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Summary

Inferring ecological patterns from marine survey data is difficult due to the large spatial and
temporal scales at which processes operate and the challenges associated with collecting
comprehensive and balanced survey data. In this thesis I use large scale survey data and
cutting edge modelling techniques to examine the drivers of species distribution in the
Southern Ocean at three trophic levels — primary producers, grazers and top predators. I
develop a model to predict phytoplankton abundance in a 3D environment from temperature,
salinity and depth. This framework is widely applicable to other marine settings regardless
of their survey design and provides a robust method for dealing with complex data sets. An
important grazer on phytoplankton, Antarctic krill (Euphausia superba), has previously been
regarded as passively drifting with large scale current systems. I provide quantitative
evidence that they actively swim, demonstrating that krill consistently aggregate around
resources over an immense survey area spanning 1.3 million km?. Krill distribution is patchy,
and predators must locate these dynamic swarms across vast expanses of ocean. Islands may
provide predictable and reliable feeding areas due to the Island Mass Effect. I find that krill
swarms at the Balleny Islands, a Southern Ocean archipelago, are three times more numerous
than in the adjacent open ocean, and are also denser and more compact. Around the islands,
humpback whales (Megaptera novaeangliae) aggregate in areas of high productivity,
medium krill density and waters greater than 350m deep. Two chapters of this thesis required
manual processing of active acoustics data for detecting krill, which is time consuming and
suffers from a lack of reproducibility. To automate this process, I developed an R package
which drastically reduces processing time and is useful for any scientists using acoustic data.
This thesis fills knowledge gaps about the mechanisms structuring the distribution of animals
in the Southern Ocean and the statistical methods and software library developed are

applicable to many other problems arising in complex environments.
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Ecology and in particular ecosystem research requires the ability to detect signals using
complex and often noisy data sets. It has long been recognised that this complexity is
increased when studying marine ecosystems, which are more dynamic and challenging
to survey than terrestrial ecosystems (Cassie, 1956). This thesis develops and applies
sophisticated analytical techniques to answer key ecological questions in the Southern
Ocean. These techniques range from advances in data processing, an area becoming
increasingly important in ecology (Michener and Jones, 2012), to statistical approaches
that enable us to ask new questions and detect ecological signals in large and highly
correlated data sets. These methods allow us to unlock the potential of the many large

and expensive marine data sets that already exist - in particular active acoustic data.

The questions addressed in this thesis involve determining how key functional groups in
the Southern Ocean food web are distributed and identifying the drivers behind these
patterns. Key functional groups are groups with multiple links in the food web which
include multiple dependent species and have a widespread distribution influenced by
many drivers operating at different spatial and temporal scales (Mills et al., 1993). The
processing and analytical techniques used in this thesis aim to tease apart the drivers of
distribution when direct inference from the raw data is not possible as a result of
unbalanced survey design, spatial autocorrelation or the spatial and temporal ranges the

data were collected over.

It is necessary to understand contemporary ecosystem conditions in order to accurately
predict the future effects of climate change (Shaver et al., 2000). Key functional groups,
such as primary producers, grazers and top predators, are important to study because their

fate will affect many other species who depend on them as a food source or for providing



other ecosystem services (Mills et al., 1993, Grimm, 1995, Douglass et al., 2008).
Developing models of species-environment relationships is a necessary first step in
developing predictive models into which environmental and resource variables can be
input to predict change in abundance and distribution (Guisan et al., 2006). The models
developed in this thesis all have the capacity for prediction using new input, or predictor,
data sets. However actually modelling predictions was beyond the scope of a 3-year

thesis. Prediction remains an important future direction for work in this area.

It is difficult to accurately assess species distribution and build robust predictive models
from sparse data sets (Ovaskainen and Soininen, 2011). Marine data sets are often
unavoidably sparse due to logistic difficulties in even getting to a study site, sampling
underwater and the difficulty in using a balanced and replicated survey design over the
huge scales involved in open ocean research (Lawless, 2014; pg 19). Many marine
processes operate over large spatial and temporal scales that are difficult to fully sample
and model, requiring analysis methods that can detect survey-wide patterns from discrete
sampling locations and at the same time can incorporate the spatial and temporal
dynamics of the data (Kaiser, 2011; pg 208, Godo et al., 2014). These problems are
exacerbated in remote survey areas because of the limited time available for sampling
and the large cost of the survey. The Southern Ocean is a prime example of a remote and
harsh environment, where survey data often spans enormous areas and where both

sampling effort and survey design vary as a result (Atkinson et al., 2012).



1. Why study the Southern Ocean?

The Southern Ocean is a unique environment, dominated by large prevailing current
systems including the Antarctic Circumpolar Current and the Antarctic Slope Front
(Talley et al., 2011; pg 438). The Antarctic Circumpolar Current is one of the strongest
currents in the world and, through its connection with three ocean basins, it is considered
a vehicle of transport between the world’s oceans (Talley et al., 2011; pg 439). Sea ice
plays an extremely important role in shaping the Southern Ocean ecosystem and
contributes to the uniqueness of this environment. The wide ice sheets around the
Antarctic continent have resulted in a shelf break that occurs 2 — 4 times deeper than
around other continents (Knox, 2007; pg 4). Changes in sea ice influence the biology of
the ecosystem, including productivity and the timing of krill spawning, both of which
have flow-on effects on the rest of the ecosystem (Murphy et al., 2007, Smith and Nelson,
1986). Extensive sea ice complicates in situ sampling because it is difficult for ships to
travel through the ice and then observe the ecosystem in an undisturbed state.
Autonomous Underwater Vehicles are a technological solution to this problem; the
‘Autosub’ is now a proven technology which has been successful in measuring
oceanographic conditions under ice sheets (Nicholls et al., 2008, Nicholls et al., 2006) as
well as krill (Brierley et al., 2002). However, the Autosub is expensive, requires a
research ship to support operations and is extremely limited in its range of operations.
Another, much older high-latitude sampling method, although not without its risks (e.g.
the sinking of the Endurance (Shackleton, 1920)), is simply allowing a ship to be
surrounded by ice and carried as the ice drifts. The upcoming 2019-2020 Polarstern

Arctic voyage aims to drift with the ice for one year (MOSAIC, 2016).



It is not only the physical features of the Southern Ocean that make the area unique, but
also the management regime. The Antarctic Treaty, established in 1959, is an agreement
between all nations involved in research below latitude 60°S and dictates the terms of
research and cooperation in the Southern Ocean and Antarctic continent (Hanessian,
1960). Ecosystem management is governed by the Commission for the Conservation of
Antarctic Marine Living Resources (CCAMLR), including the management of
commercial fisheries and research (Miller, 2011). Antarctic krill is an important
component of CCAMLR ecosystem management as it is an important prey item to many
marine predators including fish, squid, seals and whales and is also the target species of

the Southern Ocean’s largest fishery (Siegel, 2016; pg 387, Nicol et al., 2012).

The importance of the Southern Ocean to global climatic processes, its current
vulnerability to climate change and the many species that have adapted to the harsh
environmental conditions make the Southern Ocean an important area to study (Caldeira
and Duffy, 2000, Constable et al., 2014). It may be argued that relative to some other
marine ecosystems the Southern Ocean has been reasonably well studied, but there
remains much work to be done, especially in the development of models that can make
sound inference from the large and complex survey data that exists (Boyd, 2002). One of
the benefits to studying animals in the Southern Ocean is the relatively simple food web
(Figure 1). In this thesis I use sophisticated modelling techniques to study drivers of
distribution and density of three key components of this food web: phytoplankton,

Antarctic krill (Euphausia superba) and humpback whales (Megaptera novaeangliae).
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Figure 1 Basic food web of the Southern Ocean. Animal images from Gemma Carroll,

Macquarie University (with permission).

2. Phytoplankton, krill and whales: Key components of the Southern Ocean food

web

2.1. Phytoplankton
Phytoplankton form the base of the food web and worldwide are responsible for almost
half of global primary productivity, fixing an estimated 30 — 50 billion tonnes of carbon
annually (Field et al., 1998, Falkowski, 1994, Saba et al., 2011). Annual primary
productivity in the Southern Hemisphere below 50°S is estimated at 2.9 billion tonnes
(Moore and Abbott, 2000). This means that phytoplankton have enormous influence over
the world’s atmosphere and climate and so are an important component of earth system
modelling. The Southern Ocean is characterised as a High-Nutrient/Low-Chlorophyll
area, largely due to iron limitation (Boyd et al., 2000, Pollard et al., 2009). Phytoplankton
levels in the East-Antarctic are higher near the ice-edge than in the open ocean during
summer and are thought to be limited by iron levels and grazing by krill (Westwood et
al., 2010, Wright et al., 2010).
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2.2. Antarctic krill

Antarctic krill provide the largest link by biomass between primary producers and higher
trophic levels, forming a major part of the diet for seabirds, seals and whales. Despite
their small individual size, they have an estimated biomass of 379 million tonnes and
occupy 19 million km? of the Southern Ocean during summer (Atkinson et al., 2009). It
is important that this substantial resource is appropriately managed, especially since
Antarctic krill are the target of the world’s largest krill fishery and are an important food
source for many predators. Krill distribution is highly patchy, with swarm density
depending on environmental conditions and swarm shape varying with oxygen levels and
predation risk (Godlewska et al., 1988, Brierley and Cox, 2010). This patchiness makes
the analysis of krill distribution very difficult. Historically, krill were sampled using net
sampling, although we know that they show net avoidance which biases biomass
estimates (Atkinson et al., 2004, Wiebe et al., 2004). An alternative approach is to use
active acoustics, and advances in computing power since the 1980s have made species
identification and biomass estimation possible from active acoustics (Hewitt et al., 2004).

Accordingly in situ sampling now typically occurs using echosounders (Horne, 2000).

2.3. Whales

Whales are an iconic group in the Southern Ocean and are key predators of krill. It has
been shown that they contribute significantly to ecosystem function through the input of
iron and nitrogen into the water during defecation (Nicol et al., 2010, Lavery et al., 2014).
Whales are also responsible for the transport of nutrients from the polar feeding grounds

to the temperate and tropical breeding grounds (Roman et al., 2014). As wide-ranging,



highly migratory foragers they are difficult to sample systematically (Kaiser, 2011; pg
209). The most common sampling method for whales are ship-based visual surveys
(Kinzey et al., 2000), often undertaken concurrently with acoustic surveys for prey
including fish and krill (Murase et al., 2006). Reconciling predator-prey distribution data
is difficult because of a lack of available analytical techniques for data collected on
different scales, which is often combined with opportunistic survey design (Fauchald et
al., 2000). Spatial analysis of predator-prey relationships is important for understanding

how habitat shapes predator distribution and vice versa (Willems and Hill, 2009).

This classic phytoplankton-krill-whale food chain serves as a motivation for the selection
of study species in this thesis. Improving our understanding of these species’ distribution
will assist with describing ecosystem function, serve as a guide and framework for future
work and enable other researchers to work with the mass of expensive but under-utilised

data that already exists.

3. Thesis outline

This thesis aims to fill knowledge gaps associated with drivers of productivity and animal
distribution in the Southern Ocean. Each chapter builds on the previous as we move up
the food chain from primary producers (Chapter 3) to grazers (Chapter 5) and finally to
top predators (Chapter 6). In Chapter 2 I provide a theoretical review of statistical
methods in ecology and in Chapter 4 I develop a software package for data processing,
which is then applied in chapters 5 and 6. There are several analytical and data processing
challenges that complicate statistical analyses of marine species distribution and can

make the extraction of a true ecological signal difficult.



3.1. Challenges when extracting ecological signals from marine data

Marine data are generally highly complex and successfully extracting an ecological signal
is difficult. Spatial autocorrelation, which occurs when points closer in space are more
similar than those further away, potentially occurs in three dimensions — latitude,
longitude and depth (Sahlin et al., 2014). Spatial correlation violates a fundamental
assumption of many statistical models, i.e. the assumption that observations are
independent of one another (Haining, 2015). Autocorrelation can lead to incorrect model

predictions and spurious inference, i.e. incorrectly attributing change (Diniz et al., 2003).

Given the difficulties in sampling the oceans on a regular spatial grid, or at regular time
intervals, the data are generally irregularly positioned. This complicates analysis,
especially where autocorrelation is concerned because many software packages cannot
routinely account for 3-dimensional autocorrelation, particularly when sampling sites
occur irregularly in space. This irregular sampling can also result in highly uneven
between-group sample sizes. This problem is exacerbated in remote arecas like the

Southern Ocean, where inclement weather limits sampling opportunities.

In addition to the logistic and statistical difficulties of conducting research in the oceans,
surveying and understanding marine ecosystems is more complex than on land. Processes
in the ocean are more dynamic on both small and large scales, which makes teasing them
apart more difficult (Kaiser, 2011; pg 208). For example, food resources in the oceans
are highly variable depending on the environment (e.g. phytoplankton blooms) and in the
pelagic realm, often do not have a fixed location, making the predators’ search for prey
more challenging than on land (Steele, 1989, Sims et al., 2006). Many of these processes
that we aim to understand in the Southern Ocean are on scales that cannot be replicated

in the laboratory, or affect organisms that cannot be held in captivity in order to conduct



manipulative experiments. A key example is understanding the effect of climate change
on phytoplankton, where the processes are too subtle and much too complex to be
represented accurately in the lab (Boyd et al., 2008). This makes field and modelling
studies critical tools in answering these questions. As we have a limited ability to control
factors that we are not interested in, statistical and sampling methodology must be
sophisticated enough to avoid confounding ecological signal with noise or extraneous

variables.

It is important that we do not discount these challenges when modelling marine data.
Ignoring characteristics of data such as pseudo-replication, spatial autocorrelation and
sampling design can lead to incorrect inference. Overlooking spatial autocorrelation can
bias coefficient estimates and reduce model goodness-of-fit (Dormann, 2007). Not
accounting for pseudo-replication can increase Type I errors (false positive), through the
underestimation of the true variation and misrepresentation of its sources (Heffner et al.,
1996). Overfitting reduces the reproducibility of the model and can lead to significant
findings that are not actually true (Babyak, 2004). These problems are inherent in
ecological data and analyses must consider them to avoid seriously impacting our

conclusions.

3.2. Mixed models: a statistical solution to these problems?

Mixed models are becoming more common in ecology due to their ability to handle
complex data (Bolker et al., 2009). They are especially applicable for marine data, where
we are often limited by the environment and high data collection costs and are hence
unable to perfectly follow a desired survey design. The key feature of mixed models is

that they can facilitate inference at the population level, which is very important when
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we are interested in the overall processes operating over a large area but are using data
collected at many sites through this area (Bolker et al., 2009). Mixed models can
incorporate complex correlation structures, allowing for different spatial autocorrelation
patterns, and variance structures, allowing for different within-group variances for data
collected across different sites or groups. Mixed models are particularly useful for data
sets which are pseudo-replicated and can include complex structures of nesting (Chaves,
2010). Because there are many models available to ecologists, Chapter 2 of this thesis
provides a theoretical overview of commonly used modelling methodology and

introduces the analyses used in each subsequent chapter.

3.3. Phytoplankton in vertical profiles

Phytoplankton play a key role in global climate and are the base of the food chain in the
Southern Ocean (Murphy and Hofmann, 2012). Phytoplankton blooms are strongly
linked to environmental factors including light availability, nutrients, mixing of the water
column and grazing (Barnes and Hughes, 2009; pg 32). In the Southern Ocean, sea ice
levels are of great importance and melting ice can support blooms through the input of
nutrients, seeding of algae and stabilisation of the water column (Sedwick and DiTullio,
1997, Smith and Nelson, 1986). Phytoplankton and environmental data are often
collected through the water column using profiling instruments. The conductivity
temperature depth (CTD) probe is a commonly used instrument and can collect data

through the depths of the water column to over 1 km deep (Thomson and Emery, 2014;

pg 19).
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When collecting data at fixed stations, such as CTD deployment sites, it is important to
use techniques that account for pseudo-replication of measurements within each station
as well as vertical correlation. As mentioned previously, ignoring this can result in
spurious findings. Chapter 3 of this thesis develops a mixed model for assessing the
drivers of phytoplankton distribution in the East Antarctic from CTD profiles that can
deal with these problems. The model I developed quantifies trends across large survey
areas while recognising that the data are grouped into spatially autocorrelated vertical

profiles.

3.4. Remote sensing: fisheries acoustics and data processing

Fisheries acoustics is a highly valuable tool for collecting high resolution ecological data
through the water column as the ship travels (Benoit-Bird and Lawson, 2016). Acoustic
data enable rapid sampling and provide a non-extractive method of estimating the density,
distribution and biomass of many pelagic species over large survey areas (Kaiser, 2011;
pg 211). Active acoustics have been used since the 1980s to study krill and processing
(Horne, 2000) and identification methods are constantly being improved (Fallon et al.,

2016, Korneliussen et al., 2016).

Active acoustics data sets are often collected incidentally while a ship is conducting other
research or commercially fishing and hence there are many data sets already in existence.
There are a number of initiatives for collecting and making available acoustics data in the
Southern Hemisphere. The Integrated Marine Observing System Bio-Acoustic program
collects 38kHz data from participating scientific vessels and commercial fishing vessels

as they travel through the ocean basins of the Southern Hemisphere (IMOS Bio-Acoustic,

12



2016). The Southern Ocean Network of Acoustics is a related initiative aiming to collect
and catalogue acoustics data, with the aim of mapping and identifying changes in the
distribution of mid-level trophic level organisms in the Southern Ocean (SONA, 2016).
I have contributed to this expanding area of research by developing an R package (R
Development Core Team, 2014), EchoviewR (Harrison et al., 2015) — a flexible approach

to the automation of acoustic data processing.

Acoustic data sets can be extremely large, often comprising of billions of raw data points
that must be processed, integrated, cleaned to remove noise and then analysed
appropriately. This is extremely time consuming since it must be done manually by
human operators using available software programs. There is often a lack of automation
and consistency when processing fisheries acoustic data. Reproducibility is difficult
because often there is no record of the data processing techniques that have been applied
to a given data set. If an error is subsequently found or an improvement in methods
occurs, this requires reprocessing and must be done again manually. In Chapter 4 of this
thesis I address these problems by developing an R package, EchoviewR, that automates
data processing by acting as a scripting interface for one of the major acoustic processing
software programs, Echoview (Echoview, 2015). EchoviewR contributes to reproducible
research because the code script acts as a record of processing methods and can be
modified and re-run on different data sets. This vastly cuts down the large number of
hours required for manual active acoustics data processing. EchoviewR is of use to
anyone using active acoustic data and applications may include biomass estimation of
krill or fish, seafloor mapping or identification of features in the water column such as

oil seeps.
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3.5. Drift or swim: what drives the distribution of krill?

Antarctic krill are a key grazer on phytoplankton and provide the primary food source for
many species in the Southern Ocean. Krill occur in large swarms which are distributed
patchily throughout the Southern Ocean (Siegel, 2016; pg 279). The extent to which these
swarms passively drift on large current systems, versus actively swimming, has been
debated for decades. Larval krill are certainly passive drifters, relying on circulation to
assist them in successfully completing their descent-ascent hatching cycle and transport
them to suitable locations for maturation (Thorpe et al., 2004). Despite its ecological
importance, passive drifting versus active swimming has been rarely studied in marine

species (Putman et al., 2016).

There are important implications for animals being passive drifters or active swimmers
(Richerson et al., 2015). Active swimmers may be able to take advantage of patchy or
sparsely distributed resources that passive drifters might not be able to access. Habitat
models will vary based on whether the target animal shows habitat preferences and can
follow these preferences (swimming) or whether they are simply physically transported
around the habitat by circulation (drifting). It also has implications for energetics, with
lab-based studies estimating that active swimming in krill could account for 73% of
metabolic expenditure during summer (Swadling et al., 2005). The movements of krill
may cause mixing in the water column (Leshansky and Pismen, 2010) and if this is true,
whether they drift or swim could influence mixing patterns. Drifting versus swimming is
an important consideration for management approaches, most of which assume that krill

are passive drifters (Richerson et al., 2015).
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Studies assessing krill swarm drifting versus swimming have mostly been theoretical or
observational. Overlaying historical krill distribution over large scale circulation patterns
shows similarities between the two (Nicol, 2006, Amos, 1984). Lagrangian particle
tracking also suggests that passive transport of larval krill causes intermixing of
populations in different areas (Hofmann and Murphy, 2004). However, there is also
evidence that krill could be active swimmers. Life history modelling suggests that there
are strong selection advantages for active swimming in krill, including a 70% increase in
reproductive success (Richerson et al., 2015). Current profiling has also shown that krill

swarms can move in relation to local currents (Tarling and Thorpe, 2014).

The highly skewed and zero-inflated krill densities that arise from swarming make simple
modelling of behaviour difficult because log-transformation is not possible with zeros
present in the data. Some studies have side-stepped this issue by adding a constant before
transformation of krill densities (Atkinson et al., 2004), however this approach can bias
the fit of the model (O’Hara and Kotze, 2010). New modelling approaches, such as hurdle
models, can be helpful here because they separate out the data into two separate models:
1) presence/absence, where probability of presence is estimated and ii) conditional count,
which models the remaining non-zero data (Zuur et al., 2009). In Chapter 5, I develop a
hurdle model for assessing whether krill aggregate around resources. I have extended
traditional hurdle models to incorporate continuous density data (hurdle models are
currently only available for discrete count data) and to include a random effect at each
level to allow for pseudo-replicated data within sites. There are other methods available
for modelling skewed data that include zeros, such as generalised linear models, however

these methods struggle to deal with the zero-inflation present in krill density data.
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3.6. Combining predator-prey observations: the Balleny islands

Marine mammals are the predominant krill predators in the Southern Ocean and are
estimated to be responsible for 30-60% of total krill predation by biomass (Siegel, 2016;
pg 325). Observational data of marine mammals are often collected along with active
acoustic observations of krill. However due to the nature of the observations and a
likelihood of mismatch in sampling scales, quantitative analysis is difficult. Krill data are
continuously collected at high resolution along the ships track line (Hewitt and Demer,
2000), but sparsely distributed marine mammal sightings occur only at the surface and
visibility may depend on environmental variables and group size (Barlow et al., 2001).
Complications include this spatial discrepancy between sightings and prey, opportunistic
survey designs, non-linear predator-prey relationships and perception bias in marine
mammal sightings. Distance sampling is a widely used method that accounts for
perception bias in line and point transect data, and involves correcting for the fact that

animals further away are less likely to be seen (Thomas et al., 2002).

Coincident predator-prey data are collected for many reasons. They are not only useful
for quantifying predator-prey interactions, but also to characterise valuable regions in a
survey area for conservation planning (Schmitt et al., 2016). This type of data can also
be used to answer ecological questions and estimate energetics, which can then be used
in population and species distribution modelling (Hatton et al., 2015, Trainor et al., 2014).
Mapping prey distribution is especially important when prey is a patchily distributed and
mobile resource, that itself relies on environmental features and habitat of the survey area,
as this will affect a predator’s foraging choices (Vijayan et al., 2017). Productivity is also

an important consideration because it can indicate areas with a general enhancement of
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the water column (Perissinotto et al., 1992). Productivity in the oceans is non-uniform
and bathymetric features, frontal zones and islands are known to be highly productive.
The increase in productivity around islands is termed the Island Mass Effect (Elliott et
al., 2012). This can occur through the input of nutrients such as iron from upwelling and
the stabilisation of the water column from melting ice and freshwater runoff (Planquette
et al., 2007, Perissinotto et al., 1992). The fixed location of islands may be attractive for

migratory predators seeking high food availability in a large expanse of ocean.

The Balleny Islands (67°S, 164°E) are a Southern Ocean archipelago that have received
little research time due to their remote location, but are a known humpback whale feeding
ground (Constantine et al., 2014). In Chapter 6 I investigate whether the waters around
the Balleny Islands contain more krill swarms than the surrounding open ocean to assess
why whales are attracted to the islands. I then use coincident whale sighting, krill acoustic
and environmental data to describe habitat use of whales around the islands using a
density surface model. Density surface models are a recent statistical advance that
incorporate i) distance sampling to correct for perception bias, ii) generalised additive
models to account for non-linear relationships, iii) survey design to account for
opportunistic surveys with unequal effort and iv) a spatial surface to map unexplained
spatial variability (Miller et al., 2013). This makes them a very useful technique for

extracting predator-prey-environment information over large survey areas.

In summary, I have developed a suite of analytical techniques to assess interactions
between key functional groups in the Southern Ocean food web and their environment
and energy sources. The different nature and complexities of the three key components
studied — phytoplankton, Antarctic krill and humpback whales — meant that they required

different approaches. The models developed in this thesis can be used to predict future
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distributions and abundance under different environmental scenarios and are readily
adaptable for other marine ecosystems. Active acoustic data for sampling krill requires a
large amount of manual processing so I developed automated processing software,
EchoviewR, which I then applied in the final two chapters in this thesis. The statistical
techniques used in this thesis are complex and a review of current methods has been
conducted in Chapter 2 as a preface to the applied chapters. Except for this theoretical
review in Chapter 2, the chapters of this thesis were written for publication and each

contains the relevant background information, methodology and discussion.
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This chapter focuses on the modelling techniques that are available for the analysis of
ecological data and introduces the methods that I have used in my thesis. This review was
undertaken because it is essential to choose modelling methods appropriate to the systems
being studied and the data available. This review has been compiled to fulfil the mandate
that modelling biological systems is undertaken to enable a better understanding of their
function as well as providing a mechanism by which to predict future outcomes with the

best chance that the predictions are correct.

There are two main approaches to statistical modelling: frequentist and Bayesian. There
is a prolonged debate on the pros and cons of each method, and disagreement over which
is more correct in different circumstances (Vallverdu, 2016; pg 61). The debate ranges
from profound and technical, to relatively indecisive; for instance Bland & Altman (1998)
suggested that a person’s choice of approach will depend on the university they attended.
In this chapter I present a concise comparison of frequentist and Bayesian methodology
and an overview of different models used in the analysis of ecological data. In this chapter
I review both frequentist and Bayesian methods, but for the data chapters that follow 1

use only frequentist inference.

1. Frequentist Inference

Frequentist approaches are by far the most common in biological and ecological
modelling. A frequentist model is so called, because it is based on the long-run
frequencies of events (Vallverdu, 2016; pg 49). Essentially, a frequentist asks “what is
the probability of the data given this model/parameter is correct” (McCarthy, 2007; pg
8). Frequentist methods are often the only methods taught to biologists during higher
education. Hence most applied statistics in the biological sciences is from a frequentist

perspective.
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1.1. Model Selection

1.1.1.  Null hypothesis testing

Frequentist testing methods revolve around the formulation of a refutable null hypothesis,
and the presentation of an alternate hypothesis. For example, the null hypothesis might
be that a parameter is not different to 0, and the alternate hypothesis will be that the
parameter does differ from zero. Hypothesis tests have a wide number of uses, including

testing whether two populations are different at a statistically significant level.

Null hypothesis testing involves the formulation of a p-value to decide whether to reject
the null hypothesis based on a chosen a cut-off, which is normally chosen as 0.05. The
p-value is defined as “the probability, under the null hypothesis, of a test statistic as or
more extreme than actually observed” (Rohde, 2014; pg 52). However, many people
incorrectly assume that the p-value is the probability that the hypothesis is correct given

the data (Congdon, 2006).

1.1.2.  Hypothesis testing errors

There are two types of error that can occur: we can falsely reject the null hypothesis when
it is actually true (Type I error) or fail to reject it when we should (Type I1) (Rohde, 2014;
pg 42). The Type I and Type II errors are not conditional on the strength of the support
for the hypothesis by the data. Rather, they depend only on whether the data lies within
the constructed acceptance or rejection region (Dass and Berger, 2003). Unfortunately,
many scientists use the p-value as if it represents truth exactly and doggedly adhere to the
o = 0.05 threshold for significance, rather than using it as a continuum by which to judge
strength for the hypothesis, as Fisher first proposed (Halsey et al., 2015). Johnson (2013)
suggested revising the standard a threshold to 0.005 or even 0.001 for highly significant

findings, however 0.05 is still most commonly used. The p-value threshold value will
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also depend on the consequences of making a Type I or Type II error. For example, in
climate science you might need to be highly certain that your result is not a false negative,
because there may be limited time to react and the consequences of not doing so might
be severe. In contrast, a medical study might require that there is a very small chance of
a false positive, so that a person will not receive treatment for a condition they do not

have.

1.1.3.  Accounting for multiple testing

Null hypothesis testing using p-values can only test one hypothesis at a time. Running
many hypothesis tests at once increases the probability of type II error (failure to reject
the null hypothesis when you should) (Westfall and Young, 1993; pg 2). For example, if
we run 100 hypothesis tests, 5 of them may be falsely significant based on o = 0.05. The
number of p-values reported in the journal Ecology has been above 3000 every year since
1984 (Anderson et al., 2000), potentially leading to 150 falsely significant findings each
year. There are numerous corrections that can be applied to allow for testing of multiple
hypotheses, the most common of which is the Bonferroni correction. Rather than using
the predetermined a for all hypotheses, the Bonferroni correction uses o/k, where k is the
number of hypotheses to be tested (Westfall and Young, 1993; pg 44). Hence if 100
hypotheses were to be tested at a = 0.05, the p-value would need to be < 0.0005 for a null

hypothesis to be rejected.

There are arguments against corrections to the p-value such as the Bonferroni correction,
like how to choose the scale it applies to (only on one study, to all papers in a journal or
even a lifetime of work) (Moran, 2003) and how logical it is to choose the significance
level to reject a hypothesis based on how many questions you plan to ask (Perneger,

1998). Armstrong (2014) suggests only three situations in which the Bonferroni
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correction should be considered: 1) one universal hypothesis (Ho) that all tests are non-
significant is tested, 2) avoiding Type I errors is critical and 3) when conducting many

tests without a pre-defined hypothesis.

