 

is more correct in different circumstances (Vallverdu, 2016; pg 61). The debate ranges 

from profound and technical, to relatively indecisive; for instance Bland & Altman (1998) 

suggested that a person’s choice of approach will depend on the university they attended. 

In this chapter I present a concise comparison of frequentist and Bayesian methodology 

and an overview of different models used in the analysis of ecological data. In this chapter 

I review both frequentist and Bayesian methods, but for the data chapters that follow I 

use only frequentist inference.  

1. Frequentist Inference 

Frequentist approaches are by far the most common in biological and ecological 

modelling. A frequentist model is so called, because it is based on the long-run 

frequencies of events (Vallverdu, 2016; pg 49). Essentially, a frequentist asks “what is 

the probability of the data given this model/parameter is correct” (McCarthy, 2007; pg 

8). Frequentist methods are often the only methods taught to biologists during higher 

education. Hence most applied statistics in the biological sciences is from a frequentist 

perspective.  
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1.1. Model Selection 

1.1.1.  Null hypothesis testing 

Frequentist testing methods revolve around the formulation of a refutable null hypothesis, 

and the presentation of an alternate hypothesis. For example, the null hypothesis might 

be that a parameter is not different to 0, and the alternate hypothesis will be that the 

parameter does differ from zero. Hypothesis tests have a wide number of uses, including 

testing whether two populations are different at a statistically significant level.   

Null hypothesis testing involves the formulation of a p-value to decide whether to reject 

the null hypothesis based on a chosen α cut-off, which is normally chosen as 0.05. The 

p-value is defined as “the probability, under the null hypothesis, of a test statistic as or 

more extreme than actually observed” (Rohde, 2014; pg 52). However, many people 

incorrectly assume that the p-value is the probability that the hypothesis is correct given 

the data (Congdon, 2006).  

1.1.2.  Hypothesis testing errors 

There are two types of error that can occur: we can falsely reject the null hypothesis when 

it is actually true (Type I error) or fail to reject it when we should (Type II) (Rohde, 2014; 

pg 42). The Type I and Type II errors are not conditional on the strength of the support 

for the hypothesis by the data. Rather, they depend only on whether the data lies within 

the constructed acceptance or rejection region (Dass and Berger, 2003). Unfortunately, 

many scientists use the p-value as if it represents truth exactly and doggedly adhere to the 

α = 0.05 threshold for significance, rather than using it as a continuum by which to judge 

strength for the hypothesis, as Fisher first proposed (Halsey et al., 2015). Johnson (2013) 

suggested revising the standard α threshold to 0.005 or even 0.001 for highly significant 

findings, however 0.05 is still most commonly used. The p-value threshold value will 



30 
 

also depend on the consequences of making a Type I or Type II error. For example, in 

climate science you might need to be highly certain that your result is not a false negative, 

because there may be limited time to react and the consequences of not doing so might 

be severe. In contrast, a medical study might require that there is a very small chance of 

a false positive, so that a person will not receive treatment for a condition they do not 

have. 

1.1.3.  Accounting for multiple testing 

Null hypothesis testing using p-values can only test one hypothesis at a time. Running 

many hypothesis tests at once increases the probability of type II error (failure to reject 

the null hypothesis when you should) (Westfall and Young, 1993; pg 2). For example, if 

we run 100 hypothesis tests, 5 of them may be falsely significant based on α = 0.05. The 

number of p-values reported in the journal Ecology has been above 3000 every year since 

1984 (Anderson et al., 2000), potentially leading to 150 falsely significant findings each 

year. There are numerous corrections that can be applied to allow for testing of multiple 

hypotheses, the most common of which is the Bonferroni correction. Rather than using 

the predetermined α for all hypotheses, the Bonferroni correction uses α/k, where k is the 

number of hypotheses to be tested (Westfall and Young, 1993; pg 44). Hence if 100 

hypotheses were to be tested at α = 0.05, the p-value would need to be < 0.0005 for a null 

hypothesis to be rejected.  

There are arguments against corrections to the p-value such as the Bonferroni correction, 

like how to choose the scale it applies to (only on one study, to all papers in a journal or 

even a lifetime of work) (Moran, 2003) and how logical it is to choose the significance 

level to reject a hypothesis based on how many questions you plan to ask (Perneger, 

1998). Armstrong (2014) suggests only three situations in which the Bonferroni 
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correction should be considered: 1) one universal hypothesis (H0) that all tests are non-

significant is tested, 2) avoiding Type I errors is critical and 3) when conducting many 

tests without a pre-defined hypothesis.  

The growing criticisms of the p-value and null hypothesis testing are causing a shift in 

model selection methods, as seen in a 15% decrease in conservation biology papers using 

null hypothesis testing in two leading journals from 2000 (93%) to 2005 (78%) (Fidler et 

al., 2006). Instead, authors are turning towards likelihood-based approaches, Bayesian 

statistics and confidence intervals.  

1.1.4.  Likelihood and Information Theoretics 

Likelihood based approaches are another tool for model selection, and can be found in 

both frequentist and Bayesian methods. The frequentist Likelihood Ratio Tests involve 

calculating a test statistic from the ratio of the likelihood of two models. The test statistic 

is calculated as (West et al., 2007; pg 35): 

𝒍 =  −𝟐 ቀ𝒍𝒐𝒈𝒆(𝑳𝒊) − 𝒍𝒐𝒈𝒆൫𝑳𝒋൯ቁ                                         Equation 1 

 

where Li and Lj are the likelihoods of two nested models. Models are defined as nested if 

all terms in the simpler model also occur in the more complex model. This test statistic 

is then tested for significance by computing the p-value from a Chi-square distribution. 

If there are more than two models that require comparing, multiple Likelihood Ratio 

Tests can be run although this method only works for nested models (Johnson and 

Omland, 2004). The models must also be fit to the same subset of data (West et al., 2007; 

pg 35). Wald tests are similar to Likelihood Ratio Tests but can be used to assess the 

significance of a single model compared to a null model (Everitt, 2006; pg 416).  
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Information Theoretic methods can be used compare multiple plausible models and are 

an alternative to traditional hypothesis testing using p-values (Anderson et al., 2000). The 

Akaike Information Criterion (AIC) (Akaike, 1998) is often used in frequentist 

Information Theoretics methods. It is a measure of the amount of information retained by 

a model while penalising for the number of parameters and is based on the Kullback-

Leibler information criterion (Demidenko, 2004). The AIC is given by: 

𝐴𝐼𝐶 =  −2𝑙௠௔௫ + 2𝑘                                                    Equation 2 

where lmax is the maximised log likelihood and k is the number of parameters. The AIC 

is calculated for each candidate model, and the model with the lowest AIC is preferred. 

The lowest AIC value does not indicate truth, only that the model is the most plausible 

of the candidate models. Hence it is important to assess that all models are plausible 

before undertaking model selection. The difference in AIC between a candidate model 

and the model with the smallest AIC may be small (<2), in which case there is substantial 

support for the second model also. In this case, model averaging can be used. It is 

important to note that model averaging can cause problems with inference in cases that 

require the simultaneous interpretation of multiple coefficients, such as interaction terms 

or polynomial predictors (Cade, 2015). In some cases standardisation, where the data are 

scaled to a mean of 0 and standard deviation of 1, can help with this issue, but this must 

be assessed on a case-by-case basis. 

Model selection using criterion such as AIC is well regarded because it provides a rank 

of all models in a set and allows for model averaging if many models are similar (Johnson 

and Omland, 2004). Despite its intention to be used with a small set of predetermined and 

plausible models, Information Theoretic methods are still used inappropriately for ‘data-

dredging’, where many models are compared regardless of their biological credibility 
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(Anderson, 2008; pg 47, 64). However, it should be noted that there are situations where 

data dredging is appropriate. An extreme example of this are a number of papers 

comparing over 1 million models when their sample size is small, at less than 100 

observations (Anderson, 2008; pg 6). AIC can under or over-estimate model complexity 

for singular models or small sample size, and the Frequentist Information Criterion (FIC), 

which aims to reduce this problem, was proposed in 2015; however this work is currently 

only in pre-print (LaMont and Wiggins, 2015).  

A corrected version of AIC, the AICc, is available for small sample sizes and prevents 

the criterion from favouring larger models by adding an extra bias term (Sugiura, 1978). 

The corrected AIC is: 

𝑨𝑰𝑪𝒄 =  𝑨𝑰𝑪 +  
𝟐𝒌(𝒌ା𝟏)

𝒏ି𝒌ି𝟏
                                       Equation 3 

 

where k is the number of parameters and n is the sample size (Anderson, 2008; pg 60). 

Information Criteria are also used in the Bayesian Framework. 

 

2. Bayesian Inference 

Bayesian models are based on Bayes theorem. Bayes theorem is named after Thomas 

Bayes, who proposed it in the 1740s, however it wasn’t until after his death in 1761 that 

the work was found and published (McCarthy, 2007, Bayes, 1763). In direct contrast to 

frequentist approaches, Bayesian methods ask the question “what is the probability of my 

model/parameter given the data”. In some situations, this may be a more natural way to 

approach questions in ecology (Wade, 2000).  
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Bayesian models use prior information in addition to the available data to inform a 

potential model. The posterior probability distribution, defined as the probability of the 

hypothesis given the data, is calculated based on the product of the likelihood function 

and the prior distribution (Wade, 2000). For a finite number of hypotheses, the posterior 

of hypothesis i using Bayes Theorem is (McCarthy, 2007; pg 12): 

P(𝐻௜|𝐷) =  
୔(ு೔).  ୔(஽|ு೔)

∑ ୔൫ுೕ൯ .୔(஽|ுೕ)ೕ
                                      Equation 4 

  

where   P(𝐻௜) = prior probability of hypothesis i 

 P(D|𝐻௜) = probability of obtaining the data given hypothesis i 

D = data 

j = other hypotheses 

 

The three steps to Bayesian model fitting are (Denison et al., 2002): 

1. Assign priors to all parameters and states to be estimated 

2. Define the likelihood of the data given the parameters and states 

3. Calculate the posterior distribution of the parameters and states given the data 

using Bayes theorem as shown above 

 

2.1. Prior Information 

The prior distribution for a parameter 𝜃, p(𝜃), describes the probability of different values 

of 𝜃 without considering the data (Wasserman, 2000). A prior can be any piece of 

previously known information, which can have differing levels of uncertainty around it. 

model 
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McCarthy (2007) presents the following diagram to represent the relationship between 

the data, priors and posterior: 

prior + data                          posterior 

Each parameter in the model can be assigned a different prior, which may simply be an 

informed guess about the distribution, mean and standard deviation of the parameter. For 

example, if the heights of a study species are already known to have a Gaussian 

distribution rather than a uniform distribution, this information could be used as a prior. 

A prior with a large variance is likely to be uninformative and the posterior distribution 

will be dominated by the data, giving results similar to a frequentist analysis (McCarthy, 

2007).  

Uniform priors (also called flat priors) are common when little information is known 

about the questions being asked, because they will be overwhelmed by the data. A 

uniform prior is considered improper because its integral is infinity, regardless of the 

constant chosen (Christensen et al., 2011). However it does lead to a proper posterior, 

making it an appropriate choice for inference when little is known about the parameter or 

state of interest. Since the prior does not carry much weight and the posterior is dominated 

by the data, the results of the analysis will be the same as the frequentist approach to the 

problem. The Gibbs sampler will give a reasonable looking output when improper priors 

are used, meaning that it is not a method which can be used to determine if the priors are 

improper. Uninformative priors have been more common in ecology, possibly because 

of a concern that informative priors may reduce accuracy; however, a recent study found 

that appropriate informative priors increased precision, although the effects on accuracy 

were variable (Morris et al., 2015).  
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2.2. Markov Chain Monte Carlo 

Markov Chain Monte Carlo (MCMC) can be used to estimate the posterior distribution 

of a model in a Bayesian framework (McCarthy, 2007). While Bayes theorem can be 

simple enough that it can be computed by hand, in more complex and higher dimensional 

formulations it can be difficult to solve the integral in the denominator, which may have 

a dimension in the thousands (Cressie and Wikle, 2011). In this case, MCMC is used to 

avoid the necessity of calculating this denominator. The samples from the MCMC 

algorithms are equivalent to a sample from the posterior distribution, hence eliminating 

the need to calculate the often complex integral of the denominator of equation 4.  

There are a several algorithms that are used to sample from the posterior via MCMC, 

including the Metropolis-Hastings algorithm and Gibbs sampler (Zuur et al., 2009). The 

general method behind these algorithms is that for every parameter we wish to estimate, 

a new value is drawn from that parameter’s candidate-generating density, and the models 

with the new and old parameter values are compared using a pre-defined acceptance 

criteria (Chib and Greenberg, 1995). If the new parameter estimate is accepted, the 

current model is updated; if not the current model remains the same until the next 

iteration. The Gibbs sampler is a component-wise Metropolis-Hastings algorithm that is 

less general because it requires knowledge of the conditional posterior distributions of 

the parameters (Congdon, 2006, Denison et al., 2002).  

A defining property of Markov Chains is that they are memory-less, so future states 

depend only on the current state, or in the case of higher-order chains states further back 

than a single time-step (Ching et al., 2013; pg 1). When running an MCMC algorithm, 

the first values (known as the burn in) must be removed because they show strong 

dependence on the arbitrarily chosen first value (Christensen et al., 2011; pg 145). The 
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point at which the chain no longer depends on the first value is called reaching 

stationarity. After numerous iterations, the MCMC algorithm may converge. This 

convergence should not be confused with that of an algorithm converging to a numeric 

solution; rather, convergence occurs when each realisation of the Markov Chain has the 

same distribution as the stationary distribution of the Markov Chain (Cressie and Wikle, 

2011). 

2.3. Model Selection 

There is no single accepted method for Bayesian model selection (Hooten and Hobbs, 

2015). The posterior probability of a model is often used for model selection. If 

comparing multiple models, the model with the highest posterior probability is chosen 

(Wasserman, 2000). If we have a total of R candidate models, the posterior probability 

for model i is calculated as (Posada and Buckley, 2004): 

𝑃൫𝑀௝  | 𝐷൯ =  
௉(஽ | ெ೔) ௉(ெ೔)

∑ ௉(஽ | ெೝ)ೃ
ೝసభ  ௉(ெೝ)

                                   Equation 5 

where D is the data, Mi is model i and P(Mi) is the prior probability of Mi. To compare 

two models, i and j, the Bayes Factor can be used. It is a ratio of the evidence for each 

model and is calculated as (Congdon, 2006; pg 26): 

𝐵௜௝ =  
୔(஽ | ெ೔)

୔൫஽ | ெೕ൯
                                             Equation 6 

where Mi is model i, and D is the data. Bij can be interpreted using Jefferey’s scale 

(Wasserman, 2000; pg 99), where 𝐵௜௝ = 5 would mean there is 5x stronger evidence for 

model i. The Bayes Factor does not require models to be nested and automatically 

penalises model complexity because complex models are able to make a larger variety of 

predictions and hence P(D | M) for our observed data will be lower than for a more simple 

model  (Berger et al., 1994). 
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2.3.1.  Information Criteria 

Like the frequentist AIC, the Bayesian Information Criterion (BIC) and Deviance 

Information Criterion (DIC) can be used for selection of the model parameters. The BIC 

is a measure of the evidence favouring a model compared to other models and does not 

require the specification of priors (Weakliem, 1999) and was primarily developed for 

model averaging within a well justified candidate set of models (Hooten and Hobbs, 

2015). The DIC is very similar to the AIC, in that it measures the information content as 

a model, taking into account the model’s complexity. Retaining the most information 

with the simplest model is preferable (McCarthy, 2007). The DIC can return a negative 

number of effective model parameters in missing data models (Celeux et al., 2006). This 

is due to the posterior mean settling on a value that is between two different modes of the 

posterior density. The BIC (Stoica and Selen, 2004) and DIC are calculated as follows: 

𝑩𝑰𝑪 =  −𝟐 𝒍𝒐𝒈𝒆 𝑷൫𝒚, 𝜽෡𝒏൯ + 𝒏 𝒍𝒐𝒈𝒆 𝑵                             Equation 7 

DIC =  D෡ +  2p஽  

where y = the observed data of length N, P() = the likelihood of the model, 𝑝஽ is the 

effective number of parameters, 𝛳෠ = the maximum likelihood estimate of the parameter 

vector containing n parameters and  𝐷෡ = deviance using mean of the parameter’s posterior 

distributions. A model with a DIC close to the model with the lowest DIC (difference of 

<10) may also be the best model, and should not simply be removed in favour of the best 

model. Rather, model averaging could be used in this situation. When averaging across 

the parameters of multiple candidate models, care must be taken as the interpretation of 

each parameter will vary depending on the structure of the models (Posada and Buckley, 

2004). A new information criteria was proposed in 2013, the widely applicable AIC 
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(WAIC) (Watanabe, 2013). It is a generalised fully Bayesian form of AIC which, unlike 

DIC, can be used for singular models whose Fisher-information matrix is not invertible. 

2.4. Model Uncertainty 

Bayesian models automatically include uncertainty around the parameters (Wade, 2000), 

and assume the data are fixed while the model can vary. In contrast, most frequentist 

approaches are built around the assumption that the model is true and that the data can 

vary (Chatfield, 2006). There are three main ways in which uncertainty enters a model: 

1. Uncertainty surrounding the model’s type and structure (i.e. hierarchical) 

2. Uncertainty around choice in the model’s parameters 

3. Random unexplained variation in the dependent variable 

Ignoring the uncertainty surrounding a model can be a dangerous practice and can lead 

to unsound conclusions. One method to reduce model uncertainty is model averaging, 

where instead of selecting the single best model, the posterior distribution is an average 

of a number of ‘best’ models, using the posterior model probabilities (Raftery et al., 

1996).  

3. Comparison between Bayesian and frequentist methods 

While some of the components in frequentist and Bayesian methods may appear to be 

similar or even identical, there are important differences. For example, frequentist 

confidence intervals are different to Bayesian credible intervals. For a Bayesian credible 

interval, the interpretation is that ‘there is a 95% chance that the true value of the 

parameter is within the interval’. This contrasts with a confidence interval where, if the 

experiment were repeated many times, 95% of the time the confidence interval would 

encompass the true value of the parameter. Credible intervals will have the same 
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numerical value as confidence intervals if the prior is uninformative (McCarthy, 2007). 

It is not uncommon for ecologists to misinterpret 95% confidence intervals by thinking 

that the definition is the same as for the credible interval.  

Bayesian and frequentist methods can give different results depending on how the 

experiment was conducted. Frequentist models depend on the method by which the data 

was collected. For example, a frequentist hypothesis test can give different results if the 

sample was randomly collected to a predetermined number (for example, it was 

predetermined that 12 koalas with pouch young will be sampled), or was collected using 

a stopping method (it is predetermined that koalas will be sampled until 3 koalas with 

pouch young are obtained) (McCarthy, 2007). A Bayesian analysis would not give 

different answers in these two situations, and neither would Information Theoretic 

methods, which are based on maximum likelihood. Since frequentist and Bayesian 

methods will give different answers based on data collection methods (even without 

priors taken into account), caution must be exercised when comparing two studies that 

used frequentist and Bayesian methods.  

Bayesian and frequentist methods can give the same results if the same model is being 

used. They are most alike when little or no prior information is available, and hence the 

priors have a large variance or are simply objective distributions (Bayarri and Berger, 

2004). Theoretical and empirical studies show that the preferred method relies heavily on 

the quality of prior information available (Samaniego and Reneau, 1994). Prior 

information can be incorporated into frequentist statistics to some extent by constraining 

parameters. The knowledge that the two methods may produce the same results in some 

cases is certainly not new, with this being shown decades ago for one sided hypotheses 

(Casella and Berger, 1987). Bayesian methods allow for better understanding of 

uncertainty around the parameters (Congdon, 2006) and are also not restricted by sample 



41 
 

size, which can allow for quantitative studies on rare species (Dorazio, 2016). However, 

they are often far more computationally expensive and therefore may not be as efficient 

as frequentist methods. With that in mind, both methods have much to offer in the field 

of statistics (Bayarri and Berger, 2004). 

 

3.1. Hybrid methods 

Some methods blur the lines between frequentist and Bayesian analysis, presenting a 

‘unified’ result. For example, if frequentist methods are heavily conditional, they can also 

give the same results as a Bayesian analysis (Berger et al., 1994, Berger et al., 1997). 

This involves the calculation of a test statistic that represents the strength of support for 

the null hypothesis by the data (Dass and Berger, 2003). Others have suggested a 

compromise, called the “calibrated Bayes”, where both approaches should be used in 

analyses; frequentist methods would be used for model development and assessment, but 

the inference under the model would be from a Bayesian perspective (Little, 2006). This 

approach makes use of the strengths of both frequentist and Bayesian statistics. In the late 

1990s a third paradigm, “evidential statistics”, was proposed (Royall, 1997). Evidential 

statistics also draw on many concepts in both frequentist and Bayesian statistics, and 

brings the idea that the result space in model selection is a continuum divided into three 

areas: i) strong support for model A, ii) strong support for model B and iii) weak support 

for both models (Taper and Ponciano, 2016). 
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4. Models in ecology 

There has been a rise in complex statistics in ecology, with researchers moving away 

from the traditional ANOVAs and t-tests and employing more complicated methodology 

such as Bayesian statistics and mixed models (Touchon and McCoy, 2016). Despite this, 

only 64.6% of ecological papers from 1990 - 2013 used any statistics (n = 30,190), and 

only 6.5% of ecological doctoral programs surveyed (n = 154) in the United States of 

America taught methods more complex than traditional statistical methods (Touchon and 

McCoy, 2016). This section reviews some of the models applicable to ecology. Due to 

the wide variety of models used, only the most relevant for this thesis are reviewed. 

Figure 1 shows a theoretical representation of how many of these models are related. 

 

Figure 1 Theoretical representation of how the commonly used models are related. 
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4.1. Linear Models 

Linear models are the simplest form of statistical model and are often the first that 

students are taught in school. They include any model that is linear in the parameters 

(Khuri, 2010; pg 1). The general form is: 

Y = Xβ + ɛ            ɛ ~ N(0, σ2)                                 Equation 8 

 

where β is a vector of coefficients, X are the explanatory variables, Y is the dependent 

variable and ɛ are the residuals (Clarke, 2008). There are two subsets of linear models: 

those with continuous explanatory variables are regression models and those with 

categorical explanatory variables are Analysis of Variance (ANOVA) models (Khuri, 

2010; pg 2-3). Linear models can also accommodate a combination of categorical and 

continuous variables at the same time. Unfortunately the complexity of many ecological 

systems means that linear models are often not suitable for these analyses. 

4.2. Generalised Linear Models (GLMs) 

Generalised Linear Models (GLMs) were proposed by Nelder and Wedderburn in 1972 

and are an extension of linear models to allow for error distributions  other than the 

Normal distribution (Nelder and Wedderburn, 1972). They are appropriate for many of 

the commonly encountered types of ecological data including presence/absence and 

proportions (Binomial, Bernoulli), counts and densities (Poisson, Negative Binomial, 

Geometric) and non-negative continuous data (Exponential, Gamma, Inverse Gaussian). 

The Negative Binomial, Quasi-Poisson and Geometric distributions are commonly used 

when the data are overdispersed in comparison to the distribution that is otherwise 

appropriate.  
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The general form uses a link function, g(), to relate the mean, µ, to the covariates (Myers 

et al., 2010; pg 5): 

𝒈(𝝁) = 𝑿𝜷 +  𝜺                                       Equation 9 

 

where β is a vector of coefficients, X are the explanatory variables and ɛ are the residuals. 

Often transformations (log, square-root, inverse) are performed to normalise residuals 

and coerce the data into being suitable for a linear model (Osborne, 2005, Bartlett, 1947). 