The growing criticisms of the p-value and null hypothesis testing are causing a shift in
model selection methods, as seen in a 15% decrease in conservation biology papers using
null hypothesis testing in two leading journals from 2000 (93%) to 2005 (78%) (Fidler et
al., 2006). Instead, authors are turning towards likelihood-based approaches, Bayesian

statistics and confidence intervals.

1.1.4. Likelihood and Information Theoretics

Likelihood based approaches are another tool for model selection, and can be found in
both frequentist and Bayesian methods. The frequentist Likelihood Ratio Tests involve
calculating a test statistic from the ratio of the likelihood of two models. The test statistic

is calculated as (West et al., 2007; pg 35):

l=-2 (loge(L,-) — loge(L]-)) Equation 1

where L; and L; are the likelihoods of two nested models. Models are defined as nested if
all terms in the simpler model also occur in the more complex model. This test statistic
is then tested for significance by computing the p-value from a Chi-square distribution.
If there are more than two models that require comparing, multiple Likelihood Ratio
Tests can be run although this method only works for nested models (Johnson and
Omland, 2004). The models must also be fit to the same subset of data (West et al., 2007,
pg 35). Wald tests are similar to Likelihood Ratio Tests but can be used to assess the

significance of a single model compared to a null model (Everitt, 2006; pg 416).
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Information Theoretic methods can be used compare multiple plausible models and are
an alternative to traditional hypothesis testing using p-values (Anderson et al., 2000). The
Akaike Information Criterion (AIC) (Akaike, 1998) is often used in frequentist
Information Theoretics methods. It is a measure of the amount of information retained by
a model while penalising for the number of parameters and is based on the Kullback-

Leibler information criterion (Demidenko, 2004). The AIC is given by:

AIC = =20 + 2k Equation 2

where /nax 1s the maximised log likelihood and £ is the number of parameters. The AIC
is calculated for each candidate model, and the model with the lowest AIC is preferred.
The lowest AIC value does not indicate truth, only that the model is the most plausible
of the candidate models. Hence it is important to assess that all models are plausible
before undertaking model selection. The difference in AIC between a candidate model
and the model with the smallest AIC may be small (<2), in which case there is substantial
support for the second model also. In this case, model averaging can be used. It is
important to note that model averaging can cause problems with inference in cases that
require the simultaneous interpretation of multiple coefficients, such as interaction terms
or polynomial predictors (Cade, 2015). In some cases standardisation, where the data are
scaled to a mean of 0 and standard deviation of 1, can help with this issue, but this must

be assessed on a case-by-case basis.

Model selection using criterion such as AIC is well regarded because it provides a rank
of all models in a set and allows for model averaging if many models are similar (Johnson
and Omland, 2004). Despite its intention to be used with a small set of predetermined and
plausible models, Information Theoretic methods are still used inappropriately for ‘data-

dredging’, where many models are compared regardless of their biological credibility
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(Anderson, 2008; pg 47, 64). However, it should be noted that there are situations where
data dredging is appropriate. An extreme example of this are a number of papers
comparing over 1 million models when their sample size is small, at less than 100
observations (Anderson, 2008; pg 6). AIC can under or over-estimate model complexity
for singular models or small sample size, and the Frequentist Information Criterion (FIC),
which aims to reduce this problem, was proposed in 2015; however this work is currently

only in pre-print (LaMont and Wiggins, 2015).

A corrected version of AIC, the AIC,, is available for small sample sizes and prevents
the criterion from favouring larger models by adding an extra bias term (Sugiura, 1978).

The corrected AIC is:

2k(k+1)

AIC. = AIC+ ==

Equation 3

where £ is the number of parameters and #» is the sample size (Anderson, 2008; pg 60).

Information Criteria are also used in the Bayesian Framework.

2. Bayesian Inference

Bayesian models are based on Bayes theorem. Bayes theorem is named after Thomas
Bayes, who proposed it in the 1740s, however it wasn’t until after his death in 1761 that
the work was found and published (McCarthy, 2007, Bayes, 1763). In direct contrast to
frequentist approaches, Bayesian methods ask the question “what is the probability of my
model/parameter given the data”. In some situations, this may be a more natural way to

approach questions in ecology (Wade, 2000).
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Bayesian models use prior information in addition to the available data to inform a
potential model. The posterior probability distribution, defined as the probability of the
hypothesis given the data, is calculated based on the product of the likelihood function
and the prior distribution (Wade, 2000). For a finite number of hypotheses, the posterior

of hypothesis 7 using Bayes Theorem is (McCarthy, 2007; pg 12):

P(H;). P(D|H;) ’
P(H:|D) = — "t £
(H:1D) YjP(Hj) .P(D|H)) quation 4
where P(H;) = prior probability of hypothesis i

P(D|H;) = probability of obtaining the data given hypothesis i
D =data

j = other hypotheses

The three steps to Bayesian model fitting are (Denison et al., 2002):

1. Assign priors to all parameters and states to be estimated
2. Define the likelihood of the data given the parameters and states
3. Calculate the posterior distribution of the parameters and states given the data

using Bayes theorem as shown above

2.1. Prior Information

The prior distribution for a parameter 6, p(6), describes the probability of different values
of 6 without considering the data (Wasserman, 2000). A prior can be any piece of

previously known information, which can have differing levels of uncertainty around it.
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McCarthy (2007) presents the following diagram to represent the relationship between

the data, priors and posterior:

prior + data ——>  posterior

Each parameter in the model can be assigned a different prior, which may simply be an
informed guess about the distribution, mean and standard deviation of the parameter. For
example, if the heights of a study species are already known to have a Gaussian
distribution rather than a uniform distribution, this information could be used as a prior.
A prior with a large variance is likely to be uninformative and the posterior distribution
will be dominated by the data, giving results similar to a frequentist analysis (McCarthy,

2007).

Uniform priors (also called flat priors) are common when little information is known
about the questions being asked, because they will be overwhelmed by the data. A
uniform prior is considered improper because its integral is infinity, regardless of the
constant chosen (Christensen et al., 2011). However it does lead to a proper posterior,
making it an appropriate choice for inference when little is known about the parameter or
state of interest. Since the prior does not carry much weight and the posterior is dominated
by the data, the results of the analysis will be the same as the frequentist approach to the
problem. The Gibbs sampler will give a reasonable looking output when improper priors
are used, meaning that it is not a method which can be used to determine if the priors are
improper. Uninformative priors have been more common in ecology, possibly because
of a concern that informative priors may reduce accuracy; however, a recent study found
that appropriate informative priors increased precision, although the effects on accuracy

were variable (Morris et al., 2015).
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2.2. Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) can be used to estimate the posterior distribution
of a model in a Bayesian framework (McCarthy, 2007). While Bayes theorem can be
simple enough that it can be computed by hand, in more complex and higher dimensional
formulations it can be difficult to solve the integral in the denominator, which may have
a dimension in the thousands (Cressie and Wikle, 2011). In this case, MCMC is used to
avoid the necessity of calculating this denominator. The samples from the MCMC
algorithms are equivalent to a sample from the posterior distribution, hence eliminating

the need to calculate the often complex integral of the denominator of equation 4.

There are a several algorithms that are used to sample from the posterior via MCMC,
including the Metropolis-Hastings algorithm and Gibbs sampler (Zuur et al., 2009). The
general method behind these algorithms is that for every parameter we wish to estimate,
anew value is drawn from that parameter’s candidate-generating density, and the models
with the new and old parameter values are compared using a pre-defined acceptance
criteria (Chib and Greenberg, 1995). If the new parameter estimate is accepted, the
current model is updated; if not the current model remains the same until the next
iteration. The Gibbs sampler is a component-wise Metropolis-Hastings algorithm that is
less general because it requires knowledge of the conditional posterior distributions of

the parameters (Congdon, 2006, Denison et al., 2002).

A defining property of Markov Chains is that they are memory-less, so future states
depend only on the current state, or in the case of higher-order chains states further back
than a single time-step (Ching et al., 2013; pg 1). When running an MCMC algorithm,
the first values (known as the burn in) must be removed because they show strong

dependence on the arbitrarily chosen first value (Christensen et al., 2011; pg 145). The

36



point at which the chain no longer depends on the first value is called reaching
stationarity. After numerous iterations, the MCMC algorithm may converge. This
convergence should not be confused with that of an algorithm converging to a numeric
solution; rather, convergence occurs when each realisation of the Markov Chain has the
same distribution as the stationary distribution of the Markov Chain (Cressie and Wikle,

2011).

2.3. Model Selection

There is no single accepted method for Bayesian model selection (Hooten and Hobbs,
2015). The posterior probability of a model is often used for model selection. If
comparing multiple models, the model with the highest posterior probability is chosen
(Wasserman, 2000). If we have a total of R candidate models, the posterior probability

for model i is calculated as (Posada and Buckley, 2004):

P(D | My) P(M;)
YR, P(D| M) P(My)

P(Mj | D) = Equation 5

where D is the data, M; is model i and P(M;) is the prior probability of Mi. To compare
two models, i and j, the Bayes Factor can be used. It is a ratio of the evidence for each

model and is calculated as (Congdon, 2006; pg 26):

~_ PO|My
Y p(D | Mj)

Equation 6

where M; is model i, and D is the data. Bjj can be interpreted using Jefferey’s scale
(Wasserman, 2000; pg 99), where B;; = 5 would mean there is 5x stronger evidence for
model i. The Bayes Factor does not require models to be nested and automatically
penalises model complexity because complex models are able to make a larger variety of
predictions and hence P(D | M) for our observed data will be lower than for a more simple
model (Berger et al., 1994).
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2.3.1. Information Criteria

Like the frequentist AIC, the Bayesian Information Criterion (BIC) and Deviance
Information Criterion (DIC) can be used for selection of the model parameters. The BIC
is a measure of the evidence favouring a model compared to other models and does not
require the specification of priors (Weakliem, 1999) and was primarily developed for
model averaging within a well justified candidate set of models (Hooten and Hobbs,
2015). The DIC is very similar to the AIC, in that it measures the information content as
a model, taking into account the model’s complexity. Retaining the most information
with the simplest model is preferable (McCarthy, 2007). The DIC can return a negative
number of effective model parameters in missing data models (Celeux et al., 2006). This
is due to the posterior mean settling on a value that is between two different modes of the

posterior density. The BIC (Stoica and Selen, 2004) and DIC are calculated as follows:

BIC = —21log,P(y,0") + nlog,N Equation 7

DIC = D+ 2pp

where y = the observed data of length N, P() = the likelihood of the model, p, is the
effective number of parameters, 6 = the maximum likelihood estimate of the parameter
vector containing n parameters and D = deviance using mean of the parameter’s posterior
distributions. A model with a DIC close to the model with the lowest DIC (difference of
<10) may also be the best model, and should not simply be removed in favour of the best
model. Rather, model averaging could be used in this situation. When averaging across
the parameters of multiple candidate models, care must be taken as the interpretation of

each parameter will vary depending on the structure of the models (Posada and Buckley,

2004). A new information criteria was proposed in 2013, the widely applicable AIC
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(WAIC) (Watanabe, 2013). It is a generalised fully Bayesian form of AIC which, unlike

DIC, can be used for singular models whose Fisher-information matrix is not invertible.

2.4. Model Uncertainty

Bayesian models automatically include uncertainty around the parameters (Wade, 2000),
and assume the data are fixed while the model can vary. In contrast, most frequentist
approaches are built around the assumption that the model is true and that the data can

vary (Chatfield, 2006). There are three main ways in which uncertainty enters a model:

1. Uncertainty surrounding the model’s type and structure (i.e. hierarchical)
2. Uncertainty around choice in the model’s parameters

3. Random unexplained variation in the dependent variable

Ignoring the uncertainty surrounding a model can be a dangerous practice and can lead
to unsound conclusions. One method to reduce model uncertainty is model averaging,
where instead of selecting the single best model, the posterior distribution is an average
of a number of ‘best’ models, using the posterior model probabilities (Raftery et al.,

1996).

3. Comparison between Bayesian and frequentist methods

While some of the components in frequentist and Bayesian methods may appear to be
similar or even identical, there are important differences. For example, frequentist
confidence intervals are different to Bayesian credible intervals. For a Bayesian credible
interval, the interpretation is that ‘there is a 95% chance that the true value of the
parameter is within the interval’. This contrasts with a confidence interval where, if the
experiment were repeated many times, 95% of the time the confidence interval would

encompass the true value of the parameter. Credible intervals will have the same

39



numerical value as confidence intervals if the prior is uninformative (McCarthy, 2007).
It is not uncommon for ecologists to misinterpret 95% confidence intervals by thinking

that the definition is the same as for the credible interval.

Bayesian and frequentist methods can give different results depending on how the
experiment was conducted. Frequentist models depend on the method by which the data
was collected. For example, a frequentist hypothesis test can give different results if the
sample was randomly collected to a predetermined number (for example, it was
predetermined that 12 koalas with pouch young will be sampled), or was collected using
a stopping method (it is predetermined that koalas will be sampled until 3 koalas with
pouch young are obtained) (McCarthy, 2007). A Bayesian analysis would not give
different answers in these two situations, and neither would Information Theoretic
methods, which are based on maximum likelihood. Since frequentist and Bayesian
methods will give different answers based on data collection methods (even without
priors taken into account), caution must be exercised when comparing two studies that

used frequentist and Bayesian methods.

Bayesian and frequentist methods can give the same results if the same model is being
used. They are most alike when little or no prior information is available, and hence the
priors have a large variance or are simply objective distributions (Bayarri and Berger,
2004). Theoretical and empirical studies show that the preferred method relies heavily on
the quality of prior information available (Samaniego and Reneau, 1994). Prior
information can be incorporated into frequentist statistics to some extent by constraining
parameters. The knowledge that the two methods may produce the same results in some
cases is certainly not new, with this being shown decades ago for one sided hypotheses
(Casella and Berger, 1987). Bayesian methods allow for better understanding of
uncertainty around the parameters (Congdon, 2006) and are also not restricted by sample
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size, which can allow for quantitative studies on rare species (Dorazio, 2016). However,
they are often far more computationally expensive and therefore may not be as efficient
as frequentist methods. With that in mind, both methods have much to offer in the field

of statistics (Bayarri and Berger, 2004).

3.1. Hybrid methods

Some methods blur the lines between frequentist and Bayesian analysis, presenting a
‘unified’ result. For example, if frequentist methods are heavily conditional, they can also
give the same results as a Bayesian analysis (Berger et al., 1994, Berger et al., 1997).
This involves the calculation of a test statistic that represents the strength of support for
the null hypothesis by the data (Dass and Berger, 2003). Others have suggested a
compromise, called the “calibrated Bayes”, where both approaches should be used in
analyses; frequentist methods would be used for model development and assessment, but
the inference under the model would be from a Bayesian perspective (Little, 2006). This
approach makes use of the strengths of both frequentist and Bayesian statistics. In the late
1990s a third paradigm, “evidential statistics”, was proposed (Royall, 1997). Evidential
statistics also draw on many concepts in both frequentist and Bayesian statistics, and
brings the idea that the result space in model selection is a continuum divided into three
areas: i) strong support for model A, ii) strong support for model B and iii) weak support

for both models (Taper and Ponciano, 2016).
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4. Models in ecology

There has been a rise in complex statistics in ecology, with researchers moving away
from the traditional ANOV As and t-tests and employing more complicated methodology
such as Bayesian statistics and mixed models (Touchon and McCoy, 2016). Despite this,
only 64.6% of ecological papers from 1990 - 2013 used any statistics (n = 30,190), and
only 6.5% of ecological doctoral programs surveyed (n = 154) in the United States of
America taught methods more complex than traditional statistical methods (Touchon and
McCoy, 2016). This section reviews some of the models applicable to ecology. Due to
the wide variety of models used, only the most relevant for this thesis are reviewed.

Figure 1 shows a theoretical representation of how many of these models are related.

Linear Sanaoin
Effects
. LMM
REM
GLMM Key
L = Linear
GLM G = Generalized
GEE A = Additive
M = Model
MM = Mixed Model
RE = Random Effect
GAMM EE = Estimating Equation
AM
GAM
: Non-
Generalized -
Parametric

Figure 1 Theoretical representation of how the commonly used models are related.
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4.1. Linear Models

Linear models are the simplest form of statistical model and are often the first that
students are taught in school. They include any model that is linear in the parameters

(Khuri, 2010; pg 1). The general form is:

Y=XB+e e ~N(0, 6?) Equation 8

where B is a vector of coefficients, X are the explanatory variables, Y is the dependent
variable and ¢ are the residuals (Clarke, 2008). There are two subsets of linear models:
those with continuous explanatory variables are regression models and those with
categorical explanatory variables are Analysis of Variance (ANOVA) models (Khuri,
2010; pg 2-3). Linear models can also accommodate a combination of categorical and
continuous variables at the same time. Unfortunately the complexity of many ecological

systems means that linear models are often not suitable for these analyses.

4.2. Generalised Linear Models (GLMs)

Generalised Linear Models (GLMs) were proposed by Nelder and Wedderburn in 1972
and are an extension of linear models to allow for error distributions other than the
Normal distribution (Nelder and Wedderburn, 1972). They are appropriate for many of
the commonly encountered types of ecological data including presence/absence and
proportions (Binomial, Bernoulli), counts and densities (Poisson, Negative Binomial,
Geometric) and non-negative continuous data (Exponential, Gamma, Inverse Gaussian).
The Negative Binomial, Quasi-Poisson and Geometric distributions are commonly used
when the data are overdispersed in comparison to the distribution that is otherwise

appropriate.
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The general form uses a link function, g(), to relate the mean, p, to the covariates (Myers

et al., 2010; pg 5):

gw) =X+ ¢ Equation 9

where B is a vector of coefficients, X are the explanatory variables and ¢ are the residuals.
Often transformations (log, square-root, inverse) are performed to normalise residuals
and coerce the data into being suitable for a linear model (Osborne, 2005, Bartlett, 1947).
However, GLMs have been shown through simulation to produce better results than
transformation (O’Hara and Kotze, 2010). Transformation is particularly problematic
when the data contain zeros because log transformation will make the zeros infinite. This
issue is often side-stepped by adding a constant to all values to raise them above zero,
after which a log-transformation is performed, however this is less than ideal because the
choice of constant is arbitrary but can change the outcome of the model (Fletcher et al.,
2005). Transformation can also result in the new transformed mean not being equivalent
to the raw mean on the untransformed scale, which complicates interpretation. Hence,
GLMs should be investigated before transforming data, especially when zeros are

present.

4.3. Hierarchical Models

Hierarchical models are useful when there is nesting in the data, such as observations
within sites or samples taken from individuals (Raudenbush and Bryk, 2002; pg 5 - 7).
There can be any number of levels to the hierarchical model (McCarthy, 2007; pg 75)

and they are present in both the Bayesian and frequentist framework.

The hierarchical model can have a ‘data model’ at the top level, which expresses the

distribution of the observed data (Cressie and Wikle, 2011; pg 361 - 362). Underneath
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this is a ‘process model” which represents the uncertainty in the process (the true process
is unobservable). This specific case is known as a state-space model because it describes

the relationship between the underlying state and the observed data.

The hierarchical model is Bayesian if there is a ‘parameter model’ that specifies the joint
probability of all unknown parameters. This parameter model relies on the theory that a
joint distribution can be broken down into a conditional model: [A, B, C] =[A| B, C][B,
C]J[C] (Wikle, 2003). For example, for studies with multiple locations (e.g.: different sites
or quadrats), a Bayesian Hierarchical Model can allow the parameters to vary by site,

while still having the same distribution (Borsuk et al., 2001, McCarthy, 2007).

4.4. Mixed Models

Unlike fixed effects models such as linear models and GLMs, Mixed Models include both
fixed and random effects. Random effects account for variability between groups, such
as individuals or sites, and allow for both subject specific and population level inference
(Wu, 2009; pg 39). Generally the random effects measure factors whose levels are chosen
randomly from a population and would not be the same if the experiment was repeated
again (i.e. individuals within a population or quadrats within a site). Mixed Models can
hence incorporate survey design (i.e. nesting of sites) and ensure that the data are not

pseudoreplicated within the model.

Mixed models are a form of hierarchical model, in that they model data where the
observations are nested within levels (Wu, 2009; pg 39). They can take many forms,
including but not limited to random intercepts, random slope, generalised additive mixed
models (GAMM) and generalised linear mixed models (GLMM) (Zuur et al., 2009; pg

101, 323). The general form of a mixed model is:

Y=XB+Zv+e e ~N(0, 6°) Equation 10
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Where B is a vector of fixed effects, v is a vector of random effects, X and Z are design
matrices and € is a vector of unobserved errors. For the above model, v ~ N(0, G) and € ~
N(0, R), where R = 6%/ and I is an identity matrix (Wolfinger, 1993). A covariance matrix
can be used to indicate the structure of correlation between variables. There are several
choices for covariance matrices, including but not limited to diagonal, compound
symmetry, unstructured, Toeplitz and autoregressive (Wolfinger, 1993; pg 1081 - 1082).
The choice of which to use is driven by the structure of correlation between the variables

as seen in the data.

Mixed models are generally estimated using Maximum Likelihood (ML) or Restricted
Maximum Likelihood (REML). REML is preferred for the estimation of the variance
components in mixed models because it does not depend on the correct estimation of the
fixed effects, so the random effect estimates are not biased downward (Verbeke and
Molenberghs, 2009). ML and REML require integration of the likelihood over all
possible values of the random effects, making model fitting slow and often unfeasible for
complex mixed models. To get around this, there are several ways to approximate the
likelihood, including quasi-likelihood (pseudo and penalised), Laplace approximations,

Gauss-Hermite quadrature and MCMC methods (Bolker et al., 2009).

4.5. Models for zero-inflation

Zero-inflation is especially common in animal count data because the number of cells,
quadrats or sites where no animals are observed is often higher than the expected number
of zeros under most theoretical distributions. Failing to account for zero-inflation can bias
the parameter estimates and standard errors, cause overdispersion and mask the true
ecological patterns (Martin et al., 2005, Zuur et al., 2009). There are two broad classes of

models for dealing with zero-inflated data: hurdle models and zero-inflated models.
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Models for zero-inflated data can be modified for spatial count data and repeated
measures by incorporating random effects (Agarwal et al., 2002, Hall, 2000, Min and

Agresti, 2005).
4.5.1. Hurdle models

Hurdle models use separate processes to model the zero and non-zero values. It can be
interpreted as modelling the probability of presence/absence separate from conditional
(given presence) counts. Hurdle models are recommended over zero-inflated models
when the zeros are known to be ‘true zeros’, i.e. those arising from true absences rather
than systematic errors such as the observer missing a sighting, or environmental
conditions concealing a sighting (Martin et al., 2005). Generally, the zero model is a
binomial model and the count model is a zero-truncated Poisson, Negative-Binomial or
Geometric model. The general form of a hurdle model (Zuur et al., 2009; pg 287) is:

[ binomiat(¥ = 0; ¥) y=0

= count(¥;B)
! (1 - fbinomial(y = 0; Y)) * % y>0

Equation 11

where ¥ and B are vectors of covariates in the zero and count models respectively and f
are the Probability Mass Functions. Hurdle models can also model zero-deflation (Min
and Agresti, 2005), although this is much less commonly seen in ecology. In Chapter 5
of this thesis, I use a hurdle model to assess whether Antarctic krill aggregate around
resources or are passive drifters. I extended the traditional hurdle model by adding
random effects in both stages of the model, because the data were collected across
multiple sampling stations and are hence pseudoreplicated if sampling station is not

incorporated into the model. Standard hurdle models use a count model for non-zero
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values, however I modified this to be a continuous model because krill densities are not

discrete counts.

4.5.2. Zero-inflated models

Zero-inflated models supplement a regular count model by modelling only excess zeros
separately and the true zeros are retained in the count model. They are useful when we
are cannot distinguish between the true and false zeros in the data (Martin et al., 2005).
The zero-inflated Poisson and zero-inflated Binomial are the two common forms of these
models, both of which use a binomial model for the excess zeros relative to the original
count distribution. The general forms of zero-inflated models can be found in Zuur et al
(2009; pg 276). The Poisson and Negative Binomial options can be compared using a

likelihood ratio test (Zuur et al., 2009; pg 288).

4.6. Non-Parametric Models

4.6.1. Generalised Additive Models (GAMs)

GAMs use non-parametric smoothers to model the relationship between the dependent
variable and each independent variable, which gives an advantage over a Linear Model
because they can fit data-driven relationships between the predictors and the dependent
variable (Guisan et al., 2002). This is particularly useful when we don’t know much about
the nature of this relationship (Denison et al., 2002). GAMs can also accommodate non-

normal error structures. The general form of a GAM is similar to a linear model:

Y=s,+ Y 1si(X;)+ ¢ Equation 12

where s is an intercept and the s() terms are smoothers for each explanatory variable, X;

(Hastie and Tibshirani, 1986). Interactions are also possible and take the form s(x, y),
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however this becomes complicated when x and y do not vary on the same scale. The
smooth term can take a number of forms, most of which are based on smoothing splines.
First proposed in 1922 (Whittaker, 1922), splines are piecewise polynomials that are
smooth at the joining points, which are called knots (Wold, 1974). Splines are named by
the degree of the polynomials that comprise them. For example, a spline made up of cubic
functions is called a cubic smoothing spline. An important part of smoothing models is
the question of how much to smooth (Lee et al., 2006). Too much smoothing can mask
an underlying pattern but not enough will cause overfitting. The number of knots and the
smoothing parameter (if present) can influence smoothness. There are several ways to
estimate the smoothing parameter. If it is estimated from the data, it is called ‘data-driven
smoothing’ (Lee et al., 2006). Generalised cross-validation and AIC can be used to

estimate the smoothing parameter from the data.

4.6.2. Generalised Additive Mixed Models

While GAMs can deal with non-parametric relationships, they don’t allow for random
effects that can accommodate differences between locations or subjects. Rather than
fitting separate models per study, which could reduce the power of the study as well as
reduce the usefulness of the models, the GAM can be extended to a GAMM to allow for
the addition of random effects. The GAMM extends the GAM by adding Z, a vector of

random effects.

4.6.3. Spline Mixed Models (ASReml)

Non-linearity can be modelled in a linear mixed model framework using penalised
splines, an approach available in the statistical package ASReml (VSNi, 2009). For each
coefficient, the fixed component will model the linear trend and the cubic splines, fit as

random effects, will model the departures from this linearity (Butler et al., 2009). It
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should be noted that while the splines are fit as random effects, they are not true random
effects, rather this is a mechanism for fitting the model. As with GAMs, we need to
estimate the amount of smoothing required in our model. In Chapter 3, I use spline mixed
models in ASReml to assess drivers of phytoplankton distribution off East-Antarctica.
This modelling method was chosen because the splines allow for non-linear relationships,
the random effect is required because the data were collected across multiple sampling
stations (observations within a station are replicates) and ASReml allows for easy fitting

of'a 3D correlation structure to account for 3D spatial autocorrelation.

4.7. Generalised Estimating Equations

GLMs for count and binomial data can be extended to allow for correlation between
observations, resulting in Generalised Estimating Equations (GEE) (Liang and Zeger,
1986, Ziegler, 2011). They differ from GLMs because you don’t need to specify the full
distribution, only the mean structure. GEE works on the idea that observations within a
cluster of data will be correlated, while observations from different clusters won’t be
(Ziegler et al., 1998). Some examples of these clusters are longitudinal analysis, family

studies and spatial analysis.

AIC cannot be directly used with GEEs because they are not likelihood based, although
there is a modified AIC available that uses the quasi-likelihood (Pan, 2001a). Other model
selection methods include minimisation of the expected predictive bias (Pan, 2001b) and

Wald tests (Zuur et al., 2009; pg 318).

4.8. Autoregressive Models

For spatial data, conditional autoregressive models (CAR) and simultaneously

autoregressive models (SAR) are often used to incorporate neighbourhood values into the
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model. The covariance structure includes spatial dependence as a function of the

neighbourhood matrix (Wall, 2004). This can be modelled either explicitly or implicitly.

SAR models can have different forms depending on whether the spatial autocorrelation
is present only in the dependent variable or also in the explanatory variables (Dormann
et al., 2007). If the autocorrelation is only present in the dependent variable the model

takes the form:

Y=pWY+Xp +¢ Equation 13

Y is the dependent variable, p is the autoregression parameter, W is the spatial weights
matrix, X is the vector of explanatory variables and P is a vector of slopes. If the
autoregression is present in both the dependent and independent variables the model will

take the form:

Y=pWiY + X + WXy + ¢ Equation 14

The X term is a matrix of spatially lagged predictors, Wi are spatial weight matrices
which are usually assumed to be the same and y is the regression coefficient for this
matrix. The spatial autoregression can also occur only in the error term, in which case the

model becomes:

Y=XB+e+ 1Wu Equation 15

In the above model, W is the weighted spatial structure of p, the spatially dependent error
term, ¢ is the error term and 4 is a spatial coefficient to be estimated. Two different SAR
models were used by Santora et al (2010) to assess the spatial dependence of baleen
whales and Antarctic krill, one with a lagged dependent variable and one with an

autoregressive error term (although the models were called spatial regression models).
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Two dimensional correlograms were then used to assess correlation between krill and

whale distribution.

CAR models are similar to SAR models, however the distance matrix, W, must be

symmetric. The general form of a CAR model is:

Y =Xp+pW(Y-XP)+e¢ Equation 16

Where p is an autoregression parameter, W is a spatial weighting matrix, X are the

independent variables and [ are a vector of slopes.

4.9. Density Surface Models

Density Surface Models (DSMs) combine numerous techniques to account for common
problems seen in ecological data and are reviewed in Miller et al (2013). DSMs use
GAMs to model data with non-linear trends, use an x-y surface to account for spatial
variability and correct for the decrease in sightings as they get further from the transect
using a detection function. This decrease in sightings with distance is a form of
observation bias and occurs primarily because objects become harder to detect further
away. If an observer measures the distance from transect to each sighting a function can
be fit to correct the abundance and density estimates, in a method known as ‘Distance
Sampling’ (Thomas et al., 2002). Commonly used detection functions include half-
normal, hazard-rate and gamma (Figure 2). DSMs combine these strengths of GAMs and
Distance Sampling and in addition incorporate survey design, which enables their use for

surveys with unequal effort as is commonly seen from platforms of opportunity.
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I use a DSM in Chapter 6 of this thesis to link whale distribution at an island feeding
area to food levels (krill) and environmental conditions. This model allowed for the
unequal sample effort, the missed whale sightings as distance from transect increased and

the non-linear relationships between whale count and environmental conditions.
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Figure 2 Examples of detection functions for decreasing probability of detection from
the transect. Half-normal detection functions are used when there is immediate
decreasing probability of detection from transect while hazard-rate models assume
perfect detectability until a certain distance, after which sightings decrease. Gamma

functions are used when the peak probability of detection is not on the transect.

4.10. Spatial Autocorrelation

Spatial autocorrelation is common in ecological data, where observations closer together
are likely to be more similar than those further away (Dormann et al., 2007). This can
occur when variables are measured on a finer scale than they vary, when variables are
observed in ‘blocks’ with different observers which may introduce observer bias, if

variables depend on an underlying spatial process or if the model omits an important
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spatially varying trend (Haining, 2015). Spatial autocorrelation is problematic when
correlation is visible in the model’s errors. Many studies use conventional methods that
ignore this problem. However making inference on models where the data doesn’t satisty
the assumption of independence required by the model can lead to flawed conclusions
(Haining, 2003, Kiihn, 2007) and it is important that the final fitted model does not have
spatially autocorrelated residuals which would violate the assumption of independence
(Haining, 2003). Spatial autocorrelation can take many forms including autoregressive,

moving average and autoregressive moving average (ARMA) among others.

There are many methods available for accounting for spatial autocorrelation of a model’s
errors and some of the most common are summarised in Table 1. In addition, the
experimental design can be chosen to minimise the chance that sites will be correlated,
such as spacing sites to maximise their distance apart, although there is no guarantee that

closer sites will not still be autocorrelated (Haining, 2015).
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Table 1 Statistical methods to account for spatial autocorrelation in ecological data.

Summarised from Dormann et al (2007).

GLM

Method How it works Comments
Autocovariate models Adds distance weighted Applicable to binomial,
function of nearby normal and Poisson
response variables to models

Spatial Eigenvector
Mapping

Spatial arrangement of
data is translated into
explanatory variables

Computationally intensive
for >200 data points

Correlation structures

Models the spatial
covariance in the variance-
covariance matrix

Available for many GLMs
and mixed models

Conditional
Autoregressive Models
(CAR)

Weighted distance
matrices to specify the
strength of interaction
between points

Unsuitable for directional
processes

Simultaneous
Autoregressive Models
(SAR)

Weighted distance
matrices to specify the
strength of interaction
between points

Like CAR but distance
matrices don’t need to be
symmetric

Mixed models

Nesting of spatial
autocorrelation structures
within locations

Spatial autocorrelation in
mixed models can be
specified in the covariance
G-matrix or in the error
structure

Generalised Estimating
Equations (GEE)

Correlation matrix to
specify within cluster
correlations

Better for parameter
estimation than prediction.
Correlations are reflected
in the ordering of the data.

There are several tests to identify spatial autocorrelation. Mantel tests assess distance and
similarity between sites (Mantel, 1967). If autocorrelation is not consistent across the
entire study area, localised correlation can be tested for using Moran’s I test, where a test

statistic is computed for each region on the map (Haining, 2015). Plotting the residuals
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of a model across each spatial dimension can identify if there is residual autocorrelation
remaining in a model. Semivariograms are a good tool for visualising spatial
autocorrelation and making a guess about the nature, whether it be Gaussian, exponential,
spherical or something different (Stroup, 2013). A semivariogram is a plot of the
semivariance vs the lag distance between observations (Figure 3). The ‘nugget’ is the
variation that cannot be explained by the distance between observations, the ‘sill’ is the
estimated variance, and the difference between these values is the observed variation that
can be explained by distance. Semivariograms can be calculated for single directional
distances or for 2-dimensional data such as latitude/longitude or row/column survey

designs.

Semivariance

Lag distance .
Figure

3 Conceptual diagram of semivariogram showing the sill (estimated variance), nugget
(variance unexplained by distance between observations) and range (distance to reach

sill).
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5. Conclusion and methods used in this thesis

Ecological data is inherently complex due to the often non-linear relationships between
variables, the spatial and temporal variability, inter-subject and inter-site differences and
the high number of zeros due to patchily distributed animals or plants. Sophisticated
modelling methods are required to answer the questions that we want to extract from the
data. This chapter has provided a review of some useful models for ecologists and a
comparison of the frequentist and Bayesian approaches to using them. The remaining
chapters of this thesis focus on applying and extending some of these methods to answer
important questions about the distribution of phytoplankton, Antarctic krill and
humpback whales in the Southern Ocean. I have used a frequentist approach and
Information Theoretics to reduce computational time and because in most cases there was
little prior information available. The methods used in each chapter of this thesis are listed
in Table 2. They are described in greater detail in the Methods and Discussion segments
of each chapter. The software package developed in Chapter 4 does not use statistical

methods for ecology and is hence not included in this table.
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Table 2 Methods used in each analysis chapter of this thesis.

Thesis chapter Complexities in data Modelling method
Chapter 3 Data collected over multiple | Spline mixed
Modelling drivers of sites models (in ASReml)
phytoplankton distribution Non-linear relationships with 3D
off North-East Antarctica 3D spatial autocorrelation autocorrelation

structure

Chapter 5

Are Antarctic krill passive
drifters or do they aggregate
around resources?

Data collected over multiple
sites

Continuous krill density data
(regular hurdle models are
only for counts)
Zero-inflation (over half cells
surveyed contained no krill)

Hurdle mixed model
for semi-continuous
data

Chapter 6

Modelling the effects of
food distribution and
environmental parameters at
the Balleny Islands on
feeding humpback whales

Non-linear relationships
Imperfect detectability of
whales

Uneven sampling effort in
survey area

Density Surface
Model
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Abstract

Productivity in the Southern Ocean is important for global oxygen levels and climate.
Determining the relationship between phytoplankton density and environmental variables
enables us to understand and predict the effects of environmental change on
phytoplankton. Marine environmental data, such as phytoplankton fluorescence, are
commonly collected using vertical profiling instruments which are time consuming to
use in costly remote environments. Standard modelling techniques typically do not
account for the 3D autocorrelated and non-linear nature of marine profiling data, resulting
in incorrect inference and biased predictions. Here we use a spline mixed model with a
3D correlation structure to model environmental correlates with phytoplankton
fluorescence collected using a Conductivity-Temperature-Depth (CTD) system during
the BROKE-West research cruise along the East Antarctic margin (30-80°E) in January-
February 2006. Our modelling procedure was tested via simulation and found to be
unbiased. We found that the variables depth, in situ temperature, salinity and dissolved
oxygen were significant predictors of phytoplankton fluorescence. Strong spatial
autocorrelation was found in the latitude and depth dimensions (Qdepth= 0.92, Qlatitude =
0.85). Ignoring correlation led to over fitting, negatively biased variance estimates and
spurious inference, highlighting the importance of considering correlation when
modelling CTD data. This study identified important drivers of phytoplankton
distribution in the East-Antarctic and provided a method for predicting future scenarios

using the vast array of survey data that already exists.

Keywords: conductivity temperature depth, random effect, Chlorophyll-a, spatial

autocorrelation, non-linear relationship
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1. Introduction

The Southern Ocean is of global importance due to i) its key role in global climate
(Mayewski et al., 2009), ii) its unique and endemic-rich ecosystems (Murphy and
Hofmann, 2012) and iii) its hosting of multi-national fisheries, including commercial
finfish and the world’s largest krill fishery (Nicol et al., 2012). Key to these fisheries are
the high level of primary production that occurs in the Southern Ocean (Smetacek and
Nicol, 2005). This is largely due to the high phytoplankton densities which are
responsible for more than half of the world’s annual photosynthesis (Chisholm, 2000). In
the Southern Ocean, phytoplankton are the primary food source for a number of marine
species, including euphausiids, larval fish, tunicates and cephalopods (Gurney et al.,
2001, Dubischar and Bathmann, 1997, Murphy et al., 2012). Accurately determining the
drivers of phytoplankton abundance is therefore crucial to our understanding of

productivity in the oceans as a whole.

There is increasing concern over the environmental status of the Southern Ocean because
the region is experiencing unprecedented changes (Constable et al., 2014). A focal point
for research has been the Western Antarctic Peninsula, which is warming significantly,
and at one of the fastest rates on the planet (Montes-Hugo et al., 2009, Clarke et al., 2007).
This change is characterised by decreasing winter sea-ice levels, salinification and
warming surface waters (Meredith and King, 2005), with major observed changes in
Chlorophyll-a distribution and phytoplankton community composition (Massom and
Stammerjohn, 2010). Chlorophyll-a is a proxy for primary productivity by
phytoplankton, however, as pigmentation is sensitive to photoacclimation and nutrient-
driven physiological responses, it is not directly proportional to productivity (Behrenfeld
etal., 2015). In contrast to the warming seen in the Western Antarctic Peninsula, the Ross
Sea has experienced increased extent and duration of sea ice (Smith Jr et al., 2012). The
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phytoplankton biomass there is strongly linked to sea ice, mixed layer depth and light
availability (Smith Jr et al., 2014). On a global scale, it is expected that there will be large
range expansions of warm-water species towards the poles, changes in abundance,
growth levels, timing of peak production and trickle-down effects through the marine
food web (Hallegraeff, 2010). In light of the divergent environmental shifts in the
Southern Ocean, it is becoming increasingly important to understand how phytoplankton
may be affected by complex regional climate change. The predicted environmental
changes are too subtle to examine using perturbation experiments (Boyd et al., 2008),

necessitating modelling based methods to answer these questions.

The oceans are heavily vertically stratified and experience mixing and convection,
transporting heat from the tropics to the poles (Wunsch and Ferrari, 2004, Ganachaud
and Wunsch, 2002). To capture the stratification in the surface layers, oceanographic data
collection during ship-based marine research voyages primarily involves lowering
instrumented platforms through the water column. The base unit sensor/platform is the
CTD, measuring conductivity, temperature and depth. Ancillary sensors such as
fluorometers and dissolved oxygen sensors can be included on the CTD package.
However, establishing relationships between the fluorescence of Chlorophyll-a and
coincident oceanographic properties is a complex modelling task, caused by non-linear
relationships, strong autocorrelation of data within each vertical profile, and the potential

for an observation station level effect on the profiles.

Generalized Additive Models (GAMs) have been used to model similar complex data, as
they can account for non-linear relationships by using smoothers (Hastie & Tibshirani,
2000, Wood, 2006). In the marine setting, GAMs have previously been used to model the

relationship between profiles of bioluminescent zooplankton sources and environmental
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variables (Craig et al., 2010, Heger et al., 2008), drivers of phytoplankton productivity
(Lamont et al., 2014), the distribution and biomass of euphausiid aggregations (Lawson
et al.,, 2008) and nano-microplankton and meso-zooplankton biomass (Zarauz et al.,
2007). Modelling with data collected at multiple sites or stations may mean a random
effect is appropriate, in which case a GAM must be extended to a Generalized Additive
Mixed Model (GAMM). Mixed models include fixed effects (parameters of specific
interest where the levels are not randomly chosen) and random effects (parameters whose
levels are not of particular interest but are required to avoid pseudoreplication). Ignoring
random effects for a data set collected at many sites can result in a large loss in degrees
of freedom and the inability to make population level inference (Crawley, 2002). This in
turn makes it difficult to make valid predictions at a new location, where no data is used

to develop the initial model.

Often present in ecological data is spatial autocorrelation, where closer points are more
similar than those further away (Dormann, 2007). Spatial autocorrelation is difficult to
address in marine environments since there is the potential for 3-dimensional correlation,
i.e. correlation between stations and the observations collected during vertical profiling.
This is especially likely if there are missing covariates (i.e. lurking variables) for which
data are not available (Joiner, 1981). In a complex and difficult to quantify environment
such as the Southern Ocean, it is unlikely that representative data on all variables of
interest can or will be collected. Therefore, an error structure needs to be included in the
model to specify the type of correlation that is still present in the residuals. Ignoring
spatial autocorrelation can reduce model fit, bias parameter estimates, cause inverted
relationships and result in false conclusions (Dormann, 2007, Lichstein et al., 2002,

Kiihn, 2007). Parameters may also become falsely significant, causing spatially varying
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parameters, defined as parameters that co-vary with latitude or longitude i.e. Sea Surface

Temperature, to appear more significant than they really are (Lennon, 2000).

Here, we use linear mixed models including cubic smoothing splines (Verbyla et al.,
1999) combined with a 3-dimensional error structure to account for i) non-linear
relationships between phytoplankton fluorescence and environmental predictors ; ii) a
site level effect and iii) 3D spatial autocorrelation. The spline component allows for non-
linear response vs explanatory variable relationships; the mixed effects model allows for
a station random effect, where stations are considered as samples drawn from a
population of stations; and the error structure also includes additional dependencies due
to spatial autocorrelation arising from two-dimensional station locations as well as the
third dimension, depth within the water column. We use our model to explore the
generalised survey level relationships between phytoplankton fluorescence and
environmental variables. Our independent variables include factors known to influence
phytoplankton growth and distribution (temperature, salinity, sea ice, vertical mixing,
current velocity) as well as one product of photosynthesis (dissolved oxygen). We then
use simulation, based on the characteristics of our observations, to assess the validity of

our modelling approach and therefore the accuracy of the conclusions we have drawn.

The data come from a multi-disciplinary marine science survey called the Baseline
Research into Oceanography, Krill and the Environment (BROKE-West — see Nicol et
al. (2010) and references therein). The survey took place from January — March 2006
along the East Antarctic margin south of 60°S and between 30 — 80°E and covered 1.3
million km?. The major zonal current systems in the BROKE-West survey area are the
eastward-flowing southern Antarctic Circumpolar Current front zone (sACCf) to the
north and the westward-flowing Antarctic Slope Current (ASC) and coastal current to the
south (Meijers et al., 2010, Williams et al., 2010). The Antarctic Circumpolar Current

71



(ACC) waters are characterised as warm, high nutrient, weakly stratified waters strongly
influenced by wind stress (Mitchell et al., 1991). Two large-scale clockwise circulations
influence the western (outer Weddell Gyre) and eastern (greater Prydz Bay
Gyre/Australian-Antarctic Basin Gyre extension) boundaries of the survey. There was
more sea ice in the west due to the Weddell Gyre and as a result the summer mixed layers
(SMLs) were most developed from the north-east (Williams et al., 2010). The depth and
thickness of the seasonal pycnocline increased from the western to eastern boundaries of

the survey area, as a result of the deepening of the SML.

Phytoplankton distribution in the Southern Ocean depends on an interplay between
bottom-up physical processes (light, nutrient and iron availability and mixing in the water
column) and top-down grazing (Smith and Lancelot, 2004, Boyd, 2002). During
BROKE-West, nitrate concentrations were more strongly regulated by uptake during
photosynthesis than mixing and water masses and were correlated with dissolved oxygen
levels (Pearson coefficient = 0.44). Nitrate concentration was negatively correlated with
chlorophyll biomass, however silicate, phosphate and nitrate levels were all above
limiting levels. While iron levels were not measured during BROKE-West due to
sampling difficulty, it is thought that iron exhaustion due to grazing and sedimentation
limited the growth and sustainability of blooms (Wright et al., 2010). The release of iron
by melting sea ice plays an important role in the formation of phytoplankton blooms
(Sedwick and DiTullio, 1997). Salinity greatly influences seawater density and the
melting sea ice also creates a stable surface layer that is amenable to phytoplankton
blooms (Smith and Nelson, 1986). Primary productivity was higher in the summertime
sea ice zone than the open ocean, although blooms possibly associated with high iron

levels were observed in the open ocean (Westwood et al., 2010). High silicate drawdown
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and low assimilation numbers in the north-eastern region indicate high diatom growth
earlier in the season, in conjunction with the earlier onset of sea ice melt. The number of
days since full ice cover has a significant effect on phytoplankton community
composition (Wright et al., 2010). Overall, the observations during the BROKE-West
survey support the high-nutrient/low-chlorophyll status of the Southern Ocean

(Westwood et al., 2010).

Primary productivity during BROKE-West depended heavily on mixing and water mass
characteristics (Westwood et al., 2010, Wright et al., 2010), with monthly variability in
surface chlorophyll explained by sea surface temperature and wind stress (Schwarz et al.,
2010). In the water column, high productivity in the Marginal Ice Zone (MIZ) was
associated with a shallow Mixed Layer Depth (MLD) and the MLD was shallower near
the ice than in the open ocean (Westwood et al., 2010). MLD can be used to predict the
upper limit of a phytoplankton bloom size, with shallower MLDs favouring the formation
of large blooms (Mitchell and Holm-Hansen, 1991). In contrast to the relationships seen
near the ice edge, the MLD varied considerably in the South Antarctic Circumpolar
Current Zone (SACCZ) without any visible effect on phytoplankton stocks (Wright et al.,
2010). On the shelf region of the Western Antarctic Peninsula, MLD also showed no
correlation with Chlorophyll-a concentration or phytoplankton community composition
(Prézelin et al., 2000). There were significant differences in phytoplankton taxa between
the Southern Boundary and the sACCf which could be attributed to turbulent mixing and
advection of Antarctic Circumpolar Current (ACC) water (Wright et al., 2010). Turbulent
mixing affects the competition for light between taxa and causes a shift in community
composition with mixing favouring sinking phytoplankton (Huisman et al., 2004), while

Chlorophyll-a in general correlates strongly with vertical stability of the water column
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(Garibotti et al., 2003). The depth of the euphotic zone, below which there is insufficient
light for photosynthesis, was 55-100m at most stations and throughout the survey area
light availability was above the levels required for maintenance of phytoplankton
populations and promoted growth (Westwood et al., 2010). The only observed case of
light limitation was self-shading at two stations near the sea-ice edge (Wright et al., 2010)
and no significant difference in photosynthesis was seen between day and night time CTD

stations (Westwood et al., 2010).

The factors regulating phytoplankton growth and distribution are complex and therefore
simple modelling methods are unlikely to capture the spatial complexity and non-linear
nature of these processes. Here our aim is to develop a predictive model of phytoplankton
fluorescence based on selected environmental data collected throughout the BROKE-
West survey area. The model we develop here can deal with the aforementioned problems
with spatial autocorrelation and non-linearity and is widely applicable regardless of

survey design.

2. Materials and methods

2.1.  Oceanographic Data

We used conductivity temperature depth (CTD) data (Rosenberg, 2006) collected using
the 2006 Baseline Research on Oceanography, Krill and the Environment survey
(BROKE-West) in East Antarctica (see Nicol et al (2010) and the map of the survey area
with CTD stations marked as circles). The CTD was a SeaBird SBE9plus with attached
dissolved oxygen sensor (SBE43), fluorometer (Wet Labs ECO) and twenty two 10L

Niskin bottles (General Oceanics). During the survey there were 118 CTD locations,
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where data on depth, temperature, conductivity, phytoplankton fluorescence and
dissolved oxygen were resolved at 2m depth intervals. The first station was a test, so only
the subsequent 117 stations were included in our analysis. Only depths between the
surface and 250m were used because no fluorescence was observed below 250m. The
Acoustic Doppler Current Profiler (ADCP) data from the BROKE-West survey (Meijers
and Klocker, 2006) were collected using an RDI 150kHz broadband ADCP (Rosenberg
et al., 1999).

The fluorescence data were collected using a fluorometer attached to the CTD and
calibrated using High Performance Liquid Chromatography (HPLC) pigments from
water from the top 10m of the water column collected in Niskin bottles attached to the
CTD rosette (Westwood et al., 2010). The calibration was performed at the time of data
collection and the calibrated fluorescence values had units of pg Chl a L'!. While the
calibration was performed using total Chl a, it should be noted that divinyl chlorophyll

(indicating the presence of Prochlorococcus) was not present.

2.2.  Statistical Analysis

The analysis was undertaken using R 3.1 (R Development Core Team, 2014) running in
R-Studio 0.98.932 (RStudio, 2014). The mixed models were fit using generalized least
squares for fixed effect parameters combined with Residual Maximum Likelihood
(REML) for variance parameters, and Best Linear Unbiased Prediction (BLUP) to
estimate random effects (Diggle et al., 2002, Gilmour et al., 1995, Patterson and
Thompson, 1971) using the R package ASReml-R, version 3.0 (Butler, 2009). ASReml-
R was chosen over other mixed modelling packages in R because it can fit the 3D error
structure required here (depth, latitude, longitude) as well as accommodating irregularly

spaced CTD stations that were closely spaced near the ice edge and sparser offshore.
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2.3. Linear Mixed Model Specification

Our linear mixed model uses cubic smoothing splines which are piecewise third order
polynomials joined smoothly at locations within the data known as knots points, or
simply knots (Wold, 1974). Knot location and number controls spline smoothness, with
a higher number of knots causing the spline to more closely follow the data but at the risk
of poor model development due to overfitting. A range of different knot points (5 to 50)
were tested and since the model did not change depending on the number of knots for
each spline, 10 knots were chosen for computational efficiency. A station random effect
was fitted to allow prediction across East Antarctica. The model was fitted by minimising
the Residual Maximum Likelihood (REML) criterion using the Average Information
algorithm. REML is robust to misspecification of the correlation structure when using
penalized splines with correlated data (Krivobokova and Kauermann, 2007).
Furthermore, REML is readily accessible via ASreml (VSNi) and to our knowledge

provides the only off-the-shelf solution for fitting 3D correlation structures.

All explanatory variables (Table 1) were collected in sifu using the CTD with the
exception of ice-free days (the number of days since full ice cover at the CTD station)
and distance from the sea ice edge (at time of sampling), which were calculated using
satellite data. These variables were extracted using remotely sensed environmental data
accessed using the R package raadtools (Sumner and Raymond, 2015). The ice data are
from the environmental data sets included with raadtools from the National Snow and
Ice Data Centre and are available on a daily 25km resolution. The ice edge was defined
using a contour that followed the convex hull of locations around Antarctica where ice
cover had declined to zero. Distance to this polygon was calculated using an elliptical

distance calculation to account for curvature of the earth. The vertical stratification region
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(VSR) variable is a 4 level categorical variable that describes the water mass relative to

the summer stratification and mixed layers/boundaries. Continuous explanatory variables

were centred and scaled, as required in ASReml if missing values are present (Butler et

al., 2009), and fluorescence was log transformed to normalize the residuals. These

explanatory variables were chosen because they were collected on a scale that reflects the

sampling stations and biologically could plausibly effect phytoplankton.

Table 1 List of explanatory variables considered with summary statistics. For the

parameter ‘ice free days’, negative values indicate that the region was not yet ice free at

time of sampling i.e.: -35 = Region became ice free 35 days after sampling

Explanatory Variable Symbol Mean Standard Min Max
deviation

Temperature (°C) t -047 1.287 -1.99  1.97
Depth in water column (m) z 126 72 2 250
Dissolved oxygen (umol L) 0 293 59.25 174 407
Salinity (psu) s 3425 0.309 32.72  34.69
Ice free days (days since full ice i 34.69 30.77 -35 103
cover)
Distance from ice edge (km) d 277 200 231 635
Current speed (m s!) c 0.11 0.09 0 0.97
CTD station (categorical) stn Factor levels 1 - 117
Vertical Stratification Region vsr Factor levels

(categorical)

1- in the summer mixed layer!
2- in the seasonal pycnocline
3- in the Tmin layer

4- below the Tmin layer

1 Mixed layer depth was visually assessed using vertical profiles of salinity, potential temperature and
potential density rather than using a fixed algorithm to allow for high accuracy across the survey
(Williams et al 2010). Mixed layer depths were consistent with the surface gradient offset methods used

in other studies.
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The full model is specified in Equation 1 using the symbols from Table 1 with the
shorthand spl() to denote a spline and re() to denote a random effect. Collinearity between
variables was assessed using the diagonal of the Cholesky decomposition of the
correlation matrix. All values along the diagonal were > 0.37 indicating that no variables

were strongly collinear.

log(Fl)=p +z+ owvsr+ ¢t vsr+s: vsr+i+d + ¢ + spl(p) + spl(z) + spl(o) : vsr + spl(?):

vsr + spl(s) : vsr + spl(i) + spl(d) + spl(c) + re(stn) + € Equation 1

Unlike other GAM packages, ASReml fits the cubic spline in two separate parts as a
linear fixed effect term combined with a random effect spline that captures departures
from linearity (Verbyla et al., 1999). Despite this specification, the splines are not true
random components. Hence the station (s¢z) variable in the model above is the only true
random component. The :vsr and spl(). vsr terms denote an interaction between a variable
and VSR, which fits a separate intercept and spline for that variable at each level of VSR.
As VSR is a proxy for mixing, interactions with dissolved oxygen, salinity and
temperature were considered. Pair plots revealed a very weak correlation between
temperature and ice free days, however there was so much variance that an interaction

term was not considered.

Starting with the full model including all explanatory variables (Equation 1), backwards
selection with Akaike Information Criteria was used to select the best model (Cheng et
al., 2010). Conditional R? and Root Mean Square Error (RMSE) were used to assess
model goodness of fit. The conditional R? value takes into account variation explained

by both the fixed and random effects (Nakagawa and Schielzeth, 2013).
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The vertical profiles from the BROKE-West CTD data were collected at stations with a
fixed position; the potential exists for data to be correlated in three-dimensions (latitude,
longitude and depth). We used an autoregressive first order AR(1) process to account for
correlation with depth at each station (Butler et al., 2009) and an anisotropic Gaussian
surface across latitudes and longitudes at each depth. To include this correlation structure
in the mixed model specification we replace the conventional homogenous error variance
structure, R = 6?1, with a 3D correlation structure (Equation 2). In Equation 2 the typical
element of the modelled correlation matrix is specified for observations defined for two
generalised stations indexed by i and j (where i=j, or i#j), with corresponding latitudes
and longitudes and a pair of depths indexed by k and &’ (where k=k’ or k+# k’) using the

direct product of matrices formulation (Butler et al., 2009).

. _ (lat;— lat;)? (long;— long;)? (depthy— depthy,)?
[Rspatial ® Raepth]= Py J d)long ' J ¢depth '

Equation 2

The three ¢ parameters are the correlation coefficients in each direction and have
absolute values less than one. For two stations, i and j, the term (lat; — latj)? represents the
squared latitudinal distance (km) between the stations and (long; — long;)? is the squared
longitudinal distance (km). Since observations are resolved at equal depth intervals of 2
m, these unit intervals allow a pure AR(1) process to be fitted. The AR(1) process is
assumed identical at each station so that the term (Depthk - Depthyx’) where £’=k-1 (i.e.
proceeding down the water column) in Equation 2, can be set to 1 for all £. This AR(1)

error model gives corresponding model error term:
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€ijk = Qdepth ijk-1 TZijk Where Z is a random Gaussian (white-noise) error with variance
o2(1-@depth’) and o2 is the residual variance (Diggle et al., 2002). Note also that the random
station effect introduces a further additive, constant, and positive covariance between
observations at different depths for the same station where this covariance is equal to the
station random effect variance, %. The correlation between model residuals for a pair of
adjacent depths, adjusted for the spatial autocorrelation terms, is (6% + Qdepth 62 )/
(6% +62) where REML parameter estimates are obtained by implicitly averaging across

stations.

2.4. Simulation Study

A simulation study was developed to verify that ASReml was able to accurately return
the variance components of a complex model. This simulation was designed to mirror the
BROKE-West CTD data as closely as possible. We used the coordinates of each
BROKE-West CTD station and the same depths to ensure that the data set maintained the
irregular spatial nature of the real data. Temperature and Photosynthetically Active
Radiation (PAR) trends were built in as explanatory variables using exponential and
Weibull probability density functions and these were combined to create a fluorescence

explanatory variable.

To make the simulation more realistic, random error was generated and applied to the
simulated trends. This also allowed us to check that the model would not fit to noise and
would correctly identify random error, inter-station variation, spatial autocorrelation and
actual relationships with independent variables. To mirror the real data, the generated

random error was correlated in the latitude, longitude and depth planes using an AR1
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process for the depth at each station and an anisotropic Gaussian surface across latitudes
and longitudes. To do this, a random value was generated for each point from the normal
distribution, with a fixed noise standard deviation. The anisotropic Gaussian surface was
calculated using the distance between each station and using the formula (px"dist x) *
(py"dist_y). The inverse of the Cholesky factorisation of this matrix is then multiplied by
the random error values previously generated. The AR1 depth process is then included
by adding @, * &’ to each value, where k’ = k — 1, the previous depth value at a station. A
station random effect was added using randomly generated values from a normal

distribution, with mean = 0 and a fixed standard deviation across all stations.

The model fit, using this simulated data set, was of the same form as the model used for
the BROKE-West CTD data. Model selection was not done because we were mainly
interested in assessing whether the variance components could be estimated correctly.
This simulation was run 200 times and the estimated variance component for each
variable was calculated for each simulated data set. For each simulation, a new simulated
data set was generated using the same input variance values. This allowed each data set
to be different due to randomness but have the same global variance components for the

model to estimate.