However, GLMs have been shown through simulation to produce better results than 

transformation (O’Hara and Kotze, 2010). Transformation is particularly problematic 

when the data contain zeros because log transformation will make the zeros infinite. This 

issue is often side-stepped by adding a constant to all values to raise them above zero, 

after which a log-transformation is performed, however this is less than ideal because the 

choice of constant is arbitrary but can change the outcome of the model (Fletcher et al., 

2005). Transformation can also result in the new transformed mean not being equivalent 

to the raw mean on the untransformed scale, which complicates interpretation. Hence, 

GLMs should be investigated before transforming data, especially when zeros are 

present. 

4.3. Hierarchical Models 

Hierarchical models are useful when there is nesting in the data, such as observations 

within sites or samples taken from individuals (Raudenbush and Bryk, 2002; pg 5 - 7). 

There can be any number of levels to the hierarchical model (McCarthy, 2007; pg 75) 

and they are present in both the Bayesian and frequentist framework.  

The hierarchical model can have a ‘data model’ at the top level, which expresses the 

distribution of the observed data (Cressie and Wikle, 2011; pg 361 - 362). Underneath 
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this is a ‘process model’ which represents the uncertainty in the process (the true process 

is unobservable). This specific case is known as a state-space model because it describes 

the relationship between the underlying state and the observed data. 

The hierarchical model is Bayesian if there is a ‘parameter model’ that specifies the joint 

probability of all unknown parameters. This parameter model relies on the theory that a 

joint distribution can be broken down into a conditional model: [A, B, C] = [A| B, C][B, 

C][C] (Wikle, 2003). For example, for studies with multiple locations (e.g.: different sites 

or quadrats), a Bayesian Hierarchical Model can allow the parameters to vary by site, 

while still having the same distribution (Borsuk et al., 2001, McCarthy, 2007).  

4.4. Mixed Models 

Unlike fixed effects models such as linear models and GLMs, Mixed Models include both 

fixed and random effects. Random effects account for variability between groups, such 

as individuals or sites, and allow for both subject specific and population level inference 

(Wu, 2009; pg 39). Generally the random effects measure factors whose levels are chosen 

randomly from a population and would not be the same if the experiment was repeated 

again (i.e. individuals within a population or quadrats within a site). Mixed Models can 

hence incorporate survey design (i.e. nesting of sites) and ensure that the data are not 

pseudoreplicated within the model. 

Mixed models are a form of hierarchical model, in that they model data where the 

observations are nested within levels (Wu, 2009; pg 39). They can take many forms, 

including but not limited to random intercepts, random slope, generalised additive mixed 

models (GAMM) and generalised linear mixed models (GLMM) (Zuur et al., 2009; pg 

101, 323). The general form of a mixed model is: 

   Y = Xβ + Zv + ɛ        ɛ ~ N(0, σ2)                      Equation 10 
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Where β is a vector of fixed effects, v is a vector of random effects, X and Z are design 

matrices and ɛ is a vector of unobserved errors. For the above model, v ~ N(0, G) and ɛ ~ 

N(0, R), where R = σ2I and I is an identity matrix (Wolfinger, 1993). A covariance matrix 

can be used to indicate the structure of correlation between variables. There are several 

choices for covariance matrices, including but not limited to diagonal, compound 

symmetry, unstructured, Toeplitz and autoregressive (Wolfinger, 1993; pg 1081 - 1082). 

The choice of which to use is driven by the structure of correlation between the variables 

as seen in the data.  

Mixed models are generally estimated using Maximum Likelihood (ML) or Restricted 

Maximum Likelihood (REML). REML is preferred for the estimation of the variance 

components in mixed models because it does not depend on the correct estimation of the 

fixed effects, so the random effect estimates are not biased downward (Verbeke and 

Molenberghs, 2009). ML and REML require integration of the likelihood over all 

possible values of the random effects, making model fitting slow and often unfeasible for 

complex mixed models. To get around this, there are several ways to approximate the 

likelihood, including quasi-likelihood (pseudo and penalised), Laplace approximations, 

Gauss-Hermite quadrature and MCMC methods (Bolker et al., 2009). 

4.5. Models for zero-inflation 

Zero-inflation is especially common in animal count data because the number of cells, 

quadrats or sites where no animals are observed is often higher than the expected number 

of zeros under most theoretical distributions. Failing to account for zero-inflation can bias 

the parameter estimates and standard errors, cause overdispersion and mask the true 

ecological patterns (Martin et al., 2005, Zuur et al., 2009). There are two broad classes of 

models for dealing with zero-inflated data: hurdle models and zero-inflated models. 
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Models for zero-inflated data can be modified for spatial count data and repeated 

measures by incorporating random effects (Agarwal et al., 2002, Hall, 2000, Min and 

Agresti, 2005). 

4.5.1. Hurdle models 

Hurdle models use separate processes to model the zero and non-zero values. It can be 

interpreted as modelling the probability of presence/absence separate from conditional 

(given presence) counts. Hurdle models are recommended over zero-inflated models 

when the zeros are known to be ‘true zeros’, i.e. those arising from true absences rather 

than systematic errors such as the observer missing a sighting, or environmental 

conditions concealing a sighting (Martin et al., 2005). Generally, the zero model is a 

binomial model and the count model is a zero-truncated Poisson, Negative-Binomial or 

Geometric model. The general form of a hurdle model (Zuur et al., 2009; pg 287) is: 

𝒇 =  ൝
𝒇𝒃𝒊𝒏𝒐𝒎𝒊𝒂𝒍(𝒚 = 𝟎;  𝜸)                                                   𝒚 = 𝟎

൫𝟏 −  𝒇𝒃𝒊𝒏𝒐𝒎𝒊𝒂𝒍(𝒚 = 𝟎;  𝜸)൯ ∗  
𝒇𝒄𝒐𝒖𝒏𝒕(𝒚;𝜷)

𝟏ି 𝒇𝒄𝒐𝒖𝒏𝒕(𝒚ୀ𝟎;𝜷)
       𝒚 > 𝟎

            Equation 11 

 

where 𝜸 and 𝜷 are vectors of covariates in the zero and count models respectively and f 

are the Probability Mass Functions. Hurdle models can also model zero-deflation (Min 

and Agresti, 2005), although this is much less commonly seen in ecology. In Chapter 5 

of this thesis, I use a hurdle model to assess whether Antarctic krill aggregate around 

resources or are passive drifters. I extended the traditional hurdle model by adding 

random effects in both stages of the model, because the data were collected across 

multiple sampling stations and are hence pseudoreplicated if sampling station is not 

incorporated into the model. Standard hurdle models use a count model for non-zero 
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values, however I modified this to be a continuous model because krill densities are not 

discrete counts.  

4.5.2.  Zero-inflated models 

Zero-inflated models supplement a regular count model by modelling only excess zeros 

separately and the true zeros are retained in the count model. They are useful when we 

are cannot distinguish between the true and false zeros in the data (Martin et al., 2005). 

The zero-inflated Poisson and zero-inflated Binomial are the two common forms of these 

models, both of which use a binomial model for the excess zeros relative to the original 

count distribution. The general forms of zero-inflated models can be found in Zuur et al 

(2009; pg 276). The Poisson and Negative Binomial options can be compared using a 

likelihood ratio test (Zuur et al., 2009; pg 288).  

4.6. Non-Parametric Models 

 

4.6.1.  Generalised Additive Models (GAMs) 

GAMs use non-parametric smoothers to model the relationship between the dependent 

variable and each independent variable, which gives an advantage over a Linear Model 

because they can fit data-driven relationships between the predictors and the dependent 

variable (Guisan et al., 2002). This is particularly useful when we don’t know much about 

the nature of this relationship (Denison et al., 2002). GAMs can also accommodate non-

normal error structures. The general form of a GAM is similar to a linear model: 

𝒀 =  𝒔𝒐 + ∑ 𝒔𝒋൫𝑿𝒋൯ +  𝜺𝑷
𝒋ୀ𝟏                                      Equation 12 

 

where s0 is an intercept and the s() terms are smoothers for each explanatory variable, Xj 

(Hastie and Tibshirani, 1986). Interactions are also possible and take the form s(x, y), 
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however this becomes complicated when x and y do not vary on the same scale. The 

smooth term can take a number of forms, most of which are based on smoothing splines. 

First proposed in 1922 (Whittaker, 1922), splines are piecewise polynomials that are 

smooth at the joining points, which are called knots (Wold, 1974). Splines are named by 

the degree of the polynomials that comprise them. For example, a spline made up of cubic 

functions is called a cubic smoothing spline. An important part of smoothing models is 

the question of how much to smooth (Lee et al., 2006). Too much smoothing can mask 

an underlying pattern but not enough will cause overfitting. The number of knots and the 

smoothing parameter (if present) can influence smoothness. There are several ways to 

estimate the smoothing parameter. If it is estimated from the data, it is called ‘data-driven 

smoothing’ (Lee et al., 2006). Generalised cross-validation and AIC can be used to 

estimate the smoothing parameter from the data. 

4.6.2.  Generalised Additive Mixed Models 

While GAMs can deal with non-parametric relationships, they don’t allow for random 

effects that can accommodate differences between locations or subjects. Rather than 

fitting separate models per study, which could reduce the power of the study as well as 

reduce the usefulness of the models, the GAM can be extended to a GAMM to allow for 

the addition of random effects. The GAMM extends the GAM by adding Z, a vector of 

random effects. 

4.6.3.  Spline Mixed Models (ASReml) 

Non-linearity can be modelled in a linear mixed model framework using penalised 

splines, an approach available in the statistical package ASReml (VSNi, 2009). For each 

coefficient, the fixed component will model the linear trend and the cubic splines, fit as 

random effects, will model the departures from this linearity (Butler et al., 2009). It 
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should be noted that while the splines are fit as random effects, they are not true random 

effects, rather this is a mechanism for fitting the model. As with GAMs, we need to 

estimate the amount of smoothing required in our model. In Chapter 3, I use spline mixed 

models in ASReml to assess drivers of phytoplankton distribution off East-Antarctica. 

This modelling method was chosen because the splines allow for non-linear relationships, 

the random effect is required because the data were collected across multiple sampling 

stations (observations within a station are replicates) and ASReml allows for easy fitting 

of a 3D correlation structure to account for 3D spatial autocorrelation. 

4.7. Generalised Estimating Equations 

GLMs for count and binomial data can be extended to allow for correlation between 

observations, resulting in Generalised Estimating Equations (GEE) (Liang and Zeger, 

1986, Ziegler, 2011). They differ from GLMs because you don’t need to specify the full 

distribution, only the mean structure. GEE works on the idea that observations within a 

cluster of data will be correlated, while observations from different clusters won’t be 

(Ziegler et al., 1998). Some examples of these clusters are longitudinal analysis, family 

studies and spatial analysis.  

AIC cannot be directly used with GEEs because they are not likelihood based, although 

there is a modified AIC available that uses the quasi-likelihood (Pan, 2001a). Other model 

selection methods include minimisation of the expected predictive bias (Pan, 2001b) and 

Wald tests (Zuur et al., 2009; pg 318).  

4.8. Autoregressive Models 

For spatial data, conditional autoregressive models (CAR) and simultaneously 

autoregressive models (SAR) are often used to incorporate neighbourhood values into the 
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model. The covariance structure includes spatial dependence as a function of the 

neighbourhood matrix (Wall, 2004). This can be modelled either explicitly or implicitly.    

SAR models can have different forms depending on whether the spatial autocorrelation 

is present only in the dependent variable or also in the explanatory variables (Dormann 

et al., 2007). If the autocorrelation is only present in the dependent variable the model 

takes the form: 

Y = pWY + Xβ + ɛ                                  Equation 13 

 

Y is the dependent variable, p is the autoregression parameter, W is the spatial weights 

matrix, X is the vector of explanatory variables and β is a vector of slopes. If the 

autoregression is present in both the dependent and independent variables the model will 

take the form: 

Y = pW1Y + Xβ + W2Xɣ + ɛ                          Equation 14 

 

The X term is a matrix of spatially lagged predictors, Wi are spatial weight matrices 

which are usually assumed to be the same and ɣ is the regression coefficient for this 

matrix. The spatial autoregression can also occur only in the error term, in which case the 

model becomes: 

Y = Xβ + ɛ + λWμ                               Equation 15 

 

In the above model, W is the weighted spatial structure of μ, the spatially dependent error 

term, ɛ is the error term and λ is a spatial coefficient to be estimated. Two different SAR 

models were used by Santora et al (2010) to assess the spatial dependence of baleen 

whales and Antarctic krill, one with a lagged dependent variable and one with an 

autoregressive error term (although the models were called spatial regression models). 
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Two dimensional correlograms were then used to assess correlation between krill and 

whale distribution.  

CAR models are similar to SAR models, however the distance matrix, W, must be 

symmetric. The general form of a CAR model is: 

Y = Xβ + pW(Y – Xβ) + ɛ                                Equation 16 

 

Where p is an autoregression parameter, W is a spatial weighting matrix, X are the 

independent variables and β are a vector of slopes.  

  

4.9. Density Surface Models 

 

Density Surface Models (DSMs) combine numerous techniques to account for common 

problems seen in ecological data and are reviewed in Miller et al (2013). DSMs use 

GAMs to model data with non-linear trends, use an x-y surface to account for spatial 

variability and correct for the decrease in sightings as they get further from the transect 

using a detection function. This decrease in sightings with distance is a form of 

observation bias and occurs primarily because objects become harder to detect further 

away. If an observer measures the distance from transect to each sighting a function can 

be fit to correct the abundance and density estimates, in a method known as ‘Distance 

Sampling’ (Thomas et al., 2002). Commonly used detection functions include half-

normal, hazard-rate and gamma (Figure 2). DSMs combine these strengths of GAMs and 

Distance Sampling and in addition incorporate survey design, which enables their use for 

surveys with unequal effort as is commonly seen from platforms of opportunity.  
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I use a DSM in Chapter 6 of this thesis to link whale distribution at an island feeding 

area to food levels (krill) and environmental conditions. This model allowed for the 

unequal sample effort, the missed whale sightings as distance from transect increased and 

the non-linear relationships between whale count and environmental conditions.  

 

Figure 2 Examples of detection functions for decreasing probability of detection from 

the transect. Half-normal detection functions are used when there is immediate 

decreasing probability of detection from transect while hazard-rate models assume 

perfect detectability until a certain distance, after which sightings decrease. Gamma 

functions are used when the peak probability of detection is not on the transect. 

4.10. Spatial Autocorrelation 

Spatial autocorrelation is common in ecological data, where observations closer together 

are likely to be more similar than those further away (Dormann et al., 2007). This can 

occur when variables are measured on a finer scale than they vary, when variables are 

observed in ‘blocks’ with different observers which may introduce observer bias, if 

variables depend on an underlying spatial process or if the model omits an important 
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spatially varying trend (Haining, 2015). Spatial autocorrelation is problematic when 

correlation is visible in the model’s errors. Many studies use conventional methods that 

ignore this problem. However making inference on models where the data doesn’t satisfy 

the assumption of independence required by the model can lead to flawed conclusions 

(Haining, 2003, Kühn, 2007) and it is important that the final fitted model does not have 

spatially autocorrelated residuals which would violate the assumption of independence 

(Haining, 2003). Spatial autocorrelation can take many forms including autoregressive, 

moving average and autoregressive moving average (ARMA) among others. 

There are many methods available for accounting for spatial autocorrelation of a model’s 

errors and some of the most common are summarised in Table 1. In addition, the 

experimental design can be chosen to minimise the chance that sites will be correlated, 

such as spacing sites to maximise their distance apart, although there is no guarantee that 

closer sites will not still be autocorrelated (Haining, 2015). 
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Table 1 Statistical methods to account for spatial autocorrelation in ecological data. 

Summarised from Dormann et al (2007). 

Method How it works Comments 

Autocovariate models Adds distance weighted 
function of nearby 
response variables to 
GLM 

Applicable to binomial, 
normal and Poisson 
models 

Spatial Eigenvector 
Mapping 

Spatial arrangement of 
data is translated into 
explanatory variables  

Computationally intensive 
for >200 data points 

Correlation structures Models the spatial 
covariance in the variance-
covariance matrix 

Available for many GLMs 
and mixed models 

Conditional 
Autoregressive Models 
(CAR) 

Weighted distance 
matrices to specify the 
strength of interaction 
between points 

Unsuitable for directional 
processes 

Simultaneous 
Autoregressive Models 
(SAR) 

Weighted distance 
matrices to specify the 
strength of interaction 
between points 

Like CAR but distance 
matrices don’t need to be 
symmetric 

Mixed models Nesting of spatial 
autocorrelation structures 
within locations 

Spatial autocorrelation in 
mixed models can be 
specified in the covariance 
G-matrix or in the error 
structure 

Generalised Estimating 
Equations (GEE) 

Correlation matrix to 
specify within cluster 
correlations 

Better for parameter 
estimation than prediction. 
Correlations are reflected 
in the ordering of the data. 

 

There are several tests to identify spatial autocorrelation. Mantel tests assess distance and 

similarity between sites (Mantel, 1967). If autocorrelation is not consistent across the 

entire study area, localised correlation can be tested for using Moran’s I test, where a test 

statistic is computed for each region on the map (Haining, 2015). Plotting the residuals 
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of a model across each spatial dimension can identify if there is residual autocorrelation 

remaining in a model. Semivariograms are a good tool for visualising spatial 

autocorrelation and making a guess about the nature, whether it be Gaussian, exponential, 

spherical or something different (Stroup, 2013). A semivariogram is a plot of the 

semivariance vs the lag distance between observations (Figure 3). The ‘nugget’ is the 

variation that cannot be explained by the distance between observations, the ‘sill’ is the 

estimated variance, and the difference between these values is the observed variation that 

can be explained by distance. Semivariograms can be calculated for single directional 

distances or for 2-dimensional data such as latitude/longitude or row/column survey 

designs.   

Figure 

3 Conceptual diagram of semivariogram showing the sill (estimated variance), nugget 

(variance unexplained by distance between observations) and range (distance to reach 

sill). 
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5. Conclusion and methods used in this thesis 
 

Ecological data is inherently complex due to the often non-linear relationships between 

variables, the spatial and temporal variability, inter-subject and inter-site differences and 

the high number of zeros due to patchily distributed animals or plants. Sophisticated 

modelling methods are required to answer the questions that we want to extract from the 

data. This chapter has provided a review of some useful models for ecologists and a 

comparison of the frequentist and Bayesian approaches to using them. The remaining 

chapters of this thesis focus on applying and extending some of these methods to answer 

important questions about the distribution of phytoplankton, Antarctic krill and 

humpback whales in the Southern Ocean. I have used a frequentist approach and 

Information Theoretics to reduce computational time and because in most cases there was 

little prior information available. The methods used in each chapter of this thesis are listed 

in Table 2. They are described in greater detail in the Methods and Discussion segments 

of each chapter. The software package developed in Chapter 4 does not use statistical 

methods for ecology and is hence not included in this table. 
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Table 2 Methods used in each analysis chapter of this thesis. 

Thesis chapter Complexities in data Modelling method 
Chapter 3  
Modelling drivers of 
phytoplankton distribution 
off North-East Antarctica 
 

 Data collected over multiple 
sites 

 Non-linear relationships 
 3D spatial autocorrelation 

Spline mixed 
models (in ASReml) 
with 3D 
autocorrelation 
structure 

Chapter 5  
Are Antarctic krill passive 
drifters or do they aggregate 
around resources? 
 

 Data collected over multiple 
sites 

 Continuous krill density data 
(regular hurdle models are 
only for counts) 

 Zero-inflation (over half cells 
surveyed contained no krill) 

Hurdle mixed model 
for semi-continuous 
data 

Chapter 6 
Modelling the effects of 
food distribution and 
environmental parameters at 
the Balleny Islands on 
feeding humpback whales 

 Non-linear relationships 
 Imperfect detectability of 

whales  
 Uneven sampling effort in 

survey area 

Density Surface 
Model 
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Abstract 

Productivity in the Southern Ocean is important for global oxygen levels and climate. 

Determining the relationship between phytoplankton density and environmental variables 

enables us to understand and predict the effects of environmental change on 

phytoplankton. Marine environmental data, such as phytoplankton fluorescence, are 

commonly collected using vertical profiling instruments which are time consuming to 

use in costly remote environments. Standard modelling techniques typically do not 

account for the 3D autocorrelated and non-linear nature of marine profiling data, resulting 

in incorrect inference and biased predictions. Here we use a spline mixed model with a 

3D correlation structure to model environmental correlates with phytoplankton 

fluorescence collected using a Conductivity-Temperature-Depth (CTD) system during 

the BROKE-West research cruise along the East Antarctic margin (30-80ºE) in January-

February 2006. Our modelling procedure was tested via simulation and found to be 

unbiased. We found that the variables depth, in situ temperature, salinity and dissolved 

oxygen were significant predictors of phytoplankton fluorescence. Strong spatial 

autocorrelation was found in the latitude and depth dimensions (φdepth= 0.92, φlatitude = 

0.85). Ignoring correlation led to over fitting, negatively biased variance estimates and 

spurious inference, highlighting the importance of considering correlation when 

modelling CTD data. This study identified important drivers of phytoplankton 

distribution in the East-Antarctic and provided a method for predicting future scenarios 

using the vast array of survey data that already exists. 

Keywords: conductivity temperature depth, random effect, Chlorophyll-a, spatial 

autocorrelation, non-linear relationship 
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1. Introduction 

The Southern Ocean is of global importance due to i) its key role in global climate 

(Mayewski et al., 2009), ii) its unique and endemic-rich ecosystems (Murphy and 

Hofmann, 2012) and iii) its hosting of multi-national fisheries, including commercial 

finfish and the world’s largest krill fishery (Nicol et al., 2012). Key to these fisheries are 

the high level of primary production that occurs in the Southern Ocean (Smetacek and 

Nicol, 2005). This is largely due to the high phytoplankton densities which are 

responsible for more than half of the world’s annual photosynthesis (Chisholm, 2000). In 

the Southern Ocean, phytoplankton are the primary food source for a number of marine 

species, including euphausiids, larval fish, tunicates and cephalopods (Gurney et al., 

2001, Dubischar and Bathmann, 1997, Murphy et al., 2012). Accurately determining the 

drivers of phytoplankton abundance is therefore crucial to our understanding of 

productivity in the oceans as a whole.  

There is increasing concern over the environmental status of the Southern Ocean because 

the region is experiencing unprecedented changes (Constable et al., 2014). A focal point 

for research has been the Western Antarctic Peninsula, which is warming significantly, 

and at one of the fastest rates on the planet (Montes-Hugo et al., 2009, Clarke et al., 2007). 

This change is characterised by decreasing winter sea-ice levels, salinification and 

warming surface waters (Meredith and King, 2005), with major observed changes in 

Chlorophyll-a distribution and phytoplankton community composition (Massom and 

Stammerjohn, 2010). Chlorophyll-a is a proxy for primary productivity by 

phytoplankton, however, as pigmentation is sensitive to photoacclimation and nutrient-

driven physiological responses, it is not directly proportional to productivity (Behrenfeld 

et al., 2015). In contrast to the warming seen in the Western Antarctic Peninsula, the Ross 

Sea has experienced increased extent and duration of sea ice (Smith Jr et al., 2012). The 



69 
 

phytoplankton biomass there is strongly linked to sea ice, mixed layer depth and light 

availability (Smith Jr et al., 2014). On a global scale, it is expected that there will be large 

range expansions of warm-water species towards the poles, changes in abundance, 

growth levels, timing of peak production and trickle-down effects through the marine 

food web (Hallegraeff, 2010). In light of the divergent environmental shifts in the 

Southern Ocean, it is becoming increasingly important to understand how phytoplankton 

may be affected by complex regional climate change. The predicted environmental 

changes are too subtle to examine using perturbation experiments (Boyd et al., 2008), 

necessitating modelling based methods to answer these questions. 