2.5. Cross-validation

Due to the logistic costs of Antarctic oceanographic surveys of this nature, a second data
set was not available for model validation. Therefore 6-fold cross-validation was run on
the BROKE-West data set to assess how well the model could predict the observed values

at stations excluded in each run. As there were 6 vertical transects aligned in the north-
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south direction in the BROKE-West survey design, K was chosen to be 6. The 6 vertical
transects were dropped one-by-one and the model was fitted to the horizontal transect
and the 5 remaining vertical transects. The log(fluorescence) at each station in the
dropped transect was then predicted using the explanatory variables: observed depth,

temperature, dissolved oxygen, salinity and VSR.

3. Results

3.1. Simulation Study

The model accurately estimated all variance components over the 200 simulations (Table
2). The average conditional R? value across the 200 fitted models was 0.997 indicating
that the model had a high goodness of fit to each simulated data set. A very high R? value
such as this is expected from a model with good fit because the noise component in the
simulation is simplistic compared to real life scenarios and there are not any variables
used to form the data that aren’t input into the model.

Table 2 Relative bias and 95% Confidence Interval (CI) Coverage Probabilities of

variance component estimators (n = 200 simulations).’

True variance Relative 95% Confidence
component (0) Bias Interval
(E[0]-0)/0
Station random effect 0.22 0.0021 (0.217, 0.221)
(stn)
Error variance 0.45 -0.0019 (0.448, 0.450)
(e)
Latitude correlation 0.50 0.0001 (0.4996, 0.5003)
(Pratitude)
Longitude correlation 0.40 0.0035 (0.399, 0.402)
((Plongitude)
Depth correlation 0.35 -0.0074 (0.346, 0.349)
(Qdepth)
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3.2.  BROKE-West model fit

The variables — distance from ice edge, ice-free days and current speed — and interactions
with VSR, salinity and dissolved oxygen were dropped during backward AIC-based
model selection. Table 3 gives the parameter estimates and variance components for all
variables in the best model. Note: the temperature values have been averaged across the
4 VSRs to give an average for the full survey area. The conditional R? value is 0.81,
indicating that a high proportion of the total observed variance is explained by the model.
The temperature spline variance component was ten times smaller than the other variance
components. As the variance components are related to the splines’ smoothing
parameters, this indicates that the temperature spline relationship is closer to a straight
line than the other variables, rather than a smaller contribution to the model (Verbyla et

al., 1999).
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Table 3 Parameter estimates (on log scale) and variance components for fixed and

random effects. The spline variance components are equivalent to smoothing parameters

Fixed Effects
Parameter estimate | Spline variance component
Temperature (°C) -0.453 0.024
Depth (m) -0.016 0.338
Dissolved oxygen (uwmol L) | -0.434 0.130
Salinity (psu) -0.283 0.400

Random effects and residual variance
Variance Standard Error
Station 0.292 0.061
Residual 0.970 0.052
Depth correlation 0.934 0.004
Latitude correlation 0.841 0.046
Longitude correlation | 0.000 NA

3.3.  Spatial autocorrelation

Spatial autocorrelation in the depth and latitude directions was estimated to be very
high with @4¢p,¢p= 0.92 (SE = 0.004) and @4, = 0.85 (SE = 0.04) respectively while
there was no correlation in the longitude direction with @44 = 9.35 x 10 (SE =NA).
Overall the model tends to underestimate the true fluorescence, especially at the higher

fluorescence values near the ice edge (figure 1).
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Figure 1 (a) Mean conditional residual at each station. Negative = red, Positive =
black. Random terms are included in the residuals and circle size is proportional to the
absolute value of the residual; (b) Mean fluorescence (ug L) measured at each station.
Higher mean fluorescence is evident at stations near the ice edge. The Antarctic
coastline was sourced from the National Snow and Ice Data Centre (Haran et al., 2005,
Scambos et al., 2007).

3.4. Average trends

The average spline trends between each explanatory variable and fluorescence in the
presence of other fixed effects were extracted from the model to quantify how

fluorescence varies with each variable (Figure 2).
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Figure 2 Average partial smooth relationships for fluorescence (ug L) vs environmental
variables with 95% confidence envelopes. Smooth terms are calculated as the addition
of the linear fixed effect and random spline term for each parameter. All variables except

depth have been centred and scaled to mean = () and standard deviation = 1.

The average fluorescence-depth trend shows a Chlorophyll maximum at a depth of 50m.
Average fluorescence values at the Chlorophyll maximum were 1.0 pug L. There is
decreasing uncertainty (as indicated by the narrowing grey confidence envelopes) as
depth increases and fluorescence tends to zero because the observed fluorescence at all
stations was near-zero at depths greater than 150m, compared with higher variation seen

at shallower depths.
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3.5. Correlation structure

A likelihood ratio test between the model with (full model) and without (null model) the
correlation structure indicated the correlation structure significantly improves the model

fit (P < 0.0001; Table 4).

Table 4 Model selection results for intercept model (no correlation structure), null model

(no correlation structure) and full model (with correlation structure).

K | Log likelihood | AIC AAIC p
Intercept Model | 1 -11482 22966
Null Model 6 |-2216 4445 -18521 | <0.0001
Full Model 9 | 5553 -11089 | -15531 | <0.0001

The standardised conditional residual autocorrelation function (ACF) for the null models
showed a particularly strong correlated trend in the depth dimension compared with the
full model (Figure 3). While there appears to still be a small amount of correlation
present, it is clear that the error structure has reduced the depth autocorrelation (Figure
3). The negative spike for the full model at lag 1 is caused by most stations still showing
a small amount of residual correlation at lag 1. Furthermore, the average trends for
temperature and salinity were overfit, picking up too much curvature from the data
(Figure 4). In some circumstances sharp boundary layers, such as the low salinity pocket
that surrounds the ice edge, could cause a spline to appear overfit while reflecting a real
difference, however it is unlikely that that this is occurring in Figure 4 because the splines

are consistently undulating and this is not reflected in the real data.
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Figure 3 Mean autocorrelation of standardised conditional residuals in depth dimension

for model with (full) and without (null) a correlation structure.
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Figure 4 Salinity and temperature average trends for the null model without a correlation
structure (red) compared to the full model (black). Shaded areas are 95% confidence
envelopes. Salinity and temperature have been centred and scaled as a requirement for

variables with missing values in ASReml.
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3.6. Cross-validation

The overall RMSE for the cross validation is 0.89. This value is calculated using only
predicted values at stations that were not used in the model fit and hence will be higher
than the RMSE for the fitted model. The RMSE is approximately 8% of the range of the
log(fluorescence) values, which indicates a low standard deviation of unexplained
variance and good predictive strength. In general, the goodness of fit varied between
stations (Figure 5). The station random effect accounts for some of the unknown variable
influencing the station variances when calculating fitted values, however it cannot be
used directly for predictive purposes because there is no random effect estimate for a
novel station. This may result in some stations being poorly predicted because they are
influenced by a factor that was not measured. One method to account for this is to
generate a new random effect estimate for the novel station using the estimated random
effect variance from the other stations. The station random effect may account for some
of the spatial correlation present in the data set and hence be unnecessary in some
situations because the model contains a correlation structure. In the simulation study it
was found that the ASReml model assigned the spatial autocorrelation to the correct
component of the correlation structure, with the station random effect only picking up the

extra random station variation in the model.
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Figure 5 RMSE for each station (n = 92 predicted stations) shows a range in goodness
of fit across stations, with stations near the sea ice edge having the poorest predictions.

Antarctic coastline as in previous figure.

4. Discussion

This study successfully quantified phytoplankton-environment relationships using data
collected offshore from the East Antarctic margin during the Broke-west 2006 survey,
revealing that phytoplankton levels correlate most strongly with temperature and
dissolved oxygen levels. Unusually high Chlorophyll-a levels in comparison to previous
cruises were seen during the North-Eastern region of this survey and along the coastline,
while unusually low levels were seen to the west (Schwarz et al., 2010), which may be
attributed to a negative Southern Annular Model index and coastal upwelling. Our study

aimed to identify environmental drivers of phytoplankton distribution.
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Central to the success of this study was the application of a linear mixed modelling
approach that included a 3D correlation structure based on observation location
(latitude/longitude) and depth, as well as random effects of the observation unit (“CTD
station” in this study) that accounted for inter-station differences. We did not input station
as a fixed effect because this would result in a loss of 116 degrees of freedom as there
were 117 stations and to do so may have complicated inference and lead to model
convergence problems. We were also more interested in generalisation of the model
across the survey area, as exactly the same CTD stations would unlikely be chosen if the

survey were repeated.

Our model performed well at estimating unbiased random effects parameters under a
range of simulation scenarios, thereby ensuring population level processes, such as
temperature and salinity processes, are accurately represented to ensure unbiased
inference. The inclusion of random effects was important to avoid pseudoreplication of
data within stations, and accurate estimation of the variance components was important
to avoid bias in the fixed effects, enabling population level processes within the survey
area to be inferred. Biased fixed effects can also occur due to miss-specification of the
correlation structure, a problem which is not remedied by increasing sample size (Gurka
et al.,, 2011). We chose a biologically realistic correlation structure where data in the
depth plane were subject to autoregressive level 1 correlation while in the latitude-
longitude plane they were subject to anisotropic Gaussian correlation. The purpose of the
simulation was to check that the model could correctly estimate the variance components
and attribute them to the correct source (random error, inter-station variation, spatial
autocorrelation or actual relationships with independent variables) rather than assess

goodness of fit, so the high R? value is not a concern.
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Whilst it is attractive to work with simple models such as simple linear regression, these
models are unsuitable for complex data as they cannot accommodate correlated data or
non-linear relationships and hence are unable to facilitate population level inference in
this complex environment. We believe that our model provides a powerful,
comprehensive tool to predict how anticipated environmental changes could affect the

abundance of phytoplankton.

This model is particularly suitable for marine surveys due to its ability to accommodate
irregular sampling with a 3d correlation structure. Vertical profile data sets are ubiquitous
in marine science and our modelling method could easily be applied retrospectively,
regardless of the spatial arrangement of the vertical profile stations. Drivers of
phytoplankton variability including temperature, salinity, current velocity, sea ice
presence and nutrients are collected on all oceanographic cruises and hence a large
amount of data already exists. The model allows for general survey-wide trends to be
established as well as accounting for 3-dimensional autocorrelation, an important
advance on many previous studies. The relaxing of the regular grid constraint is important
as much marine sampling is conducted in harsh environments, such as the Southern
Ocean, where ensuring complete sampling of all stations in pre-designed surveys is
difficult. The regular spacing of stations on a grid may also be impossible due to

environmental features or weather conditions.

4.1. Spatial autocorrelation in a 3D survey area

Using the BROKE-West data, we have shown that ignoring 3D correlation adversely
affects inference through severe over-fitting of the temperature and salinity splines, as
seen by the extra curvature in Figure 4. We found correlation in only two of the three
dimensions (latitude and depth), which may in part be explained by environmental
conditions varying more with latitude than longitude with the former relating to proximity
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to the Antarctic sea ice edge and the latter not. Stations along more extreme
environmental gradients will display more similarity to nearby stations than more distant
stations. This could also reflect the survey design since transects were run in the north-
south plane and stations within transects were closer both spatially and temporally to each
other than they were to other transects. Temporal autocorrelation will not be discussed
separately here because the survey design makes it difficult to discern temporal effects

from spatial effects.

4.2. Environmental parameters influencing phytoplankton distribution

In the Southern Ocean the regulation of primary productivity is a complex interplay of
many factors (Geider and La Roche, 1994). The correlation detected in the latitudinal
direction likely indicates missing environmental variables. Silicic acid and iron
concentration have been flagged as important limiting factors (Martin et al., 1990, Boyd,
2002, Boyd et al., 2000) but were not measured during BROKE-West. Large seasonal
phytoplankton blooms are often seen in the marginal ice zone during the period of ice
melt after winter, the size and location of which is influenced by wind strength, vertical
mixing and grazing pressure (Lancelot et al., 1993). The primary ice edge bloom during
BROKE-West is reported to have occurred 35 days before ice melt (Wright et al., 2010).
Ice edge blooms proved problematic for our model’s predictions, with under-prediction
occurring at most ice edge stations. While the station random effect will partly account
for differences in ice-edge stations, it would also be possible to partition the model into
different systems using indicator variables or even fitting separate models if there were
obviously distinct systems present in a survey area. It is interesting that the ‘distance to
ice edge’ variable was not retained in the model when there is an edge effect remaining

in the residuals. One reason may be that the edge effect was less pronounced, or even
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negative on the later transects during the survey which may be due to the temporal
difference in when these transects were sampled. The transects sampled towards the end
of the survey were closer to winter than summer and ice melt may have started to decline.
A possible temporal effect could be considered in future work.

4.3.  Salinity

Our model identified that fluorescence headed towards zero in areas of high salinity,
which may be more influenced by depth gradients rather than indicating a latitudinal or
longitudinal pattern in the surface waters since the highest salinity waters were below the
euphotic zone at over 150m deep, where there was hence no fluorescence. This could also
reflect the ice-edge melt which causes a pocket of low-salinity waters whose stability
assists in the formation of phytoplankton blooms (Smith and Nelson, 1986). To further
explore the relationship between salinity and fluorescence, it would be useful to compare
the relationship between these variables in the surface mixed layer and tmin layers.
Information on species composition could help us understand why we found low
fluorescence outside the salinity range of 33.4 — 34.3 psu, with diatoms believed to

correlate more strongly with salinity than flagellates (Kang and Lee, 1995).

4.4. Temperature

Satellite data during the BROKE-West survey identified Sea Surface Temperature and
wind stress as the factors most correlated with monthly surface Chlorophyll-a (Schwarz
et al., 2010). It was noted during the survey that temperature was relatively invariant
across the survey area and its functional relationship with fluorescence would be difficult
to discern (Wright et al., 2010). Our model has allowed us to quantify this relationship

while accounting for vertical stratification and other environmental parameters and we
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found that across the survey area there was low fluorescence at temperatures above 1°C.
This is likely because these higher temperatures were present either at the surface or due
to Circumpolar Deep Water intrusions at depths deeper than 100m, where there is
generally low availability of light for photosynthesis depending on the currents and
mixing at the station. While we found a decrease in fluorescence at high temperatures, an
incubation experiment showed that low temperatures may be a limiting factor controlling

phytoplankton growth and nutrient uptake (Reay et al., 2001).

4.5. Dissolved Oxygen

Dissolved oxygen was one of the strongest predictors in the model and was the only
variable that was a product of photosynthesis rather than a direct influence on
fluorescence. While it might seem illogical to include a variable that does not influence
fluorescence, as a product of photosynthesis dissolved oxygen is a strong indicator of
phytoplankton presence, and is measured on all oceanographic surveys, so we have
included it in our model. We found that fluorescence was highest at both low and high
levels of dissolved oxygen, and lower at moderate levels. Phytoplankton produce oxygen
during photosynthesis and while the observed positive relationship between
phytoplankton and dissolved oxygen is expected, we do not know what proportion of our
dissolved oxygen measurements are phytoplankton derived. Other factors may explain
the more puzzling increase in fluorescence at lower dissolved oxygen levels, for example,
mixing and currents may have transported phytoplankton to a new location, where they
have been observed before photosynthesis has occurred. Alternatively, nutrient limitation
could inhibit photosynthesis despite there being a large amount of phytoplankton, or high
respiration by grazers and bacteria could balance production of oxygen by
photosynthesis. A longitudinal study with measurements on nutrients, currents,
Chlorophyll-a and dissolved oxygen may be better able to separate these relationships.
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As dissolved oxygen levels are a product of photosynthesis rather than a direct driver of
phytoplankton growth or distribution, this parameter is primarily of interest when
modelling fluorescence in oceanographic surveys, rather than in models forecasting

future scenarios.

4.6. Seaice and currents

Ice concentration, distance from the ice edge and current strength did not contribute any
explanatory power and were not included in the final model. Ocean currents have been
shown to influence circumpolar phytoplankton distribution (Sullivan et al., 1993). In the
BROKE-West study, ocean current strength varied little throughout the survey area and
in addition, malfunctioning equipment resulted in large areas with no data recorded.
Therefore, it is unsurprising that it made little contribution. More surprising was the lack
of statistical significance of ice levels as a predictor, given the importance of nutrient
release by melting ice to phytoplankton bloom formation (Sedwick and DiTullio, 1997,
Gerringa et al., 2012). Time since full ice cover affected phytoplankton community
composition during BROKE-West (Wright et al., 2010), however our results indicate that
it had a minimal effect on overall fluorescence. This may be a scale issue and requires
further exploration. Distance from ice edge was also expected to be an important variable
because the physical and biological ocean dynamics change drastically depending on the
proximity to the mainland and most transects were traversed longitudinally. For example,
microbial grazing on phytoplankton was higher at the western ice-edge (>100% primary
production d-") than the survey wide average (65% primary production d!) (Pearce et al.,
2010). Distance from ice edge could also have acted as a proxy for missing nutrient data,

if a latitudinal nutrient gradient influenced phytoplankton distribution or density.
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4.7. Comparison to other studies

Our model is widely applicable in analysing marine data to produce a predictive model
based on environmental parameters having dealt with 3D autocorrelation, non-linear
relationships and multiple sampling stations that were neither on a regular grid nor
randomly placed. There have been several comprehensive studies which have analysed a
range of marine data and environmental conditions around the world with characteristics
similar to our study, including the assessment of drivers of bioluminescent zooplankton
in the Mediterranean Sea (Craig et al., 2010), phytoplankton production in the Benguela
upwelling system (Lamont et al., 2014), krill biomass estimation along the West Antarctic
Peninsula (Lawson et al., 2008) and oceanographic effects on meso-zooplankton and
nano-microplankton in the Bay of Biscay (Zarauz et al., 2007). The data sets used in these
studies were diverse and differed in their aims, but we believe our model could be used
to improve upon their foundations by including random effects for multiple sampling
stations, splines for the non-linear relationships seen in many of the studies and a 3-D
irregularly-gridded correlation structure to account for any spatial autocorrelation that

may be present, regardless of sampling design.

4.8. Future developments

This study advances modelling techniques commonly used in the marine environment by
incorporating 3D spatial autocorrelation, non-linear relationships and random effects.
Based on our simulations and the prediction of missing data with a high degree of
confidence, we believe that our model, developed using the BROKE-West 2006 survey,
provides the ability to accurately predict phytoplankton fluorescence from commonly
collected oceanographic data. However to fully validate this model, especially in other
areas of the Antarctic, additional surveys will be required. An interesting extension to the
simulation study would be to assess the Signal to Noise Ratio (SNR) to ensure that the
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model is robust enough to correctly estimate fixed effects with high, medium and low
noise and correlation levels. SNR was not investigated in our simulation study because
we were primarily interested in whether the model could accurately recover the different

components of spatially autocorrelated error.

There are many avenues to explore to further this work. Iron limitation in the open ocean
is a possible reason for the higher productivity in the MIZ compared to the open ocean,
and nitrate levels are strongly correlated with depth integrated productivity (Westwood
etal., 2010) so the inclusion of bottled nutrient data could add valuable extra information.
The inclusion of mixed layer depth/depth of the euphotic zone could also be investigated
to account for the effect of mixing on phytoplankton photoadaptation. As our model
allows for predictions in a 3D environment, the incorporation of animal tag and active
acoustics data is possible. For example, tagged elephant seals can provide information on
foraging behaviour (Jouma'a et al., 2015), environmental conditions surrounding prey
fields (Vacquié-Garcia et al., 2015) and oceanographic features such as bottom water
production (Williams et al., 2016). Utilising active acoustics to include krill distribution
as a low level predator would also be a valuable addition to the model. Our model could
also be used to make 3D predictions under different future environmental scenarios, and
a longitudinal analysis would be possible if data were available over multiple sampling

periods.
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5. Conclusion

Marine profile data are very common due to the need to quantify and understand layering
and mixing in the ocean. Sophisticated modelling techniques are often necessary to
understand complex ecosystems such as this, especially where the method of data
collection introduces additional problems such as spatial autocorrelation. Marine data are
inherently spatially complex, due to the 3-dimensional survey area and difficulty in
sampling at regularly spaced locations. Simple modelling methods are often inappropriate
for complex data such as this because they cannot model non-linear relationships and do
not deal with 3D spatial autocorrelation or site random effects, both of which could lead
to inaccurate inference. Our model offers a robust method to make unbiased population
level inference about non-linear organism-environment relationships in a 3-dimensional
study area and make predictions of potential change under different environmental
scenarios.

We used spline mixed models with a 3-dimensional correlation structure to model
phytoplankton-environment relationships from CTD data across the BROKE-West
survey area in East Antarctica. We quantified the partial responses of phytoplankton
fluorescence to temperature, salinity and dissolved oxygen levels. Temperature and
dissolved oxygen levels were most strongly correlated with fluorescence, while distance
from ice edge, current strength and number of ice free days had no effective predictive
power and were not included in the final model. The inclusion of iron levels, predation
by krill and phytoplankton community structure may further improve the model. Despite
these missing covariates, the model performed well under simulation. The correlated
residuals and over-fitted spline trends seen when omitting the error structure highlight
the need to include spatial correlation. Our modelling method could be extended to

describe the 3D habitat surrounding animal tag data or make predictions based on future
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expected climactic scenarios and is widely applicable to both marine and terrestrial data,

regardless of sampling design.
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Abstract

Acoustic data is time consuming to process due to the large data size and the requirement
to often undertake some data processing steps manually. Manual processing may
introduce subjective, irreproducible decisions into the data processing work flow,
reducing consistency in processing between surveys. We introduce the R package
EchoviewR as an interface between R and Echoview, a commercially available acoustic
processing software package. EchoviewR allows for automation of Echoview using
scripting which can drastically reduce the manual work required when processing
acoustic surveys. This package plays an important role in reducing subjectivity in
acoustic data processing by allowing exactly the same process to be applied automatically
to multiple surveys and documenting where subjective decisions have been made. Using
data from a survey of Antarctic krill, we provide two examples of using EchoviewR: krill

biomass estimation and swarm detection.

Keywords: active acoustic, Antarctic krill, data processing, echosounder, Echoview, R,

package

1. Introduction

Active acoustics is a tool widely used for seabed mapping, seabed type classification,
underwater tracking and resource monitoring. A suite of active acoustic instruments are
available to carry out imaging (e.g. scanning sonars) and more quantitative tasks (e.g.
multibeam and scientific echosounders). Echosounders have evolved from being

instruments used primarily for mapping and navigation, to precision instruments capable
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of resolving organisms a few millimeters in length and providing quantitative estimates

of, for example, biomass.

This advance has seen widespread use of echosounders to detect organisms in the upper
water column of both freshwater and marine environments for commercial fisheries and
scientific purposes. In the marine environment, echosounders are routinely used to
provide data informing commercial fishery stock assessments (Gerlotto et al., 1999) and
to investigate ecological relationships such as predator-prey interactions (Benoit-Bird et
al., 2013). Oceanographic applications include seabed habitat mapping (Brown et al.,
2004) and environmental monitoring, e.g. oil seep and methane bubble monitoring after
the Deepwater Horizon oil spill (Weber et al., 2014). Echosounders are commonly used
in conjunction with image/video (McGonigle et al., 2009) and sediment sampling (van
Walree et al., 2005) to verify seabed type, or trawls to verify a biological species’

presence, size and target strength (McGonigle et al., 2009).

Echosounder transducers are most commonly embedded in a ship’s hull or drop keel,
although other platforms such as landers (Johansen et al., 2009), gliders (Guihen et al.,
2014) and other autonomous underwater vehicles (Brierley et al., 2002) have been used.
Regardless of platform, datasets from active acoustics are invariably extremely large and

time consuming to process.

In active acoustic surveys, a conventional split-beam echosounder collecting data to a
range of 500 m and pinging once per second typically collects around 8 GB of data per
day (note: this depends on settings such as range resolution and pulse length). This may
be compounded by the need to use multiple echosounder frequencies, sometimes up to
six, operating simultaneously, further inflating the size of the raw data sets. Moreover,

the routine use of broadband systems like the Simrad EK80 on board scientific and
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commercial vessels is not far away. The amount of data from such systems vastly exceeds
those from conventional sounders, and will again push storage and processing capacity.
With advances in data storage capacity, data storage is no longer a significant constraint
and enhanced computational power has enabled the development of powerful acoustic

data processing software.

There are several software packages suitable for the processing of echosounder data, e.g.

Echoview (Myriax, Hobart; www.echoview.com), LSSS (MAREC, Christian Michelsen

Research, Norway, http://www.cmr.no/index.cfm?id=421565) and Sonar5-Pro

(University of Oslo, Norway, http://folk.uio.no/hbalk/sonar4_5/). However, processing

acoustic data remains time consuming and frequently requires subjective, often
undocumented, decisions to be made by the user, such as removal of noise or bad data
and allocation of backscatter to targets. Subjective decisions can potentially bias outputs

from processed active acoustic data, for example biomass estimates.

Here we present the R package EchoviewR as a tool to: 1) reduce the processing time
requiring a human operator, 2) document processing steps, thereby generating
reproducible methodology, and 3) provide a framework within which additional
functionality can be built by members of the acoustics community, so reducing the
number of subjective decisions. The EchoviewR package is an interface between the

widely used and freely available R program (http://www.R-project.org/) and Echoview

(Myriax, Hobart; www.echoview.com). The methods used are generic and can be

transferred to other acoustic processing software with scripting options, but the package

as such is incompatible with other acoustic software.

EchoviewR uses Component Object Model (COM) scripting to run Echoview using R.

This removes a large portion of the manual processing time and enables entire acoustic
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surveys to be mostly processed automatically. It also increases consistency in processing
because the same methods and thresholds can be applied in exactly the same way to
multiple data sets. Hence EchoviewR provides a reproducible and transparent automated
method for processing acoustic data using Echoview. Some examples of its use include

filtering of data, automated biomass estimation and detection of krill swarms.

Using two examples, we illustrate EchoviewR functionality. Both examples are based on
data collected during surveys of Antarctic krill (Euphausia superba; herein krill) using a
Simrad EK60 echosounder (Horten, Norway) with downward facing hull-mounted
transducers. The first example estimates regional krill biomass, and the second example

detects krill swarms.

EchoviewR is intended to speed up processing of already clean acoustic data and is not
currently capable of removing false bottom effects, time varied gain or noise spikes,
although the package can access Echoview virtual variables to do some of these tasks,
e.g. the ‘Background noise removal algorithm’ virtual variable (De Robertis and
Higginbottom, 2007). The package is intended only as a method of automating processing

using Echoview and is not a standalone method for processing acoustic data.

2. Methods

2.1. Implementation and Dependencies

EchoviewR was created using R 3.1 (R Development Core Team, 2014; available from
http://cran.r-project.org/) with R-Studio 0.98.932 (RStudio, 2014; available from
http://www.rstudio.com/), and Echoview 6.1 (Myriax, 2015; available from

http://www.echoview.com/). Both R and Echoview are required to use the package. COM
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objective handling is achieved using the RDCOM(Client library. Additional EchoviewR
functionality uses the sp, lubridate, geosphere, maptools and rgeos R libraries. To run
Echoview via COM the following modules are required: base, bathymetric, analysis
export, and scripting. Worked example one also requires the virtual echogram module

and worked example two requires the virtual echogram and schools detection modules.

The EchoviewR package is available as open source on the GitHub repository
(https://github.com/lisamarieharrison/EchoviewR) and can be downloaded and installed
as an R library wusing the ‘install from .zip file’ option in R, or via

devtools:install github().

2.2. Expected data input for the package and worked examples

EchoviewR can work with any data type accommodated in Echoview that is accessible
via COM. The worked examples provided here have been built using data collected using

a Simrad EK60 echosounder (www.simrad.com/ek60). In itself, EchoviewR does not

create Echoview templates or calibration files, but it can use both of these via COM.

2.3. Functions of the package

There are 46 functions available in EchoviewR, which are described in Table 1. A
working example for each of these functions is given in the package documentation in
the supplementary material. Not all Echoview functions are currently available in the
package, however any functionality in Echoview that has COM accessibility could be

added by the user.
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Table 1 Functions available in EchoviewR.

Function Description

EVOpenFile Opens an existing .EV file

EVSaveFile Saves an existing .EV file

EVSaveFileAs Saves an existing .EV file to a new file
name

EVCloseFile Closes an open .EV file

EVNewFile Creates a new .EV file

EVCreateFileset Creates a new fileset

EVFindFilesetByName Finds a fileset by name

EVAddRawData Adds .RAW files to a fileset

EVCreateNew Creates a new .EV file from a template

EVminThresholdSet Sets the minimum dB threshold for an
acoustic variable

EVSchoolsDetSet Sets schools detection parameters

EVAcoVarNameFinder Finds an acoustic variable by name

EVRegionClassFinder Finds a region class by name

EVSchoolsDetect Runs schools detection on an acoustic

variable

EVIntegrationByRegionExport

Exports integration by region for an
acoustic object

msDateConversion Converts an Echoview date to readable
format

EVAddCalibrationFile Adds a calibration file to an .EV file

EVFilesInFileset Finds the names of all .RAW files in the
fileset

EVClearRawData Clears all .RAW files from a fileset

EVFindFilesetTime Finds the start and end date and time of a
fileset

EVNewRegionClass Creates a new region class

EVImportRegionDef Imports a regions definition file

EVExportRegionSv Exports Sv data for a region

EVAdjustRegionBitmap Adjusts the settings of a region bitmap
object

EVFindLineByName Finds an Echoview line by name

EVChangeVariableGrid Changes the horizontal and vertical grid for

an acoustic variable

EVExportIntegrationByCells

Exports integration by cells for an acoustic
variable

EVAddNewAcousticVar

Adds a new acoustic variable

EVShiftRegionDepth

Changes the depth of a region
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Function Description

EVShiftRegionTime Changes the time of a region
EVGetCalibrationFileName Finds the calibration file name
EVNewLineRelativeRegion Creates a new line relative region
EVNewFixedLineDepth Creates a new fixed depth line
EVDeleteLine Deletes a line object
EVRenameLine Renames a line object
EVExportRegionDef Exports region definitions for a single
region
EVFindRegionByName Finds a region object by name
EVFindRegionClass Finds a region class by name
EVExportRegionDefByClass Exports region definitions for an entire

region class

EVIntegrationByRegionByCellsExport | Exports integration by region by cells for an
acoustic variable

lawnSurvey Generate coordinates for a rectangular lawn
survey design

zigzagSurvey Generate coordinates for a zig-zag survey
design

centreZigZagOnPosition Centers a zig-zag survey on a given position

centreLawnOnPosition Centers a lawn survey on a given position

exportMIF Write a map information file for import into
Echoview

EVImportLine Imports an Echoview Line object

3. Examples

Here we present two examples using EchoviewR: 1) krill biomass estimation, and 2) krill
swarm detection and classification. The purpose of these examples is to demonstrate that
these analyses can be run automatically using EchoviewR and to show how Echoview
output can be seamlessly linked to analyses carried out using R. Both examples assume
that the reader is familiar with Echoview and are not intended to be a tutorial on
Echoview. It is also assumed that the reader is familiar with R and programming concepts

such as for loops.
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The data are a subset of the EK60 split-beam data collected during the Krill Acoustics
and Oceanography Survey (KAOS) carried out from the Aurora Australis. The KAOS
survey was undertaken in January - March 2003 off North Eastern Antarctica. Data from
38, 120 and 200 kHz were written to RAW files. For clarity in the worked examples, we
have used the 38 and 120 kHz data because these frequencies are the most useful for

detecting and identifying the example species, Antarctic krill.

To demonstrate that biomass estimation and swarm detection can be automatically run
on multiple transects where the data are too large to practically read in to Echoview at
once, as is the case for most acoustic surveys, segments of six KAOS transects are

provided and each 10-20 km transect segment is processed separately (Figure 1).

iy
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Figure 1 Map showing location of 6 the example transects in yellow. Map created using

Google Earth 7.1.2.2041.
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Both these examples have been tested using R 0.98.932 and Echoview 6.1.32.26088. The
data to run these examples are available at the Australian Antarctic Division Data Centre

[doi: 10.4225/15/54CF081FB955F]. An example of the data flow for the template used

in this example is available in the supplementary material.

Before running each example some pre-processing is demonstrated to get the datainto a
convenient format for analyzing each transect in a separate .EV file. In this pre-processing
phase, the six transects are imported separately into Echoview and the following tasks

are performed:

1. Create a new .EV file for the transect using the Echoview template file;

2. Import the EK60.RAW data files for that transect;

3. Add an Echoview .ecs calibration file;

4. TImport .evr region definitions files to remove off effort data;

5. Import a seabed exclusion line (lineKAOS.evl)

6. Close and save the file and repeat for remaining transects.

These steps and the code to run them are demonstrated in the “Read data using the R
package EchoviewR to control Echoview via COM” pdf vignette that is available with
the supplementary material. Pre-processing must take place before examples 1 and 2 are

run.
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3.1. Example 1 — Krill biomass estimation
Automated biomass estimation of krill is demonstrated by processing the six transects
separately in Echoview and exporting the data into R for density and biomass calculation.

For each transect, the following steps are taken in Echoview:
1. Open the transect’s .EV file
2. Set the grid for 38kHz and 120kHz noise removed values to 50 ping * Sm depth
3. Export integration by cells for 38kHz and 120kHz noise removed values

This produces two .csv files for each transect, one containing 38kHz and one containing

120kHz integrated data (i.e. a mean volume backscattering strength value for each cell).

Then, the following steps are taken in R:
1. Import the 38kHz and 120kHz files for the transect
2. Remove no data values (set -999 and 999dB as NA) and depths <0

3. Calculate the krill difference window of 120kHz — 38kHz for each integration cell

using the following formula:
ASUU = 517120” - 51738i].

where 517120”- = mean 120kHz backscattering strength for cell at
horizontal integration interval j at depth i and SV38U = mean 38kHz

backscattering strength for cell at interval j at depth i.
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4. Apply the dB difference technique (e.g. Watkins and Brierley (2002)) by setting

S V120, values outside the survey-specific dB difference range of 1.04 >= ASv;;

<=14.75 dB to NA as these windows are unlikely to contain krill.
5. Convert the backscattering strength, Svlzoij for each cell to linear scale, SV120;;
(Echoview uses a log scale by default):

S'Uij
SU;j = 10 10

6. Calculate mean volume backscattering strength (MVBS) across all depths for
each 50 ping integration interval using the following formula:
1 nj
MVBS; = 1010g10z z SV120,
7 =0
where j = integration interval, n = maximum depth within integration interval j

and SV120;,~ backscattering strength at 120kHz for interval j at depth i.

7. Calculate the density, p;, for each integration interval:

MVBS;—TS

where nj = maximum depth of integration interval j, MVBS; = mean volume

backscattering strength for interval j as calculated above and TS = target strength for 1kg

of krill at 120kHz.
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8. Calculate the overall transect density, pj, for transect k:

where j = integration interval, k = transect and sy = number of integration intervals

within transect k

9. The full survey density is then estimated using the Jolly & Hampton (1990)
method, which uses the weighted density of each transect by length to calculate
total survey density. Note that the formula has been modified to remove stratum

as no strata were used in the KAOS example survey design:
D = WiPy

where k = transect, wk = LL—k, Ly = length of transect k in km, L = length of all

survey transects in km and P, = estimated density for transect k.

10. The full survey biomass estimate, b, is then calculated by multiplying the

weighted survey density by survey area:

S
Il
>
b

where p = estimated survey biomass and A = survey area in km?.
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Both the Echoview and R components above are run within loops to allow each transect

to be run separately. This is done to demonstrate how looping over transects or days of a

large survey is possible, rather than manually loading and processing each set of files.

Users could format their code to process transects in parallel if processing time becomes

too long. The EchoviewR and R code for the above analysis is shown in the “Biomass

estimation using the R package EchoviewR to control Echoview via COM” pdf vignette

that is available with the supplementary material. Table 2 shows the estimated density,

length and biomass for the sample transects and survey area.

Table 2 Estimated transect krill areal density and survey biomass for the six example

transects.
Transect Number Mean estimated Transect length Biomass
density (gm2) (km) (tonnes)
1 3.26 13 42
2 20.66 22 454
3 43.74 15 656
4 22.57 22 467
5 6.66 18.5 123
6 4.99 21.5 107
Full Survey Area 16.79 112 43,497

Example 1 has demonstrated the use of EchoviewR to automatically process and extract

data by transect from Echoview. Krill density and biomass are then calculated in R using

the extracted .csv files.
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3.2. Example 2 — Swarm detection and classification

Automated swarm detection and classification of krill aggregations is demonstrated here
using EchoviewR. The code for this example is available in the “Schools detection using
the R package EchoviewR to control Echoview via COM” pdf vignette file available with
the supplementary material. Each transect is processed separately to demonstrate how a
full survey can be processed automatically using loops. Schools detection is run in
Echoview and then detected aggregations are classified and clustered in R. The following

steps are undertaken in Echoview using EchoviewR:

1. Open the transect’s .EV file

2. Run schools detection on the variable 120 7x7 convolution, assigning all detected
schools to the region class “aggregations”.

3. Export 120 and 38 kHz data for regions of class “aggregations” to a .csv file using
the EVintegrationByRegionExport function. This exports a single mean Sv for

each aggregation

In this example, all detected aggregations are exported. However, it is also possible to
export only aggregations classified as krill using the 120-38 aggregation dB difference
filter variable included in the template. The filter sets the Krill aggregations data to
NULL if the 720-38 aggregation dB difference value for that cell is outside the [1.04,

14.75] dB difference window for the KAOS survey.
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The exported aggregations can now be classified and clustered in R. Each transect is run

separately using a loop:

1. Import the 120kHz and 38kHz export by regions files

2. Remove null values (-999)

3. Calculate the 120 — 38 kHz difference window and subset data to only
include difference values between [1.04, 14.75]

4. If no aggregations were classified as krill, exit and move to next transect

5. If krill aggregations are found, run Partition Around Medoids cluster
analysis using the ClusterSim library using selected metrics (tutorial and
example metrics available in Appendix B)

6. Print a summary table of the number of aggregations assigned to each
identified cluster. Table 3 shows the number of krill swarms identified and

the number of clusters detected for each transect

Table 3 Number of unique krill aggregation clusters identified for each transect.

Transect Number Number of krill swarms Number of Clusters
1 0 0
2 37 9
3 105 6
4 64 3
5 8 3
6 14 6

This example has demonstrated how school detection, data export and cluster analysis

can be run automatically for an entire acoustic survey.
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4. Discussion and future directions

EchoviewR is a free interface between R and Echoview that provides automated acoustic
data processing. It drastically decreases manual processing time and reduces subjectivity
by providing an easy way to implement exactly the same method across surveys. This
package enables reproducible methodology, which is a vital part of the scientific method.
We have given examples of automated krill biomass estimation and school detection
using EchoviewR that demonstrate the use of the package on a subset of the KAOS
survey. This method can easily be extended to run a full survey by transect, day or any

other subset required.

There are a number of limitations to the package. Currently it is only available for use for
single and split beam sonar data. EchoviewR is also unable to handle removal of noise
and false bottom effects, which must be completed prior to using the package. Not all
functions in Echoview are currently available using EchoviewR, however any COM
functionality in Echoview can be implemented in R. The COM hierarchy help page is a

useful starting point for those wishing to add extra functions.

EchoviewR is accessible as free software from the EchoviewR GitHub repository
(https://github.com/lisamarieharrison/EchoviewR) and is readily available for
community development. An important next step is the implementation of false bottom
and noise removal using EchoviewR, and it is our hope that the acoustic community will
take the tools that we are providing and extend the package to include the functionality
that they require. We also underline that the methods described here are generic, and hope
the work can inspire the implementation of scripting interface in other acoustic

processing software.
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6. Supplementary Material

The published pdf of this chapter is included in Appendix A.

The supplementary materials available in Appendix B are:

1. Pdf vignettes
a. Read data
b. Biomass estimation
c. Schools detection
2. Plot of data flow
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Abstract

Antarctic krill (Euphausia superba) are often thought to be solely passive drifters and
opportunistic feeders, however here we show that krill are more mobile than previously
thought. Using a hurdle model, we simultaneously examined environmental drivers of 1)
the probability of krill being present and 2) density (gm2) given presence. We found that
krill consistently position themselves in response to environmental variables across a
large area (1.3 million km?) of East Antarctica. Krill were more likely to be present in
shallow, more saline, warmer water. This is unlikely to be solely due to current systems
since the survey design crossed two major oceanographic boundaries and there was no
reflection of these circulation patterns in the model’s residuals or random effects. High
krill densities occurred in areas with both high oxygen concentration and increasing food
availability. This indicates that krill actively aggregate around these essential resources
and do not simply coalesce into high-density swarms by chance. Our conclusions suggest
that models based primarily on krill transport by currents need to be supplemented to
include active behaviour based on environmental conditions and food sources if we are
to accurately predict krill distribution in the Southern Ocean.

Keywords: Antarctic krill, Southern Ocean, phytoplankton, hurdle model, acoustic

survey, distribution

1. Introduction

The extent to which organisms are able to influence their population distribution by active
movement as opposed to passively drifting within dynamic ocean systems is of major
importance to conservation and management in dynamic pelagic ecosystems, yet has

rarely been tested (Putnam et al 2016). This is exemplified by Antarctic krill (Euphausia
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superba) as the degree to which Antarctic krill are passive drifters or active swimmers
has been deliberated for decades, with management approaches assuming they are
passive drifters, despite evidence of strong selection for active behaviour (Richerson et
al., 2015). Antarctic krill are both the focus of the world’s largest krill fishery (Siegel,

2016; pg. 387) as well as an essential part in the Southern Ocean food web (Siegel, 2016;

pg 321).

While large amounts of krill survey data exist, much remains unknown about the drivers
of their highly patchy distribution. Physical forcing by current systems, local retention
and Circumpolar Deep Water intrusions have been invoked to explain large scale krill
distribution patterns (Pifiones et al., 2013). While there is no single study that has mapped
circumpolar krill distribution and currents, overlaying historical krill distribution on maps
of surface circulation indicates that overall distribution may be related to gyres (Nicol,
2006, Amos, 1984) and distribution is limited to the extent of the Southern Boundary
(Tynan, 1998). Krill may be distributed around these major oceanographic features by
advection or through actively choosing to be at these locations because they are attractive
due to abundant food or beneficial environmental conditions. These two potential causes
are difficult to disentangle and doing so is the aim of our study. At a small scale relative
to these large oceanographic features, krill form swarms and must actively swim to do
s0, however the extent of active swimming on a larger scale remains a mystery. We assess
the mechanisms behind large scale krill distribution using data collected over a large area

(1.3 million km?) and spanning two important frontal systems in the East Antarctic.

Large scale circulation patterns are certainly important during the larval stage,
aggregating larvae in areas where Circumpolar Deep Water encroaches on to the
continental shelf and conditions are favourable for egg development before ascent and
hatching (Pifiones et al., 2016). After metamorphosis, juvenile and adult krill form
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aggregations, or swarms, and patchiness varies with overall biomass (Siegel, 2016; pg.
279, Brierley and Cox, 2015). Swarm type changes throughout the life-cycle, with larger,
denser swarms occurring when krill are young and immature, and swarms transitioning
to small more diffuse swarms as the krill mature (Tarling et al., 2009). Coalescing swarms
may form layers of krill, with the edges of swarms touching but the discrete swarms not
fully merged (Watkins and Murray, 1998). These layers are different to those of
individual swarms because the intra-layer population differences are just as large as
between-layer differences, while individual swarm characteristics are more distinct.
While there is biological evidence that environmental factors are important for the life
cycle and distribution of krill, there are few quantitative studies of the drivers of krill

density at regional scales (Siegel, 2016; pg. 26-28, Nicol, 2006, Nicol, 2003a).

The key requirements for krill survival include adequate food, suitable habitat and
predation avoidance (Alonzo and Mangel, 2001). We might expect that if krill are not
passive drifters, swarm characteristics (e.g. location, size and density) will have drivers
based on these key requirements to maximise the probability of survival. Vertical
distribution of swarms depends on mixing depth, with most krill swarms occurring above
the thermocline (Godlewska et al., 1988), and dense swarms more likely to occur in
higher water temperature (Krafft et al., 2012). The need to find food and avoid predators
is believed to be more responsible for the formation of localised krill swarms in the
Marginal Ice Zone than the direct impact of physical forcing (Daly and Macaulay, 1991).
Instantaneous swarm shape is influenced by the competing needs of accessing oxygen for
respiration and avoiding predation, with these two requirements being absolutely
necessary for an individual to survive to be able to forage (Brierley and Cox, 2010).
Swarms closer to the Antarctic coastline are larger and denser than their counterparts

further offshore, which may be because krill are clustering for protection from land based
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air-breathing predators (Klevjer et al., 2010). Subsequent to the immediate demands of
finding oxygen and avoiding predation, foraging is a longer term goal (Brierley and Cox,

2010).

Observational studies demonstrate that krill are capable of active foraging rather than
only feeding opportunistically on food that they come upon by chance. Krill have been
observed to forage actively in captivity (e.g. (Hamner and Hamner, 2000, Kawaguchi et
al., 2010)) and similar behaviours have been inferred from survey data (e.g. (Quetin and
Ross, 1991)). In small tanks in captivity, krill have been observed to use chemoreception
to locate phytoplankton, then use localized area foraging upon reaching the bloom
(Hamner and Hamner, 2000). Calculations suggest that krill aggregations can rapidly
exhaust food supplies in a phytoplankton bloom and must change locations constantly to
maintain their energy intake (Nicol, 2003b). The formation of larger swarms may allow
for more efficient foraging if individuals within a swarm can communicate and larger
swarms have been observed in areas of higher surface productivity than low productivity
(Tarling et al., 2009). In addition to these instantaneous effects on krill swarm size and
location, food resources are known to have long term effects on population size. Food
availability constrains local population growth rates, with simulation showing that the
optimal growth strategy is for krill to switch between low and high metabolic states based
on food abundance (Groeneveld et al., 2015). Large phytoplankton blooms can trigger an
early start to the mating season (Schmidt et al., 2012) and sustained high food levels can
increase reproductive success, resulting in higher juvenile krill recruitment in the
following season (Saba et al., 2014). This has been observed in the West Antarctic
Peninsula, where years of high productivity lead to an increase in krill stocks in the

following year (Saba et al., 2014). Food stocks clearly have short and long term effects
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on krill populations and individual swarms and are an important consideration when

studying drivers of krill distribution.

We hypothesise that krill respond to their environment and seek to distribute themselves
within environmentally favourable areas, particularly areas with high food concentration.
We define this to be ‘active swimming’, which contrasts with ‘passive drifting” which we
define as large scale krill transport by currents. We test our hypothesis using data
collected over 1.3 million km? of ocean in the East Antarctic and a hurdle model, which
is a flexible statistical model that can accommodate different sets of variables for krill
presence/absence and density given presence. If our hypothesis is incorrect and krill are
not aggregating through active swimming, then there should be strong evidence of this in
the model’s residuals because the survey design traversed three large oceanographic
current systems. Our methodology overcomes the limitations of standard modelling
methods which do not adequately deal with both zero-inflation and random effects in
continuous data and have enabled us, for the first time, to develop predictive models of

krill to quantitatively examine the passive drifting hypothesis.

To visualise how the observed distribution of krill can help us understand their habitat
preferences and let us test our hypothesis, a conceptual figure demonstrating observations
under passive drifting and active swimming is shown in Figure 1. Under a simulated
uniform temperature environment (Figure 1a), krill with no environmental preference, or
alternatively no capability to aggregate around a preferred temperature, will show
uniform probability of presence across all temperatures (Figure 1b). In contrast, under a
hypothetical water temperature preference of 0.5°C (Atkinson et al., 2006), krill will
display a non-uniform probability of presence and cluster about the their preferred 0.5°C

water temperature (Figure 1c) . The combination of water temperature (a) and

133



environmental preference (b and c) will determine the observed krill distribution under
passive drifting (Figure 1d) and active swimming (Figure le). Our model uses
observations of krill (i.e. Figures 1d or e) to try and understand which underlying

environmental  preference is  occurring  (i.e.  Figures Ib or o)
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Figure 1 Conceptual figure of krill distribution under passive drifting (left column) and
active swimming (vight column) with temperature preference of 0.5°C. Data for figure
are simulated. In a hypothetical environment (a), the preference of krill (b = drifting and
¢ = swimming) will determine their final location (d & e). The same number of krill
appear in (d) and (e) however in (e) they are strongly clustered around their temperature
preference of 0.5°C. Krill image from Gemma Carroll, Macquarie University (with

permission).

2. Methods

We used data from the 2006 Baseline Research on Oceanography Krill and the
Environment (BROKE-West) survey in the South-East Indian Ocean (2010). The data
are from 37 Conductivity Temperature Depth (CTD) stations with coincident EK60
scientific echosounder data in the top 250m of the water column. CTD data were collected
using a SeaBird SBE9plus with an attached dissolved oxygen sensor (SBE43),
fluorometer (Wet Labs ECO) and Photosynthetically Active Radiation (PAR) sensor (LI-

COR).

The echosounder data were processed and integrated across a regular 50 m horizontal by
10 m vertical grid. Krill were identified and krill density calculated from 120 kHz and 38
kHz acoustic data using standard methods (Jarvis et al., 2010) and the software programs
Echoview (Myriax, 2015), R (R Development Core Team, 2014) and the R package
EchoviewR (Harrison et al., 2015). The full acoustic data set contains over a billion data
points, and the EchoviewR package allowed us to process the data around the CTD

stations automatically by providing a scripting interface between R and Echoview. Krill
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densities were averaged across the closest 100 bins at 10 m depth increments and paired

to the CTD measurements.

To examine our hypothesis that environmental conditions influence krill presence we
extended traditional hurdle model methods to accommodate the acoustic grid data being
zero inflated (half of the grid cells contained no krill) and site random effects. We
developed our model using R with the probability of krill presence modelled using a
binomial mixed model (Zuur et al., 2009; pg. 324) in Ime4 (Bates et al., 2015) and
conditional krill density using a linear mixed model (n/me; (Pinheiro et al., 2016)). In
both models, we used sampling station as a random effect to account for extraneous inter-
station differences. The density model contained an additional identity variance structure
with station as a categorical variable because heterogeneity of variances between stations
occurred. We were unable to use the standard hurdle or zero-inflated models because our
density data are continuous and these functions can’t accommodate random effects.
Potentially, krill presence-absence and krill conditional density could be driven by the
same environmental conditions so for both models we used the same candidate
explanatory variables of: cell depth, temperature, salinity, dissolved oxygen, time of day
and phytoplankton fluorescence. Krill conditional density data were loge transformed,
and explanatory variables were centred and scaled. Backwards Akaike Information
Criterion (AIC) based model selection was used and model fit was assessed using 40-fold
cross-validation (Arlot and Celisse, 2010), where one station was dropped at a time.
During each iteration of the cross-validation, a random effect was generated for the
dropped station from a normal distribution with mean = 0 and the estimated standard
deviation from the fitted model. This is required to avoid skewing the predictions during
back-transformation resulting in biased inference. Area Under Curve (AUC) of the

Receiver Operator Characteristic (ROC) was used to assess cross-validation goodness-
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of-fit for the presence/absence model and marginal and conditional R? were used for the

density model (Hanley and McNeil, 1982, Nakagawa and Schielzeth, 2013).

3. Results

The best presence/absence model, selected by AIC, had depth, temperature and salinity
as explanatory variables along with a station random effect (Figure 2 and Table 1). See
supplementary materials (Appendix C) for details on model selection and model
diagnostics. The drop one station cross-validation AUC was 0.72 indicating good
predictive power even at novel stations (see supplementary materials for ROC curve).
The Variance Inflation Factors of all variables were less than 5 indicating low co-
linearity.

Table 1 Model summary for best model of y ~ depth + temperature + salinity + re(stn)

with family binomial (link = logit). Note: Parameter estimates are on the link scale.

Coefficient | Estimate Standard Error | Variance Inflation Factor
Depth -1.203 0.144 2.51
Temperature | 0.368 0.110 1.22
Salinity 0.310 0.142 2.68
Random Effects
Variance Standard Error
Estimate
Station 0.709 0.842

Krill were found in shallower, warmer and saltier water (Figure 2). While the
presence/absence component of the model indicates that krill presence is linked to
environmental conditions, krill density given presence was strongly influenced by both
phytoplankton concentration and oxygen (loge(density) = loge(phytoplankton) * oxygen
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+ re(stn)) (Figure 3). A plot of raw dissolved oxygen and phytoplankton is available in
Appendix C. A variance structure to account for heterogeneity of variance between
stations was required. The marginal and conditional R? were 0.26 and 0.81 respectively
indicating that the CTD station random effect accounts for a large amount of inter-station

variation.
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Figure 2 Predicted probability of krill presence for our selected model across the
BROKE-West survey area. Significant variables were a) depth, b) temperature and c)
salinity. Dotted lines are 95% confidence intervals. Plots only cover the range of the

observed data so the y — 0 and y — 1 asymptotes are not always visible.
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Figure 3 Krill density given presence averaged over the random effects to give survey
wide inference showing the interaction between Dissolved Oxygen and Phytoplankton
Fluorescence. High conditional densities of krill only occur when both oxygen

concentration and fluorescence are high.

To assess whether there are residual patterns that align with the prevailing current systems
in the survey area, we plotted the station random effects (subplots a and ¢) and model
residuals (subplots b and d) for the presence/absence and density models with the
locations of the front systems overlayed (Figure 4). An obvious pattern of residuals or
random effects on either side of the front boundaries would provide evidence of
aggregation by passive drifting. There is no obvious pattern in these plots which supports
our hypothesis that the aggregation we observed was achieved through active swimming

rather than passive drifting on these large scale current systems.
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Figure 4 Bubble plots of presence/absence model station random effect (a) and average
station residuals (b), and density model station random effect (c) and average station
residuals (d). Grey values are positive and black values are negative. Plots are shown
with the Antarctic continent (solid line), southern Antarctic Circumpolar Current front
(sACCY; dot-dash line) and Southern Boundary of the Antarctic Circumpolar Current
(SB; dashed line). Shapefiles for Antarctic coastline were sourced from the National
Snow and Ice Data Center (Scambos et al., 2007) and shapefiles for the fronts were
sourced from the Australian Antarctic Data Centre (Orsi and Harris, 2001 (Updated
2015)).
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4. Discussion

Here we have clearly demonstrated that krill distribute actively in relation to both their
environment and food availability, rather than simply drifting passively. These
relationships are valid across the BROKE-West survey region (30-80°E) in the East
Antarctic and we would not have found strong relationships between krill presence and
environmental variables if krill were merely distributed at random. Furthermore, these
relationships are unlikely to be solely due to krill transport by current systems since the
BROKE-West survey pattern cut two oceanographic boundaries (the Southern Antarctic
Circumpolar Current Front and the Southern Boundary Front) (Meijers et al., 2010, Nicol

etal., 2010), and these patterns were not seen in our model’s residuals or random effects.

Advection has been suggested as the dominant force behind krill distribution (Hofmann
and Murphy, 2004, Amos, 1984, Murphy et al., 2004) and while it certainly plays an
important role in krill circumpolar distribution, our modelling suggests that on the scale
of the BROKE West survey, krill are able to seek out environmentally preferred areas
and source localised food and oxygen. There are important implications arising from
active distribution rather over passive drifting. Life history modelling reveals that active
behaviour in krill would result in higher survival probability and increase reproductive
success by 70% (Richerson et al., 2015). Our results corroborate a life history modelling
study which showed reproductive and survival benefits for active swimming in krill
(Richerson et al., 2015) and crucially, our results show that forecasting of krill
distribution requires much more sophisticated data collection and modelling than relying

on the assumption of passive drifting (Kock et al., 2007, Marin and Delgado, 2001).
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4.1. Krill relationship to environment

We found a strong link between krill density given presence, high oxygen concentration
and high food availability and provide quantitative evidence supporting observational
accounts of active feeding in krill (Hamner and Hamner, 2000, Quetin and Ross, 1991,
Kawaguchi et al., 2010). Links occur between krill and Chlorophyll-a at large spatial and
temporal scales in the Scotia Sea and Antarctic Peninsula (Santora et al., 2012, Silk et al.,
2016), however our modelling clearly showed that across the East Antarctic (30 to 80°E)
food availability is insufficient alone to explain high-density krill areas; high dissolved
oxygen concentration is also required. These high oxygen concentrations may be
necessary to sustain dense krill swarms during grazing. At a local scale, accessing oxygen
and avoiding predation influences swarm shape (Brierley and Cox, 2010), and our results
show that this trade off extends to foraging, with food as well as oxygen and anti-
predation requirements underpinning localised krill distribution. High oxygen
concentration could also result from persistent phytoplankton patches, indicating that
krill may specifically target areas with stable blooms. High oxygen levels may also allow
krill to graze for longer before depleting localised oxygen levels. Krill can maintain
constant respiration down to oxygen levels of 55% air saturation, after which krill oxygen
consumption declines (Tremblay and Abele, 2016). Oxygen levels were always above
60% air saturation in our data set which could explain why oxygen was not a significant
factor in the presence/absence model: oxygen saturation never fell below 55% and so did
not adversely affect krill. The relationships revealed during our modelling of krill actively
sourcing food and oxygen further demonstrates that krill are not solely opportunistic

feeders, and aggregate around patchy resources.

Our model found that the probability of krill presence increased with higher temperature,
salinity and deeper depths in the water column. This likely reflects areas where the warm
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and nutrient rich Modified Circumpolar Deep Water (water south of the Antarctic
Circumpolar Current with similar properties to Circumpolar Deep Water) flows over the
continental slope, around which the most krill was seen during BROKE-West (Williams
et al., 2010). Circumpolar Deep Water intrusions benefit krill by providing optimal
conditions for egg hatching, with the warmer water hastening development and causing
hatching to occur at a shallower depth leaving the larvae with a shorter distance to ascend
(Hofmann and Hiisrevoglu, 2003). Circumpolar Deep Water intrusions also increase
primary productivity through the input of nutrients into the system (Prézelin et al., 2004,
Nicol, 2006). This theory is supported by observational reports of high krill densities in
association with Circumpolar Deep Water and Lower Circumpolar Deep Water in the
Ross Sea (Sala et al., 2002, Taki et al., 2008). However, while a positive correlation
between krill presence and Circumpolar Deep Water was expected in the West Antarctic
Peninsula, no relationship was found using Generalised Additive Models (Lawson et al.,

2008).