 

The oceans are heavily vertically stratified and experience mixing and convection, 

transporting heat from the tropics to the poles (Wunsch and Ferrari, 2004, Ganachaud 

and Wunsch, 2002). To capture the stratification in the surface layers, oceanographic data 

collection during ship-based marine research voyages primarily involves lowering 

instrumented platforms through the water column. The base unit sensor/platform is the 

CTD, measuring conductivity, temperature and depth. Ancillary sensors such as 

fluorometers and dissolved oxygen sensors can be included on the CTD package. 

However, establishing relationships between the fluorescence of Chlorophyll-a and 

coincident oceanographic properties is a complex modelling task, caused by non-linear 

relationships, strong autocorrelation of data within each vertical profile, and the potential 

for an observation station level effect on the profiles.  

Generalized Additive Models (GAMs) have been used to model similar complex data, as 

they can account for non-linear relationships by using smoothers (Hastie & Tibshirani, 

2000, Wood, 2006). In the marine setting, GAMs have previously been used to model the 

relationship between profiles of bioluminescent zooplankton sources and environmental 
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variables (Craig et al., 2010, Heger et al., 2008), drivers of phytoplankton productivity 

(Lamont et al., 2014), the distribution and biomass of euphausiid aggregations (Lawson 

et al., 2008) and nano-microplankton and meso-zooplankton biomass (Zarauz et al., 

2007). Modelling with data collected at multiple sites or stations may mean a random 

effect is appropriate, in which case a GAM must be extended to a Generalized Additive 

Mixed Model (GAMM). Mixed models include fixed effects (parameters of specific 

interest where the levels are not randomly chosen) and random effects (parameters whose 

levels are not of particular interest but are required to avoid pseudoreplication). Ignoring 

random effects for a data set collected at many sites can result in a large loss in degrees 

of freedom and the inability to make population level inference (Crawley, 2002). This in 

turn makes it difficult to make valid predictions at a new location, where no data is used 

to develop the initial model. 

Often present in ecological data is spatial autocorrelation, where closer points are more 

similar than those further away (Dormann, 2007). Spatial autocorrelation is difficult to 

address in marine environments since there is the potential for 3-dimensional correlation, 

i.e. correlation between stations and the observations collected during vertical profiling. 

This is especially likely if there are missing covariates (i.e. lurking variables) for which 

data are not available (Joiner, 1981). In a complex and difficult to quantify environment 

such as the Southern Ocean, it is unlikely that representative data on all variables of 

interest can or will be collected. Therefore, an error structure needs to be included in the 

model to specify the type of correlation that is still present in the residuals. Ignoring 

spatial autocorrelation can reduce model fit, bias parameter estimates, cause inverted 

relationships and result in false conclusions (Dormann, 2007, Lichstein et al., 2002, 

Kühn, 2007). Parameters may also become falsely significant, causing spatially varying 
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parameters, defined as parameters that co-vary with latitude or longitude i.e. Sea Surface 

Temperature, to appear more significant than they really are (Lennon, 2000). 

Here, we use linear mixed models including cubic smoothing splines (Verbyla et al., 

1999) combined with a 3-dimensional error structure to account for i) non-linear 

relationships between phytoplankton fluorescence and environmental predictors ; ii) a 

site level effect and iii) 3D spatial autocorrelation. The spline component allows for non-

linear response vs explanatory variable relationships; the mixed effects model allows for 

a station random effect, where stations are considered as samples drawn from a 

population of stations; and the error structure also includes additional dependencies due 

to spatial autocorrelation arising from two-dimensional station locations as well as the 

third dimension, depth within the water column. We use our model to explore the 

generalised survey level relationships between phytoplankton fluorescence and 

environmental variables. Our independent variables include factors known to influence 

phytoplankton growth and distribution (temperature, salinity, sea ice, vertical mixing, 

current velocity) as well as one product of photosynthesis (dissolved oxygen). We then 

use simulation, based on the characteristics of our observations, to assess the validity of 

our modelling approach and therefore the accuracy of the conclusions we have drawn. 

The data come from a multi-disciplinary marine science survey called the Baseline 

Research into Oceanography, Krill and the Environment (BROKE-West – see Nicol et 

al. (2010) and references therein). The survey took place from January – March 2006 

along the East Antarctic margin south of 60oS and between 30 – 80oE and covered 1.3 

million km2. The major zonal current systems in the BROKE-West survey area are the 

eastward-flowing southern Antarctic Circumpolar Current front zone (sACCf) to the 

north and the westward-flowing Antarctic Slope Current (ASC) and coastal current to the 

south (Meijers et al., 2010, Williams et al., 2010). The Antarctic Circumpolar Current 
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(ACC) waters are characterised as warm, high nutrient, weakly stratified waters strongly 

influenced by wind stress (Mitchell et al., 1991). Two large-scale clockwise circulations 

influence the western (outer Weddell Gyre) and eastern (greater Prydz Bay 

Gyre/Australian-Antarctic Basin Gyre extension) boundaries of the survey. There was 

more sea ice in the west due to the Weddell Gyre and as a result the summer mixed layers 

(SMLs) were most developed from the north-east (Williams et al., 2010). The depth and 

thickness of the seasonal pycnocline increased from the western to eastern boundaries of 

the survey area, as a result of the deepening of the SML.  

 

Phytoplankton distribution in the Southern Ocean depends on an interplay between 

bottom-up physical processes (light, nutrient and iron availability and mixing in the water 

column) and top-down grazing (Smith and Lancelot, 2004, Boyd, 2002). During 

BROKE-West, nitrate concentrations were more strongly regulated by uptake during 

photosynthesis than mixing and water masses and were correlated with dissolved oxygen 

levels (Pearson coefficient = 0.44). Nitrate concentration was negatively correlated with 

chlorophyll biomass, however silicate, phosphate and nitrate levels were all above 

limiting levels. While iron levels were not measured during BROKE-West due to 

sampling difficulty, it is thought that iron exhaustion due to grazing and sedimentation 

limited the growth and sustainability of blooms (Wright et al., 2010). The release of iron 

by melting sea ice plays an important role in the formation of phytoplankton blooms 

(Sedwick and DiTullio, 1997). Salinity greatly influences seawater density and the 

melting sea ice also creates a stable surface layer that is amenable to phytoplankton 

blooms (Smith and Nelson, 1986).  Primary productivity was higher in the summertime 

sea ice zone than the open ocean, although blooms possibly associated with high iron 

levels were observed in the open ocean (Westwood et al., 2010). High silicate drawdown 
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and low assimilation numbers in the north-eastern region indicate high diatom growth 

earlier in the season, in conjunction with the earlier onset of sea ice melt. The number of 

days since full ice cover has a significant effect on phytoplankton community 

composition (Wright et al., 2010). Overall, the observations during the BROKE-West 

survey support the high-nutrient/low-chlorophyll status of the Southern Ocean 

(Westwood et al., 2010). 

 

Primary productivity during BROKE-West depended heavily on mixing and water mass 

characteristics (Westwood et al., 2010, Wright et al., 2010), with monthly variability in 

surface chlorophyll explained by sea surface temperature and wind stress (Schwarz et al., 

2010). In the water column, high productivity in the Marginal Ice Zone (MIZ) was 

associated with a shallow Mixed Layer Depth (MLD) and the MLD was shallower near 

the ice than in the open ocean (Westwood et al., 2010). MLD can be used to predict the 

upper limit of a phytoplankton bloom size, with shallower MLDs favouring the formation 

of large blooms (Mitchell and Holm-Hansen, 1991). In contrast to the relationships seen 

near the ice edge, the MLD varied considerably in the South Antarctic Circumpolar 

Current Zone (SACCZ) without any visible effect on phytoplankton stocks (Wright et al., 

2010). On the shelf region of the Western Antarctic Peninsula, MLD also showed no 

correlation with Chlorophyll-a concentration or phytoplankton community composition 

(Prézelin et al., 2000). There were significant differences in phytoplankton taxa between 

the Southern Boundary and the sACCf which could be attributed to turbulent mixing and 

advection of Antarctic Circumpolar Current (ACC) water (Wright et al., 2010). Turbulent 

mixing affects the competition for light between taxa and causes a shift in community 

composition with mixing favouring sinking phytoplankton (Huisman et al., 2004), while 

Chlorophyll-a in general correlates strongly with vertical stability of the water column 
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(Garibotti et al., 2003). The depth of the euphotic zone, below which there is insufficient 

light for photosynthesis, was 55-100m at most stations and throughout the survey area 

light availability was above the levels required for maintenance of phytoplankton 

populations and promoted growth (Westwood et al., 2010). The only observed case of 

light limitation was self-shading at two stations near the sea-ice edge (Wright et al., 2010) 

and no significant difference in photosynthesis was seen between day and night time CTD 

stations (Westwood et al., 2010).  

 

The factors regulating phytoplankton growth and distribution are complex and therefore 

simple modelling methods are unlikely to capture the spatial complexity and non-linear 

nature of these processes. Here our aim is to develop a predictive model of phytoplankton 

fluorescence based on selected environmental data collected throughout the BROKE-

West survey area. The model we develop here can deal with the aforementioned problems 

with spatial autocorrelation and non-linearity and is widely applicable regardless of 

survey design. 

 

2. Materials and methods 

 

2.1. Oceanographic Data 

We used conductivity temperature depth (CTD) data (Rosenberg, 2006) collected using 

the 2006 Baseline Research on Oceanography, Krill and the Environment survey 

(BROKE-West) in East Antarctica (see Nicol et al (2010) and the map of the survey area 

with CTD stations marked as circles). The CTD was a SeaBird SBE9plus with attached 

dissolved oxygen sensor (SBE43), fluorometer (Wet Labs ECO) and twenty two 10L 

Niskin bottles (General Oceanics). During the survey there were 118 CTD locations, 
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where data on depth, temperature, conductivity, phytoplankton fluorescence and 

dissolved oxygen were resolved at 2m depth intervals. The first station was a test, so only 

the subsequent 117 stations were included in our analysis. Only depths between the 

surface and 250m were used because no fluorescence was observed below 250m. The 

Acoustic Doppler Current Profiler (ADCP) data from the BROKE-West survey (Meijers 

and Klocker, 2006) were collected using an RDI 150kHz broadband ADCP (Rosenberg 

et al., 1999). 

The fluorescence data were collected using a fluorometer attached to the CTD and 

calibrated using High Performance Liquid Chromatography (HPLC) pigments from 

water from the top 10m of the water column collected in Niskin bottles attached to the 

CTD rosette (Westwood et al., 2010). The calibration was performed at the time of data 

collection and the calibrated fluorescence values had units of μg Chl a L-1. While the 

calibration was performed using total Chl a, it should be noted that divinyl chlorophyll 

(indicating the presence of Prochlorococcus) was not present. 

 

2.2. Statistical Analysis 

The analysis was undertaken using R 3.1 (R Development Core Team, 2014) running in 

R-Studio 0.98.932 (RStudio, 2014). The mixed models were fit using generalized least 

squares for fixed effect parameters combined with Residual Maximum Likelihood 

(REML) for variance parameters, and Best Linear Unbiased Prediction (BLUP) to 

estimate random effects (Diggle et al., 2002, Gilmour et al., 1995, Patterson and 

Thompson, 1971) using the R package ASReml-R, version 3.0 (Butler, 2009). ASReml-

R was chosen over other mixed modelling packages in R because it can fit the 3D error 

structure required here (depth, latitude, longitude) as well as accommodating irregularly 

spaced CTD stations that were closely spaced near the ice edge and sparser offshore.  
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2.3. Linear Mixed Model Specification 

Our linear mixed model uses cubic smoothing splines which are piecewise third order 

polynomials joined smoothly at locations within the data known as knots points, or 

simply knots (Wold, 1974). Knot location and number controls spline smoothness, with 

a higher number of knots causing the spline to more closely follow the data but at the risk 

of poor model development due to overfitting. A range of different knot points (5 to 50) 

were tested and since the model did not change depending on the number of knots for 

each spline, 10 knots were chosen for computational efficiency. A station random effect 

was fitted to allow prediction across East Antarctica. The model was fitted by minimising 

the Residual Maximum Likelihood (REML) criterion using the Average Information 

algorithm. REML is robust to misspecification of the correlation structure when using 

penalized splines with correlated data (Krivobokova and Kauermann, 2007). 

Furthermore, REML is readily accessible via ASreml (VSNi) and to our knowledge 

provides the only off-the-shelf solution for fitting 3D correlation structures.  

 

All explanatory variables (Table 1) were collected in situ using the CTD with the 

exception of ice-free days (the number of days since full ice cover at the CTD station) 

and distance from the sea ice edge (at time of sampling), which were calculated using 

satellite data. These variables were extracted using remotely sensed environmental data 

accessed using the R package raadtools (Sumner and Raymond, 2015). The ice data are 

from the environmental data sets included with raadtools from the National Snow and 

Ice Data Centre and are available on a daily 25km resolution. The ice edge was defined 

using a contour that followed the convex hull of locations around Antarctica where ice 

cover had declined to zero. Distance to this polygon was calculated using an elliptical 

distance calculation to account for curvature of the earth. The vertical stratification region 
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(VSR) variable is a 4 level categorical variable that describes the water mass relative to 

the summer stratification and mixed layers/boundaries. Continuous explanatory variables 

were centred and scaled, as required in ASReml if missing values are present (Butler et 

al., 2009), and fluorescence was log transformed to normalize the residuals. These 

explanatory variables were chosen because they were collected on a scale that reflects the 

sampling stations and biologically could plausibly effect phytoplankton.  

Table 1 List of explanatory variables considered with summary statistics. For the 

parameter ‘ice free days’, negative values indicate that the region was not yet ice free at 

time of sampling i.e.: -35 = Region became ice free 35 days after sampling 

Explanatory Variable Symbol Mean Standard 
deviation 

Min Max 

Temperature (oC) t -0.47 1.287 -1.99 1.97 

Depth in water column (m) z 126 72 2 250 

Dissolved oxygen (μ mol L-1) o 293 59.25 174 407 

Salinity (psu) s 34.25 0.309 32.72 34.69 

Ice free days (days since full ice 
cover) 

i 34.69 30.77 -35 103 

Distance from ice edge (km) d 277 200 2.31 635 

Current speed (m s-1) c 0.11 0.09 0 0.97 

CTD station (categorical) stn Factor levels 1 - 117 

Vertical Stratification Region 
(categorical) 

vsr Factor levels 

1- in the summer mixed layer1 

2- in the seasonal pycnocline 

3- in the Tmin layer 

4- below the Tmin layer 

                                                             
1 Mixed layer depth was visually assessed using vertical profiles of salinity, potential temperature and 
potential density rather than using a fixed algorithm to allow for high accuracy across the survey 
(Williams et al 2010). Mixed layer depths were consistent with the surface gradient offset methods used 
in other studies. 
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The full model is specified in Equation 1 using the symbols from Table 1 with the 

shorthand spl() to denote a spline and re() to denote a random effect. Collinearity between 

variables was assessed using the diagonal of the Cholesky decomposition of the 

correlation matrix. All values along the diagonal were > 0.37 indicating that no variables 

were strongly collinear. 

 

log(Fl) = p + z + o:vsr + t: vsr + s: vsr + i +d + c + spl(p) + spl(z) + spl(o) : vsr + spl(t): 

vsr + spl(s) : vsr + spl(i) + spl(d) + spl(c) + re(stn) + ε    Equation 1 

 

Unlike other GAM packages, ASReml fits the cubic spline in two separate parts as a 

linear fixed effect term combined with a random effect spline that captures departures 

from linearity  (Verbyla et al., 1999). Despite this specification, the splines are not true 

random components. Hence the station (stn) variable in the model above is the only true 

random component. The :vsr and spl():vsr terms denote an interaction between a variable 

and VSR, which fits a separate intercept and spline for that variable at each level of VSR. 

As VSR is a proxy for mixing, interactions with dissolved oxygen, salinity and 

temperature were considered. Pair plots revealed a very weak correlation between 

temperature and ice free days, however there was so much variance that an interaction 

term was not considered. 

 

Starting with the full model including all explanatory variables (Equation 1), backwards 

selection with Akaike Information Criteria was used to select the best model (Cheng et 

al., 2010). Conditional R2 and Root Mean Square Error (RMSE) were used to assess 

model goodness of fit. The conditional R2 value takes into account variation explained 

by both the fixed and random effects (Nakagawa and Schielzeth, 2013). 
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The vertical profiles from the BROKE-West CTD data were collected at stations with a 

fixed position; the potential exists for data to be correlated in three-dimensions (latitude, 

longitude and depth). We used an autoregressive first order AR(1) process to account for 

correlation with depth at each station (Butler et al., 2009) and an anisotropic Gaussian 

surface across latitudes and longitudes at each depth. To include this correlation structure 

in the mixed model specification we replace the conventional homogenous error variance 

structure, R = σ2I, with a 3D correlation structure (Equation 2). In Equation 2 the typical 

element of the modelled correlation matrix is specified for observations defined for two 

generalised stations indexed by i and j (where i=j, or i j), with corresponding latitudes 

and longitudes and a pair of depths indexed by k and k’ (where k=k’ or k k’) using the 

direct product of matrices formulation (Butler et al., 2009). 

 

[Rspatial  Rdepth]= 𝜙௟௔௧
(௟௔௧೔ି ௟௔௧ೕ)మ

𝜙௟௢௡௚
(௟௢௡௚೔ି ௟௢௡௚ೕ)మ

𝜙ௗ௘௣௧௛
(ௗ௘௣௧௛ೖି ௗ௘௣௧௛ೖᇲ)మ

 

          Equation 2 

 

The three 𝜙 parameters are the correlation coefficients in each direction and have 

absolute values less than one. For two stations, i and j, the term (lati – latj)2 represents the 

squared latitudinal distance (km) between the stations and (longi – longj)2 is the squared 

longitudinal distance (km). Since observations are resolved at equal depth intervals of 2 

m, these unit intervals allow a pure AR(1) process to be fitted. The AR(1) process is 

assumed identical at each station so that the term (Depthk - Depthk’) where k’=k-1 (i.e. 

proceeding down the water column) in Equation 2, can be set to 1 for all k. This AR(1) 

error model gives corresponding model error term: 






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εijk = φdepth εij,k-1 +Zijk where Z is a random Gaussian (white-noise) error with variance 

σ2(1-φdepth
2) and σ2 is the residual variance (Diggle et al., 2002). Note also that the random 

station effect introduces a further additive, constant, and positive covariance between 

observations at different depths for the same station where this covariance is equal to the 

station random effect variance, σ2
s. The correlation between model residuals for a pair of 

adjacent depths, adjusted for the spatial autocorrelation terms, is (σ2
s + φdepth σ2 )/ 

(σ2
s +σ2) where REML parameter estimates are obtained by implicitly averaging across 

stations. 

 

2.4. Simulation Study 

 

A simulation study was developed to verify that ASReml was able to accurately return 

the variance components of a complex model. This simulation was designed to mirror the 

BROKE-West CTD data as closely as possible. We used the coordinates of each 

BROKE-West CTD station and the same depths to ensure that the data set maintained the 

irregular spatial nature of the real data. Temperature and Photosynthetically Active 

Radiation (PAR) trends were built in as explanatory variables using exponential and 

Weibull probability density functions and these were combined to create a fluorescence 

explanatory variable. 

 

To make the simulation more realistic, random error was generated and applied to the 

simulated trends. This also allowed us to check that the model would not fit to noise and 

would correctly identify random error, inter-station variation, spatial autocorrelation and 

actual relationships with independent variables. To mirror the real data, the generated 

random error was correlated in the latitude, longitude and depth planes using an AR1 
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process for the depth at each station and an anisotropic Gaussian surface across latitudes 

and longitudes. To do this, a random value was generated for each point from the normal 

distribution, with a fixed noise standard deviation. The anisotropic Gaussian surface was 

calculated using the distance between each station and using the formula (φx^dist_x) * 

(φy^dist_y). The inverse of the Cholesky factorisation of this matrix is then multiplied by 

the random error values previously generated. The AR1 depth process is then included 

by adding φz * k’ to each value, where k’ = k – 1, the previous depth value at a station. A 

station random effect was added using randomly generated values from a normal 

distribution, with mean = 0 and a fixed standard deviation across all stations.  

 

The model fit, using this simulated data set, was of the same form as the model used for 

the BROKE-West CTD data. Model selection was not done because we were mainly 

interested in assessing whether the variance components could be estimated correctly. 

This simulation was run 200 times and the estimated variance component for each 

variable was calculated for each simulated data set. For each simulation, a new simulated 

data set was generated using the same input variance values. This allowed each data set 

to be different due to randomness but have the same global variance components for the 

model to estimate. 

 

2.5. Cross-validation 

 

Due to the logistic costs of Antarctic oceanographic surveys of this nature, a second data 

set was not available for model validation. Therefore 6-fold cross-validation was run on 

the BROKE-West data set to assess how well the model could predict the observed values 

at stations excluded in each run. As there were 6 vertical transects aligned in the north-
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south direction in the BROKE-West survey design, K was chosen to be 6. The 6 vertical 

transects were dropped one-by-one and the model was fitted to the horizontal transect 

and the 5 remaining vertical transects. The log(fluorescence) at each station in the 

dropped transect was then predicted using the explanatory variables: observed depth, 

temperature, dissolved oxygen, salinity and VSR. 

 

3. Results 

3.1.  Simulation Study   

 

The model accurately estimated all variance components over the 200 simulations (Table 

2). The average conditional R2 value across the 200 fitted models was 0.997 indicating 

that the model had a high goodness of fit to each simulated data set. A very high R2 value 

such as this is expected from a model with good fit because the noise component in the 

simulation is simplistic compared to real life scenarios and there are not any variables 

used to form the data that aren’t input into the model.  

Table 2 Relative bias and 95% Confidence Interval (CI) Coverage Probabilities of 

variance component estimators (n = 200 simulations).1 

 True variance 
component (𝜽) 

Relative 
Bias  

(E[𝜽෡] - 𝜽)/ 𝜽 

95% Confidence 
Interval 

Station random effect 
(stn) 

0.22 0.0021 (0.217, 0.221) 

Error variance 
(ε) 

0.45 -0.0019 (0.448, 0.450) 

Latitude correlation 
(φlatitude) 

0.50 0.0001 (0.4996, 0.5003) 

Longitude correlation 
(φlongitude) 

0.40 0.0035 (0.399, 0.402) 

Depth correlation 
(φdepth) 

0.35 -0.0074 (0.346, 0.349) 
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3.2. BROKE-West model fit 

The variables – distance from ice edge, ice-free days and current speed – and interactions 

with VSR, salinity and dissolved oxygen were dropped during backward AIC-based 

model selection. Table 3 gives the parameter estimates and variance components for all 

variables in the best model. Note: the temperature values have been averaged across the 

4 VSRs to give an average for the full survey area. The conditional R2 value is 0.81, 

indicating that a high proportion of the total observed variance is explained by the model. 

The temperature spline variance component was ten times smaller than the other variance 

components. As the variance components are related to the splines’ smoothing 

parameters, this indicates that the temperature spline relationship is closer to a straight 

line than the other variables, rather than a smaller contribution to the model (Verbyla et 

al., 1999). 
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Table 3 Parameter estimates (on log scale) and variance components for fixed and 

random effects. The spline variance components are equivalent to smoothing parameters 

 Fixed Effects 

 Parameter estimate Spline variance component 

Temperature (oC) -0.453 0.024 

Depth (m) -0.016 0.338 

Dissolved oxygen (μ mol L-1) -0.434 0.130 

Salinity (psu) -0.283 0.400 

 

 Random effects and residual variance 

 Variance Standard Error 

Station 0.292 0.061 

Residual 0.970 0.052 

Depth correlation 0.934 0.004 

Latitude correlation 0.841 0.046 

Longitude correlation 0.000 NA 

 

 

3.3. Spatial autocorrelation 

Spatial autocorrelation in the depth and latitude directions was estimated to be very 

high with ∅ௗ௘௣௧௛= 0.92 (SE = 0.004) and ∅௟௔௧ = 0.85 (SE = 0.04) respectively while 

there was no correlation in the longitude direction with ∅௟௢௡௚ = 9.35 x 10-8 (SE = NA). 