While our data set covered a large spatial extent (1.3 million km), like many surveys in
remote and environmentally extreme locations, we viewed a small snapshot in time at
each site. Whether krill had just arrived, had already depleted the resources or were
passing through to more favourable areas remains unknown. Even if behaviour was
known, krill feeding rates alone are highly variable with individual feeding rates varying
from 0.37 — 86 pg Chlorophyll-a d-!' (Perissinotto et al., 1997). The site random effects
partly account for this unknown behaviour and reduce the confounding that could occur
in a study with numerous sites separated spatially and temporally (Davies and Gray,
2015). This gives us confidence that the relationships we have demonstrated are real,
rather than an artefact caused by the survey design or the small temporal window through

which we view the ecosystem.
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4.2. Future directions

Krill are highly seasonal animals, displaying vastly different behaviour in winter when
food and light become limited (Meyer, 2012). In this work we have extended current
modelling techniques to clearly support the hypothesis that krill actively position
themselves in relation to their environment. For this information to be actively used to
model and predict krill movement it is necessary to determine whether the relationships
we observed extend across different seasons as we believe is likely. This will require
additional data across seasons. The two-part nature of our model is ideal for answering
this question because it allows us to partition the importance of variables to
presence/absence and density. The decline in krill respiration (30-50%) and feeding (80-
86%) during autumn and winter (Meyer et al., 2010) would likely alter the shape of the
surface in Figure 3, as the priorities for an individual’s survival change to reflect the
increased difficulty in finding sufficient food. To examine whether krill avoid areas
without any phytoplankton when food sources are scarce in winter, the significance of
phytoplankton fluorescence in the presence/absence model during winter could be tested.
A seasonal analysis could identify variables that krill are particularly sensitive to
throughout different times of the year and help us understand the effects of extreme

environmental events during winter.

Our hurdle model does not include a current model, however the BROKE-West survey
cutting two large current boundaries allowed us to infer that krill were not passively
transported by these systems because there was no evidence of this in the model
diagnostics. It is an important future direction to match krill densities to high resolution
current models to further assess the extent of active positioning, especially at smaller

scales than the frontal systems encountered during BROKE-West. There is weak
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evidence for krill swarm movement in relation to local current systems (Tarling and

Thorpe, 2014) but this needs further quantitative study.

Kfrill spatial distribution and feeding preferences differ among age classes (Schaafsma et
al., 2016, Atkinson et al., 2002, Siegel et al., 2013), and a similar approach to our hurdle
model could be used to compare the relative importance of each variable to the
presence/absence and density of krill at different stages of the life cycle. High-spatial
resolution trawl data would be required to differentiate between age classes, as this is not
currently possible from acoustic data alone. Modelling of important variables at each life
stage could help understand the potential consequences of todays’ environmental

conditions on next (and future) years’ stock.

4.3. Summary

In summary, we have shown that krill aggregate around key resources, and presence-
absence and density are driven by different sets of conditions. The probability of krill
presence is highest around CDW intrusions and where krill are present they aggregate
around food and oxygen resources. Together, this contradicts the long-held belief that
krill are solely passive drifters. Adding missing variables such as nutrients (in particular,
ammonium and iron) could further improve our results. Krill data have been harvested
globally for decades (Siegel, 2016; pg. 21, Everson, 2008) and our two-part mixed
modelling methodology could be retrospectively applied to assess whether similar
behavioural patterns occur in other euphausiids, and whether these relationships display
seasonality or change over time. The answer to these questions is a missing piece of the
puzzle in our understanding of a widespread and ecologically important, but costly to

study, group of organisms.
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Abstract

Productivity in the oceans is heightened around oceanographic and bathymetric features
such as fronts and islands. This can have a flow-on effect, providing increased food
availability for higher trophic level species. Using data from a combined visual and
acoustic survey, we examine the hypothesis that higher Antarctic krill (Euphausia
superba) density provides a lucrative resource for humpback whales (Megaptera
novaeangliae) at a remote Antarctic feeding area, the Balleny Islands (67°S, 164°E). We
assess whale presence at the foraging area in relation to prey, productivity and
environmental variables using density surface modelling. We found stark differences in
krill swarms at the islands compared with the adjacent open water. Swarms were twice
as dense and three times more numerous at the Balleny Islands compared with open
water, suggesting that the islands offer a profitable feeding opportunity. At the feeding
area, humpback whales were found in deeper and more productive waters with medium
krill densities. These relationships, along with the high krill availability around the
islands, may relate to the Island Mass Effect. Our krill swarm and spatial analysis
suggests that island feeding areas are important resources. We have provided the first
quantitative study of habitat use by whales in an area that has rarely been visited, but has

recently become a part of the world’s largest marine protected area.

Keywords: Antarctic krill, humpback whale, Southern Ocean, density surface model,

foraging, Island Mass Effect, prey field
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1. Introduction

Productivity has a bottom up effect on ecosystems and is critical for sustaining large
Antarctic krill (Euphausia superba) populations and the Southern Ocean predators that
forage on them (Groeneveld et al., 2015, Ware and Thomson, 2005). Four key features
limit productivity in the oceans: light, nutrients, mixing and grazing (Barnes and Hughes,
2009; pg 32). Light and macronutrient/iron availability are the most important limiting
factors for phytoplankton growth in the Southern Ocean (Lancelot et al., 2000, Smith and
Lancelot, 2004). Melting ice creates amenable conditions for productivity by: 1) releasing
nutrients and trace metals, 2) stabilizing the upper water column through stratification of
low salinity water and, 3) seeding blooms through the release of algae from the ice (Smith
and Nelson, 1986, Sedwick and DiTullio, 1997). Oceanic features such as bathymetry,
islands and frontal zones are also highly productive areas due to the nutrients brought up
by upwelling (Bost et al., 2009, Laubscher et al., 1993, Gove et al., 2016). Large swarms
of krill that measure tens to hundreds of kilometres can be concentrated around these

locations for months at a time (Siegel, 2016; pg 300).

Frontal zones might provide a lucrative feeding area, but lack the predictability brought
about by the fixed location of high productivity around islands, which is likely highly
important to migratory predators searching for foraging areas. The increased productivity
around islands, due to modification of the physical oceanography, is known as the Island
Mass Effect (Elliott etal., 2012, Gove et al., 2016). There are several mechanisms through
which the Island Mass Effect operates. At South Georgia and the Kerguelen and Crozet
Islands, the Island Mass Effect causes increased productivity through the release of iron
(Blain et al., 2001, Planquette et al., 2007, Atkinson et al., 2001), a limiting nutrient that

has been flagged as a possible cause of the high-nutrient low-chlorophyll status observed
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throughout most of the Southern Ocean (Boyd et al., 2000). Increases in productivity and
zooplankton around the Prince Edward Archipelago have also been attributed to the
Island Mass Effect through nutrient inputs (Boden, 1988). Increased productivity and a
general boosting of higher trophic levels in the food-chain also occurs through the
creation of a stable surface layer by meltwater and rainwater run-off, as seen around

Bouvet and the South Sandwich Islands (Perissinotto et al., 1992).

Apex predators aggregate around biological hotspots, such as fronts and seamounts (Bost
et al., 2009, Scales et al., 2014, Morato et al., 2010), although there are likely temporal
lags between productivity and predator presence. In Southern Ocean ecosystems, krill
populations are known to increase after multiple years of high productivity due to
increased spawning success, which could create an annual lag (Saba et al., 2014). Shorter

time lags also occur, due to the time taken for predators to find prey (Sims et al., 2008).

The world’s largest predators are the baleen whales, who collectively consume an
estimated 3 — 120 million tonnes of Antarctic krill annually (Siegel, 2016; pg 325). They
migrate annually from temperate and tropical breeding grounds in winter to cold but
energetically-rich polar waters in summer, where they must consume enough prey to
sustain themselves until the next summer. Hence the availability of krill at the summer
foraging grounds is critical for survival and population growth (Mori and Butterworth,
2004, Nicol et al., 2008). Baleen whales are known to aggregate around frontal zones for
feeding where there is increased productivity (Doniol-Valcroze et al., 2007). Resource
partitioning is evident between humpback, fin and minke whales, which preferentially,
although not exclusively, target different age classes and species of krill (Santora et al.,

2010, Friedlaender et al., 2009).
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Globally, there have been numerous studies linking whale sightings to surface
productivity and prey density. In the Northern Hemisphere, positive correlations between
feeding humpback whales and Chlorophyll-a, an indicator of productivity, have been
recorded in the California Current system (Tynan et al., 2005, Thompson et al., 2012).
Areas of upwelling are important, with feeding humpback whales in the Gulf of St.
Lawrence clustering around frontal zones (Doniol-Valcroze et al., 2007). Regression
analyses have revealed different but highly non-linear trends recorded between whale
sightings and Chlorophyll-a in the Bering Sea (Zerbini et al., 2015) and the Western
Antarctic Peninsula (Friedlaender et al., 2006). The reason for the different non-linear
trends could be due to temporal lags between Chlorophyll-a and whales, or a spatial
mismatch between Chlorophyll-a and whale sightings. While the reported relationships
of humpback whale sightings and Chlorophyll-a have been varied, consistent
relationships have been observed with krill. Positive relationships between humpback
whale sightings and krill density have been documented in the Antarctic (Herr et al.,
2016, Murase et al., 2002, Reid et al., 2000), the Barents Sea (Ressler et al., 2015), North

Greenland (Laidre et al., 2010) and the California Current system (Benson et al., 2002).

The foraging grounds of humpback whales in the Southern Hemisphere, are divided into
six areas. There is an interchange between breeding populations in all areas with the
exception of the West Antarctic Peninsula (Area 1), where whales from the south-eastern
Pacific Ocean (Breeding Stock G) reliably return (Amaral et al., 2016). In addition to
coastal Antarctica, numerous Southern Ocean islands are feeding grounds for humpback
whales including South Georgia, the South Sandwich Islands (Horton et al., 2011, Zerbini

et al., 2006) and the Balleny Islands (Constantine et al., 2014).
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The Balleny Islands are an uninhabited cluster of Antarctic islands located between New
Zealand and the Antarctic continent (67°S, 164°E; see Figure 1 for map) and have recently
been identified as a feeding ground for the east-Australian (E1) population of humpback
whales (Constantine et al., 2014). The E1 population migrates annually from the warm
calving grounds of the Great Barrier Reef to the krill-rich Antarctic waters to feed (Gales
et al., 2009, Smith et al., 2012), and photo-ID/genotyping has matched 38 whales seen at
the Balleny Islands to previous sightings off Eastern Australia, New Zealand and New
Caledonia (Constantine et al., 2014). The Balleny Islands cover only a small area,
extending approximately 150 km latitudinally and longitudinally, and it is not known
whether they provide preferred foraging habitat for whales or how krill is distributed
around the islands. This is important information for baseline monitoring and future
management of the Ross Sea Marine Protected Area, the world’s largest Marine Protected

Area, which indirectly benefits whales through fishing bans and currently allows whaling.

We assess whether humpback whales are attracted to the Balleny Islands due to high prey
availability by comparing krill swarm metrics list them around the islands to an adjacent
area of open ocean. Around the islands we evaluate how prey availability, bathymetry,
productivity and indicators of upwelling such as salinity and temperature relate to whale
distribution at the feeding ground. We hypothesise that there will be more krill at the
Balleny Islands than in open water and that around the islands, whales will aggregate in
areas of high krill density and upwelling, as indicated by high productivity, high salinity
and low temperature. We use Kolmogorov-Smirnov tests to compare swarms at and away

from the islands, and a Density Surface Model to test our hypotheses about whale
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distribution around the islands using data from a 2015 wildlife survey of the Balleny

Islands.
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Figure 1 Map showing the Balleny Islands with the cruise track overlayed in black.
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2. Methods

2.1. Survey data

The data are from a 2015 marine mammal survey with contemporaneous prey field
mapping at the Balleny Islands undertaken by the National Institute of Water and
Atmospheric Research on board the RV Tangaroa. The survey around the islands took
place from the 2" — 6! of February 2015 (Figure 1). Marine mammal sighting data were
collected as per Kinzey et al (2000) by two observers located in the ship’s “Monkey
Island”, located one level above the bridge but below the crow’s nest. Both observers
scanned the waters 180 degrees in front of the vessel with 7X50 handheld Fujinon
binoculars and recorded the reticle and angle between the trackline and the ship for each
sighting. Perpendicular distance to each sighting was calculated using the reticle, the
angle between the trackline and the sighting and mean observer eye height (15 m) using
the equation on page 12 of Kinzey et al (2000). On-effort times were defined as times
when two observers were actively searching for sightings from Monkey Island. Off-effort

times are when there were one or no observers actively searching for whales.

Underway oceanographic data were collected using a Wetlabs ECO-TRIPLET
(Chlorophyll-a) and a Seabird 21 thermosalinograph (salinity and temperature). Acoustic
data were collected using a calibrated Simrad EK60 Echosounder operating at 38 and 120
kHz frequencies and krill identified using standard ‘dB-difference’ techniques (Cox et
al., 2011). The acoustic backscatter was processed to obtain volumetric density of krill
(gm) using the software package Echoview (Echoview, Hobart, Australia, 2015) and
the R package EchoviewR (Harrison et al., 2015). Integration intervals were vertically
integrated to the shallowest of either the seabed echo or the top 250 m of the water

column, and had a mean length of 1600 m.
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2.2. Statistical Analysis

2.2.1.  Comparison with outside the Balleny Islands

To assess whether krill were more abundant around the Balleny Islands compared to
adjacent open waters, swarms around the islands were compared to swarms encountered
one day after leaving the Balleny Islands. Swarms were identified and extracted using
Echoview (Cox et al., 2011). A threshold of -70dB was used, and krill swarms were
identified using a decibel difference window (Svi20knz — Svasknz) between 0.37 and 12
dB. Encounter rate was calculated as “swarms encountered per kilometre” to account for
differences in ship speed. Swarm internal volumetric density (gm=) and swarm length
(m) distributions at and away from the Balleny Islands were compared using a one-sided
Kolmogorov-Smirnov test.

2.2.2.  Whale distribution around the islands

Density Surface Models (DSMs) can provide a flexible method of modelling line transect
environmental and sighting data by merging Generalised Additive Modelling (GAM), to
incorporate non-linear environmental coefficients, with i) distance sampling, to account
for imperfect detection, and ii) survey design, to allow for opportunistic surveys with
repeat sampling and unequal effort (Miller et al., 2013). A DSM with a half-normal
detection function was used to evaluate whether whale sightings are correlated with
environmental or biological features whilst accounting for imperfect detectability. The
detection function accounts for imperfect detectability, which may vary if larger whale
groups are easier to see, so a coefficient for sighting group size was considered. The best
detection function (hazard-rate, half-normal) and the support for the group size covariate
was assessed using Akaike Information Criterion (AIC). The DSM was fit using the best

detection function, and a GAM linking whale sightings to environmental variables which
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includes a s(x, y) surface. A soap-film smoother (Wood et al., 2008) was used so that the
s(x, y) smoothed around islands, rather than through, with island boundaries input into
the smoother as polygons. As the Poisson family with an over-dispersion parameter was
used for the GAM component of the DSM, AIC was not available because the model is
not based on a full likelihood so a p-value backwards step-wise model selection was used

instead (o = 0.05).

Variables considered in the DSM are summarised in Table 1. AMSR2 satellite-sensed
daily sea ice coverage data were sourced from the University of Bremen (Spreen et al.,
2008; http://www.iup.uni-bremen.de:8084/amsr2data/) however sea ice coverage was
low throughout the survey area as the RV Tangaroa did not travel in areas of heavy ice
coverage, so this variable was not included in the model. For the DSM, krill data were
vertically and horizontally integrated and mean density per integration interval was
calculated, rather than extracting individual swarms as per the island/open water
comparision. The DSM was fit using the dsm package (Miller et al., 2016) in R (R
Development Core Team, 2014; version 3.2.3) and R-studio (RStudio, 2014; version

0.99.892).
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Table 1 Summary of explanatory environmental and biological variables measured

around the Balleny Islands that are investigated as correlates with humpback whale

sightings using a Density Surface Model.

Variable Short Minimum | Maximum | Mean Standard
name Deviation

Bottom depth (m) depth 85 2283 741 542

Chlorophyll-a (uglL- | chl 0.22 4.41 1.49 1.13

D)

Salinity (psu) salinity 33.41 34.15 33.78 0.14

Sea Surface SST -1.6 -0.6 -1.11 0.24

Temperature (°C)

Krill density (gm™) krill 0 2307 46.54 221.6

Easting (m) X 372842 504886 438471 | 37622

Northing (m) y 2495177 2666548 2579171 | 47198

DSMs can incorporate both unequal effort over a survey area and repeated transects. To
ensure that repeated visits to the same area were considered independently in the DSM,
the survey was coded in four separate transects based on parts of the survey with
continuous on-effort times, where observers were actively searching for sightings.
‘Segments’ within each transect were the krill integration intervals and the underway
environmental data were interpolated onto these intervals. As sighting distances reached
up to 13.8 km from the transect, sightings were matched to the closest segment to ensure

that the most relevant set of environmental variables were associated with that sighting.

DSMs allow the user to specify the segment area to account for unequal effort. At times,
the vessel was much closer to the islands than the segment width (taken to be the
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maximum distance a sighting was observed at = 13.8 km), causing a reduction in segment
area because the land restricted the field of view. To account for this, a polygon of each
segment was overlayed over a polygon of the Balleny Islands land masses and the
percentage overlap was calculated. For segments where an overlap occurred, the segment

area was reduced by the percentage of overlap with land.

3. Results

There were 63 sightings of humpback whales over 39.2 hours of time on effort. Group

sizes ranged from 1 — 7 individuals (mean = 2.16; SD = 1.35).

3.1. Comparison to areas outside of the Balleny Islands

The sighting rate of 1.7 sightings/hrs around the Balleny Islands dropped to only 0.17
sightings/hr the next day. The encounter rate of krill swarms around the Balleny Islands
was also much higher than the day after the ship left the island area. Krill swarms around
the islands were encountered at a rate of 0.15 swarms/hr while on the next day the
encounter rate was 0.05 swarms/hr. While there were more swarms encountered around
the islands, they were significantly shorter in length than those encountered the next day
(p <0.001, Table 2). Despite being shorter in length, the island based krill swarms were

denser (p = 0.061, Table 2), however this difference was not statistically significant.
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Table 2 Comparison of krill swarm metrics around the Balleny Islands and in the

adjacent open water.

Open Water Balleny Islands
Effort (km) 512.2 1083.2
Number of 25 160
swarms
Swarms/hour 0.05 0.15
Minimum 159 32
Swarm length (m) Maximum 1012 2789
Mean 350 288
Minimum 3 2
Swarm density (gm) Maximum 198 1463
Mean 33 57

3.2. Whale distribution around the islands

The best DSM included easting, northing, Chlorophyll-a, krill density, salinity and
bottom depth (Table 3) and had a Deviance Explained of 46.8%. Model selection results
for backwards p-value based selection are available in the supplementary materials (Table
S2). Except for Chlorophyll-a, which displayed a linear relationship; all other variables

had non-linear relationships with whale count and hence were modelled as smooth terms

(Figure 3).
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Table 3 Output of GAM results from Density Surface Model. Chlorophyll-a and the

intercept are parametric coefficients and s() represents a smooth term.

Family = Poisson with a log-link function. The over dispersion parameter was
estimated as 3.33, resulting in 46.8% deviance explained.

Parametric Coefficients

Estimate Standard P-value
Error
Intercept -18.229 0.433 <0.001
chl 0.514 0.192 0.008
Smooth terms
Estimated Degrees of P-value
Freedom
s(x, y) 5.1 0.002
s(krill) 3.6 0.017
s(salinity) 5.7 0.029
s(depth) 2.2 0.002

The s(x, y) surface models extra spatial variation that is not accounted for by the other

variables in the model. There was a ‘hotspot’ of high counts of humpback whales to the

East of Young Island, and an area of low counts between the two southern islands that

was not accounted for by the other variables (Figure 2).
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Figure 2 Contour plot of s(x, y) Easting-Northing surface of relative whale count on the
natural log scale from the density surface model. The grey polygons are the Balleny
Islands land masses. This surface models the extra spatial variability not accounted for
by the other predictors. The outer boundary was calculated from a convex hull of the

outer transect points and was increased in width by the sighting distance.

While the krill-whale relationship (Figure 3a & 3b) indicates that there is a quadratic like
relationship when krill is >500 gm™, there were only 4 observations driving this
relationship, so it should be interpreted with caution. This is reflected in the large
confidence intervals in this plot. Relative frequencies of krill decline exponentially

(Figure 4).

The relationship between whale count and salinity (Figure 3¢) appeared to overfit even

when the basis dimension was restricted. The ‘wavy’ line hovers around zero, indicating
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that while this relationship was statistically significant, its effective influence is likely
low particularly because the range of salinity values was low (33.41 — 34.15 psu). The
relationship between whale count and bottom depth (Figure 3d) appeared to be the most
robust of these smooth terms, showing higher whale numbers in deeper water. The
estimated number of whales decreases sharply at 1900 m depth and the confidence
intervals become extremely large, which is driven by the lack of data (only three

observations) at depths greater than 1900 m.

Chlorophyll-a was initially included as a smooth term in the DSM, however its effective
degrees of freedom was 1 and the smooth term plot was linear so this term was changed
to a parametric coefficient (Figure 3e). For every 1 pgL! increase in Chlorophyll-a, there

was an estimated increase of 1.7 whale sightings.
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Figure 3 Smooth effects of a) Krill density, b) Krill density zoomed to 0-500 gm~ , ¢)
Salinity and d) Bottom depth on humpback whale sightings from the density surface
model. Linear Chlorophyll-a term is shown in e) and is centred to mean=0 for consistency
with other plots. Dashed lines are 2*Standard Error; the distribution of observations is

given as a rug plot along the x-axes.
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Figure 5 Fitted half-normal detection function (solid line) with whale group size
covariate. Custom sighting frequency bins of unequal size were used because the distance
between reticle marks on the binoculars increases with distance from transect. The
number of observations in each bin is displayed above each bar in the histogram. A
truncation distance was not used because the detection function would not converge when
various truncation distances were tested.
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The best detection function included a coefficient for group size (AICnun = -40.3; AlCsize
=-46.2), as larger groups were seen further from transect than smaller groups, most likely
because they were easier to see (Figure 5). See the supplementary materials for AIC-

based model selection results (Table S1).

Humpback whale abundance was predicted over a grid of 10x10 km cells, in locations
where all variables were measured (Figure 6). The highest number of individuals were
predicted to be in the North-East of the survey area, and this area also had the lowest
Coefficient of Variation. In general, the Coefficient of Variation for each cell was high,
with 36% of cells having a Coefficient of Variation of 2 or higher, indicating that the

Standard Error was at least twice the value of the estimate for those cells (Figure 6b).

The total estimated humpback whale abundance from the DSM is 182 individuals (SE =
27). This prediction only includes animals in the shaded 10x10 km grid shown in Figure
6, as a count can only be calculated in areas where all environmental variables were
measured. This estimate includes a correction for decreasing detectability of whales

further away from the transect, i.e. the detection function.
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Figure 6 Predictions from density surface model of (a) Predicted whale count and (b)
Coefficient of Variation (CV) over a 10 km grid. Note: Predictions can only be made in

cells where all variables were sampled.

4. Discussion

Islands can offer a predictable and profitable feeding ground for migratory predators
through enhanced productivity caused by the Island Mass Effect. We found dense, small
and numerous krill swarms at the Balleny Islands compared to large diffuse layers of krill
in the adjacent open water, which is likely responsible for the high number of humpback
whales seen at the islands. We found that around the islands, whales aggregate in more

productive areas with medium krill densities and bottom depths greater than 350m.

The number of whales seen around the Balleny Islands (1.6 sightings/hr) was not only
higher than in nearby open water, but also higher than previously observed in other areas
of the Southern Ocean. In the West Antarctic Peninsula, surveys in the early 2000s found
encounter rates of 0.54, 0.32 and 0.55 sightings/hr (Friedlaender et al., 2006, Thiele et
al., 2004) and off East Antarctica the encounter rate for a 1995 survey was 0.23

sightings/hr (Thiele et al., 2000). The sighting rate at the Balleny Islands is also higher
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than previously seen around other island groups. At the South Shetland Islands, the
sighting rate of humpback whales over a 5-year survey was 0.39 sightings/hr (Santora et
al., 2010) and at South Georgia, only one humpback whale group was seen over 110
hours of effort (Rossi-Santos et al., 2007). The high number of whale sightings and high
krill abundance at the Balleny Islands suggests this area provides important foraging

habitat for humpback whales.

The threefold increase in the number of krill swarms around the Balleny Islands
compared to open water could be due to increased productivity around the islands caused
by the Island Mass Effect, which has been documented around other islands in the
Southern Ocean (Blain et al., 2001, Planquette et al., 2007, Boden, 1988, Perissinotto et
al., 1992). The smaller (p < 0.001), denser (p = 0.061) and more populous krill swarms
around the Balleny Islands are likely less energetically expensive to find and consume
than the few long but sparsely populated swarms in open water. Lunging during feeding
incurs a large energetic cost for humpback whales, with each extra lunge resulting in
decreased dive times and longer surface intervals (Goldbogen et al., 2008). Humpback
whales can take advantage of dense krill swarms by repeatedly targeting a dense swarm
within the same dive using a reverse-looping behaviour (Ware et al., 2011), filtering and
then swallowing the prey while positioning for the next lunge (Simon et al., 2012).
Feeding in an area of higher food occurrence and density could hence conserve energy if

it allows for fewer lunges and a shorter time to locate swarms.

Whale distribution at the feeding ground is influenced by biological (Chlorophyll-a and
krill) and environmental factors (salinity and bottom depth). The non-linear relationships
with these factors (except Chlorophyll-a) highlight the need for non-parametric

approaches when modelling complex data. Here we discuss the importance of the
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biological and environmental factors that we found were correlated with humpback whale

distribution around the Balleny Islands.

4.1. Chlorophyll-a and Krill

Productivity in the water column can have an effect on higher up trophic levels through
enhancement of the food chain (Ware and Thomson, 2005). Our observed positive linear
relationship between whale sightings and Chlorophyll-a indicates that the whales around
the Balleny Islands are seeking areas of high productivity. These patches of high
productivity could be facilitated by nutrient inputs from the Island Mass Effect, either
from upwelling or nutrient runoff. The Southern Ocean is generally considered to be iron
limited, and iron inputs increasing productivity due to the Island Mass Effect have been
observed at three other Southern Ocean island groups (Atkinson et al., 2001, Blain et al.,

2001, Planquette et al., 2007).

Whales may aggregate in high productivity areas due to high krill availability. However,
we found no relationship between krill density and Chlorophyll-a. Rather than indicating
a true lack of relationship between krill and phytoplankton, this may be an issue of scale.
Another possibility is that Chlorophyll-a could be more persistent than krill swarms,

offering whales a stable indicator of areas with generally high krill densities.

A secondary explanation for a positive correlation between whale sightings and
Chlorophyll-a could be fertilization, where the nutrients (particularly iron) released by
defecating whales cause phytoplankton blooms (Nicol et al., 2010). We believe this is
unlikely to be the explanation for our observed relationship because the time scale for
bloom formation after whale presence is in the order of 13-16 weeks (Visser et al., 2011)

and we observed the relationship on a much smaller temporal and spatial scale.
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For krill densities below 500gm-3, we found an increasing relationship with whale count
to 220gm™ of krill, after which whale count decreased. This occurred despite krill
frequencies decreasing exponentially after 50gm. This indicates that the relationship we
observed is likely to be due to a preference rather than in incidental occurrence because
krill up to 220gm™ are far more common and hence more likely to be found. At krill
densities higher than 500gm-, the relationship was largely influenced by four points of
unusually high krill density and should therefore be regarded with caution. A recent study
in the West Antarctic Peninsula found a similar result to our model, with humpback
whales seen in areas of ‘medium’ krill density rather than low or high density (Herr et
al., 2016). Although this is a comparable pattern to the one we observed, in that study
there were lower overall krill densities, so ‘medium’ was only 20 — 40 gm™. Our krill

densities were significantly higher and were skewed.

When prey resources such as krill are patchily distributed, predators must decide how
long to remain at the current patch and whether it is worth seeking a more lucrative patch
at the risk of expending energy searching and travelling with no guarantee that such a
patch exists. Optimal foraging theory dictates that the predator should leave the patch
when the patch’s marginal capture rate drops below the average capture rate in the habitat
(Charnov, 1976). When faced with high uncertainty, optimisation is not a reliable strategy
and robust satisficing, which involves maximising the robustness to uncertainty of a
satisfactory outcome, is a preferred strategy (Schwarz et al., 2010). Information-gap
robust satisficing is thought to occur in ecological systems more often than optimal
foraging (Carmel and Ben-Haim, 2005). We found that whale sightings at the Balleny
Islands were highest at medium krill densities, which could be because average patches

still provide the best chance of satisfying current energy needs, given the high uncertainty
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about 1) whether there are better patches, ii) how much energy is required to locate these
lucrative patches and iii) how far away these patches are likely to be. For whales at low
krill densities, this risk becomes worth taking, or even necessary, hence the low whale

numbers observed at low krill densities.

4.2. Bottom depth
We found a lower number of whale sightings where bottom depths were greater than
350m, after which the smooth relationship hovers around zero, indicating that there are
fewer whales close to the islands’ shores. This may be due to the dynamics of the Island
Mass Effect, if upwelling caused by the disruption of currents by the islands occurs
slightly offshore. Future research to characterise the island mass effect around the Balleny
Islands could test this hypothesis. Reported correlations between humpback whales and
bottom depth in the literature show that whales (especially females and calves) prefer
shallow water (Smultea, 1994, Guidino et al., 2014, Felix and Haase, 2005), however
these studies are from winter breeding grounds where the priorities of the whales are
different. In our study, there may be some discrepancy between the bottom depth at the
location of the actual sighting and the recorded bottom depth because we only have depth
data directly below the ship, and sightings are paired to the closest point on transect. High
resolution bathymetric data could be matched to the true location of each sighting to
assess the discrepancy between depth at the ship and depth at the sighting. However, this
variable couldn’t easily be included in the DSM because bottom depth varies with

distance from transect rather than being constant within a segment.
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4.3. Salinity
Whale sightings showed a highly non-linear relationship with salinity, with peaks at low,
medium and high densities. This occurs despite the basis dimension for the smooth term
being reduced to force smoothing and minimise the chance of overfitting. The undulating
relationship could be because salinity is much more consistent (33.41-34.15 psu) around
the Balleny Islands than many other locations, because, apart from melting sea ice, there
are no large freshwater inputs. A contrasting example is the Dominican Republic, where
a salinity gradient of 1 —32 %o occurs and humpback whales avoid the low salinity areas
around the freshwater inputs (Mattila et al., 1994). If salinity is indicative of upwelling,
its importance may depend on the whale’s activity. This has been seen in British
Colombia, where salinity is only associated with whale foraging in shallow waters (Gregr
and Trites, 2001). We found no evidence of a salinity — bottom depth interaction, which
could be because our DSM was only fit to the portion of the survey around the islands,
so whales migrating over deep water are not included. If salinity depends on upwelling
generated by the Island Mass Effect around the Balleny Islands, the non-linear
relationship we observed could also be influenced by current patterns around the islands,
which are not included in our model but would be partly accounted for by the spatial
smooth, s(X, y). A dedicated investigation of any Island Mass Effect occurring around the
Balleny Islands would help us better understand the relationship we have found with

salinity.