Overall the model tends to underestimate the true fluorescence, especially at the higher 

fluorescence values near the ice edge (figure 1).  
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Figure 1 (a) Mean conditional residual at each station. Negative = red, Positive = 

black. Random terms are included in the residuals and circle size is proportional to the 

absolute value of the residual; (b) Mean fluorescence (ug L-1) measured at each station. 

Higher mean fluorescence is evident at stations near the ice edge. The Antarctic 

coastline was sourced from the National Snow and Ice Data Centre (Haran et al., 2005, 

Scambos et al., 2007). 

3.4. Average trends 

The average spline trends between each explanatory variable and fluorescence in the 

presence of other fixed effects were extracted from the model to quantify how 

fluorescence varies with each variable (Figure 2). 

(a) 

(b) 
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Figure 2 Average partial smooth relationships for fluorescence (µg L-1) vs environmental 

variables with 95% confidence envelopes. Smooth terms are calculated as the addition 

of the linear fixed effect and random spline term for each parameter. All variables except 

depth have been centred and scaled to mean = 0 and standard deviation = 1. 

 

The average fluorescence-depth trend shows a Chlorophyll maximum at a depth of 50m. 

Average fluorescence values at the Chlorophyll maximum were 1.0 μg L-1. There is 

decreasing uncertainty (as indicated by the narrowing grey confidence envelopes) as 

depth increases and fluorescence tends to zero because the observed fluorescence at all 

stations was near-zero at depths greater than 150m, compared with higher variation seen 

at shallower depths.  
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3.5. Correlation structure  

A likelihood ratio test between the model with (full model) and without (null model) the 

correlation structure indicated the correlation structure significantly improves the model 

fit (P < 0.0001; Table 4).  

Table 4 Model selection results for intercept model (no correlation structure), null model 

(no correlation structure) and full model (with correlation structure). 

 K Log likelihood AIC ΔAIC p 

Intercept Model 1 -11482 22966   

Null Model 6 -2216 4445 -18521 <0.0001 

Full Model 9 5553 -11089 -15531 <0.0001 

 

The standardised conditional residual autocorrelation function (ACF) for the null models 

showed a particularly strong correlated trend in the depth dimension compared with the 

full model (Figure 3). While there appears to still be a small amount of correlation 

present, it is clear that the error structure has reduced the depth autocorrelation (Figure 

3). The negative spike for the full model at lag 1 is caused by most stations still showing 

a small amount of residual correlation at lag 1. Furthermore, the average trends for 

temperature and salinity were overfit, picking up too much curvature from the data 

(Figure 4). In some circumstances sharp boundary layers, such as the low salinity pocket 

that surrounds the ice edge, could cause a spline to appear overfit while reflecting a real 

difference, however it is unlikely that that this is occurring in Figure 4 because the splines 

are consistently undulating and this is not reflected in the real data. 
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Figure 3 Mean autocorrelation of standardised conditional residuals in depth dimension 

for model with (full) and without (null) a correlation structure. 

 

Figure 4 Salinity and temperature average trends for the null model without a correlation 

structure (red) compared to the full model (black). Shaded areas are 95% confidence 

envelopes. Salinity and temperature have been centred and scaled as a requirement for 

variables with missing values in ASReml. 
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3.6. Cross-validation 

 

The overall RMSE for the cross validation is 0.89. This value is calculated using only 

predicted values at stations that were not used in the model fit and hence will be higher 

than the RMSE for the fitted model. The RMSE is approximately 8% of the range of the 

log(fluorescence) values, which indicates a low standard deviation of unexplained 

variance and good predictive strength. In general, the goodness of fit varied between 

stations (Figure 5). The station random effect accounts for some of the unknown variable 

influencing the station variances when calculating fitted values, however it cannot be 

used directly for predictive purposes because there is no random effect estimate for a 

novel station. This may result in some stations being poorly predicted because they are 

influenced by a factor that was not measured. One method to account for this is to 

generate a new random effect estimate for the novel station using the estimated random 

effect variance from the other stations. The station random effect may account for some 

of the spatial correlation present in the data set and hence be unnecessary in some 

situations because the model contains a correlation structure. In the simulation study it 

was found that the ASReml model assigned the spatial autocorrelation to the correct 

component of the correlation structure, with the station random effect only picking up the 

extra random station variation in the model. 
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Figure 5 RMSE for each station (n = 92 predicted stations) shows a range in goodness 

of fit across stations, with stations near the sea ice edge having the poorest predictions. 

Antarctic coastline as in previous figure. 

 

4. Discussion 

This study successfully quantified phytoplankton-environment relationships using data 

collected offshore from the East Antarctic margin during the Broke-west 2006 survey, 

revealing that phytoplankton levels correlate most strongly with temperature and 

dissolved oxygen levels. Unusually high Chlorophyll-a levels in comparison to previous 

cruises were seen during the North-Eastern region of this survey and along the coastline, 

while unusually low levels were seen to the west (Schwarz et al., 2010), which may be 

attributed to a negative Southern Annular Model index and coastal upwelling. Our study 

aimed to identify environmental drivers of phytoplankton distribution.  
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Central to the success of this study was the application of a linear mixed modelling 

approach that included a 3D correlation structure based on observation location 

(latitude/longitude) and depth, as well as random effects of the observation unit (“CTD 

station” in this study) that accounted for inter-station differences. We did not input station 

as a fixed effect because this would result in a loss of 116 degrees of freedom as there 

were 117 stations and to do so may have complicated inference and lead to model 

convergence problems. We were also more interested in generalisation of the model 

across the survey area, as exactly the same CTD stations would unlikely be chosen if the 

survey were repeated. 

Our model performed well at estimating unbiased random effects parameters under a 

range of simulation scenarios, thereby ensuring population level processes, such as 

temperature and salinity processes, are accurately represented to ensure unbiased 

inference. The inclusion of random effects was important to avoid pseudoreplication of 

data within stations, and accurate estimation of the variance components was important 

to avoid bias in the fixed effects, enabling population level processes within the survey 

area to be inferred. Biased fixed effects can also occur due to miss-specification of the 

correlation structure, a problem which is not remedied by increasing sample size (Gurka 

et al., 2011). We chose a biologically realistic correlation structure where data in the 

depth plane were subject to autoregressive level 1 correlation while in the latitude-

longitude plane they were subject to anisotropic Gaussian correlation. The purpose of the 

simulation was to check that the model could correctly estimate the variance components 

and attribute them to the correct source (random error, inter-station variation, spatial 

autocorrelation or actual relationships with independent variables) rather than assess 

goodness of fit, so the high R2 value is not a concern. 



92 
 

Whilst it is attractive to work with simple models such as simple linear regression, these 

models are unsuitable for complex data as they cannot accommodate correlated data or 

non-linear relationships and hence are unable to facilitate population level inference in 

this complex environment. We believe that our model provides a powerful, 

comprehensive tool to predict how anticipated environmental changes could affect the 

abundance of phytoplankton.  

This model is particularly suitable for marine surveys due to its ability to accommodate 

irregular sampling with a 3d correlation structure. Vertical profile data sets are ubiquitous 

in marine science and our modelling method could easily be applied retrospectively, 

regardless of the spatial arrangement of the vertical profile stations. Drivers of 

phytoplankton variability including temperature, salinity, current velocity, sea ice 

presence and nutrients are collected on all oceanographic cruises and hence a large 

amount of data already exists. The model allows for general survey-wide trends to be 

established as well as accounting for 3-dimensional autocorrelation, an important 

advance on many previous studies. The relaxing of the regular grid constraint is important 

as much marine sampling is conducted in harsh environments, such as the Southern 

Ocean, where ensuring complete sampling of all stations in pre-designed surveys is 

difficult. The regular spacing of stations on a grid may also be impossible due to 

environmental features or weather conditions.  

4.1. Spatial autocorrelation in a 3D survey area 

Using the BROKE-West data, we have shown that ignoring 3D correlation adversely 

affects inference through severe over-fitting of the temperature and salinity splines, as 

seen by the extra curvature in Figure 4. We found correlation in only two of the three 

dimensions (latitude and depth), which may in part be explained by environmental 

conditions varying more with latitude than longitude with the former relating to proximity 
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to the Antarctic sea ice edge and the latter not. Stations along more extreme 

environmental gradients will display more similarity to nearby stations than more distant 

stations. This could also reflect the survey design since transects were run in the north-

south plane and stations within transects were closer both spatially and temporally to each 

other than they were to other transects. Temporal autocorrelation will not be discussed 

separately here because the survey design makes it difficult to discern temporal effects 

from spatial effects. 

 

4.2. Environmental parameters influencing phytoplankton distribution 

In the Southern Ocean the regulation of primary productivity is a complex interplay of 

many factors (Geider and La Roche, 1994). The correlation detected in the latitudinal 

direction likely indicates missing environmental variables. Silicic acid and iron 

concentration have been flagged as important limiting factors (Martin et al., 1990, Boyd, 

2002, Boyd et al., 2000) but were not measured during BROKE-West. Large seasonal 

phytoplankton blooms are often seen in the marginal ice zone during the period of ice 

melt after winter, the size and location of which is influenced by wind strength, vertical 

mixing and grazing pressure (Lancelot et al., 1993). The primary ice edge bloom during 

BROKE-West is reported to have occurred 35 days before ice melt (Wright et al., 2010). 

Ice edge blooms proved problematic for our model’s predictions, with under-prediction 

occurring at most ice edge stations. While the station random effect will partly account 

for differences in ice-edge stations, it would also be possible to partition the model into 

different systems using indicator variables or even fitting separate models if there were 

obviously distinct systems present in a survey area. It is interesting that the ‘distance to 

ice edge’ variable was not retained in the model when there is an edge effect remaining 

in the residuals. One reason may be that the edge effect was less pronounced, or even 
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negative on the later transects during the survey which may be due to the temporal 

difference in when these transects were sampled. The transects sampled towards the end 

of the survey were closer to winter than summer and ice melt may have started to decline. 

A possible temporal effect could be considered in future work. 

4.3. Salinity 

Our model identified that fluorescence headed towards zero in areas of high salinity, 

which may be more influenced by depth gradients rather than indicating a latitudinal or 

longitudinal pattern in the surface waters since the highest salinity waters were below the 

euphotic zone at over 150m deep, where there was hence no fluorescence. This could also 

reflect the ice-edge melt which causes a pocket of low-salinity waters whose stability 

assists in the formation of phytoplankton blooms (Smith and Nelson, 1986). To further 

explore the relationship between salinity and fluorescence, it would be useful to compare 

the relationship between these variables in the surface mixed layer and tmin layers. 

Information on species composition could help us understand why we found low 

fluorescence outside the salinity range of 33.4 – 34.3 psu, with diatoms believed to 

correlate more strongly with salinity than flagellates (Kang and Lee, 1995). 

 

4.4. Temperature 

Satellite data during the BROKE-West survey identified Sea Surface Temperature and 

wind stress as the factors most correlated with monthly surface Chlorophyll-a (Schwarz 

et al., 2010). It was noted during the survey that temperature was relatively invariant 

across the survey area and its functional relationship with fluorescence would be difficult 

to discern (Wright et al., 2010). Our model has allowed us to quantify this relationship 

while accounting for vertical stratification and other environmental parameters and we 
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found that across the survey area there was low fluorescence at temperatures above 1OC. 

This is likely because these higher temperatures were present either at the surface or due 

to Circumpolar Deep Water intrusions at depths deeper than 100m, where there is 

generally low availability of light for photosynthesis depending on the currents and 

mixing at the station. While we found a decrease in fluorescence at high temperatures, an 

incubation experiment showed that low temperatures may be a limiting factor controlling 

phytoplankton growth and nutrient uptake (Reay et al., 2001).  

4.5. Dissolved Oxygen 

Dissolved oxygen was one of the strongest predictors in the model and was the only 

variable that was a product of photosynthesis rather than a direct influence on 

fluorescence. While it might seem illogical to include a variable that does not influence 

fluorescence, as a product of photosynthesis dissolved oxygen is a strong indicator of 

phytoplankton presence, and is measured on all oceanographic surveys, so we have 

included it in our model. We found that fluorescence was highest at both low and high 

levels of dissolved oxygen, and lower at moderate levels. Phytoplankton produce oxygen 

during photosynthesis and while the observed positive relationship between 

phytoplankton and dissolved oxygen is expected, we do not know what proportion of our 

dissolved oxygen measurements are phytoplankton derived. Other factors may explain 

the more puzzling increase in fluorescence at lower dissolved oxygen levels, for example, 

mixing and currents may have transported phytoplankton to a new location, where they 

have been observed before photosynthesis has occurred. Alternatively, nutrient limitation 

could inhibit photosynthesis despite there being a large amount of phytoplankton, or high 

respiration by grazers and bacteria could balance production of oxygen by 

photosynthesis. A longitudinal study with measurements on nutrients, currents, 

Chlorophyll-a and dissolved oxygen may be better able to separate these relationships. 
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As dissolved oxygen levels are a product of photosynthesis rather than a direct driver of 

phytoplankton growth or distribution, this parameter is primarily of interest when 

modelling fluorescence in oceanographic surveys, rather than in models forecasting 

future scenarios. 

4.6. Sea ice and currents 

Ice concentration, distance from the ice edge and current strength did not contribute any 

explanatory power and were not included in the final model. Ocean currents have been 

shown to influence circumpolar phytoplankton distribution (Sullivan et al., 1993). In the 

BROKE-West study, ocean current strength varied little throughout the survey area and 

in addition, malfunctioning equipment resulted in large areas with no data recorded. 

Therefore, it is unsurprising that it made little contribution. More surprising was the lack 

of statistical significance of ice levels as a predictor, given the importance of nutrient 

release by melting ice to phytoplankton bloom formation (Sedwick and DiTullio, 1997, 

Gerringa et al., 2012). Time since full ice cover affected phytoplankton community 

composition during BROKE-West (Wright et al., 2010), however our results indicate that 

it had a minimal effect on overall fluorescence. This may be a scale issue and requires 

further exploration. Distance from ice edge was also expected to be an important variable 

because the physical and biological ocean dynamics change drastically depending on the 

proximity to the mainland and most transects were traversed longitudinally. For example, 

microbial grazing on phytoplankton was higher at the western ice-edge (>100% primary 

production d-1) than the survey wide average (65% primary production d-1) (Pearce et al., 

2010). Distance from ice edge could also have acted as a proxy for missing nutrient data, 

if a latitudinal nutrient gradient influenced phytoplankton distribution or density.  
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4.7.  Comparison to other studies 

Our model is widely applicable in analysing marine data to produce a predictive model 

based on environmental parameters having dealt with 3D autocorrelation, non-linear 

relationships and multiple sampling stations that were neither on a regular grid nor 

randomly placed. There have been several comprehensive studies which have analysed a 

range of marine data and environmental conditions around the world with characteristics 

similar to our study, including the assessment of drivers of bioluminescent zooplankton 

in the Mediterranean Sea (Craig et al., 2010), phytoplankton production in the Benguela 

upwelling system (Lamont et al., 2014), krill biomass estimation along the West Antarctic 

Peninsula (Lawson et al., 2008) and oceanographic effects on meso-zooplankton and 

nano-microplankton in the Bay of Biscay (Zarauz et al., 2007). The data sets used in these 

studies were diverse and differed in their aims, but we believe our model could be used 

to improve upon their foundations by including random effects for multiple sampling 

stations, splines for the non-linear relationships seen in many of the studies and a 3-D 

irregularly-gridded correlation structure to account for any spatial autocorrelation that 

may be present, regardless of sampling design. 

4.8. Future developments 

This study advances modelling techniques commonly used in the marine environment by 

incorporating 3D spatial autocorrelation, non-linear relationships and random effects. 

Based on our simulations and the prediction of missing data with a high degree of 

confidence, we believe that our model, developed using the BROKE-West 2006 survey, 

provides the ability to accurately predict phytoplankton fluorescence from commonly 

collected oceanographic data. However to fully validate this model, especially in other 

areas of the Antarctic, additional surveys will be required. An interesting extension to the 

simulation study would be to assess the Signal to Noise Ratio (SNR) to ensure that the 
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model is robust enough to correctly estimate fixed effects with high, medium and low 

noise and correlation levels. SNR was not investigated in our simulation study because 

we were primarily interested in whether the model could accurately recover the different 

components of spatially autocorrelated error. 

 

There are many avenues to explore to further this work. Iron limitation in the open ocean 

is a possible reason for the higher productivity in the MIZ compared to the open ocean, 

and nitrate levels are strongly correlated with depth integrated productivity (Westwood 

et al., 2010) so the inclusion of bottled nutrient data could add valuable extra information. 

The inclusion of mixed layer depth/depth of the euphotic zone could also be investigated 

to account for the effect of mixing on phytoplankton photoadaptation. As our model 

allows for predictions in a 3D environment, the incorporation of animal tag and active 

acoustics data is possible. For example, tagged elephant seals can provide information on 

foraging behaviour (Jouma'a et al., 2015), environmental conditions surrounding prey 

fields (Vacquié-Garcia et al., 2015) and oceanographic features such as bottom water 

production (Williams et al., 2016). Utilising active acoustics to include krill distribution 

as a low level predator would also be a valuable addition to the model. Our model could 

also be used to make 3D predictions under different future environmental scenarios, and 

a longitudinal analysis would be possible if data were available over multiple sampling 

periods. 
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5. Conclusion 

Marine profile data are very common due to the need to quantify and understand layering 

and mixing in the ocean. Sophisticated modelling techniques are often necessary to 

understand complex ecosystems such as this, especially where the method of data 

collection introduces additional problems such as spatial autocorrelation. Marine data are 

inherently spatially complex, due to the 3-dimensional survey area and difficulty in 

sampling at regularly spaced locations. Simple modelling methods are often inappropriate 

for complex data such as this because they cannot model non-linear relationships and do 

not deal with 3D spatial autocorrelation or site random effects, both of which could lead 

to inaccurate inference. Our model offers a robust method to make unbiased population 

level inference about non-linear organism-environment relationships in a 3-dimensional 

study area and make predictions of potential change under different environmental 

scenarios.  

We used spline mixed models with a 3-dimensional correlation structure to model 

phytoplankton-environment relationships from CTD data across the BROKE-West 

survey area in East Antarctica. We quantified the partial responses of phytoplankton 

fluorescence to temperature, salinity and dissolved oxygen levels. Temperature and 

dissolved oxygen levels were most strongly correlated with fluorescence, while distance 

from ice edge, current strength and number of ice free days had no effective predictive 

power and were not included in the final model. The inclusion of iron levels, predation 

by krill and phytoplankton community structure may further improve the model. Despite 

these missing covariates, the model performed well under simulation. The correlated 

residuals and over-fitted spline trends seen when omitting the error structure highlight 

the need to include spatial correlation. Our modelling method could be extended to 

describe the 3D habitat surrounding animal tag data or make predictions based on future 
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expected climactic scenarios and is widely applicable to both marine and terrestrial data, 

regardless of sampling design.  
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Abstract 

Acoustic data is time consuming to process due to the large data size and the requirement 

to often undertake some data processing steps manually. Manual processing may 

introduce subjective, irreproducible decisions into the data processing work flow, 

reducing consistency in processing between surveys. We introduce the R package 

EchoviewR as an interface between R and Echoview, a commercially available acoustic 

processing software package. EchoviewR allows for automation of Echoview using 

scripting which can drastically reduce the manual work required when processing 

acoustic surveys. This package plays an important role in reducing subjectivity in 

acoustic data processing by allowing exactly the same process to be applied automatically 

to multiple surveys and documenting where subjective decisions have been made.  Using 

data from a survey of Antarctic krill, we provide two examples of using EchoviewR: krill 

biomass estimation and swarm detection.  

Keywords: active acoustic, Antarctic krill, data processing, echosounder, Echoview, R, 

package 

 

1. Introduction 

 

Active acoustics is a tool widely used for seabed mapping, seabed type classification, 

underwater tracking and resource monitoring. A suite of active acoustic instruments are 

available to carry out imaging (e.g. scanning sonars) and more quantitative tasks (e.g. 

multibeam and scientific echosounders). Echosounders have evolved from being 

instruments used primarily for mapping and navigation, to precision instruments capable 
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of resolving organisms a few millimeters in length and providing quantitative estimates 

of, for example, biomass. 

This advance has seen widespread use of echosounders to detect organisms in the upper 

water column of both freshwater and marine environments for commercial fisheries and 

scientific purposes. In the marine environment, echosounders are routinely used to 

provide data informing commercial fishery stock assessments (Gerlotto et al., 1999) and 

to investigate ecological relationships such as predator-prey interactions (Benoit-Bird et 

al., 2013). Oceanographic applications include seabed habitat mapping (Brown et al., 

2004) and environmental monitoring, e.g. oil seep and methane bubble monitoring after 

the Deepwater Horizon oil spill (Weber et al., 2014). Echosounders are commonly used 

in conjunction with image/video (McGonigle et al., 2009) and sediment sampling (van 

Walree et al., 2005) to verify seabed type, or trawls to verify a biological species’ 

presence, size and target strength (McGonigle et al., 2009). 

Echosounder transducers are most commonly embedded in a ship’s hull or drop keel, 

although other  platforms such as landers (Johansen et al., 2009), gliders (Guihen et al., 

2014) and other autonomous underwater vehicles (Brierley et al., 2002) have been used.  

Regardless of platform, datasets from active acoustics are invariably extremely large and 

time consuming to process.  

In active acoustic surveys, a conventional split-beam echosounder collecting data to a 

range of 500 m and pinging once per second typically collects around 8 GB of data per 

day (note: this depends on settings such as range resolution and pulse length). This may 

be compounded by the need to use multiple echosounder frequencies, sometimes up to 

six, operating simultaneously, further inflating the size of the raw data sets.  Moreover, 

the routine use of broadband systems like the Simrad EK80 on board scientific and 
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commercial vessels is not far away. The amount of data from such systems vastly exceeds 

those from conventional sounders, and will again push storage and processing capacity.  

With advances in data storage capacity, data storage is no longer a significant constraint 

and enhanced computational power has enabled the development of powerful acoustic 

data processing software.  

There are several software packages suitable for the processing of echosounder data, e.g. 

Echoview (Myriax, Hobart; www.echoview.com), LSSS (MAREC, Christian Michelsen 

Research, Norway, http://www.cmr.no/index.cfm?id=421565) and Sonar5-Pro 

(University of Oslo, Norway, http://folk.uio.no/hbalk/sonar4_5/). However, processing 

acoustic data remains time consuming and frequently requires subjective, often 

undocumented, decisions to be made by the user, such as removal of noise or bad data 

and allocation of backscatter to targets. Subjective decisions can potentially bias outputs 

from processed active acoustic data, for example biomass estimates.    

Here we present the R package EchoviewR as a tool to: 1) reduce the processing time 

requiring a human operator, 2) document processing steps, thereby generating 

reproducible methodology, and 3) provide a framework within which additional 

functionality can be built by members of the acoustics community, so reducing the 

number of subjective decisions. The EchoviewR package is an interface between the 

widely used and freely available R program (http://www.R-project.org/) and Echoview 

(Myriax, Hobart; www.echoview.com). The methods used are generic and can be 

transferred to other acoustic processing software with scripting options, but the package 

as such is incompatible with other acoustic software.      

EchoviewR uses Component Object Model (COM) scripting to run Echoview using R. 

This removes a large portion of the manual processing time and enables entire acoustic 



112 
 

surveys to be mostly processed automatically. It also increases consistency in processing 

because the same methods and thresholds can be applied in exactly the same way to 

multiple data sets. Hence EchoviewR provides a reproducible and transparent automated 

method for processing acoustic data using Echoview. Some examples of its use include 

filtering of data, automated biomass estimation and detection of krill swarms. 

Using two examples, we illustrate EchoviewR functionality.  Both examples are based on 

data collected during surveys of Antarctic krill (Euphausia superba; herein krill) using a 

Simrad EK60 echosounder (Horten, Norway) with downward facing hull-mounted 

transducers.  The first example estimates regional krill biomass, and the second example 

detects krill swarms. 

EchoviewR is intended to speed up processing of already clean acoustic data and is not 

currently capable of removing false bottom effects, time varied gain or noise spikes, 

although the package can access Echoview virtual variables to do some of these tasks, 

e.g. the ‘Background noise removal algorithm’ virtual variable (De Robertis and 

Higginbottom, 2007). The package is intended only as a method of automating processing 

using Echoview and is not a standalone method for processing acoustic data. 

  

2. Methods 

2.1. Implementation and Dependencies 

 

EchoviewR was created using R 3.1 (R Development Core Team, 2014; available from 

http://cran.r-project.org/) with R-Studio 0.98.932 (RStudio, 2014; available from 

http://www.rstudio.com/), and Echoview 6.1 (Myriax, 2015; available from 

http://www.echoview.com/). Both R and Echoview are required to use the package. COM 
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objective handling is achieved using the RDCOMClient library. Additional EchoviewR 

functionality uses the sp, lubridate, geosphere, maptools and rgeos R libraries. To run 

Echoview via COM the following modules are required: base, bathymetric, analysis 

export, and scripting.  Worked example one also requires the virtual echogram module 

and worked example two requires the virtual echogram and schools detection modules.   

The EchoviewR package is available as open source on the GitHub repository 

(https://github.com/lisamarieharrison/EchoviewR) and can be downloaded and installed 

as an R library using the ‘install from .zip file’ option in R, or via 

devtools:install_github(). 

 

2.2. Expected data input for the package and worked examples 

 

EchoviewR can work with any data type accommodated in Echoview that is accessible 

via COM.  The worked examples provided here have been built using data collected using 

a Simrad EK60 echosounder (www.simrad.com/ek60).  In itself, EchoviewR does not 

create Echoview templates or calibration files, but it can use both of these via COM. 

2.3. Functions of the package 

There are 46 functions available in EchoviewR, which are described in Table 1. A 

working example for each of these functions is given in the package documentation in 

the supplementary material. Not all Echoview functions are currently available in the 

package, however any functionality in Echoview that has COM accessibility could be 

added by the user. 
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Table 1 Functions available in EchoviewR. 

Function Description 
EVOpenFile Opens an existing .EV file 
EVSaveFile Saves an existing .EV file 
EVSaveFileAs Saves an existing .EV file to a new file 

name 
EVCloseFile Closes an open .EV file 
EVNewFile Creates a new .EV file 
EVCreateFileset Creates a new fileset 
EVFindFilesetByName Finds a fileset by name 
EVAddRawData Adds .RAW files to a fileset 
EVCreateNew Creates a new .EV file from a template 
EVminThresholdSet Sets the minimum dB threshold for an 

acoustic variable 
EVSchoolsDetSet Sets schools detection parameters 
EVAcoVarNameFinder Finds an acoustic variable by name 
EVRegionClassFinder Finds a region class by name 
EVSchoolsDetect Runs schools detection on an acoustic 

variable 
EVIntegrationByRegionExport Exports integration by region for an 

acoustic object 
msDateConversion Converts an Echoview date to readable 

format 
EVAddCalibrationFile Adds a calibration file to an .EV file 
EVFilesInFileset Finds the names of all .RAW files in the 

fileset 
EVClearRawData Clears all .RAW files from a fileset 
EVFindFilesetTime Finds the start and end date and time of a 

fileset 
EVNewRegionClass Creates a new region class 
EVImportRegionDef Imports a regions definition file 
EVExportRegionSv Exports Sv data for a region 
EVAdjustRegionBitmap Adjusts the settings of a region bitmap 

object 
EVFindLineByName Finds an Echoview line by name 
EVChangeVariableGrid Changes the horizontal and vertical grid for 

an acoustic variable 
EVExportIntegrationByCells Exports integration by cells for an acoustic 

variable 
EVAddNewAcousticVar Adds a  new acoustic variable 
EVShiftRegionDepth Changes the depth of a region 
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Function Description 
EVShiftRegionTime Changes the time of a region 
EVGetCalibrationFileName Finds the calibration file name 
EVNewLineRelativeRegion Creates a new line relative region 
EVNewFixedLineDepth Creates a new fixed depth line 
EVDeleteLine Deletes a line object 
EVRenameLine Renames a line object 
EVExportRegionDef Exports region definitions for a single 

region 
EVFindRegionByName Finds a region object by name 
EVFindRegionClass Finds a region class by name 
EVExportRegionDefByClass Exports region definitions for an entire 

region class 
EVIntegrationByRegionByCellsExport Exports integration by region by cells for an 

acoustic variable 
lawnSurvey Generate coordinates for a rectangular lawn 

survey design 
zigzagSurvey Generate coordinates for a zig-zag survey 

design 
centreZigZagOnPosition Centers a zig-zag survey on a given position 
centreLawnOnPosition Centers a lawn survey on a given position 
exportMIF Write a map information file for import into 

Echoview 
EVImportLine Imports an Echoview Line object 

 

3. Examples 

Here we present two examples using EchoviewR: 1) krill biomass estimation, and 2) krill 

swarm detection and classification. The purpose of these examples is to demonstrate that 

these analyses can be run automatically using EchoviewR and to show how Echoview 

output can be seamlessly linked to analyses carried out using R. Both examples assume 

that the reader is familiar with Echoview and are not intended to be a tutorial on 

Echoview. It is also assumed that the reader is familiar with R and programming concepts 

such as for loops. 
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The data are a subset of the EK60 split-beam data collected during the Krill Acoustics 

and Oceanography Survey (KAOS) carried out from the Aurora Australis. The KAOS 

survey was undertaken in January - March 2003 off North Eastern Antarctica. Data from 

38, 120 and 200 kHz were written to RAW files.  For clarity in the worked examples, we 

have used the 38 and 120 kHz data because these frequencies are the most useful for 

detecting and identifying the example species, Antarctic krill. 

 

To demonstrate that biomass estimation and swarm detection can be automatically run 

on multiple transects where the data are too large to practically read in to Echoview at 

once, as is the case for most acoustic surveys, segments of six KAOS transects are 

provided and each 10-20 km transect segment is processed separately (Figure 1). 

 

Figure 1 Map showing location of 6 the example transects in yellow. Map created using 

Google Earth 7.1.2.2041.  
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Both these examples have been tested using R 0.98.932 and Echoview 6.1.32.26088.  The 

data to run these examples are available at the Australian Antarctic Division Data Centre 

[doi: 10.4225/15/54CF081FB955F]. An example of the data flow for the template used 

in this example is available in the supplementary material. 

Before running each example some pre-processing is demonstrated to get the data in to a 

convenient format for analyzing each transect in a separate .EV file. In this pre-processing 

phase, the six transects are imported separately into Echoview and the following tasks 

are performed: 

1. Create a new .EV file for the transect using the Echoview template file; 

2. Import the EK60.RAW data files for that transect; 

3. Add an Echoview .ecs calibration file; 

4. Import .evr region definitions files to remove off effort data; 

5. Import a seabed exclusion line (lineKAOS.evl) 

6. Close and save the file and repeat for remaining transects. 

These steps and the code to run them are demonstrated in the “Read data using the R 

package EchoviewR to control Echoview via COM” pdf vignette that is available with 

the supplementary material. Pre-processing must take place before examples 1 and 2 are 

run. 
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3.1. Example 1 – Krill biomass estimation 

Automated biomass estimation of krill is demonstrated by processing the six transects 

separately in Echoview and exporting the data into R for density and biomass calculation. 

For each transect, the following steps are taken in Echoview: 

1. Open the transect’s .EV file 

2. Set the grid for 38kHz and 120kHz noise removed values to 50 ping * 5m depth 

3. Export integration by cells for 38kHz and 120kHz noise removed values 

This produces two .csv files for each transect, one containing 38kHz and one containing 

120kHz integrated data (i.e. a mean volume backscattering strength value for each cell). 

Then, the following steps are taken in R: 

1. Import the 38kHz and 120kHz files for the transect 

2. Remove no data values (set -999 and 999dB as NA) and depths < 0 

3. Calculate the krill difference window of 120kHz – 38kHz for each integration cell 

using the following formula:  

∆𝑆𝑣௜௝ =  𝑆𝑣ଵଶ଴೔ೕ
− 𝑆𝑣ଷ଼೔ೕ

      

where 𝑆𝑣ଵଶ଴೔ೕ
 = mean 120kHz backscattering strength for cell at 

horizontal integration interval j at depth i and 𝑆𝑣ଷ଼೔ೕ
 = mean 38kHz 

backscattering strength for cell at interval j at depth i. 
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4. Apply the dB difference technique (e.g. Watkins and Brierley (2002)) by setting 

𝑆𝑣ଵଶ଴೔ೕ
 values outside the survey-specific dB difference range of  1.04 >=  ∆𝑆𝑣௜௝  

<= 14.75 dB to NA as these windows are unlikely to contain krill.   

5. Convert the backscattering strength, 𝑆𝑣ଵଶ଴೔ೕ
 for each cell to linear scale, 𝑠𝑣ଵଶ଴೔ೕ

  

(Echoview uses a log scale by default): 

𝑠𝑣௜௝ = 10
ௌ௩೔ೕ

ଵ଴  

6. Calculate mean volume backscattering strength (MVBS) across all depths for 

each 50 ping integration interval using the following formula: 

𝑀𝑉𝐵𝑆௝ = 10 logଵ଴

1

𝑛௝
 ෍ 𝑠𝑣ଵଶ଴೔ೕ

௡ೕ

௜ୀ଴

 

where j = integration interval, n = maximum depth within integration interval j 

and 𝑠𝑣ଵଶ଴೔ೕ
= backscattering strength at 120kHz for interval j at depth i. 

7. Calculate the density, 𝑝̂௝ , for each integration interval: 

𝑝̂௝ = 𝑛௝ ∗  10
൜
ெ௏஻ௌೕି்ௌ

ଵ଴
ൠ
 

where nj = maximum depth of integration interval j, 𝑀𝑉𝐵𝑆௝ = mean volume 

backscattering strength for interval j as calculated above and TS = target strength for 1kg 

of krill at 120kHz. 
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8. Calculate the overall transect density, 𝑝̂௞ for transect k: 

𝑝̂௞ =  
1

𝑠௞
෍ 𝑝̂௝

௦ೖ

௝ୀଵ

 

where j = integration interval, k = transect and sk = number of integration intervals 

within transect k  

9. The full survey density is then estimated using the Jolly & Hampton (1990) 

method, which uses the weighted density of each transect by length to calculate 

total survey density. Note that the formula has been modified to remove stratum 

as no strata were used in the KAOS example survey design: 

𝑝̂ =  𝑤௞𝑝̂௞ 

where k = transect, wk =  
௅ೖ

௅
,  𝐿௞ = length of transect k in km, L = length of all 

survey transects in km and 𝑝̂௞ =  estimated density for transect k. 

10. The full survey biomass estimate, 𝑏෠, is then calculated by multiplying the 

weighted survey density by survey area: 

𝑏෠ =  𝑝̂𝐴 

where 𝑝̂ = estimated survey biomass and A = survey area in km2. 
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Both the Echoview and R components above are run within loops to allow each transect 

to be run separately. This is done to demonstrate how looping over transects or days of a 

large survey is possible, rather than manually loading and processing each set of files. 

Users could format their code to process transects in parallel if processing time becomes 

too long. The EchoviewR and R code for the above analysis is shown in the “Biomass 

estimation using the R package EchoviewR to control Echoview via COM” pdf vignette 

that is available with the supplementary material. Table 2 shows the estimated density, 

length and biomass for the sample transects and survey area. 

Table 2 Estimated transect krill areal density and survey biomass for the six example 

transects. 

Transect Number Mean estimated 
density (gm-2) 

Transect length 
(km) 

Biomass 
(tonnes) 

1 3.26 13 42 

2 20.66 22 454 

3 43.74 15 656 

4 22.57 22 467 

5 6.66 18.5 123 

6 4.99 21.5 107 

    

Full Survey Area 16.79 112 43, 497 
 

Example 1 has demonstrated the use of EchoviewR to automatically process and extract 

data by transect from Echoview. Krill density and biomass are then calculated in R using 

the extracted .csv files.  
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3.2. Example 2 – Swarm detection and classification 

 

Automated swarm detection and classification of krill aggregations is demonstrated here 

using EchoviewR. The code for this example is available in the “Schools detection using 

the R package EchoviewR to control Echoview via COM” pdf vignette file available with 

the supplementary material. Each transect is processed separately to demonstrate how a 

full survey can be processed automatically using loops. Schools detection is run in 

Echoview and then detected aggregations are classified and clustered in R. The following 

steps are undertaken in Echoview using EchoviewR: 

1. Open the transect’s .EV file 

2.  Run schools detection on the variable 120 7x7 convolution, assigning all detected 

schools to the region class “aggregations”. 

3. Export 120 and 38 kHz data for regions of class “aggregations” to a .csv file using 

the EVIntegrationByRegionExport function. This exports a single mean Sv for 

each aggregation 

In this example, all detected aggregations are exported. However, it is also possible to 

export only aggregations classified as krill using the 120-38 aggregation dB difference 

filter variable included in the template. The filter sets the Krill aggregations data to 

NULL if the 120-38 aggregation dB difference value for that cell is outside the [1.04, 

14.75] dB difference window for the KAOS survey.  
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The exported aggregations can now be classified and clustered in R. Each transect is run 

separately using a loop: 

1. Import the 120kHz and 38kHz export by regions files 

2. Remove null values (-999) 

3. Calculate the 120 – 38 kHz difference window and subset data to only 

include difference values between [1.04, 14.75] 

4. If no aggregations were classified as krill, exit and move to next transect 

5. If krill aggregations are found, run Partition Around Medoids cluster 

analysis using the ClusterSim library using selected metrics (tutorial and 

example metrics available in Appendix B) 

6. Print a summary table of the number of aggregations assigned to each 

identified cluster. Table 3 shows the number of krill swarms identified and 

the number of clusters detected for each transect 

 

Table 3 Number of unique krill aggregation clusters identified for each transect. 

Transect Number Number of krill swarms Number of Clusters 

1 0 0  

2 37 9 

3 105 6 

4 64 3 

5 8 3 

6 14 6 

This example has demonstrated how school detection, data export and cluster analysis 

can be run automatically for an entire acoustic survey.  
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4. Discussion and future directions 

 

EchoviewR is a free interface between R and Echoview that provides automated acoustic 

data processing. It drastically decreases manual processing time and reduces subjectivity 

by providing an easy way to implement exactly the same method across surveys. This 

package enables reproducible methodology, which is a vital part of the scientific method. 

We have given examples of automated krill biomass estimation and school detection 

using EchoviewR that demonstrate the use of the package on a subset of the KAOS 

survey. This method can easily be extended to run a full survey by transect, day or any 

other subset required. 

There are a number of limitations to the package. Currently it is only available for use for 

single and split beam sonar data. EchoviewR is also unable to handle removal of noise 

and false bottom effects, which must be completed prior to using the package. Not all 

functions in Echoview are currently available using EchoviewR, however any COM 

functionality in Echoview can be implemented in R. The COM hierarchy help page is a 

useful starting point for those wishing to add extra functions. 

EchoviewR is accessible as free software from the EchoviewR GitHub repository 

(https://github.com/lisamarieharrison/EchoviewR) and is readily available for 

community development. An important next step is the implementation of false bottom 

and noise removal using EchoviewR, and it is our hope that the acoustic community will 

take the tools that we are providing and extend the package to include the functionality 

that they require. We also underline that the methods described here are generic, and hope 

the work can inspire the implementation of scripting interface in other acoustic 

processing software.   
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1. Pdf vignettes 
a. Read data 
b. Biomass estimation 
c. Schools detection 

2. Plot of data flow 
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Abstract 

 

Antarctic krill (Euphausia superba) are often thought to be solely passive drifters and 

opportunistic feeders, however here we show that krill are more mobile than previously 

thought. Using a hurdle model, we simultaneously examined environmental drivers of 1) 

the probability of krill being present and 2) density (gm-2) given presence. We found that 

krill consistently position themselves in response to environmental variables across a 

large area (1.3 million km2) of East Antarctica. Krill were more likely to be present in 

shallow, more saline, warmer water. This is unlikely to be solely due to current systems 

since the survey design crossed two major oceanographic boundaries and there was no 

reflection of these circulation patterns in the model’s residuals or random effects. High 

krill densities occurred in areas with both high oxygen concentration and increasing food 

availability. This indicates that krill actively aggregate around these essential resources 

and do not simply coalesce into high-density swarms by chance. Our conclusions suggest 

that models based primarily on krill transport by currents need to be supplemented to 

include active behaviour based on environmental conditions and food sources if we are 

to accurately predict krill distribution in the Southern Ocean. 

Keywords: Antarctic krill, Southern Ocean, phytoplankton, hurdle model, acoustic 

survey, distribution 

 

1. Introduction 

The extent to which organisms are able to influence their population distribution by active 

movement as opposed to passively drifting within dynamic ocean systems is of major 

importance to conservation and management in dynamic pelagic ecosystems, yet has 

rarely been tested (Putnam et al 2016). This is exemplified by Antarctic krill (Euphausia 
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superba) as the degree to which Antarctic krill are passive drifters or active swimmers 

has been deliberated for decades, with management approaches assuming they are 

passive drifters, despite evidence of strong selection for active behaviour (Richerson et 

al., 2015). Antarctic krill are both the focus of the world’s largest krill fishery (Siegel, 

2016; pg. 387) as well as an essential part in the Southern Ocean food web (Siegel, 2016; 

pg 321).  

While large amounts of krill survey data exist, much remains unknown about the drivers 

of their highly patchy distribution. Physical forcing by current systems, local retention 

and Circumpolar Deep Water intrusions have been invoked to explain large scale krill 

distribution patterns (Piñones et al., 2013). While there is no single study that has mapped 

circumpolar krill distribution and currents, overlaying historical krill distribution on maps 

of surface circulation indicates that overall distribution may be related to gyres (Nicol, 

2006, Amos, 1984) and distribution is limited to the extent of the Southern Boundary 

(Tynan, 1998). Krill may be distributed around these major oceanographic features by 

advection or through actively choosing to be at these locations because they are attractive 

due to abundant food or beneficial environmental conditions. These two potential causes 

are difficult to disentangle and doing so is the aim of our study. At a small scale relative 

to these large oceanographic features, krill form swarms and must actively swim to do 

so, however the extent of active swimming on a larger scale remains a mystery. We assess 

the mechanisms behind large scale krill distribution using data collected over a large area 

(1.3 million km2) and spanning two important frontal systems in the East Antarctic. 

Large scale circulation patterns are certainly important during the larval stage, 

aggregating larvae in areas where Circumpolar Deep Water encroaches on to the 

continental shelf and conditions are favourable for egg development before ascent and 

hatching (Piñones et al., 2016). After metamorphosis, juvenile and adult krill form 
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aggregations, or swarms, and patchiness varies with overall biomass (Siegel, 2016; pg. 

279, Brierley and Cox, 2015). Swarm type changes throughout the life-cycle, with larger, 

denser swarms occurring when krill are young and immature, and swarms transitioning 

to small more diffuse swarms as the krill mature (Tarling et al., 2009). Coalescing swarms 

may form layers of krill, with the edges of swarms touching but the discrete swarms not 

fully merged (Watkins and Murray, 1998). These layers are different to those of 

individual swarms because the intra-layer population differences are just as large as 

between-layer differences, while individual swarm characteristics are more distinct. 

While there is biological evidence that environmental factors are important for the life 

cycle and distribution of krill, there are few quantitative studies of the drivers of krill 

density at regional scales (Siegel, 2016; pg. 26-28, Nicol, 2006, Nicol, 2003a). 

The key requirements for krill survival include adequate food, suitable habitat and 

predation avoidance (Alonzo and Mangel, 2001). We might expect that if krill are not 

passive drifters, swarm characteristics (e.g. location, size and density) will have drivers 

based on these key requirements to maximise the probability of survival. Vertical 

distribution of swarms depends on mixing depth, with most krill swarms occurring above 

the thermocline (Godlewska et al., 1988), and dense swarms more likely to occur in 

higher water temperature (Krafft et al., 2012). The need to find food and avoid predators 

is believed to be more responsible for the formation of localised krill swarms in the 

Marginal Ice Zone than the direct impact of physical forcing (Daly and Macaulay, 1991). 

Instantaneous swarm shape is influenced by the competing needs of accessing oxygen for 

respiration and avoiding predation, with these two requirements being absolutely 

necessary for an individual to survive to be able to forage (Brierley and Cox, 2010). 

Swarms closer to the Antarctic coastline are larger and denser than their counterparts 

further offshore, which may be because krill are clustering for protection from land based 
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air-breathing predators (Klevjer et al., 2010). Subsequent to the immediate demands of 

finding oxygen and avoiding predation, foraging is a longer term goal (Brierley and Cox, 

2010).  

Observational studies demonstrate that krill are capable of active foraging rather than 

only feeding opportunistically on food that they come upon by chance. Krill have been 

observed to forage actively in captivity (e.g. (Hamner and Hamner, 2000, Kawaguchi et 

al., 2010)) and similar behaviours have been inferred from survey data (e.g. (Quetin and 

Ross, 1991)). In small tanks in captivity, krill have been observed to use chemoreception 

to locate phytoplankton, then use localized area foraging upon reaching the bloom 

(Hamner and Hamner, 2000). Calculations suggest that krill aggregations can rapidly 

exhaust food supplies in a phytoplankton bloom and must change locations constantly to 

maintain their energy intake (Nicol, 2003b). The formation of larger swarms may allow 

for more efficient foraging if individuals within a swarm can communicate and larger 

swarms have been observed in areas of higher surface productivity than low productivity 

(Tarling et al., 2009). In addition to these instantaneous effects on krill swarm size and 

location, food resources are known to have long term effects on population size. Food 

availability constrains local population growth rates, with simulation showing that the 

optimal growth strategy is for krill to switch between low and high metabolic states based 

on food abundance (Groeneveld et al., 2015). Large phytoplankton blooms can trigger an 

early start to the mating season (Schmidt et al., 2012) and sustained high food levels can 

increase reproductive success, resulting in higher juvenile krill recruitment in the 

following season (Saba et al., 2014). This has been observed in the West Antarctic 

Peninsula, where years of high productivity lead to an increase in krill stocks in the 

following year (Saba et al., 2014). Food stocks clearly have short and long term effects 
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on krill populations and individual swarms and are an important consideration when 

studying drivers of krill distribution. 

We hypothesise that krill respond to their environment and seek to distribute themselves 

within environmentally favourable areas, particularly areas with high food concentration. 

We define this to be ‘active swimming’, which contrasts with ‘passive drifting’ which we 

define as large scale krill transport by currents. We test our hypothesis using data 

collected over 1.3 million km2 of ocean in the East Antarctic and a hurdle model, which 

is a flexible statistical model that can accommodate different sets of variables for krill 

presence/absence and density given presence. If our hypothesis is incorrect and krill are 

not aggregating through active swimming, then there should be strong evidence of this in 

the model’s residuals because the survey design traversed three large oceanographic 

current systems. Our methodology overcomes the limitations of standard modelling 

methods which do not adequately deal with both zero-inflation and random effects in 

continuous data and have enabled us, for the first time, to develop predictive models of 

krill to quantitatively examine the passive drifting hypothesis.   