4.4. Limitations and future directions

One variable missing from our model is ocean current strength and direction. The ship’s
Acoustic Doppler Current Profiler was not operating at the same time as the echosounder

so we do not have underway current data. Satellite based current data were considered
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but are collected at a larger temporal and spatial resolution than our DSM segments (mean
length = 1596m) and often don’t cover the Southern Ocean. The most important feature
that current data could add would be an indication of upwelling locations and a
characterisation of the Island Mass Effect, however because our Chlorophyll-a, SST and
salinity variables would reflect areas where upwelling causes high productivity, we

believe this did not significantly impact on the outcomes of our study.

The short survey time of three days makes it impossible to assess how long the whales
remain around the Balleny Islands. We cannot tell from our data if the Balleny Islands
are a ‘stop-over’ foraging ground for whales on the way to the Antarctic continent or
whether they provide a foraging ground in which whales are resident there the entire
summer. If the same individuals return to this area each year, these animals would be
particularly vulnerable to changes in krill stocks around the Balleny Islands. While
Southern Hemisphere humpback whales are believed to follow the classical feeding
model, where feeding occurs only in the Southern Ocean during summer, stable isotope
analysis and direct observations indicate that E1 humpback whales may diverge from this
strategy and supplement their diet in temperate waters (Eisenmann et al., 2016, Owen et
al., 2016, Owen et al., 2015). Due to the remote location of the Balleny Islands it is
financially and logistically difficult to conduct long term monitoring to assess the role
that this feeding ground plays in E1 humpback whale feeding strategies. However as
technology advances it might not be long before it becomes possible to count whales in
geographically isolated locations using unmanned aerial surveys (Linchant et al., 2015),
gliders (Baumgartner et al., 2013), fixed passive acoustic sensors (Marques et al., 2009)

or high resolution satellite imagery (Fretwell et al., 2014).

The large distances to sightings (up to 13 km) meant that often individuals could not be
identified and that animals may have been recounted on a previous day. The DSM partly
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accounts for this by including survey design through the specification of unique
transect/sampling blocks, however our confidence in the abundance estimate would be
higher if individuals could be identified. Satellite tracking of humpback whales in the
West Antarctic Peninsula feeding grounds has revealed that they travel large distances of
17 — 75 km/day (Dalla Rosa et al., 2008). Given that the Balleny Islands survey area is
only approximately 150km in both latitude and longitude, the whales could have
potentially moved anywhere in the survey area over the three days that we observed them.
Hence, identifying individuals to avoid recounting would help give a more robust
abundance estimate and would allow for fluke matching to known individuals from the
E1 and Oceania populations. Another issue that could potentially have down-biased our
population estimate is availability bias, where whales were in the survey area but were
not available for sampling because they were diving or inclement weather conditions

made it impossible to see them.
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5. Conclusion

The unusually high numbers of humpback whales seen at the Balleny Islands are likely
attracted by the threefold increase in krill swarms compared to the adjacent open water.
These abundant and concentrated krill swarms may be easier to find and forage on than
the spread-out swarms seen in open water. Whale distribution around the islands was
non-uniform, with a hot-spot on the North-Eastern side of the islands. There were higher
counts in water > 350m deep with medium krill density and high productivity. We believe
that the abundance of krill and hence higher whale numbers at the Balleny Islands may
be due to an Island Mass Effect increase in productivity in an otherwise relatively
featureless expanse of ocean. Further long-term studies are needed to quantify annual
trends and identify whether the same individuals return to the Balleny Islands each
summer. This is essential information if we are to adequately manage the marine
protected area that encompasses the Balleny Islands and ensure that they remain a pristine

feeding area for whales.
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In this thesis I set out to provide new insights into the relationship between key ecosystem
components through the development and application of advanced quantitative
techniques. I successfully applied these techniques to data collected in the Southern
Ocean to examine drivers of the distribution and abundance of key organisms in the
Southern Oceans that span three trophic levels, starting with phytoplankton, then
plankton grazers (krill) and finally krill predators (whales). The processes that drive
spatial distribution at each trophic level were found, as predicted, to centre on food
availability or in the case of phytoplankton, energy sources and environmental conditions
that promote photosynthesis. Here I synthesise the findings of the thesis, discuss their
implications for our understanding of the Southern Ocean ecosystem, and close with ideas

for future research.

There is a wide array of statistical methods available for modelling ecological data, many
of which are necessarily intricate to deal with the complex characteristics of the data. In
Chapter 2 I conducted a literature review of the more common statistical modelling
methods, detailing a comparison between the two main approaches to ecological models,
the frequentist and Bayesian paradigms. This chapter provides background information
about the modelling methodology used in this thesis and a rational for why these methods
are necessary to account for complexities such as correlations and population level

inference.
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1. Processing large acoustic data sets

Counting animals at each level of the food web requires different in situ data collection
methods. For example, phytoplankton data are collected using fluorometry, Niskin bottle
sampling or tows; mid-level predators (primarily krill and fish) are counted from active
acoustics or net surveys and high level predators (air-breathing marine mammals and
seabirds) using visual surveys, passive acoustics or tracking. While these methods all
involve a large time cost during collection, the size and complexity involved in
processing active acoustics data sets requires a second large investment of time in the
data processing stage — something often overlooked when planning ecosystem surveys.
Raw active acoustics data sets can easily contain billions of data points, which must be
correctly integrated, identified and then interpreted in the appropriate manner for each

different purpose.

To more easily manage the data processing required in this thesis I developed an R
package (R Development Core Team, 2014), EchoviewR, to automate the processing of
active acoustic data sets using the commercially available software, Echoview
(Echoview, 2015). EchoviewR increases reproducibility and cuts down on user error
through the use of code scripts. As processing techniques advance, or new thresholds for
the identification of noise or species are adopted, it allows us to automatically re-run the
data processing by simply modifying a line in the original script. EchoviewR is a valuable
tool for any scientist using active acoustics, whether it be for fish or krill detection, sea
floor mapping or oil/gas plume detection. It has been made widely available on the
software repository GitHub and in the publication Harrison et al (2015) in the journal
Frontiers in Marine Science. I employed this package to efficiently process the acoustic

data used to calculate Antarctic krill densities in a further two chapters in this thesis.
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2. Phytoplankton distribution in a 3D environment

Phytoplankton form the base of the Southern Ocean food web and their abundance and
distribution shapes ecosystem dynamics and supports the entire food web. In such large,
dynamic and complex ecosystems it is difficult to quantify the drivers of distribution over
a survey area while reducing confounding by extraneous effects. The spline mixed model
I developed to assess drivers of phytoplankton distribution in Chapter 3 is widely
applicable in both terrestrial and marine settings, regardless of survey design and could
hence retrospectively be applied to the large amount of vertical profile data that already

exists.

In Chapter 3 I found that phytoplankton density off North-East Antarctica correlated with
salinity, temperature, depth in the water column and dissolved oxygen levels. Sea ice,
distance from coastline and current strength and direction were not significantly
associated with phytoplankton levels and were not included in the final model. This
model is the first to assess drivers of phytoplankton distribution while accounting for 3D
spatial autocorrelation, non-linear relationships using data from multiple irregularly
spaced sampling stations. It was found to be unbiased using simulation. I demonstrated
the importance of accounting for spatial complexities such as 3D autocorrelation, which
can bias results if not included. Ignoring spatial autocorrelation led to significant over-

fitting problems in the model along with high residual correlation.

An important practical application of this research is to predict phytoplankton abundance
based on future expected climate scenarios. The model offers a fast and flexible method
to predict both localised and survey wide trends. It can make predictions in a 3D
environment and is applicable to other surveys regardless of survey design.

Understanding how the base of the food chain will be affected by environmental changes
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is the first step in forecasting the outcome on other Southern Ocean species and in
identifying where we can act quickly and effectively to effect mitigation or adaptive

management.

3. Antarctic krill: drifting or swimming?

Actively sourcing resources as opposed to passively drifting and feeding solely
opportunistically allows animals to avoid unfavourable conditions and take advantage of
patchy resources. Despite the importance for conservation, drifting versus swimming has
rarely been tested (Putman et al., 2016). Antarctic krill are a key link in the food chain,
transporting the energy in phytoplankton to the higher trophic levels (Siegel, 2016; pg
322). They are often treated as though they are passive drifters, completely at the mercy
of the current systems surrounding Antarctica. While there have been observations in
captivity of krill actively seeking out food (Hamner and Hamner, 2000, Kawaguchi et al.,
2010), the extent to which they are able to combat currents and circulation to actively
position themselves in the wild is difficult to assess and has hence remained a large but
important knowledge gap over many decades. This thesis provided the first quantitative
evidence of Antarctic krill aggregating around important resources. In Chapter 4 I showed
quantitatively that over a large survey area (1.3 million km?) krill aggregate in areas
favourable to them, i.e. those with high food availability and high dissolved oxygen
levels. These findings were only made possible through the application of a hurdle model
to partition the presence/absence and conditional densities into separate models. Without
this approach, I would not have been able to separately assess the drivers of presence and
density and would not have discovered the otherwise ‘masked’ signal of krill aggregating

around oxygen and phytoplankton.
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The ability for krill to actively seek out areas of high dissolved oxygen and phytoplankton
may help krill adapt to future predicted changes in phytoplankton community
composition and loss of sea ice. However, active swimming will offer little protection
against large scale ocean acidification, predicted to have catastrophic consequences for
krill (Kawaguchi et al., 2011), and larval and juvenile krill are still reliant on current
systems to move to areas that offer the right conditions to progress to the next stage in
the life cycle. The finding of their ability to aggregate in proximity to resources is
important for the management of the krill fishery and forecasting future changes because
management approaches based only on passive krill flux will fail to adequately capture

the localised active swimming behaviour of krill swarms.

4. Prey hotspots around islands: the Balleny Islands

The Southern Ocean is an important feeding ground for migratory predators, such as
whales and seabirds, who every season must efficiently locate areas of high prey
availability. Islands, frontal systems and bathymetric features are known to cause high
productivity and an enhancement of the food chain through upwelling and stabilisation
of the water column (Bost et al., 2009, Laubscher et al., 1993, Gove et al., 2016). This
creates a highly dynamic, patchily distributed resource for krill predators. In the Southern
Ocean, higher trophic predators must search widely for the highly dynamic krill swarms,
and high krill abundance around islands could benefit whales by providing a relatively

predictable food source in the ever-changing seascape.

In Chapter 5, I found that Antarctic krill aggregate in locations of high food availability,
indicating that they might be abundant around these zones of high productivity. In

Chapter 6 I tested this theory at a remote Southern Ocean archipelago, the Balleny
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Islands. I found that krill swarms around the islands were more numerous (with a three
times higher encounter rate than in the open ocean), denser and more compact than those
in nearby open water, and this is likely to attract the unusually high number of humpback
whales seen around the islands. In close proximity to the islands, whales aggregate in
areas of high productivity, medium krill density and with a bottom depth >350m. These
findings demonstrate that islands in a large expanse of open water can offer a profitable
feeding opportunity. The high levels of krill and whales found at the Balleny Islands,
along with the results of my analysis of whale habitat use at the feeding area, have
implications for conservation and management of this resource. In 2016, the islands
became part of the world’s largest marine protected area and we have an obligation to
protect and conserve significant biological hotspots, such as this important krill hotspot

at the Balleny Islands.

In Chapters 3 and 5 I used different methods to incorporate the spatial components (3D
autocorrelation structure versus smoothing surface). The reason I chose different methods
was because the BROKE-West data used in Chapter 3 was on a much larger and sparser
scale than the Balleny Islands data in Chapter 5. The BROKE-West data are also 3-
dimensional because they include a depth through the water column component, and
current software packages are unable to incorporate 3-dimensional volumetric spline
surfaces. Hence using a smoothing surface for BROKE-West would not have worked
well. The Balleny Islands dependent variable data (whale sightings) was also collected
through visual surveys so a distance sampling component was required in the analysis
which was not needed for the phytoplankton analysis. DSMs can incorporate both the
spatial smooth surface and distance sampling which is why that method was selected

rather than trying to modify a spline mixed model to be suitable.
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5. Future Directions

5.1. Predicting the future

A key reason for modelling ecosystems is to use the available information and the
developed model to forecast what might happen if environmental conditions or food
availability changes. The phytoplankton, krill and whale models developed in this thesis
can all be used to predict both survey wide and localised distributions under different
environmental input parameters. While it was a key motivation for this work, the
predictive capacity of the models in this thesis was not explored beyond cross-validation
given the time constraints of a three-year thesis and remain an important future direction
for studies building on this research. There are many ways in which these models can be
extended and built upon, and I will now outline briefly some areas that [ would have liked

to explore further.

5.2. Survey locations

Most ecological and oceanographic surveys in the Southern Ocean take place only in a
single sector due to a combination of time and logistical constraints. The chapters in this
thesis used data from single sectors because that was the available data. However, the
Antarctic continent is experiencing quite contrasting environmental changes in different
sectors, with some warming and some cooling (Constable et al., 2014). Accordingly the
inference drawn from one sector is unlikely to be directly transferrable to other areas. An
important future direction would therefore be to incorporate data from these other
regions, such as the West Antarctic Peninsula, to assess which processes drive species
distributions at regional or continental levels. Regional effects that incorporate data from
other areas around the continent could be assessed using the mixed effects models I

developed in this thesis. For example, the Antarctic Circumpolar Expedition (ACE, 2016)
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will provide valuable circumpolar information about the key systems studied in this thesis
and applying these models to that dataset would be a highly rewarding extension of this

work.

5.3. Currents and nutrients

The models in this thesis primarily focus on data collected from underway ship data or
Conductivity Temperature Depth (CTD) vertical profiles, both of which measure
environmental variables such as salinity, temperature, dissolved oxygen concentration
and chlorophyll-a levels. Given the importance of nutrients for productivity, it would be
informative to add nutrient data to these models. Nutrient data was omitted from our
study because the available data were collected on a different scale to the other
oceanographic variables, or were in some cases defective or missing (e.g. phosphate data
during the BROKE-West cruise on which the phytoplankton and krill studies were based)
and were in some cases not collected at all (e.g. iron data are commonly not collected
because cross-contamination of the samples is difficult to avoid). As iron is believed to
be a limiting factor in phytoplankton productivity and growth (Boyd et al., 2000) its
inclusion in the phytoplankton drivers model might prove highly illuminating. Iron might
well account for some of the variation seen between stations, especially those near the
ice edge that we predict could be experiencing phytoplankton blooms simulated by iron

release from melting ice.

The Southern Ocean current systems and large scale circulation are important in shaping
both Southern Ocean ecosystems, and have an important link to world climate through
thermohaline circulation. Underway current data, collected with an Acoustic Doppler
Current Profiler (ADCP), was not included in the models in this thesis because during

the BROKE-West survey much of the data were missing due to equipment malfunction
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and during the Balleny Islands survey ADCP data were not collected. The use of satellite
collected current strength and direction was considered but the data were not high
resolution enough to be useful for our models. The inclusion of current data would be
useful in all studies in this thesis because it likely underpins areas of high productivity
due to upwelling. This is especially likely around the Balleny Islands, where an Island

Mass Effect may occur.

5.4. Trophic levels

Each chapter of this thesis investigated drivers of animal distribution, looking at the food
or energy sources and environmental conditions for each study species. However, I did
not consider all trophic levels in a single model because in the first instance I needed to
establish what were the drivers within each level. A whole ecosystem model could be
accomplished with a hierarchical model to explain complex species interactions and make
predictions across all trophic levels under different scenarios. This may require a
Bayesian approach to take into account prior information, ensure convergence of the
highly complex model and handle uncertainty at each level. This model would be
complicated to set up and computationally expensive but is the logical next step and could

be based on the knowledge gained from each chapter of this thesis.

5.5. Seasonal and annual differences

The Southern Ocean is highly seasonal, with summer conditions vastly different to those
in winter. Many of the species have adapted to this either through migration or through
overwintering strategies (Meyer, 2012, Dawbin, 1966). Most Antarctic shipboard surveys
only occur in summer because of the harsh conditions and almost complete lack of

daylight in winter. This means that much of what we know, along with the research in
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this thesis, is about the summertime cycles and ecology of the animals we study.
Contrasting these to winter or spring, during the ice melt, would provide a more rounded
picture and allow us to understand how changes will affect species survival through

winter.

The Southern Ocean experiences climactic forcing over large time scales, such as the El
Nifio Southern Oscillation (ENSO) and Southern Annular Mode (SAM) (Kwok and
Comiso, 2002, Lovenduski and Gruber, 2005). This thesis used only surveys from a
single summer in each analysis, which means that the fluctuations seen with ENSO and
SAM cannot be captured in these models. Time series data collected in the same location
could extend our models by including these systems. It would also allow us to understand
how short term annual differences in sea-ice and productivity affect the ecosystem.

Importantly, time series data could help forecast the future.

5.6. Life stages and community composition

Chlorophyll-a and fluorescence capture only the magnitude of phytoplankton sampled
but offer no information about community composition. Climate change is expected to
affect not only the magnitude of phytoplankton abundance but also community
composition (Tortell et al., 2008, Moline et al., 2004). This will affect krill, who are
known to preferentially feed on diatoms and avoid phytoplankton that are too large or
small to consume efficiently. The chapters in this thesis do not take this into account
because data on community composition was only available for Niskin bottle water
samples, which were collected much more irregularly than fluorescence data. A survey

designed to include phytoplankton community composition at a high resolution
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concurrently with krill and environmental data could extend the work in this thesis to

understand and predict the flow-on effects of changes in community composition.

Due to their life cycle, krill are vulnerable to different processes at different ages. Larval
krill are entirely reliant on currents and circulation to carry them to a location where they
can hatch, ascend and survive as a juvenile. In Chapter 5, I have shown that adult krill
are not passive drifters but are able to seek out beneficial areas, such as those with high
prey availability and dissolved oxygen. We are not yet able to separate backscattering
values from adult and juvenile krill from active acoustic data alone, relying on trawls to
know the length-frequency histograms in the survey area. A model such as the hurdle
model presented in Chapter 5 could be used to assess processes affecting juvenile krill,
which are heavily reliant on sea ice to forage and may demonstrate different behavioural

characteristics to adult krill.

5.7. Advances in technology

Technological advances have already allowed us insights into the Southern Ocean that
were not possible mere decades ago. For example, advances in active acoustics have
made it routine to count animals in situ that would previously have been trawled such as
fish and krill. Single- or split- beam acoustics, giving a 2-dimensional picture below the
ship, have been the most common form of this technology, but 3-dimensional multibeam
acoustics are becoming more viable as data storage becomes larger. This technology will
require automated processing methods to reduce operator time and ensure that data
processing is manageable and efficient, which could build on the scripting interface I

provided in EchoviewR.

Marine data are already inherently large and are becoming more complex as technology

allows us to collect more information. Mixed modelling techniques, as used in this thesis,
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will become more common in ecology as we become able to repeatedly sample multiple
individuals and collect data at more sites/locations. Without the use of mixed modelling
or other sophisticated techniques, pseudo-replication will make it difficult to draw correct

and meaningful conclusions.

Data collection methods are advancing quickly and through improvements in technology
such as drones, high resolution satellite imagery and tracking devices on wildlife, we can
collect data in places and at times we have previously been unable to survey (Palumbi et
al., 2009, Chelton et al., 2004, Hussey et al., 2015). For example, it is now possible to
detect whales from satellite imagery (Fretwell et al., 2014), and although currently
expensive, this could provide time-series data for assessing whale presence around island
feeding areas such as the Balleny Islands. Further advances in technology will allow us
to detect patterns in the marine environment which we cannot detect now and help guide

our research and management of areas that have recently become far more accessible.

6. Final remarks

The Southern Ocean is already far from pristine, and continuing to change rapidly. It is
important that we understand how environmental conditions affect animal distribution
and abundance to predict how they will be affected as the oceans change. In this thesis I
have identified environmental and biological influences on key taxa in the Southern
Ocean food web: phytoplankton, krill and marine mammals. Using sophisticated
modelling techniques I have developed a flexible and widely applicable model for
predicting phytoplankton distribution in a 3D environment, showed that Antarctic krill
aggregate around phytoplankton and dissolved oxygen, and demonstrated the benefits
that Antarctic islands offer predators through heightened krill availability. This

knowledge, along with the predictive capacity of the models used, fills a large knowledge
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gap in drivers of animal distribution in the Southern Ocean using real survey data. There
is still much left to discover to give us the power to fully understand this remote but
highly relevant environment, and allow us to recognise and potentially mitigate the

dramatic changes that are now occurring.
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inwariably extremely large and time consuming to process,

In active acoustic surveys, a conventional split-beam
echosounder collecting data o a range of 500m and pinging
omce per second typically collects around 8 GB of data per day
[Mole: this depends on settings such as range resolulion and
pulse repetition rate), This may be compounded by the need to
use multiple echosounder frequencies, sometimes more than six,
aperating simultansously, further inflating the size af the raw
dara sets, Moreover, the routine nse of broadband systems like the
Simrad EKBD on board scienlific and commercial vessels is not
far away. The amount of data from such systems vastly exceeds
those from conventional sounders, and will again push storage
and processing capacity. With advances in data storage capacity,
dara storage is no longer a significant constraine and enhanced
computational power has enabled the development of poweriul
acoustic data processing software,

There are several sofiware packapes suitable for the
procossing  of cchosounder data cg, Fchoview {Myriax,
Hobart;  www.echoview.com), L555 {MAREC, Christian
Michelsen Research, Norway, http:fwww.cmrnofindex.cfm?
id=421565) and Sonar5-Pro {University of Oslo, Norway,
hutptifolk.uio.nodhbalkisonard 57}, However,  processing
acoustic data remains time consuming and frequently requires
subjective, often undocumented, decisions to be made by the
user, such as removal of noise or bad data and allocation of
backscarter to targets. Subjective decisions can potentially bias
outpuils from Prur,.':'sscqi aclive acoustic data, for ::xumpl: biormass
estimates,

Feshrany 2005 | Walumes | Atick: 131



Appendix A

Hamison at al

Acoustic dma praciessing with Fehonapad?

Here we present the R package EchoviewR as a tool ot (1)
reduce the processing lime requiring a human operalor, (2] doe-
ument processing steps thereby generating reproducible method-
ology, and (3) provide a framework within which additional
ﬁmctiurlalit}' can be built by members of the acoustics com-
munity, s¢ reducing the nomber of subjective decisions. The
EchoviewR package is an interface between the widely used
and freely available R program [hitp:/fwww.R-project.org) and
Echoview (Myriax, Hobart; www.echoview.com), The methods
used are generic and can be transferred to other acoustic pro-
cessing software with scripting options, but the package as such
15 incompatible with other acoustic software.

EchaviewR uses Component Object Model (COM) seripting to
run Echoview using B. This removes a large portion of the mannal
processing time and enables entire acoustic surveys o be maostly
processed antomatically, It also increases consistency in process-
ing because the same methods and thresholds can be applied
in exactly the same way to multiple data sets. Hence EchoviewR
provides a reproducible and transparent automated method for
processing acoustic data using Echoview. Some examples of it
use include filtering of data, automated biomass estimation and
detection of krill swarms.

Wsing two cxamples, we llustrate EchoviewR functional-
ity. Both examples are based on data collected during sure-
veys of Antarctic krill {Enphausia superba; herein krill) using a
Simrad EK60 echosounder (Horten, Norway) with downward
lacing hull-mounted transducers. The first example eslimates
regional krill biomass, and the second example detects krill
SWAFTS,

EchoviewR is intended to speed up processing of already clean
acoustic data and is not currently capable of removing false bot-
tom effects, time varied gain or noise spikes although the package
can access Echoview virtual variables to do some of these tasks,
e.g.. “Background noise remroval algorithm” virtual variable (e
Robertis and Higginbotom, 2007). The package is intended only
a5 a method of automating processing using Echoview and is not
a standalone method for processing acoustic data.

METHODS
IMPLEMENTATION AND DEPENDENCIES
EchoviewR was created using R 3.1 (R Development Core Teamn,
2014; available from httpeffcran.r-project.org/) with R-Studio
0.98.932 (Rstudio, 2014 available from http://www.rstudio,
com/), and Echoview 6.1 (Myriax, 2015; available from http://
www.echoview.com/). Both R and Echoview are required o
use the package. COM objective handling is achieved using
the RDCOMClient package. Additional EchoviewR function-
ality uses the sp lubridate, geosphere, maptools, and rgeos R
libraries (Pebesma and Bivand, 2005; Grolemund and Wickham,
2011; Hijmans, 2014; Bivand and Lewin-Koh, 2014; Bivand and
Fundel, 2014). To run Echoview via COM the following modules
are required: base, bathymetric, analysis export, and scripting.
Worked example one also requires the virtual echogram mod-
ule and worked example two requires the virtual echogram and
schools detection modules.

The EchaviewR package is available open source on the GitHub
repository  (hitps:/fgithub.com/lisamaricharrison/EchoviewR )

and can be downloaded and installed as an R package using the
“install from_#ip file” option in B, or via deviools:install github{).

EXPECTED DATA INPUT FOR THE PACKAGE AND WORKED EXAMPLES
EchoviewR can work with any data type accommodated in
Echoview that is accessible via COM. The worked examples
provided here have been built using data collected using a Simrad
EEA0 echosounder {www simrad.com/eka0). In itself, Fehovientt
does not create Echoview templates or calibration files, but can
use both of these via COM.

FUNCTIONS OF THE PACKAGE

There are 46 functions available in EchoviewR, which are
described in Table 1. A working example for each of these func-
tions is given in the package documentation in the Supplementary
Mlaterial. Mot all Echoview functions are currently available in the
package; however any functionality in Echoview that has COM
accessibility could be added by the user.

EXAMPLES

Here we present two examples using EchoviewR: (1) krill biomass
estimation, and (2} krill swarm detection and classification. The
purpose of these examples is to demonstrate that these analy-
ses can be run automatically using Echoview® and to show how
Echoview output can be seamlessly linked 1o analyses carried out
using B. Both examples assume that the reader is familiar with
Echaview and are not intended to be a tutorial on Echoview. It is
also assumed that the reader is familiar with R and programming
eomeepts such as for loops.

The data are a subset of the EK60 split-heam data collected
during the Krill Acoustics and Oceanography Survey {KAOS)
carried out from RV Awrera Australis. The KAOS survey was
undertaken in Jlanuary-March 2003 off North Eastern Antarctica,
Data from 38, 120, and 200 kHz were written to RAW [les. For
clarity in the worked examples, we have used the 38 and 120 kHz
data because these frequencies are the most useful for detecting
and identifying the example species, Antarctic krill.

‘o demonstrate that biomass estimation and swarm detection
ean be automatically run on multiple transects where the data are
too large to practically read in 1o Echoview at once, as is the case
for maost acoustic surveys, segments of six KAOS transects are pro-
vided and each 10-20 km transect segment is processed separately
[Figure 1).

Both these examples have been tested using R Studio and
0.98.932 and Echoview 6.1.32,26088. The data to run these exam-
ples are available at the Australian Antarctic Division Data Centre
[doi: 10.4225/15/534CFOB1 FB955F). An example of the data flow
for the remplate used in this example is available as Figure 81 in
the Supplementary Material.

Before running each example some pre-processing is demon-
strated to get the data in to a convenient format for analyzing each
transect in a separate .EV file, In this pre-processing phase, the six
transects are imported separately into Echoview and the following
tasks are performed:

I. Create a new .EV file for the transect using the Echoview
template file;
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Table 1 | Functions available in Echoviewf.