 

To visualise how the observed distribution of krill can help us understand their habitat 

preferences and let us test our hypothesis, a conceptual figure demonstrating observations 

under passive drifting and active swimming is shown in Figure 1. Under a simulated 

uniform temperature environment (Figure 1a), krill with no environmental preference, or 

alternatively no capability to aggregate around a preferred temperature, will show 

uniform probability of presence across all temperatures (Figure 1b). In contrast, under a 

hypothetical water temperature preference of 0.5oC (Atkinson et al., 2006),  krill will 

display a non-uniform probability of presence and cluster about the their preferred 0.5oC 

water temperature (Figure 1c) . The combination of water temperature (a) and 



134 
 

environmental preference (b and c) will determine the observed krill distribution under 

passive drifting (Figure 1d) and active swimming (Figure 1e). Our model uses 

observations of krill (i.e. Figures 1d or e) to try and understand which underlying 

environmental preference is occurring (i.e. Figures 1b or c).  
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Figure 1 Conceptual figure of krill distribution under passive drifting (left column) and 

active swimming (right column) with temperature preference of 0.5oC. Data for figure 

are simulated. In a hypothetical environment (a), the preference of krill (b = drifting and 

c = swimming) will determine their final location (d & e). The same number of krill 

appear in (d) and (e) however in (e) they are strongly clustered around their temperature 

preference of 0.5oC.  Krill image from Gemma Carroll, Macquarie University (with 

permission). 

 

2. Methods 

 

We used data from the 2006 Baseline Research on Oceanography Krill and the 

Environment (BROKE-West) survey in the South-East Indian Ocean (2010). The data 

are from 37 Conductivity Temperature Depth (CTD) stations with coincident EK60 

scientific echosounder data in the top 250m of the water column. CTD data were collected 

using a SeaBird SBE9plus with an attached dissolved oxygen sensor (SBE43), 

fluorometer (Wet Labs ECO) and Photosynthetically Active Radiation (PAR) sensor (LI-

COR). 

The echosounder data were processed and integrated across a regular 50 m horizontal by 

10 m vertical grid. Krill were identified and krill density calculated from 120 kHz and 38 

kHz acoustic data using standard methods (Jarvis et al., 2010) and the software programs 

Echoview (Myriax, 2015), R (R Development Core Team, 2014) and the R package 

EchoviewR (Harrison et al., 2015). The full acoustic data set contains over a billion data 

points, and the EchoviewR package allowed us to process the data around the CTD 

stations automatically by providing a scripting interface between R and Echoview. Krill 
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densities were averaged across the closest 100 bins at 10 m depth increments and paired 

to the CTD measurements.  

To examine our hypothesis that environmental conditions influence krill presence we 

extended traditional hurdle model methods to accommodate the acoustic grid data being 

zero inflated (half of the grid cells contained no krill) and site random effects. We 

developed our model using R with the probability of krill presence modelled using a 

binomial mixed model (Zuur et al., 2009; pg. 324) in lme4 (Bates et al., 2015) and 

conditional krill density using a linear mixed model (nlme; (Pinheiro et al., 2016)). In 

both models, we used sampling station as a random effect to account for extraneous inter-

station differences. The density model contained an additional identity variance structure 

with station as a categorical variable because heterogeneity of variances between stations 

occurred. We were unable to use the standard hurdle or zero-inflated models because our 

density data are continuous and these functions can’t accommodate random effects. 

Potentially, krill presence-absence and krill conditional density could be driven by the 

same environmental conditions so for both models we used the same candidate 

explanatory variables of: cell depth, temperature, salinity, dissolved oxygen, time of day 

and phytoplankton fluorescence. Krill conditional density data were loge transformed, 

and explanatory variables were centred and scaled. Backwards Akaike Information 

Criterion (AIC) based model selection was used and model fit was assessed using 40-fold 

cross-validation (Arlot and Celisse, 2010), where one station was dropped at a time. 

During each iteration of the cross-validation, a random effect was generated for the 

dropped station from a normal distribution with mean = 0 and the estimated standard 

deviation from the fitted model. This is required to avoid skewing the predictions during 

back-transformation resulting in biased inference. Area Under Curve (AUC) of the 

Receiver Operator Characteristic (ROC) was used to assess cross-validation goodness-
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of-fit for the presence/absence model and marginal and conditional R2 were used for the 

density model (Hanley and McNeil, 1982, Nakagawa and Schielzeth, 2013). 

 

3. Results 

The best presence/absence model, selected by AIC, had depth, temperature and salinity 

as explanatory variables along with a station random effect (Figure 2 and Table 1). See 

supplementary materials (Appendix C) for details on model selection and model 

diagnostics. The drop one station cross-validation AUC was 0.72 indicating good 

predictive power even at novel stations (see supplementary materials for ROC curve). 

The Variance Inflation Factors of all variables were less than 5 indicating low co-

linearity. 

Table 1 Model summary for best model of y ~ depth + temperature + salinity + re(stn) 

with family binomial (link = logit). Note: Parameter estimates are on the link scale. 

Coefficient Estimate Standard Error Variance Inflation Factor 

Depth -1.203 0.144 2.51 

Temperature 0.368 0.110 1.22 

Salinity 0.310 0.142 2.68 

Random Effects 

 Variance 
Estimate 

Standard Error  

Station 0.709 0.842  

 

Krill were found in shallower, warmer and saltier water (Figure 2). While the 

presence/absence component of the model indicates that krill presence is linked to 

environmental conditions, krill density given presence was strongly influenced by both 

phytoplankton concentration and oxygen (loge(density) = loge(phytoplankton) * oxygen 
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+ re(stn)) (Figure 3). A plot of raw dissolved oxygen and phytoplankton is available in 

Appendix C. A variance structure to account for heterogeneity of variance between 

stations was required. The marginal and conditional R2 were 0.26 and 0.81 respectively 

indicating that the CTD station random effect accounts for a large amount of inter-station 

variation. 

 

Figure 2 Predicted probability of krill presence for our selected model across the 

BROKE-West survey area. Significant variables were a) depth, b) temperature and c) 

salinity. Dotted lines are 95% confidence intervals. Plots only cover the range of the 

observed data so the y → 0 and y → 1 asymptotes are not always visible. 
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Figure 3 Krill density given presence averaged over the random effects to give survey 

wide inference showing the interaction between Dissolved Oxygen and Phytoplankton 

Fluorescence. High conditional densities of krill only occur when both oxygen 

concentration and fluorescence are high. 

To assess whether there are residual patterns that align with the prevailing current systems 

in the survey area, we plotted the station random effects (subplots a and c) and model 

residuals (subplots b and d) for the presence/absence and density models with the 

locations of the front systems overlayed (Figure 4). An obvious pattern of residuals or 

random effects on either side of the front boundaries would provide evidence of 

aggregation by passive drifting. There is no obvious pattern in these plots which supports 

our hypothesis that the aggregation we observed was achieved through active swimming 

rather than passive drifting on these large scale current systems. 
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Figure 4 Bubble plots of presence/absence model station random effect (a) and average 

station residuals (b), and density model station random effect (c) and average station 

residuals (d). Grey values are positive and black values are negative. Plots are shown 

with the Antarctic continent (solid line), southern Antarctic Circumpolar Current front 

(sACCf; dot-dash line) and Southern Boundary of the Antarctic Circumpolar Current 

(SB; dashed line). Shapefiles for Antarctic coastline were sourced from the National 

Snow and Ice Data Center (Scambos et al., 2007) and shapefiles for the fronts were 

sourced from the Australian Antarctic Data Centre (Orsi and Harris, 2001 (Updated 

2015)). 
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4. Discussion 

Here we have clearly demonstrated that krill distribute actively in relation to both their 

environment and food availability, rather than simply drifting passively. These 

relationships are valid across the BROKE-West survey region (30-80oE) in the East 

Antarctic and we would not have found strong relationships between krill presence and 

environmental variables if krill were merely distributed at random. Furthermore, these 

relationships are unlikely to be solely due to krill transport by current systems since the 

BROKE-West survey pattern cut two oceanographic boundaries (the Southern Antarctic 

Circumpolar Current Front and the Southern Boundary Front) (Meijers et al., 2010, Nicol 

et al., 2010), and these patterns were not seen in our model’s residuals or random effects.  

Advection has been suggested as the dominant force behind krill distribution (Hofmann 

and Murphy, 2004, Amos, 1984, Murphy et al., 2004) and while it certainly plays an 

important role in krill circumpolar distribution, our modelling suggests that on the scale 

of the BROKE West survey, krill are able to seek out environmentally preferred areas 

and source localised food and oxygen. There are important implications arising from 

active distribution rather over passive drifting. Life history modelling reveals that active 

behaviour in krill would result in higher survival probability and increase reproductive 

success by 70% (Richerson et al., 2015). Our results corroborate a life history modelling 

study which showed reproductive and survival benefits for active swimming in krill 

(Richerson et al., 2015) and crucially, our results  show that forecasting of krill 

distribution requires much more sophisticated data collection and modelling than relying 

on the assumption of passive drifting (Kock et al., 2007, Marin and Delgado, 2001).  
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4.1. Krill relationship to environment 

We found a strong link between krill density given presence, high oxygen concentration 

and high food availability and provide quantitative evidence supporting observational 

accounts of active feeding in krill (Hamner and Hamner, 2000, Quetin and Ross, 1991, 

Kawaguchi et al., 2010). Links occur between krill and Chlorophyll-a at large spatial and 

temporal scales in the Scotia Sea and Antarctic Peninsula (Santora et al., 2012, Silk et al., 

2016), however our modelling clearly showed that across the East Antarctic (30 to 80oE) 

food availability is insufficient alone to explain high-density krill areas; high dissolved 

oxygen concentration is also required. These high oxygen concentrations may be 

necessary to sustain dense krill swarms during grazing. At a local scale, accessing oxygen 

and avoiding predation influences swarm shape (Brierley and Cox, 2010), and our results 

show that this trade off extends to foraging, with food as well as oxygen and anti-

predation requirements underpinning localised krill distribution. High oxygen 

concentration could also result from persistent phytoplankton patches, indicating that 

krill may specifically target areas with stable blooms. High oxygen levels may also allow 

krill to graze for longer before depleting localised oxygen levels. Krill can maintain 

constant respiration down to oxygen levels of 55% air saturation, after which krill oxygen 

consumption declines (Tremblay and Abele, 2016). Oxygen levels were always above 

60% air saturation in our data set which could explain why oxygen was not a significant 

factor in the presence/absence model: oxygen saturation never fell below 55% and so did 

not adversely affect krill. The relationships revealed during our modelling of krill actively 

sourcing food and oxygen further demonstrates that krill are not solely opportunistic 

feeders, and aggregate around patchy resources. 

Our model found that the probability of krill presence increased with higher temperature, 

salinity and deeper depths in the water column. This likely reflects areas where the warm 
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and nutrient rich Modified Circumpolar Deep Water (water south of the Antarctic 

Circumpolar Current with similar properties to Circumpolar Deep Water) flows over the 

continental slope, around which the most krill was seen during BROKE-West (Williams 

et al., 2010). Circumpolar Deep Water intrusions benefit krill by providing optimal 

conditions for egg hatching, with the warmer water hastening development and causing 

hatching to occur at a shallower depth leaving the larvae with a shorter distance to ascend 

(Hofmann and Hüsrevoğlu, 2003). Circumpolar Deep Water intrusions also increase 

primary productivity through the input of nutrients into the system (Prézelin et al., 2004, 

Nicol, 2006). This theory is supported by observational reports of high krill densities in 

association with Circumpolar Deep Water and Lower Circumpolar Deep Water in the 

Ross Sea (Sala et al., 2002, Taki et al., 2008). However, while a positive correlation 

between krill presence and Circumpolar Deep Water was expected in the West Antarctic 

Peninsula, no relationship was found using Generalised Additive Models (Lawson et al., 

2008).  

While our data set covered a large spatial extent (1.3 million km), like many surveys in 

remote and environmentally extreme locations, we viewed a small snapshot in time at 

each site. Whether krill had just arrived, had already depleted the resources or were 

passing through to more favourable areas remains unknown. Even if behaviour was 

known, krill feeding rates alone are highly variable with individual feeding rates varying 

from 0.37 – 86 µg Chlorophyll-a d-1 (Perissinotto et al., 1997). The site random effects 

partly account for this unknown behaviour and reduce the confounding that could occur 

in a study with numerous sites separated spatially and temporally (Davies and Gray, 

2015). This gives us confidence that the relationships we have demonstrated are real, 

rather than an artefact caused by the survey design or the small temporal window through 

which we view the ecosystem.  
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4.2. Future directions 

Krill are highly seasonal animals, displaying vastly different behaviour in winter when 

food and light become limited (Meyer, 2012). In this work we have extended current 

modelling techniques to clearly support the hypothesis that krill actively position 

themselves in relation to their environment. For this information to be actively used to 

model and predict krill movement it is necessary to determine whether the relationships 

we observed extend across different seasons as we believe is likely.  This will require 

additional data across seasons. The two-part nature of our model is ideal for answering 

this question because it allows us to partition the importance of variables to 

presence/absence and density. The decline in krill respiration (30-50%) and feeding (80-

86%) during autumn and winter (Meyer et al., 2010) would likely alter the shape of the 

surface in Figure 3, as the priorities for an individual’s survival change to reflect the 

increased difficulty in finding sufficient food. To examine whether krill avoid areas 

without any phytoplankton when food sources are scarce in winter, the significance of 

phytoplankton fluorescence in the presence/absence model during winter could be tested. 

A seasonal analysis could identify variables that krill are particularly sensitive to 

throughout different times of the year and help us understand the effects of extreme 

environmental events during winter. 

Our hurdle model does not include a current model, however the BROKE-West survey 

cutting two large current boundaries allowed us to infer that krill were not passively 

transported by these systems because there was no evidence of this in the model 

diagnostics. It is an important future direction to match krill densities to high resolution 

current models to further assess the extent of active positioning, especially at smaller 

scales than the frontal systems encountered during BROKE-West. There is weak 
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evidence for krill swarm movement in relation to local current systems (Tarling and 

Thorpe, 2014) but this needs further quantitative study.   

Krill spatial distribution and feeding preferences differ among age classes (Schaafsma et 

al., 2016, Atkinson et al., 2002, Siegel et al., 2013), and a similar approach to our hurdle 

model could be used to compare the relative importance of each variable to the 

presence/absence and density of krill at different stages of the life cycle. High-spatial 

resolution trawl data would be required to differentiate between age classes, as this is not 

currently possible from acoustic data alone. Modelling of important variables at each life 

stage could help understand the potential consequences of todays’ environmental 

conditions on next (and future) years’ stock. 

4.3. Summary 

In summary, we have shown that krill aggregate around key resources, and presence-

absence and density are driven by different sets of conditions. The probability of krill 

presence is highest around CDW intrusions and where krill are present they aggregate 

around food and oxygen resources. Together, this contradicts the long-held belief that 

krill are solely passive drifters. Adding missing variables such as nutrients (in particular, 

ammonium and iron) could further improve our results. Krill data have been harvested 

globally for decades (Siegel, 2016; pg. 21, Everson, 2008) and our two-part mixed 

modelling methodology could be retrospectively applied to assess whether similar 

behavioural patterns occur in other euphausiids, and whether these relationships display 

seasonality or change over time. The answer to these questions is a missing piece of the 

puzzle in our understanding of a widespread and ecologically important, but costly to 

study, group of organisms. 
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Abstract 

Productivity in the oceans is heightened around oceanographic and bathymetric features 

such as fronts and islands. This can have a flow-on effect, providing increased food 

availability for higher trophic level species. Using data from a combined visual and 

acoustic survey, we examine the hypothesis that higher Antarctic krill (Euphausia 

superba) density provides a lucrative resource for humpback whales (Megaptera 

novaeangliae) at a remote Antarctic feeding area, the Balleny Islands (67oS, 164oE). We 

assess whale presence at the foraging area in relation to prey, productivity and 

environmental variables using density surface modelling. We found stark differences in 

krill swarms at the islands compared with the adjacent open water. Swarms were twice 

as dense and three times more numerous at the Balleny Islands compared with open 

water, suggesting that the islands offer a profitable feeding opportunity. At the feeding 

area, humpback whales were found in deeper and more productive waters with medium 

krill densities. These relationships, along with the high krill availability around the 

islands, may relate to the Island Mass Effect. Our krill swarm and spatial analysis 

suggests that island feeding areas are important resources. We have provided the first 

quantitative study of habitat use by whales in an area that has rarely been visited, but has 

recently become a part of the world’s largest marine protected area. 

 

Keywords: Antarctic krill, humpback whale, Southern Ocean, density surface model, 

foraging, Island Mass Effect, prey field  
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1. Introduction 

Productivity has a bottom up effect on ecosystems and is critical for sustaining large 

Antarctic krill (Euphausia superba) populations and the Southern Ocean predators that 

forage on them  (Groeneveld et al., 2015, Ware and Thomson, 2005). Four key features 

limit productivity in the oceans: light, nutrients, mixing and grazing (Barnes and Hughes, 

2009; pg 32). Light and macronutrient/iron availability are the most important limiting 

factors for phytoplankton growth in the Southern Ocean (Lancelot et al., 2000, Smith and 

Lancelot, 2004). Melting ice creates amenable conditions for productivity by: 1) releasing 

nutrients and trace metals, 2) stabilizing the upper water column through stratification of 

low salinity water and, 3) seeding blooms through the release of algae from the ice (Smith 

and Nelson, 1986, Sedwick and DiTullio, 1997). Oceanic features such as bathymetry, 

islands and frontal zones are also highly productive areas due to the nutrients brought up 

by upwelling (Bost et al., 2009, Laubscher et al., 1993, Gove et al., 2016). Large swarms 

of krill that measure tens to hundreds of kilometres  can be concentrated around these 

locations for months at a time (Siegel, 2016; pg 300). 

 

Frontal zones might provide a lucrative feeding area, but lack the predictability brought 

about by the fixed location of high productivity around islands, which is likely highly 

important to migratory predators searching for foraging areas. The increased productivity 

around islands, due to modification of the physical oceanography, is known as the Island 

Mass Effect (Elliott et al., 2012, Gove et al., 2016). There are several mechanisms through 

which the Island Mass Effect operates. At South Georgia and the Kerguelen and Crozet 

Islands, the Island Mass Effect causes increased productivity through the release of iron 

(Blain et al., 2001, Planquette et al., 2007, Atkinson et al., 2001), a limiting nutrient that 

has been flagged as a possible cause of the high-nutrient low-chlorophyll status observed 
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throughout most of the Southern Ocean (Boyd et al., 2000). Increases in productivity and 

zooplankton around the Prince Edward Archipelago have also been attributed to the 

Island Mass Effect through nutrient inputs (Boden, 1988). Increased productivity and a 

general boosting of higher trophic levels in the food-chain also occurs through the 

creation of a stable surface layer by meltwater and rainwater run-off, as seen around 

Bouvet and the South Sandwich Islands (Perissinotto et al., 1992).  

 

Apex predators aggregate around biological hotspots, such as fronts and seamounts (Bost 

et al., 2009, Scales et al., 2014, Morato et al., 2010), although there are likely temporal 

lags between productivity and predator presence. In Southern Ocean ecosystems, krill 

populations are known to increase after multiple years of high productivity due to 

increased spawning success, which could create an annual lag (Saba et al., 2014). Shorter 

time lags also occur, due to the time taken for predators to find prey (Sims et al., 2008). 

 

The world’s largest predators are the baleen whales, who collectively consume an 

estimated 3 – 120 million tonnes of Antarctic krill annually (Siegel, 2016; pg 325). They 

migrate annually from temperate and tropical breeding grounds in winter to cold but 

energetically-rich polar waters in summer, where they must consume enough prey to 

sustain themselves until the next summer. Hence the availability of krill at the summer 

foraging grounds is critical for survival and population growth (Mori and Butterworth, 

2004, Nicol et al., 2008). Baleen whales are known to aggregate around frontal zones for 

feeding where there is increased productivity (Doniol-Valcroze et al., 2007). Resource 

partitioning is evident between humpback, fin and minke whales, which preferentially, 

although not exclusively, target different age classes and species of krill (Santora et al., 

2010, Friedlaender et al., 2009).  
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Globally, there have been numerous studies linking whale sightings to surface 

productivity and prey density. In the Northern Hemisphere, positive correlations between 

feeding humpback whales and Chlorophyll-a, an indicator of productivity, have been 

recorded in the California Current system (Tynan et al., 2005, Thompson et al., 2012). 

Areas of upwelling are important, with feeding humpback whales in the Gulf of St. 

Lawrence clustering around frontal zones (Doniol-Valcroze et al., 2007). Regression 

analyses have revealed different but highly non-linear trends recorded between whale 

sightings and Chlorophyll-a in the Bering Sea (Zerbini et al., 2015) and the Western 

Antarctic Peninsula (Friedlaender et al., 2006). The reason for the different non-linear 

trends could be due to temporal lags between Chlorophyll-a and whales, or a spatial 

mismatch between Chlorophyll-a and whale sightings. While the reported relationships 

of humpback whale sightings and Chlorophyll-a have been varied, consistent 

relationships have been observed with krill. Positive relationships between humpback 

whale sightings and krill density have been documented in the Antarctic (Herr et al., 

2016, Murase et al., 2002, Reid et al., 2000), the Barents Sea (Ressler et al., 2015), North 

Greenland (Laidre et al., 2010) and the California Current system (Benson et al., 2002). 

 

The foraging grounds of humpback whales in the Southern Hemisphere, are divided into 

six areas. There is an interchange between breeding populations in all areas with the 

exception of the West Antarctic Peninsula (Area 1), where whales from the south-eastern 

Pacific Ocean (Breeding Stock G) reliably return  (Amaral et al., 2016). In addition to 

coastal Antarctica, numerous Southern Ocean islands are feeding grounds for humpback 

whales including South Georgia, the South Sandwich Islands (Horton et al., 2011, Zerbini 

et al., 2006) and the Balleny Islands (Constantine et al., 2014). 
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The Balleny Islands are an uninhabited cluster of Antarctic islands located between New 

Zealand and the Antarctic continent (67oS, 164oE; see Figure 1 for map) and have recently 

been identified as a feeding ground for the east-Australian (E1) population of humpback 

whales (Constantine et al., 2014). The E1 population migrates annually from the warm 

calving grounds of the Great Barrier Reef to the krill-rich Antarctic waters to feed (Gales 

et al., 2009, Smith et al., 2012), and photo-ID/genotyping has matched 38 whales seen at 

the Balleny Islands to previous sightings off Eastern Australia, New Zealand and New 

Caledonia (Constantine et al., 2014). The Balleny Islands cover only a small area, 

extending approximately 150 km latitudinally and longitudinally, and it is not known 

whether they provide preferred foraging habitat for whales or how krill is distributed 

around the islands. This is important information for baseline monitoring and future 

management of the Ross Sea Marine Protected Area, the world’s largest Marine Protected 

Area, which indirectly benefits whales through fishing bans and currently allows whaling. 

 

We assess whether humpback whales are attracted to the Balleny Islands due to high prey 

availability by comparing krill swarm metrics list them around the islands to an adjacent 

area of open ocean. Around the islands we evaluate how prey availability, bathymetry, 

productivity and indicators of upwelling such as salinity and temperature relate to whale 

distribution at the feeding ground. We hypothesise that there will be more krill at the 

Balleny Islands than in open water and that around the islands, whales will aggregate in 

areas of high krill density and upwelling, as indicated by high productivity, high salinity 

and low temperature. We use Kolmogorov-Smirnov tests to compare swarms at and away 

from the islands, and a Density Surface Model to test our hypotheses about whale 
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distribution around the islands using data from a 2015 wildlife survey of the Balleny 

Islands.  

 

 

 

Figure 1 Map showing the Balleny Islands with the cruise track overlayed in black. 
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2. Methods 

2.1. Survey data 

The data are from a 2015 marine mammal survey with contemporaneous prey field 

mapping at the Balleny Islands undertaken by the National Institute of Water and 

Atmospheric Research on board the RV Tangaroa. The survey around the islands took 

place from the 2nd – 6th of February 2015 (Figure 1). Marine mammal sighting data were 

collected as per Kinzey et al (2000) by two observers located in the ship’s “Monkey 

Island”, located one level above the bridge but below the crow’s nest.  Both observers 

scanned the waters 180 degrees in front of the vessel with 7X50 handheld Fujinon 

binoculars and recorded the reticle and angle between the trackline and the ship for each 

sighting. Perpendicular distance to each sighting was calculated using the reticle, the 

angle between the trackline and the sighting and mean observer eye height (15 m) using 

the equation on page 12 of Kinzey et al (2000). On-effort times were defined as times 

when two observers were actively searching for sightings from Monkey Island. Off-effort 

times are when there were one or no observers actively searching for whales.  

Underway oceanographic data were collected using a Wetlabs ECO-TRIPLET 

(Chlorophyll-a) and a Seabird 21 thermosalinograph (salinity and temperature). Acoustic 

data were collected using a calibrated Simrad EK60 Echosounder operating at 38 and 120 

kHz frequencies and krill identified using standard ‘dB-difference’ techniques (Cox et 

al., 2011). The acoustic backscatter was processed to obtain volumetric density of krill 

(gm-3) using the software package Echoview (Echoview, Hobart, Australia, 2015) and 

the R package EchoviewR (Harrison et al., 2015). Integration intervals were vertically 

integrated to the shallowest of either the seabed echo or the top 250 m of the water 

column, and had a mean length of 1600 m.  
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2.2. Statistical Analysis 

2.2.1.  Comparison with outside the Balleny Islands 

 

To assess whether krill were more abundant around the Balleny Islands compared to 

adjacent open waters, swarms around the islands were compared to swarms encountered 

one day after leaving the Balleny Islands. Swarms were identified and extracted using 

Echoview (Cox et al., 2011).  A threshold of -70dB was used, and krill swarms were 

identified using a decibel difference window (Sv120kHz – Sv38kHz) between 0.37 and 12 

dB. Encounter rate was calculated as “swarms encountered per kilometre” to account for 

differences in ship speed. Swarm internal volumetric density (gm-3) and swarm length 

(m) distributions at and away from the Balleny Islands were compared using a one-sided 

Kolmogorov-Smirnov test. 

2.2.2.  Whale distribution around the islands 

Density Surface Models (DSMs) can provide a flexible method of modelling line transect 

environmental and sighting data by merging Generalised Additive Modelling (GAM), to 

incorporate non-linear environmental coefficients, with i) distance sampling, to account 

for imperfect detection, and ii) survey design, to allow for opportunistic surveys with 

repeat sampling and unequal effort (Miller et al., 2013).  A DSM with a half-normal 

detection function was used to evaluate whether whale sightings are correlated with 

environmental or biological features whilst accounting for imperfect detectability. The 

detection function accounts for imperfect detectability, which may vary if larger whale 

groups are easier to see, so a coefficient for sighting group size was considered. The best 

detection function (hazard-rate, half-normal) and the support for the group size covariate 

was assessed using Akaike Information Criterion (AIC). The DSM was fit using the best 

detection function, and a GAM linking whale sightings to environmental variables which 
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includes a s(x, y) surface. A soap-film smoother (Wood et al., 2008) was used so that the 

s(x, y) smoothed around islands, rather than through, with island boundaries input into 

the smoother as polygons. As the Poisson family with an over-dispersion parameter was 

used for the GAM component of the DSM, AIC was not available because the model is 

not based on a full likelihood so a p-value backwards step-wise model selection was used 

instead (α = 0.05).    

Variables considered in the DSM are summarised in Table 1. AMSR2 satellite-sensed 

daily sea ice coverage data were sourced from the University of Bremen (Spreen et al., 

2008; http://www.iup.uni-bremen.de:8084/amsr2data/) however sea ice coverage was 

low throughout the survey area as the RV Tangaroa did not travel in areas of heavy ice 

coverage, so this variable was not included in the model. For the DSM, krill data were 

vertically and horizontally integrated and mean density per integration interval was 

calculated, rather than extracting individual swarms as per the island/open water 

comparision. The DSM was fit using the dsm package (Miller et al., 2016) in R (R 

Development Core Team, 2014; version 3.2.3) and R-studio (RStudio, 2014; version 

0.99.892 ).  
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Table 1 Summary of explanatory environmental and biological variables measured 

around the Balleny Islands that are investigated as correlates with humpback whale 

sightings using a Density Surface Model. 

Variable Short 

name 

Minimum Maximum Mean Standard 

Deviation 

Bottom depth (m) depth 85 2283 741 542 

Chlorophyll-a (µgL-

1) 

chl 0.22 4.41 1.49 1.13 

Salinity (psu) salinity 33.41 34.15 33.78 0.14 

Sea Surface 

Temperature (oC) 

SST -1.6 -0.6 -1.11  0.24 

Krill density (gm-3) krill 0 2307 46.54 221.6 

Easting (m) x 372842 504886 438471 37622 

Northing (m) y 2495177 2666548 2579171 47198 

 

DSMs can incorporate both unequal effort over a survey area and repeated transects. To 

ensure that repeated visits to the same area were considered independently in the DSM, 

the survey was coded in four separate transects based on parts of the survey with 

continuous on-effort times, where observers were actively searching for sightings. 

‘Segments’ within each transect were the krill integration intervals and the underway 

environmental data were interpolated onto these intervals. As sighting distances reached 

up to 13.8 km from the transect, sightings were matched to the closest segment to ensure 

that the most relevant set of environmental variables were associated with that sighting. 

DSMs allow the user to specify the segment area to account for unequal effort. At times, 

the vessel was much closer to the islands than the segment width (taken to be the 
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maximum distance a sighting was observed at = 13.8 km), causing a reduction in segment 

area because the land restricted the field of view. To account for this, a polygon of each 

segment was overlayed over a polygon of the Balleny Islands land masses and the 

percentage overlap was calculated. For segments where an overlap occurred, the segment 

area was reduced by the percentage of overlap with land. 

 

3. Results 

There were 63 sightings of humpback whales over 39.2 hours of time on effort. Group 

sizes ranged from 1 – 7 individuals (mean = 2.16; SD = 1.35).  

3.1. Comparison to areas outside of the Balleny Islands 

 

The sighting rate of 1.7 sightings/hrs around the Balleny Islands dropped to only 0.17 

sightings/hr the next day. The encounter rate of krill swarms around the Balleny Islands 

was also much higher than the day after the ship left the island area. Krill swarms around 

the islands were encountered at a rate of 0.15 swarms/hr while on the next day the 

encounter rate was 0.05 swarms/hr. While there were more swarms encountered around 

the islands, they were significantly shorter in length than those encountered the next day 

(p < 0.001, Table 2). Despite being shorter in length, the island based krill swarms were 

denser (p = 0.061, Table 2), however this difference was not statistically significant.  
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Table 2 Comparison of krill swarm metrics around the Balleny Islands and in the 

adjacent open water. 

  Open Water Balleny Islands 

 Effort (km) 512.2 1083.2 

 Number of 
swarms 

25 160 

 Swarms/hour 0.05 0.15 

Swarm length (m) 

Minimum 159 32 

Maximum 1012 2789 

Mean 350 288 

Swarm density (gm-3) 

Minimum 3 2 

Maximum 198 1463 

Mean 33 57 

 

 

3.2. Whale distribution around the islands 

The best DSM included easting, northing, Chlorophyll-a, krill density, salinity and 

bottom depth (Table 3) and had a Deviance Explained of 46.8%. Model selection results 

for backwards p-value based selection are available in the supplementary materials (Table 

S2). Except for Chlorophyll-a, which displayed a linear relationship; all other variables 

had non-linear relationships with whale count and hence were modelled as smooth terms 

(Figure 3).  
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Table 3 Output of GAM results from Density Surface Model. Chlorophyll-a and the 

intercept are parametric coefficients and s() represents a smooth term. 

Family = Poisson with a log-link function. The over dispersion parameter was 
estimated as 3.33, resulting in 46.8% deviance explained. 

 

Parametric Coefficients 

 Estimate Standard 
Error 

P-value 

Intercept -18.229 0.433 <0.001 

chl 0.514 0.192 0.008 

    

Smooth terms 

 Estimated Degrees of 
Freedom 

P-value 

s(x, y) 5.1  0.002 

s(krill) 3.6 0.017 

s(salinity) 5.7 0.029 

s(depth) 2.2 0.002 

 

The s(x, y) surface models extra spatial variation that is not accounted for by the other 

variables in the model. There was a ‘hotspot’ of high counts of humpback whales to the 

East of Young Island, and an area of low counts between the two southern islands that 

was not accounted for by the other variables (Figure 2). 



166 
 

 

Figure 2 Contour plot of s(x, y) Easting-Northing surface of relative whale count on the 

natural log scale from the density surface model. The grey polygons are the Balleny 

Islands land masses. This surface models the extra spatial variability not accounted for 

by the other predictors. The outer boundary was calculated from a convex hull of the 

outer transect points and was increased in width by the sighting distance. 

While the krill-whale relationship (Figure 3a & 3b) indicates that there is a quadratic like 

relationship when krill is >500 gm-2, there were only 4 observations driving this 

relationship, so it should be interpreted with caution. This is reflected in the large 

confidence intervals in this plot. Relative frequencies of krill decline exponentially 

(Figure 4). 

The relationship between whale count and salinity (Figure 3c) appeared to overfit even 

when the basis dimension was restricted. The ‘wavy’ line hovers around zero, indicating 
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that while this relationship was statistically significant, its effective influence is likely 

low particularly because the range of salinity values was low (33.41 – 34.15 psu). The 

relationship between whale count and bottom depth (Figure 3d) appeared to be the most 

robust of these smooth terms, showing higher whale numbers in deeper water. The 

estimated number of whales decreases sharply at 1900 m depth and the confidence 

intervals become extremely large, which is driven by the lack of data (only three 

observations) at depths greater than 1900 m.   

Chlorophyll-a was initially included as a smooth term in the DSM, however its effective 

degrees of freedom was 1 and the smooth term plot was linear so this term was changed 

to a parametric coefficient (Figure 3e). For every 1 µgL-1 increase in Chlorophyll-a, there 

was an estimated increase of 1.7 whale sightings. 
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Figure 3 Smooth effects of a) Krill density, b) Krill density zoomed to 0-500 gm-2 , c) 

Salinity and d) Bottom depth on humpback whale sightings from the density surface 

model. Linear Chlorophyll-a term is shown in e) and is centred to mean=0 for consistency 

with other plots. Dashed lines are 2*Standard Error; the distribution of observations is 

given as a rug plot along the x-axes. 
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Figure 4 Histogram of krill density to demonstrate exponential decline in frequency of 

higher krill densities 

 

Figure 5 Fitted half-normal detection function (solid line) with whale group size 

covariate. Custom sighting frequency bins of unequal size were used because the distance 

between reticle marks on the binoculars increases with distance from transect. The 

number of observations in each bin is displayed above each bar in the histogram. A 

truncation distance was not used because the detection function would not converge when 

various truncation distances were tested.  
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The best detection function included a coefficient for group size (AICNull = -40.3; AICSize 

= -46.2), as larger groups were seen further from transect than smaller groups, most likely 

because they were easier to see (Figure 5). See the supplementary materials for AIC-

based model selection results (Table S1). 

Humpback whale abundance was predicted over a grid of 10x10 km cells, in locations 

where all variables were measured (Figure 6). The highest number of individuals were 

predicted to be in the North-East of the survey area, and this area also had the lowest 

Coefficient of Variation. In general, the Coefficient of Variation for each cell was high, 

with 36% of cells having a Coefficient of Variation of 2 or higher, indicating that the 

Standard Error was at least twice the value of the estimate for those cells (Figure 6b).  

The total estimated humpback whale abundance from the DSM is 182 individuals (SE = 

27). This prediction only includes animals in the shaded 10x10 km grid shown in Figure 

6, as a count can only be calculated in areas where all environmental variables were 

measured. This estimate includes a correction for decreasing detectability of whales 

further away from the transect, i.e. the detection function. 
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Figure 6 Predictions from density surface model of (a) Predicted whale count and (b) 

Coefficient of Variation (CV) over a 10 km grid. Note: Predictions can only be made in 

cells where all variables were sampled. 

 

4. Discussion 

Islands can offer a predictable and profitable feeding ground for migratory predators 

through enhanced productivity caused by the Island Mass Effect. We found dense, small 

and numerous krill swarms at the Balleny Islands compared to large diffuse layers of krill 

in the adjacent open water, which is likely responsible for the high number of humpback 

whales seen at the islands. We found that around the islands, whales aggregate in more 

productive areas with medium krill densities and bottom depths greater than 350m.  

The number of whales seen around the Balleny Islands (1.6 sightings/hr) was not only 

higher than in nearby open water, but also higher than previously observed in other areas 

of the Southern Ocean. In the West Antarctic Peninsula, surveys in the early 2000s found 

encounter rates of 0.54, 0.32 and 0.55 sightings/hr (Friedlaender et al., 2006, Thiele et 

al., 2004) and off East Antarctica the encounter rate for a 1995 survey was 0.23 

sightings/hr (Thiele et al., 2000). The sighting rate at the Balleny Islands is also higher 
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than previously seen around other island groups. At the South Shetland Islands, the 

sighting rate of humpback whales over a 5-year survey was 0.39 sightings/hr (Santora et 

al., 2010) and at South Georgia, only one humpback whale group was seen over 110 

hours of effort (Rossi-Santos et al., 2007). The high number of whale sightings and high 

krill abundance at the Balleny Islands suggests this area provides important foraging 

habitat for humpback whales. 

 

The threefold increase in the number of krill swarms around the Balleny Islands 

compared to open water could be due to increased productivity around the islands caused 

by the Island Mass Effect, which has been documented around other islands in the 

Southern Ocean (Blain et al., 2001, Planquette et al., 2007, Boden, 1988, Perissinotto et 

al., 1992). The smaller (p < 0.001), denser (p = 0.061) and more populous krill swarms 

around the Balleny Islands are likely less energetically expensive to find and consume 

than the few long but sparsely populated swarms in open water. Lunging during feeding 

incurs a large energetic cost for humpback whales, with each extra lunge resulting in 

decreased dive times and longer surface intervals (Goldbogen et al., 2008). Humpback 

whales can take advantage of dense krill swarms by repeatedly targeting a dense swarm 

within the same dive using a reverse-looping behaviour (Ware et al., 2011), filtering and 

then swallowing the prey while positioning for the next lunge (Simon et al., 2012). 

Feeding in an area of higher food occurrence and density could hence conserve energy if 

it allows for fewer lunges and a shorter time to locate swarms. 

Whale distribution at the feeding ground is influenced by biological (Chlorophyll-a and 

krill) and environmental factors (salinity and bottom depth). The non-linear relationships 

with these factors (except Chlorophyll-a) highlight the need for non-parametric 

approaches when modelling complex data. Here we discuss the importance of the 
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biological and environmental factors that we found were correlated with humpback whale 

distribution around the Balleny Islands. 

 

4.1. Chlorophyll-a and Krill 

Productivity in the water column can have an effect on higher up trophic levels through 

enhancement of the food chain (Ware and Thomson, 2005). Our observed positive linear 

relationship between whale sightings and Chlorophyll-a indicates that the whales around 

the Balleny Islands are seeking areas of high productivity. These patches of high 

productivity could be facilitated by nutrient inputs from the Island Mass Effect, either 

from upwelling or nutrient runoff. The Southern Ocean is generally considered to be iron 

limited, and iron inputs increasing productivity due to the Island Mass Effect have been 

observed at three other Southern Ocean island groups (Atkinson et al., 2001, Blain et al., 

2001, Planquette et al., 2007). 

Whales may aggregate in high productivity areas due to high krill availability. However, 

we found no relationship between krill density and Chlorophyll-a. Rather than indicating 

a true lack of relationship between krill and phytoplankton, this may be an issue of scale. 

Another possibility is that Chlorophyll-a could be more persistent than krill swarms, 

offering whales a stable indicator of areas with generally high krill densities. 

A secondary explanation for a positive correlation between whale sightings and 

Chlorophyll-a could be fertilization, where the nutrients (particularly iron) released by 

defecating whales cause phytoplankton blooms (Nicol et al., 2010). We believe this is 

unlikely to be the explanation for our observed relationship because the time scale for 

bloom formation after whale presence is in the order of 13-16 weeks (Visser et al., 2011) 

and we observed the relationship on a much smaller temporal and spatial scale.  
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For krill densities below 500gm-3, we found an increasing relationship with whale count 

to 220gm-3 of krill, after which whale count decreased. This occurred despite krill 

frequencies decreasing exponentially after 50gm-2. This indicates that the relationship we 

observed is likely to be due to a preference rather than in incidental occurrence because 

krill up to 220gm-2 are far more common and hence more likely to be found. At krill 

densities higher than 500gm-3, the relationship was largely influenced by four points of 

unusually high krill density and should therefore be regarded with caution. A recent study 

in the West Antarctic Peninsula found a similar result to our model, with humpback 

whales seen in areas of ‘medium’ krill density rather than low or high density (Herr et 

al., 2016). Although this is a comparable pattern to the one we observed, in that study 

there were lower overall krill densities, so ‘medium’ was only 20 – 40 gm-2. Our krill 

densities were significantly higher and were skewed. 

 

When prey resources such as krill are patchily distributed, predators must decide how 

long to remain at the current patch and whether it is worth seeking a more lucrative patch 

at the risk of expending energy searching and travelling with no guarantee that such a 

patch exists. Optimal foraging theory dictates that the predator should leave the patch 

when the patch’s marginal capture rate drops below the average capture rate in the habitat 

(Charnov, 1976). When faced with high uncertainty, optimisation is not a reliable strategy 

and robust satisficing, which involves maximising the robustness to uncertainty of a 

satisfactory outcome, is a preferred strategy (Schwarz et al., 2010). Information-gap 

robust satisficing is thought to occur in ecological systems more often than optimal 

foraging (Carmel and Ben-Haim, 2005). We found that whale sightings at the Balleny 

Islands were highest at medium krill densities, which could be because average patches 

still provide the best chance of satisfying current energy needs, given the high uncertainty 
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about i) whether there are better patches, ii) how much energy is required to locate these 

lucrative patches and iii) how far away these patches are likely to be. For whales at low 

krill densities, this risk becomes worth taking, or even necessary, hence the low whale 

numbers observed at low krill densities. 

 

4.2. Bottom depth 

We found a lower number of whale sightings where bottom depths were greater than 

350m, after which the smooth relationship hovers around zero, indicating that there are 

fewer whales close to the islands’ shores. This may be due to the dynamics of the Island 

Mass Effect, if upwelling caused by the disruption of currents by the islands occurs 

slightly offshore. Future research to characterise the island mass effect around the Balleny 

Islands could test this hypothesis. Reported correlations between humpback whales and 

bottom depth in the literature show that whales (especially females and calves) prefer 

shallow water (Smultea, 1994, Guidino et al., 2014, Felix and Haase, 2005), however 

these studies are from winter breeding grounds where the priorities of the whales are 

different. In our study, there may be some discrepancy between the bottom depth at the 

location of the actual sighting and the recorded bottom depth because we only have depth 

data directly below the ship, and sightings are paired to the closest point on transect. High 

resolution bathymetric data could be matched to the true location of each sighting to 

assess the discrepancy between depth at the ship and depth at the sighting. However, this 

variable couldn’t easily be included in the DSM because bottom depth varies with 

distance from transect rather than being constant within a segment. 
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4.3. Salinity 

Whale sightings showed a highly non-linear relationship with salinity, with peaks at low, 

medium and high densities. This occurs despite the basis dimension for the smooth term 

being reduced to force smoothing and minimise the chance of overfitting. The undulating 

relationship could be because salinity is much more consistent (33.41-34.15 psu) around 

the Balleny Islands than many other locations, because, apart from melting sea ice, there 

are no large freshwater inputs. A contrasting example is the Dominican Republic, where 

a salinity gradient of 1 – 32 ‰ occurs and humpback whales avoid the low salinity areas 

around the freshwater inputs (Mattila et al., 1994). If salinity is indicative of upwelling, 

its importance may depend on the whale’s activity. This has been seen in British 

Colombia, where salinity is only associated with whale foraging in shallow waters (Gregr 

and Trites, 2001). We found no evidence of a salinity – bottom depth interaction, which 

could be because our DSM was only fit to the portion of the survey around the islands, 

so whales migrating over deep water are not included. If salinity depends on upwelling 

generated by the Island Mass Effect around the Balleny Islands, the non-linear 

relationship we observed could also be influenced by current patterns around the islands, 

which are not included in our model but would be partly accounted for by the spatial 

smooth, s(x, y). A dedicated investigation of any Island Mass Effect occurring around the 

Balleny Islands would help us better understand the relationship we have found with 

salinity. 

 

4.4. Limitations and future directions  

One variable missing from our model is ocean current strength and direction. The ship’s 

Acoustic Doppler Current Profiler was not operating at the same time as the echosounder 

so we do not have underway current data. Satellite based current data were considered 
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but are collected at a larger temporal and spatial resolution than our DSM segments (mean 

length = 1596m) and often don’t cover the Southern Ocean. The most important feature 

that current data could add would be an indication of upwelling locations and a 

characterisation of the Island Mass Effect, however because our Chlorophyll-a, SST and 

salinity variables would reflect areas where upwelling causes high productivity, we 

believe this did not significantly impact on the outcomes of our study.  

The short survey time of three days makes it impossible to assess how long the whales 

remain around the Balleny Islands. We cannot tell from our data if the Balleny Islands 

are a ‘stop-over’ foraging ground for whales on the way to the Antarctic continent or 

whether they provide a foraging ground in which whales are resident there the entire 

summer. If the same individuals return to this area each year, these animals would be 

particularly vulnerable to changes in krill stocks around the Balleny Islands. While 

Southern Hemisphere humpback whales are believed to follow the classical feeding 

model, where feeding occurs only in the Southern Ocean during summer, stable isotope 

analysis and direct observations indicate that E1 humpback whales may diverge from this 

strategy and supplement their diet in temperate waters (Eisenmann et al., 2016, Owen et 

al., 2016, Owen et al., 2015). Due to the remote location of the Balleny Islands it is 

financially and logistically difficult to conduct long term monitoring to assess the role 

that this feeding ground plays in E1 humpback whale feeding strategies. However as 

technology advances it might not be long before it becomes possible to count whales in 

geographically isolated locations using unmanned aerial surveys (Linchant et al., 2015), 

gliders (Baumgartner et al., 2013), fixed passive acoustic sensors (Marques et al., 2009) 

or high resolution satellite imagery (Fretwell et al., 2014). 

The large distances to sightings (up to 13 km) meant that often individuals could not be 

identified and that animals may have been recounted on a previous day. The DSM partly 
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accounts for this by including survey design through the specification of unique 

transect/sampling blocks, however our confidence in the abundance estimate would be 

higher if individuals could be identified. Satellite tracking of humpback whales in the 

West Antarctic Peninsula feeding grounds has revealed that they travel large distances of 

17 – 75 km/day (Dalla Rosa et al., 2008). Given that the Balleny Islands survey area is 

only approximately 150km in both latitude and longitude, the whales could have 

potentially moved anywhere in the survey area over the three days that we observed them. 

Hence, identifying individuals to avoid recounting would help give a more robust 

abundance estimate and would allow for fluke matching to known individuals from the 

E1 and Oceania populations. Another issue that could potentially have down-biased our 

population estimate is availability bias, where whales were in the survey area but were 

not available for sampling because they were diving or inclement weather conditions 

made it impossible to see them.  
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5. Conclusion 

 

The unusually high numbers of humpback whales seen at the Balleny Islands are likely 

attracted by the threefold increase in krill swarms compared to the adjacent open water. 

These abundant and concentrated krill swarms may be easier to find and forage on than 

the spread-out swarms seen in open water. Whale distribution around the islands was 

non-uniform, with a hot-spot on the North-Eastern side of the islands. There were higher 

counts in water > 350m deep with medium krill density and high productivity. We believe 

that the abundance of krill and hence higher whale numbers at the Balleny Islands may 

be due to an Island Mass Effect increase in productivity in an otherwise relatively 

featureless expanse of ocean. Further long-term studies are needed to quantify annual 

trends and identify whether the same individuals return to the Balleny Islands each 

summer. This is essential information if we are to adequately manage the marine 

protected area that encompasses the Balleny Islands and ensure that they remain a pristine 

feeding area for whales. 
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In this thesis I set out to provide new insights into the relationship between key ecosystem 

components through the development and application of advanced quantitative 

techniques. I successfully applied these techniques to data collected in the Southern 

Ocean to examine drivers of the distribution and abundance of key organisms in the 

Southern Oceans that span three trophic levels, starting with phytoplankton, then 

plankton grazers (krill) and finally krill predators (whales). The processes that drive 

spatial distribution at each trophic level were found, as predicted, to centre on food 

availability or in the case of phytoplankton, energy sources and environmental conditions 

that promote photosynthesis. Here I synthesise the findings of the thesis, discuss their 

implications for our understanding of the Southern Ocean ecosystem, and close with ideas 

for future research. 

There is a wide array of statistical methods available for modelling ecological data, many 

of which are necessarily intricate to deal with the complex characteristics of the data. In 

Chapter 2 I conducted a literature review of the more common statistical modelling 

methods, detailing a comparison between the two main approaches to ecological models, 

the frequentist and Bayesian paradigms. This chapter provides background information 

about the modelling methodology used in this thesis and a rational for why these methods 

are necessary to account for complexities such as correlations and population level 

inference. 
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1. Processing large acoustic data sets 

Counting animals at each level of the food web requires different in situ data collection 

methods. For example, phytoplankton data are collected using fluorometry, Niskin bottle 

sampling or tows; mid-level predators (primarily krill and fish) are counted from active 

acoustics or net surveys and high level predators (air-breathing marine mammals and 

seabirds) using visual surveys, passive acoustics or tracking. While these methods all 

involve a large time cost during collection, the size and complexity involved in 

processing active acoustics data sets requires a second large investment of time in the 

data processing stage – something often overlooked when planning ecosystem surveys. 

Raw active acoustics data sets can easily contain billions of data points, which must be 

correctly integrated, identified and then interpreted in the appropriate manner for each 

different purpose.  

To more easily manage the data processing required in this thesis I developed an R 

package (R Development Core Team, 2014), EchoviewR, to automate the processing of 

active acoustic data sets using the commercially available software, Echoview 

(Echoview, 2015). EchoviewR increases reproducibility and cuts down on user error 

through the use of code scripts. As processing techniques advance, or new thresholds for 

the identification of noise or species are adopted, it allows us to automatically re-run the 

data processing by simply modifying a line in the original script. EchoviewR is a valuable 

tool for any scientist using active acoustics, whether it be for fish or krill detection, sea 

floor mapping or oil/gas plume detection. It has been made widely available on the 

software repository GitHub and in the publication Harrison et al (2015) in the journal 

Frontiers in Marine Science. I employed this package to efficiently process the acoustic 

data used to calculate Antarctic krill densities in a further two chapters in this thesis. 
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2. Phytoplankton distribution in a 3D environment 

Phytoplankton form the base of the Southern Ocean food web and their abundance and 

distribution shapes ecosystem dynamics and supports the entire food web. In such large, 

dynamic and complex ecosystems it is difficult to quantify the drivers of distribution over 

a survey area while reducing confounding by extraneous effects. The spline mixed model 

I developed to assess drivers of phytoplankton distribution in Chapter 3 is widely 

applicable in both terrestrial and marine settings, regardless of survey design and could 

hence retrospectively be applied to the large amount of vertical profile data that already 

exists.  

In Chapter 3 I found that phytoplankton density off North-East Antarctica correlated with 

salinity, temperature, depth in the water column and dissolved oxygen levels. Sea ice, 

distance from coastline and current strength and direction were not significantly 

associated with phytoplankton levels and were not included in the final model. This 

model is the first to assess drivers of phytoplankton distribution while accounting for 3D 

spatial autocorrelation, non-linear relationships using data from multiple irregularly 

spaced sampling stations. It was found to be unbiased using simulation. I demonstrated 

the importance of accounting for spatial complexities such as 3D autocorrelation, which 

can bias results if not included. Ignoring spatial autocorrelation led to significant over-

fitting problems in the model along with high residual correlation.  

An important practical application of this research is to predict phytoplankton abundance 

based on future expected climate scenarios. The model offers a fast and flexible method 

to predict both localised and survey wide trends. It can make predictions in a 3D 

environment and is applicable to other surveys regardless of survey design. 

Understanding how the base of the food chain will be affected by environmental changes 
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is the first step in forecasting the outcome on other Southern Ocean species and in 

identifying where we can act quickly and effectively to effect mitigation or adaptive 

management. 

 

3. Antarctic krill: drifting or swimming? 

Actively sourcing resources as opposed to passively drifting and feeding solely 

opportunistically allows animals to avoid unfavourable conditions and take advantage of 

patchy resources. Despite the importance for conservation, drifting versus swimming has 

rarely been tested (Putman et al., 2016). Antarctic krill are a key link in the food chain, 

transporting the energy in phytoplankton to the higher trophic levels (Siegel, 2016; pg 

322). They are often treated as though they are passive drifters, completely at the mercy 

of the current systems surrounding Antarctica. While there have been observations in 

captivity of krill actively seeking out food (Hamner and Hamner, 2000, Kawaguchi et al., 

2010), the extent to which they are able to combat currents and circulation to actively 

position themselves in the wild is difficult to assess and has hence remained a large but 

important knowledge gap over many decades. This thesis provided the first quantitative 

evidence of Antarctic krill aggregating around important resources. In Chapter 4 I showed 

quantitatively that over a large survey area (1.3 million km2) krill aggregate in areas 

favourable to them, i.e. those with high food availability and high dissolved oxygen 

levels. These findings were only made possible through the application of a hurdle model 

to partition the presence/absence and conditional densities into separate models. Without 

this approach, I would not have been able to separately assess the drivers of presence and 

density and would not have discovered the otherwise ‘masked’ signal of krill aggregating 

around oxygen and phytoplankton. 
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The ability for krill to actively seek out areas of high dissolved oxygen and phytoplankton 

may help krill adapt to future predicted changes in phytoplankton community 

composition and loss of sea ice. However, active swimming will offer little protection 

against large scale ocean acidification, predicted to have catastrophic consequences for 

krill (Kawaguchi et al., 2011), and larval and juvenile krill are still reliant on current 

systems to move to areas that offer the right conditions to progress to the next stage in 

the life cycle. The finding of their ability to aggregate in proximity to resources is 

important for the management of the krill fishery and forecasting future changes because 

management approaches based only on passive krill flux will fail to adequately capture 

the localised active swimming behaviour of krill swarms.  

 

4. Prey hotspots around islands: the Balleny Islands 

The Southern Ocean is an important feeding ground for migratory predators, such as 

whales and seabirds, who every season must efficiently locate areas of high prey 

availability. Islands, frontal systems and bathymetric features are known to cause high 

productivity and an enhancement of the food chain through upwelling and stabilisation 

of the water column (Bost et al., 2009, Laubscher et al., 1993, Gove et al., 2016).  This 

creates a highly dynamic, patchily distributed resource for krill predators. In the Southern 

Ocean, higher trophic predators must search widely for the highly dynamic krill swarms, 

and high krill abundance around islands could benefit whales by providing a relatively 

predictable food source in the ever-changing seascape.   

In Chapter 5, I found that Antarctic krill aggregate in locations of high food availability, 

indicating that they might be abundant around these zones of high productivity. In 

Chapter 6 I tested this theory at a remote Southern Ocean archipelago, the Balleny 
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Islands. I found that krill swarms around the islands were more numerous (with a three 

times higher encounter rate than in the open ocean), denser and more compact than those 

in nearby open water, and this is likely to attract the unusually high number of humpback 

whales seen around the islands. In close proximity to the islands, whales aggregate in 

areas of high productivity, medium krill density and with a bottom depth >350m. These 

findings demonstrate that islands in a large expanse of open water can offer a profitable 

feeding opportunity. The high levels of krill and whales found at the Balleny Islands, 

along with the results of my analysis of whale habitat use at the feeding area, have 

implications for conservation and management of this resource. In 2016, the islands 

became part of the world’s largest marine protected area and we have an obligation to 

protect and conserve significant biological hotspots, such as this important krill hotspot 

at the Balleny Islands. 

In Chapters 3 and 5 I used different methods to incorporate the spatial components (3D 

autocorrelation structure versus smoothing surface). The reason I chose different methods 

was because the BROKE-West data used in Chapter 3 was on a much larger and sparser 

scale than the Balleny Islands data in Chapter 5. The BROKE-West data are also 3-

dimensional because they include a depth through the water column component, and 

current software packages are unable to incorporate 3-dimensional volumetric spline 

surfaces. Hence using a smoothing surface for BROKE-West would not have worked 

well. The Balleny Islands dependent variable data (whale sightings) was also collected 

through visual surveys so a distance sampling component was required in the analysis 

which was not needed for the phytoplankton analysis. DSMs can incorporate both the 

spatial smooth surface and distance sampling which is why that method was selected 

rather than trying to modify a spline mixed model to be suitable. 
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5. Future Directions 

5.1. Predicting the future 

A key reason for modelling ecosystems is to use the available information and the 

developed model to forecast what might happen if environmental conditions or food 

availability changes. The phytoplankton, krill and whale models developed in this thesis 

can all be used to predict both survey wide and localised distributions under different 

environmental input parameters. While it was a key motivation for this work, the 

predictive capacity of the models in this thesis was not explored beyond cross-validation 

given the time constraints of a three-year thesis and remain an important future direction 

for studies building on this research. There are many ways in which these models can be 

extended and built upon, and I will now outline briefly some areas that I would have liked 

to explore further. 

5.2. Survey locations 

Most ecological and oceanographic surveys in the Southern Ocean take place only in a 

single sector due to a combination of time and logistical constraints. The chapters in this 

thesis used data from single sectors because that was the available data. However, the 

Antarctic continent is experiencing quite contrasting environmental changes in different 

sectors, with some warming and some cooling (Constable et al., 2014). Accordingly the 

inference drawn from one sector is unlikely to be directly transferrable to other areas. An 

important future direction would therefore be to incorporate data from these other 

regions, such as the West Antarctic Peninsula, to assess which processes drive species 

distributions at regional or continental levels. Regional effects that incorporate data from 

other areas around the continent could be assessed using the mixed effects models I 

developed in this thesis. For example, the Antarctic Circumpolar Expedition (ACE, 2016) 
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will provide valuable circumpolar information about the key systems studied in this thesis 

and applying these models to that dataset would be a highly rewarding extension of this 

work. 

5.3. Currents and nutrients 

The models in this thesis primarily focus on data collected from underway ship data or 

Conductivity Temperature Depth (CTD) vertical profiles, both of which measure 

environmental variables such as salinity, temperature, dissolved oxygen concentration 

and chlorophyll-a levels. Given the importance of nutrients for productivity, it would be 

informative to add nutrient data to these models. Nutrient data was omitted from our 

study because the available data were collected on a different scale to the other 

oceanographic variables, or were in some cases defective or missing (e.g. phosphate data 

during the BROKE-West cruise on which the phytoplankton and krill studies were based) 

and were in some cases not collected at all (e.g. iron data are commonly not collected 

because cross-contamination of the samples is difficult to avoid). As iron is believed to 

be a limiting factor in phytoplankton productivity and growth (Boyd et al., 2000) its 

inclusion in the phytoplankton drivers model might prove highly illuminating.  Iron might 

well account for some of the variation seen between stations, especially those near the 

ice edge that we predict could be experiencing phytoplankton blooms simulated by iron 

release from melting ice. 

The Southern Ocean current systems and large scale circulation are important in shaping 

both Southern Ocean ecosystems, and have an important link to world climate through 

thermohaline circulation. Underway current data, collected with an Acoustic Doppler 

Current Profiler (ADCP), was not included in the models in this thesis because during 

the BROKE-West survey much of the data were missing due to equipment malfunction 
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and during the Balleny Islands survey ADCP data were not collected. The use of satellite 

collected current strength and direction was considered but the data were not high 

resolution enough to be useful for our models. The inclusion of current data would be 

useful in all studies in this thesis because it likely underpins areas of high productivity 

due to upwelling. This is especially likely around the Balleny Islands, where an Island 

Mass Effect may occur. 

5.4. Trophic levels 

Each chapter of this thesis investigated drivers of animal distribution, looking at the food 

or energy sources and environmental conditions for each study species. However, I did 

not consider all trophic levels in a single model because in the first instance I needed to 

establish what were the drivers within each level. A whole ecosystem model could be 

accomplished with a hierarchical model to explain complex species interactions and make 

predictions across all trophic levels under different scenarios. This may require a 

Bayesian approach to take into account prior information, ensure convergence of the 

highly complex model and handle uncertainty at each level. This model would be 

complicated to set up and computationally expensive but is the logical next step and could 

be based on the knowledge gained from each chapter of this thesis. 

 

5.5. Seasonal and annual differences 

The Southern Ocean is highly seasonal, with summer conditions vastly different to those 

in winter. Many of the species have adapted to this either through migration or through 

overwintering strategies (Meyer, 2012, Dawbin, 1966). Most Antarctic shipboard surveys 

only occur in summer because of the harsh conditions and almost complete lack of 

daylight in winter. This means that much of what we know, along with the research in 
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this thesis, is about the summertime cycles and ecology of the animals we study. 

Contrasting these to winter or spring, during the ice melt, would provide a more rounded 

picture and allow us to understand how changes will affect species survival through 

winter.  

The Southern Ocean experiences climactic forcing over large time scales, such as the El 

Nin෤o Southern Oscillation (ENSO) and Southern Annular Mode (SAM) (Kwok and 

Comiso, 2002, Lovenduski and Gruber, 2005). This thesis used only surveys from a 

single summer in each analysis, which means that the fluctuations seen with ENSO and 

SAM cannot be captured in these models. Time series data collected in the same location 

could extend our models by including these systems. It would also allow us to understand 

how short term annual differences in sea-ice and productivity affect the ecosystem. 

Importantly, time series data could help forecast the future.    

 

5.6. Life stages and community composition 

Chlorophyll-a and fluorescence capture only the magnitude of phytoplankton sampled 

but offer no information about community composition. Climate change is expected to 

affect not only the magnitude of phytoplankton abundance but also community 

composition (Tortell et al., 2008, Moline et al., 2004). This will affect krill, who are 

known to preferentially feed on diatoms and avoid phytoplankton that are too large or 

small to consume efficiently. The chapters in this thesis do not take this into account 

because data on community composition was only available for Niskin bottle water 

samples, which were collected much more irregularly than fluorescence data. A survey 

designed to include phytoplankton community composition at a high resolution 
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concurrently with krill and environmental data could extend the work in this thesis to 

understand and predict the flow-on effects of changes in community composition. 

Due to their life cycle, krill are vulnerable to different processes at different ages. Larval 

krill are entirely reliant on currents and circulation to carry them to a location where they 

can hatch, ascend and survive as a juvenile. In Chapter 5, I have shown that adult krill 

are not passive drifters but are able to seek out beneficial areas, such as those with high 

prey availability and dissolved oxygen. We are not yet able to separate backscattering 

values from adult and juvenile krill from active acoustic data alone, relying on trawls to 

know the length-frequency histograms in the survey area. A model such as the hurdle 

model presented in Chapter 5 could be used to assess processes affecting juvenile krill, 

which are heavily reliant on sea ice to forage and may demonstrate different behavioural 

characteristics to adult krill.  

5.7. Advances in technology 

Technological advances have already allowed us insights into the Southern Ocean that 

were not possible mere decades ago. For example, advances in active acoustics have 

made it routine to count animals in situ that would previously have been trawled such as 

fish and krill. Single- or split- beam acoustics, giving a 2-dimensional picture below the 

ship, have been the most common form of this technology, but 3-dimensional multibeam 

acoustics are becoming more viable as data storage becomes larger. This technology will 

require automated processing methods to reduce operator time and ensure that data 

processing is manageable and efficient, which could build on the scripting interface I 

provided in EchoviewR.  

Marine data are already inherently large and are becoming more complex as technology 

allows us to collect more information. Mixed modelling techniques, as used in this thesis, 
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will become more common in ecology as we become able to repeatedly sample multiple 

individuals and collect data at more sites/locations. Without the use of mixed modelling 

or other sophisticated techniques, pseudo-replication will make it difficult to draw correct 

and meaningful conclusions.  

Data collection methods are advancing quickly and through improvements in technology 

such as drones, high resolution satellite imagery and tracking devices on wildlife, we can 

collect data in places and at times we have previously been unable to survey (Palumbi et 

al., 2009, Chelton et al., 2004, Hussey et al., 2015). For example, it is now possible to 

detect whales from satellite imagery (Fretwell et al., 2014), and although currently 

expensive, this could provide time-series data for assessing whale presence around island 

feeding areas such as the Balleny Islands. Further advances in technology will allow us 

to detect patterns in the marine environment which we cannot detect now and help guide 

our research and management of areas that have recently become far more accessible. 

6. Final remarks 

The Southern Ocean is already far from pristine, and continuing to change rapidly. It is 

important that we understand how environmental conditions affect animal distribution 

and abundance to predict how they will be affected as the oceans change. In this thesis I 

have identified environmental and biological influences on key taxa in the Southern 

Ocean food web: phytoplankton, krill and marine mammals. Using sophisticated 

modelling techniques I have developed a flexible and widely applicable model for 

predicting phytoplankton distribution in a 3D environment, showed that Antarctic krill 

aggregate around phytoplankton and dissolved oxygen, and demonstrated the benefits 

that Antarctic islands offer predators through heightened krill availability. This 

knowledge, along with the predictive capacity of the models used, fills a large knowledge 
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gap in drivers of animal distribution in the Southern Ocean using real survey data. There 

is still much left to discover to give us the power to fully understand this remote but 

highly relevant environment, and allow us to recognise and potentially mitigate the 

dramatic changes that are now occurring.  
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Appendix B 

 
SUPPLEMENTARY MATERIAL FOR CHAPTER 4 

 

This appendix provides the supplementary materials that were published in Frontiers in 

Marine Science along with Chapter 4 of this thesis. The supplementary materials 

contain three pdf tutorials detailing the use of the EchoviewR software along with an 

image of the Echoview workflow used to process the data. The 3 vignettes included are: 

1. Biomass estimation using the R package EchoviewR to control Echoview via 

COM 

2. Read data using the R package EchoviewR to control Echoview via COM 

3. Schools detection using the R package EchoviewR to control Echoview via 

COM 
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Appendix C 

 
SUPPLEMENTARY MATERIAL FOR CHAPTER 5 

 

This appendix provides the supplementary materials for Chapter 5, including model 

selection results and model diagnostics for the presence/absence and density 

components of the hurdle model 
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Supplementary Tables for Model Selection and 

Validation 

Traditional hurdle models were designed for zero-inflated count data (Poisson, Negative 

Binomial and Geometric distributions) however our data are continuous (krill densities) 

so these models are not appropriate. Additionally, our data includes observations over 

multiple sites (CTD stations) which necessitates the use of a random effect to account for 

extraneous differences between observations at different stations. There is currently no 

function in R that can incorporate both problems because hurdle mixed models for 

continuous data are still under development. To extend the traditional hurdle models to 

accommodate our data we modelled the two stages separately using a logistic mixed 

model (presence/absence) and a linear mixed model (conditional density). As we are 

interested in conditional inference rather than marginal inference there was no need to 

calculate a marginal likelihood.  

 

Presence/Absence 

The best model was logit(presence) = depth + temperature + salinity + re(stn), with the 

Akaike Information Criterion (AIC) and Area Under Curve (AUC) of the Receiver 

Operator Characteristic for candidate models shown in Table S1.  

Table S1 Model selection results – Presence/absence logistic mixed model showing 

Akaike Information Criterion (AIC) and Area Under Curve (AUC) for Receiver Operator 

Characteristic. The re(stn) term denotes a station random effect 

Model AIC AUC 

y ~ depth + temperature + salinity + oxygen + phytoplankton + 

re(stn) 
821.5 0.62 

y ~ depth + temperature + salinity + phytoplankton + re(stn) 819.6 0.62 

y ~ depth + temperature + salinity + oxygen + re(stn) 821.1 0.70 

y ~ depth + temperature + salinity + re(stn) 819.5 0.71 

y ~ depth + re(stn) 832.0 0.69 

y ~ salinity + temperature + re(stn) 849.7 0.60 
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Figure S1 Receiver Operator Characteristic (ROC) curve for the best presence/absence 

logistic model 
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Figure S2 Scaled quantile residuals for logistic mixed model for presence/absence. 

Normal QQplot (left) shows good model fit and Standardised residual plot (right) shows 

linear quantile lines nearly horizontal at 0.25, 0.5 and 0.75. Plots produced using R 

package DHARMa (Hartig, F (2017), DHARMa: Residual Diagnostics for Hierarchical 

(Multilevel/Mixed) Regression Models, https://CRAN.R-

project.org/package=DHARMa) 

 

Density given presence 

The best model was loge(density) ~ oxygen * loge(phytoplankton) + re(stn), where * 

indicates an interaction between oxygen and phytoplankton and re() denotes a random 

effect. AIC results for candidate models are shown in Table S2. 

 

Table S2 Model selection results – Linear mixed model for krill density showing Akaike 

Information Criterion (AIC) for candidate models. The re(stn) term denotes a station 

random effect. Cross-validation Root Mean Square Error (RMSE) is shown as a measure 

of goodness of fit 

Model AIC RMSE 

loge(density) ~ oxygen * loge(phytoplankton) + re(stn) 879.0 13.00 

loge(density) ~ oxygen + loge(phytoplankton) + re(stn) 882.1 13.07 

loge(density) ~ depth + temperature + salinity + oxygen * 

loge(phytoplankton) + re(stn) 
881.3 

13.13 

loge(density) ~ depth + temperature + oxygen * loge(phytoplankton) + 

re(stn) 
881.2 

13.04 

loge(density) ~ depth + oxygen * loge(phytoplankton) + re(stn) 882.5 13.06 

 

Table S3 Model summary for best model of loge(krill density) ~ loge(phytoplankton) * 

oxygen + re(stn) 

Coefficient Estimate Standard 

Error 

P-

value 

Variance 

Inflation Factor 

Intercept -0.51 0.16 0.002  
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Log(phytoplankton) 0.66 0.08 <0.001 5.39 

Oxygen -0.11 0.09 0.19 4.51 

Interaction 0.21 0.05 <0.001 1.78 

Random Effects 

Coefficient Variance    

Station 0.78    

Residual 0.45    

 

The residuals (Figure S3) do not have any obvious problems and Figure S4 shows a plot 

of phytoplankton vs oxygen to show the coverage of the data. 

 

 

Figure S3 Pearson residual plot for density model loge(krill density) ~ 

loge(phytoplankton) * oxygen + re(stn) 
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Figure S4 Plot of phytoplankton and oxygen to show coverage of data 

 

 

Note on Random Effects in Cross Validation 

There is no estimated random effect for the dropped station, however ignoring random 

effects when predicting the dropped station causes skewing during back-transformation, 

hence we simulated the random effect for the new station using the estimated standard 

deviation. 
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Appendix D 

 

AERIAL SURVEY FINAL REPORT: A TECHNICAL REPORT FOR THE 

DEPARTMENT OF PRIMARY INDUSTRIES 

 

This pdf report was prepared at the conclusion of the aerial survey fieldwork conducted 

with the Department of Primary Industries during the candidature of this thesis. It was 

intended that this data would be used to assess drivers of marine megafauna distribution 

off coastal New South Wales, Australia, however due to time constrains this data was 

not used in this thesis.  
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