Function

EVQpenFis
EVSaveFila
EVSaveFileas

EVClngaFila
EVN=wtile
EVCroateFileset
EVFindFilezeiByiame
EVaddRawData
EVCreatebiew
EVminThresholdSet

EVSehoolsDetSet
EvihzoVartlameFindar
EVRegicnClassFnder
EVachoolsDietest

EVIntegrationByRegicnExpart
msDieteConversion

EVadgdCalibraticnFile
EVFilesinFilaset

EVClearRawData
EVFindFileseiTime

EVMawRegionClass
EVimportRegionDet
EVExporiReganSy
EVAgustRegicnBitmap

EVFindLing8yhama
EVChangehanableGnd

EVExpartintegrationByCalls

EvihdahiswAcousnciar
EvimiiRegionlepth
EVEhiftRegionTims
EVGetCaliwation File Name
EViewlimeRaistiveRagion
EViswFiedLinsDapth
EVirsteteLneg
EvRenamalina

EVExpaet RegionDel
EvFingRenionByilame
EVFindRegionClass
EVExpart RegionDetByChiss

EVintegrationByRegion
ByCellsExpont

Description

Op=ng an gwstng £V file

Sawes an existing .EV file

Sowes an existing EV il 1o-a new file
nama

Closas an open EY file

Creates a new .EV fila

Creates a new fileset

Finds & fileset oy name

Adds AAW files 1o a filesat

Craates a new BV file from & template
Sets the minimum dB threshold for an
Booustic vanable

Sels schoals detection paramelers
Finds an acoustic variabla by name
Finds a region class by nams

Rung schocts detechon on &n 800usts
varabile

Exparts integration by region for an
Beoustic obrect

Comverts an Echovienw date to readable
format

Adds a cofbration file to an £V file
Finds the names of all RAW files in the
fileset

Clears ail .RAW files from a fileset
Finds the start and end date and trme
of a filesat

Creates & névw reqion class

|mparts a regions definition file
Expris Sv data for & region

fdjusts the setiings of 3 region bitmap
object

Finds an Echowews line by name
Changes the honzeatal and verbgal
and for an acoustc vanable

Exports mntegraton by cefis for an
BOOUSTH vamabe

Adds a nawy BCoustic variable
Changes the depth of a region
Changeas the time of & regian

Finds the calibration file name
Creates a newy line relative region
Craates a new fixed depth line
[edetes a line abject

Renamsas & [ne objact

Exports region dafimtions for a single
region

Finds a region chiect by name

Finds a region class by nams

Exports region definitans for an entire
region class

Expons miecranon by region oy cels
for am acoustic varable
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(Cantinued)

Table 1| Continued
Fumetion

mwnSurvey
TinzanSurvey

gentreZe? anOnPosition
centralawnOnPosition
asxparhalF

EVimperline

Acoustic data procassing with Echowipn

Description

Generata coordinates for a rectangutar
lawer survey dasign

Generate  coordingtes for a 928G
shrvey design

Centers a zig7ag surey on 8 geven
posihon

Centers & lawn survay on a given
POSITON

Wirite a map information file foe impor
irta Bt

Impors an Echoview Line abpect

FIGURE 1 | Map showing location of 6 the example transects in yellow.
Iap created using Googe Earh T1.2 2041

= R

. Import the EKel .RAW data files for that transect;

. Add an Echoview.ecs calibration file;

Import .evr region definitions files to remove off effort data;
. Import a seabed exclusion line (lineKAOS .evl);

. Close and save the file and repeat for remaining transects.

These steps and the code to run them are demonstrated in the
“Read data using the R package EchoviewR to control BEchoview
via COM" pdf vignette that is available with the Supplementary
Material, Pre-processing must take place before examples 1 and

2 are run,

EXAMPLE 1—KRILL BIOMASS ESTIMATION

Automated biomass estimation of krill is demonstrated by pro-
cessing the six transects separately in Echoview and exporting the
data into 1 for density and biomass calculation. For each rransect,
the lollowing steps are laken in Echoview:

L. Open the transect’s EV file,
. Set the grid for 38 and 120kHz noise removed values to 50

Tt

ping * 5 m depth.

3. Export integration by cells for 38 and 120kHz noise remaoved

values.

Febiary 2005 | Molums 7 | Adicks 13| 3
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This produces two .csv files for each transect, one containing
38 kHz and one containing 120 kHz integraved data (i, a mean
volume backscartering strength value for each cell. Then, the

following steps are taken in R,

1. Tmport the 38 and 120 kHz files for the transect.

2. Remove no dara vaboes (ser -999 and 999dB as NA) and
depths <0.

3. Calculate the krill difference window of 12038 kHz for each
integration cell using the following formula:

&Sl'.-’- = Sﬁm” — Sva,

where 5vyz0, = mean 120 kHz backscattering strength for cell
atinterval j at depth @ and S¥3g, = mean 38 kHz backscatter-
ing strength for cell at interval jat depth i,

4. Apply the dB difference technique {e.g.. Watkins and Brierley,
20612 by setting vai values outside the survey-specific dB
difference range of 1.04 .:-u—-.ﬁSvy- = = 14.75dB o NA as
these windows are unlikely to contain krill.

5. Convert the backscaltering strength, Sviz for each cell to
linear scale, sv2g, {Echoview uses a log scale by detault):

s = Il}_l,}

6. Calculate mean volume backscattering strength (MVES)
across all depths for each 50 ping integration interval using
the following formula:

WBSJ. = lﬂhgm"l z V120,

i=0

where j = integration interval, n = maximum depth within
integration interval j and sz, = backscattering strength at
120 kHz far interval j at depth £

7. Calculate estimates of krill density, p;, for each integration
interval:

el ¥

where n; = maximum depth of integration interval j,
MVBS; = mean volume backscattering strength for interval
j as caleulated abowve and TS = target strength for 1 kg of keill
at 120kHz

8. Calculate the overall transect density, py for transect k:

P 'i‘
A==
"I;-'sj;lrr

where j = integration interval, k = vransect and 5, = number
of integration intervals within ransect k

9. The full survey density is then estimated using the Jolly and
Hampion {19901 method, which uses the weighted density of
each transect by length to caleulate total survey density. Note

that the formmla has been modified to remove stratum as no
strata were used in the KADS fxamp|u survey design:

P= Wi

where k = transect, w; = l'."' L = length of transect & in km,
L = length of all survey transects in km and p'p..'. = gstimated
density for transect k,

10, The full survey biomass estimate, by is then calculated
by multiplying the weighted survey density by survey
anca;

E' = ﬁ.-‘l

whcrrjl = gstimated survey biomass and A = survey area in

kem?,

Both the Echoview and R components abuove are run within loops
to allow each transect to be run separately. This is done to demon-
strate how looping over transects or days of a large survey is
pussible, rather than manually loading and processing each set of
files. The FehoviewR and R code for the above analysis is shown
it the “Biomass estimation using the R package EchoviewR o
control Echoview via COM" pdf vignette that is available with
the Supplementary Marterial. Table 2 shows the estimated density,
length and bivmass for the sample transects and survey area.

Example 1 has demonstrated the use of EchaviewR to automat-
ically process and extract data by transect lrom Echoview. Krill
density and hiomass are then caleulated in R using the extracted
s files,

EXAMPLE 2—SWARM DETECTION AND CLASSIFICATION

Automated swarm detection and classification of krill aggrega-
tions is demonstrated here using Echoviewl, The code for this
example is available in the “Schools detection using the R pack-
age EchoviewR to control Bchoview via COM" pdf vignetie
file available with the Supplementary Material. Each transect is
processed separately 1o demonstrate how a full survey can be
processed automatically using loops. Schools detection is run in
Echoview and then detecred aggregations are classified and clus-
tered in R. The following steps are undertaken in Echoview using
EcheviewR:

Table 2 | Estimated transect krill areal density and survey blomass for
the slx example transects.

Transect Mean estimated Transect Biomass,
number density, gm™2 length, km tones

1 3.26 13 42

2 2086 22 454

k3 43 15 7]

4 2287 2 487

3 GG 18.5 123

& 499 215 107
Full survey area 18.78 Mz 43, 497
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1. Open the transect’'s EV file.

2. Run schools detection on the variable 120 7x7 comw-
lurion, assigning all detected schools w the region class
“aggregations.”

3. Export 120 and 38 kHz data for regions of class “aggregations™
toacsv file using the EVIntegrarion ByRegionExport function.
This exports a single mean Sv for cach aggregation.

In this example, all detected aggregations are exported. However,
it is alsn possible to export only aggregations classified as krill
using the 120-38 aggregation dB difference filter variable included
in the template. The filter sets the Krill aggregotions dara to NULL
if the 120-38 aggregation dH difference value for that cell is outside
the [ 104, 14.75] dB difference window for the KAOS survey.

The exported aggregations can now be classified and clustered
in R. Each transect is run separately using a loop:

1. Impaort the 120 and 38 kHz export by regions files.

2. Remove null values | -999),

A, Calculate the 12038 kHz difference window and subset data
to only include difference values between [ 1,04, 14.75],

4. Il no apgregations were classified as krill, exit here and muove

to next transed.

. I krill aggregations are found, run cluster analysis using the

ClusterSim library using selected mictrics.

6. Print a summary table of the number of aggregations assigned
to each identified duster. Table 3 shows the number of krill
swarms identified and the number of clusters detected for each
Lransecl.

L

This example has demonstrated how school derection, data
export and cluster analysis can be run automatically for an entire
acoustic Survey.

MSCUSSION AND FUTURE DIRECTIONS

EchaviewR is a free interface between R and Echoview that pro-
vides automated acoustic data processing. It drastically decreases
manual processing Uime and reduces subjectivity by providing
an easy way to implement exactly the same method across sur-
veys. This package enables reproducible methodology, which is
a vital part of the sdentific method. We have given examples of
automated krill biomass estimsation and school detection using
EchoviewR thal demonstrate the use of the package on a subset of
the KAOS survey. This methed can easily be extended to run a full
survey by transect, day or any other subset required.

Table 3 | Number of unique krill aggregation clusters identified for
each transect.

Transect number MNumber of kiill swams Number of clusters

L]
a7
w05
54
B
“

L R
SRR -

wwafrantiersin.ong
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There are a number of limitations to the package. Currenty it
is only available for use for single and split beamn echo sounder
data, FchoviewR is also unable to handle remeval of noise and
[alse botlom effects, which must be completed prior 1o using the
package. Not all functions in Echoview are currently available
using EchoviewR, however any OOM functionality in Echoview
can be implemented in R. The COM hierarchy help page is a
useful starting point for those wishing ro add extra functions.

EchoviewR is accessible as free software from the EchoviewR
GitHub  repository  (https:/fgithub.com/lisamaricharrison/
EchoviewR) and is readily available for communiry development.
An important next step is the implementation of falke battom
and noise removal nsing EchoviewR, and it is our hope that the
atoustic community will take the tools that we are providing and
extend the package to include the functionality that they require,
We also underline that the methods describved here are generic,
and hope the work can inspire the implementation of scripting
interface in other aconstic processing sofrware.
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This appendix provides the supplementary materials that were published in Frontiers in
Marine Science along with Chapter 4 of this thesis. The supplementary materials
contain three pdf tutorials detailing the use of the EchoviewR software along with an

image of the Echoview workflow used to process the data. The 3 vignettes included are:

1. Biomass estimation using the R package EchoviewR to control Echoview via
COM

2. Read data using the R package EchoviewR to control Echoview via COM

3. Schools detection using the R package EchoviewR to control Echoview via

COM
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Biomass estimation using the R package
EchoviewR to control Echoview via COM
Lisa-Marie Harrison

February 3, 2015

Introduction

This vignette provides an example of biomass caleulation using the R package
R-aceoustic as an interface to Echoview (Myriax, Hobart). The data used are
from the 2003 Aurora Australis survey Krill Acoustics and Oceanography Survey
(KAOS). For this example, segments of 6 transects are used, each approximately
Wkm in length. Each transect is processed separately to show how this package
can be uged to process multiple transects or surveys antomatically. It is assumed
that the user is familiar with Echeview and concepts such as regions, variables,
filesetz and integration intervals,
To run this example, vou will need the following files:

1.

Echosounder data: Simrad EK60 RAW data collected during the KAOS
voyage.

. An Echoview template file: An Echoview {(EV) file containing the

virtual variables used during data processing and must be copied to the
Echoview templates folder,

Echoview calibration file: The Echoview ECS file containing the ERG0
calibration parameters.

. Btart and end file regions: Start and end times of each transect stored

as an Echoview region file.

All these files are available from ... and should be downloaded to the data direc-
tory specified in the dd object. If you want te repreduce this vignetta,
you shonld assign the location of the KAODS example data to dd..
This example assumes that the Read Data vignette has been run ficst, to
prepare the data for processing. This example contains two components:

1.

Processing and exporting in Echoview For each transect, the data
are processed in Echoview and are exported as integration intervals,

Biomass estimation in R The exported data are used in B to caleulate
the density for each integration interval and estimate biomass.

213



Appendix B

2 Processing and exporting each transect in Echoview

Firstly, a comnection to Echoview is established and the working directory is set.

W

dd="C: fUsers/Lisa/Desktop/KAOS'
library(acouatic)
EVAppObj <- COMCreate('EchoviewCom.EvApplication')

W

A list of all raw files and the transect that they correspond to is imported:

W

tF <- read.csv(paste(dd, 'vignette_file_list_subset.csv',sep="'/')}
head (tF)

W

transectNumber filename
1 LOO55-D200301156-T171025-EK60.raw
1 LOOS5-D200320115-T182014-EKE0 . raw
2 LO056-D20030118-TO00T14-EKE0 . raw
3 LO056-D20030118-T131501-EK60 . raw
3 LO056-D20030118-T143357-EK60 . raw
3 LOO56-D20030118-T155252-EK60 . raw

N 03 b e

W

tF§filename <- paste(dd, 'raw',tF$filename,sep='/")
uniqueTransect=unique (tF¥transectNumber)

W

In the Read Data vignette, the calibration file. raw data and off effort region
defnitions were to each transect’s \EV fle =0 it is not necessary to add them
again here.

Next, the grid distance for the two acoustic variables of interest (38kHz and
120kHz) ueeds to be set, The grid size corresponds to the integration interval
size when exporting the data. For this example a grid of Sm depth * 50 pings
width is used. The 38kHz and 120kHz integration by cells are exported as .osv
files, Each line in the exported .esv files represents a single integration interval,

Each transect is processed separately using a loop:

for (1 in 1:length(uniqueTransect)} {

#open the correct .ev file for the tranect

>
+
+
+
+
+
+
+
+
+
+
+
+
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#note: the correct raw data files were pre-loaded when the .ev file was created
EVFile <- EVOpenFile(EVAppObj, paste(dd,'/kaos-transect-',i,'.ev',sep=''))$EVFile

#zet the integration interval size using grid settings for 38kHz and 120kHz acousti
#for 38kHz

varlbj <- EVAcoVarNameFinder (EVFile, acoVarName = "38 seabed and surface excluded")
EVChangeVariableGrid(EVFile = EVFile, acousticVar = varObj, verticalType = 4, horiz

#for 120kH=z
varObj <- EVAcoVarNameFinder(EVFile, accVarName = "120 seabed and surface excluded'
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EVChangaVariableGrid(EVFile = EVFile, acousticVar = vardbj, verticalType = 4, horiz

#export the acoustic variables using integration by cells for the specified grid si
message (paste(Sys.time(), "Exporting data for transect ", i, "..."))

EVExportIntegrationByCells(EVFile = EVFila, variableName = '38 seabed and surface ¢
EVExportIntegrationByCells(EVFile = EVFile, variableName = '120 seabed and surface

message (paste(Sys. time()}, "Finished exporting data for transect ", 1))

#close the .ev file
EVCloseFile(EVFile = EVFile}

3 Processing the exported data in R

Now that the 38kHz and 120kHz integration intervals have heen exported from
Echoview, the calenlation of survey density and biomass can be caleulated in
R. In this example, mean density is calenlated for each vertical bin through the
water column, rather than for each integration interval.

A dB difference window (120kHz - 38kHz) is used to determine which inter-

vals contain krill. Non krill intervals are removed and krill density is caleulated.
The densities for each interval are then appended to the same csv file for all
transects.

> #create an empty .csv file to export the density data to
> file.create("C:/Users/Lisa/Desktop/KAOS/combined_density_intervals.cav”)

[1] TRUE

> #for each transect, calculate krill density
> for (i in 1:length{uniqueTransect}) {

+ o+ + + + o+t o+ o+

acoustic_38 <- read.csv(file = paste(dd, "/exported integrations/kacs_35_integrati
acoustic_120 <- read.csv(file = paste(dd, "/exported integrations/kacs_120_integrat

#sort by interval

acoustic_38 <- acoustic_38[order(acoustic_38fInterval), ]
acoustic_120 <- acoustic_120(order(acoustic_1208Intervall, J
acoustic_120 <- acoustic_120[c(i:nrow(acoustic_38)), ]

#remove NULL layers (layer < 0}

acoustic_38 <- acoustic_38[acoustic_38fLayer > 0, ]
acoustic_120 <- acoustic_120[acoustic_120§Layer > 0, ]
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#remove Null values (-900 or 900) from 5Sv values
2v_38 <= acoustic_38%5v_mean

=v_120 <= acoustic_l12085v_mean

gv_38[sv_38 > 6500 | sv_38 < =500] <= NA
sv_120[sv_120 > 500 | sv_120 < =500] <- NA

#calculate 120kHz - 38kHz for each Sm*50ping window
sv_diff <- sv_120 - sv_38

#remove 120 - 38 kHz values outside of [1.02, 14.75]
#dB difference window is from Potts AAD report for KAOS data
sv_diff fav_diff < 1.02 | sv_diff > 14.75] <- NA

#for windows that don't contain krill, remove 120kHz values
av_120[is.na(sv_diff)] <- NA

#convert Sv values (for integration intervals that contain krill) back from log scs
av <- 107 (sv_120/10)

#work out the mean volume backscattering strength (MVBS) for each vertical slice ti
n.layers <= acoustic_1208Layer

mvbs <= 10%loglO{aggregate(matrix(sv, ncol = 1}, by = list(rep(c(l:(length(sv)}/max
mvbs [mvbs == -Inf] <- NA

#convert to density using target strength (units = kg/m2 per interval)

#formula is multiplied by 250m because this is the depth of slice through the watez
p <— 250+10 ~((mvbzs - -42.22)/10)+1000

p <- plp < 700] #remove noise values

#ealculate transect density
p_transect <- mean(na.omit(p))}

#urite the density per vertical slice to a single .cev file
write.table(p_transect, file = "C:/Users/Lisa/Desktop/KADS/combined_density_interv:

message (paste (Sys.time(}, "Finished calculating krill demnsity for transect ", i}}

Mow that the mean densities for all 6 example transects arve in the same csv

file, the biomass for the survey area can be caleulated. The survey coordinates
and the geosphere package in R were used to calculate the survey area. Survey
density is caleulated using the Jolly and Hampton (1990) method, where transect
densities are weighted by transect length to give the final survey density. This
is then multiplied by survey area to give the overall biomass estimate,

> #Calculate average survey density
> transect.density <- read.csv("C:/Users/Lisa/Desktop/KA0S/combined_density_intervals.

216



Appendix B

#calculate survey area in km™2

library(gecosphere)

coords <- read.csv{(paste(dd, "/survey_ccordinates.csv", sep =""}, header = T)
survay.area <- areaPolygon(ccords}+*10"-6

#zpecify transect length in km

transect.length <- c{13, 22, 15, 22, 18.5, 21.5)

total.length <- sum{transect.length)

length.weight <- transect.length/total.length

#weight transect density by transect length to get survey density
p-survey <- sum{transect.density+*length.weight)

#multiply by survey area to get survey biomass (units = tonnes)
survey.biomass <- p.survey * survey.arsa * 1076 / 1000000

R " T T R T T

The total estimated biomass for the 2501.21 square ki sample area of the

survey is 4349707 tonnes. Note that this is only a simple example of how the
package acoustic can be used to antomatically estimate krill density, It is not
intended as a reference for estimating biomass.
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Read data using the R package EchoviewR to
control Echoview via COM

Lisa-Marie Harrison and Martin Cox

February 3, 2015

This vignette provides an example of preparing and importing multiple tran-
sects of acoustic data into Echoview using the R package acoustic. It is neces-
sary to run this file before running the Schools Detection or Biomass Estimation
examples. It is assumed that the user is already familiar with Echoview.

To run this example, vou will need the following Gles:

1. Echosounder data: Simrad EKGO RAW data collected during the KAOS

VOVAZE.

2. An Echoview template file: An Echoview [(EV) file containing the
virtual variables used during data processing and must be copied to the
Echowview templates folder,

3. Echoview calibration file: The Echoview \ECS file containing the ERG0
calibration parameters.

4. Start and end file regions: Start and end times of each transect stored
as an Echoview region file.

All these files are available from ... and should be downloaded to the data direc-

tory specified in the dd object. If you want to reproduce this vignette,

you should assign the location of the KADS example data to dd.
First, set the working directory:

> dd="C: /Users/Lisa/Desktop/KADS"

1 Loading RAW data into Echoview

ln this section we load the necessary packages into the R workspace, open a COM
connection between R and Echoview, then populate the Echoview template file

with RAW Simrad EKG0 data files.

> library(acoustic)
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The EV file XAOStemplate . EV must be copied into the c:/Program Files
(x86) /Myriax/Echoview,/Echoview / Templates /directory. Open a COM
connection between R and Echoview:

> EVAppDhbj <- COMCreate('EchoviewCom.Evipplication')

Now we get a vector of the RAW data files to add to the Echoview template:
> pathAndFn=1ist.files(paste(dd, 'raw',sep="/"),full.names=TRUE}
We remove any evi” files from the pathAndFn:

> gvilec=grep('.evi',pathiAndFn)
> if(length(eviloc)>0) pathindFn=pathindFn[-eviloc]

Important: Any filenames that are passed via COM must contain the
full directory path.

2 Populate an Echoview template

Now that we have a vector of RAW data file locations, we can populate the
Echovicw template file specified in EVCreateNew (templateFn).

> EVFile <- EVCreateNew!(EVAppObj=EVAppObj,
templateFn=paste(dd, "/KAOStemplate.EV", sep = ""),
EVFileName=paste(dd, 'kaosAll . ev', zep="/"),
filesetName="038-120-200",
dataFilea=pathdndFn)$EVFile

+ o+ o+ 4

We can also populate a template in a loop, so if there are multiple transects, each
containing a large amount of RAW data, we can create an EV file for each tran-
sect. To help illustrate this, there is a csv file, vignette_file_list_subset.csvy,
included in the example data that specifies which transect the BEAW data files
are assigned to. First of all, we load this file into the R workspace:

> tF <- read.cavipaste(dd, 'vignette_file_list_subset.cav',sep="/"1)
> head(tF)

transectNumber filename
1 LOOS5-D20030115-T171028-EKG0 . raw
1 LOOS5-D20030115-T182914-EKE0 . raw
2 LO0s6-D20030118-TO00T14-EKE0 . raw
3 LOO56-D20030118-T131501-EK60 . raw
3 LOOs6-D20030118-T143357-EK60 . raw
3 LOO56-D20030118-T155252-EK60 . raw

o o LS RD e

Nest, we append the raw data directory path to the raw data flenames:

> tF$filename <- paste(dd, 'raw',tF$filenams,sep='/")
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Now we will loop over the transect file and create one EV file per transect. A
calibration file is added to each .EV file. Regions definitions files for off transect
times are also imported, which will remove off effort time from the analysis.

> uniqueTransect=unique(tFitransectNumber)
> for(i in I:length{uniqueTransectl}) {

+
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EVFile <- EVCreateNew{EVAppObj=EVAppObj,

templateFn=paste(dd, "KAOStemplate.EV", sep = "/"),

EVFileName=paste{dd, '/kacs-transect-",i,"'.ev',sep=''),
filesatNama="038=-120-200",

dataFiles=as.character(tF$filename [tF§transectNumber==uniqueTransect[i]]J},
CloseOnSave = FALSE)$EVFile

#add a calibration file
EVAddCalibrationFile(EVFile = EVFile, filesetName = "038-120-200", calibrationFile

#get a list of the regions definitions files to import and import individually
off_transect_files <- list.files(paste(dd, "/off transect regions", sep = ''),
full.names = T)
for (j in 1:length(off_transect_files)) {
EVImportRegionDef (EVFile, off_transect_files[j], paste("region_", j, sep = ""}}
}

#add an EV line object and rename to 'seabed line'
evline <- EVImportLine(EVFile, pathdndFn = 'C:/Users/Lisa/Desktop/HA0S/1ineKA0S.av]

EVRenamelLine(EVFile = EVFile, evliine = evLine, newName = "seabed 1line")

#zave the open .EV file
EVSaveFile(EVFile = EVFile}

#close the current transect
EVCloseFile(EVFile = EVFile}

}

This method allows subsets of a full survey to be processed antomatically

which is useful for large data sets. Rather than running transects separately
as shown above, the same method eonld also be used to run each survey day
separately. The Biomass Estimation and Schools Detection vignettes follow on
from this point and require this example to hsve been run first.
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Schools detection using the R package EchoviewR
to control Echoview via COM

Lisa-Marie Harrison and Martin J. Cox

February 3, 2015

1 Introduction

In this vignette we will use the example acoustic data collected during the
KOAS voyvage to demonstrate how to carry out schools detection using acoustic
to control Echoview wvia COM. We assume the reader has knowledge of the
schools detection algorithm implemented in Echoview. If not please visit http:
{/support . echoview. com/WebHelp/Echoview . htm/ to see the Echoview help
file and also ... We also assume the reader is familar with Echoview concepts
such as filesets, regions, files and virtual variables.
To run this example, vou will need the following Ales:

1. Echosounder data: Simrad ERKG0 RAW data collected during the KAQOS
VOVAZE.

2. An Echoview template file: An Echoview [(EV) file containing the
virtual variables nsed during data processing and must be copied to the
Echowiew templates folder,

4. Echoview calibration file: The Echoview .ECS file confaining the EILG0
calibration parameters.

4. Btart and end file regions: Start and end thmes of each transect stored
as an Echoview region file.

All these files are available from ... and should be downloaded to the data direc-
tory specified in the dd object. If you want to repreduce this vignette,
you should assign the lecation of the KADS example data te dd.. This
vignette requires yvou to have run the Read Data example frst.

First, set the working directory. Echoview vequires the full file path to be
specified for every file name passed using COM.

> dd <= 'c:/Users/Lisa/Desktop/KA0S'
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2 Loading RAW data into Echoview

In this section we load the necessary packages into the R workspace, open a COM
connection between R and Echoview, then populate the Echoview template file
with RAW Simrad EKG0 data files.

> library(acoustic)

Open a COM connection between R and Echoview:

> EVAppObj <- COMCreate({'EchoviewCom.Evdpplication')
Get a list of the raw files required for each transect:

> tFsread.csv(paste{dd, 'vignette_file_list_subset.csv', sep = '/'))
> head(tF)

transectNumber filename
1 LOOG5-D20030115-T1710253-EKE0 . raw
1 LOOG5-D20030115-T182914-EKE0.raw
2 LO056-D20030118-TO00714-EKED . raw
3 LO056-D20030118-T131601-EKED.raw
3 LO056-D20030118-T143367-EKED.raw
3 LOOBE-D20030118-T155252-EKE60 . raw

[ = S X e

W

tF$filename <= paste(dd, 'raw',tF#filename,sep='/"')
uniqueTransect <- unigue(tF$transectNumber)

W

3 Add seabed line

Antomatic seabed detection performed poorly so the seabed line was manually
edited and here we overwrite an existing editable line and replace it with lines
saved in the lines directory of the example data.

4 Schools detection

We are now ready to start schools detection, First, we get the ful path and
name of all the EV files:

> fnEVVec «<- list.files(dd,full. name=TRUE, pattern=paste("(", "transect”, ").#\\.ev®", &

Schools detection is run on the 120 kHz 7x7 convelution variable separately
for each transect. Using a loop, a single transect is opened, processed and closed
before moving on to the next transect. For each transect, the regions definitions
and Sv values for each aggregation detected are exported.

222



Appendix B

for(i in 1:length{fnEVVec))}{
EVLog <- NULL
massaga("Processing ",fnEVVec[i])
opens <- EVOpenFile(EVAppObj, fileName = fnEVVec[i])
EVFile <- opens$EVFile
EVLog <- c(EVLog,opens3msg}

schDet<-EVSchoolsDetect (EVFile = EVFile,
acoVarName = '120 7x7 convolution',
outputRegionClassName = 'aggregatioms',
deleteExistingRegions = TRUE,
distanceMode = "GPS distance",
maximumHorizontallink = 15,#m
maximumVerticallLink = 5,#m
minimmmCandidateHeight = 1,#m
minimumCandidatelength = 10,#m
minimumSchoolHeight = 2, #m
minimumSchoollLength = 15, #m
dataThreshold = -70)

EVLog = c(EVLog, schDetdmsg)

EVLog = c(EVLog, EVSaveFila(EVFile)8msg)

#if aggragations were detected, export the data
if (schDet$nbrOfDetectedschools > 0) {

#export region definitiomns all aggregations
regionClass <- EVRegionClassFinder(EVFile, "aggregations"}§regionClass
EVExportRegionDefByClass (regionClass, paste(dd, "Jexported aggregations/aggregati

fexport Sv data for 38kHz and 120kHz all aggregations by region
EVIntegrationByRegionsExport (EVFile = EVFile, acoVarName = "120 seabed and surfac

EVIntegrationByRegionsExpoert(EVFile = EVFile, acoVarName = "38 seabed and sur
}

#close the file
EVClosaFile(EVFile = EVFile)

L S O T T T T S S S S SR T SRR S S SRS S S A T T S S S S T T J TR R A SRV

¥

The exported ageregations are now analysed in R. Firstly, aggregations are
subsetted to only include krill using the [1.04, 14.75[dD difference window, Krill
aggregations are then clustered using the texstClusterSim library, These steps
are run separately for each transect. It is possible to ageregate all krill aggre-
gations data into one sy file and ran the eluster analysis on the enfive survey
at once, however this is not demonstrated here.
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library(clusterSim)
for(i in 1:length{fnEVVecl)){

#read in data files - the results of integration by regions for each aggregation

038 <- read.csv(paste("(:/Users/Lisa/Desktop/KADS/exported aggregations/38 aggregati
f120 <- read.csv(paste("C:/Users/Lisa/Desktop/HA0S/ exported aggregations/120_aggregat
5v038 <- cbind.data.frame(Region_name = f0385Region_name, Sv038 = f03885v_mean)

#merge Sv_mean from 38 to 120 kHz data
ag <- merge(f120, Sv038, by = 'Region_name')

#remove NA values
ag$Sv_mean [ag$Sv_mean == -999] <- NA
agFag$sv038[ag$sSvods == -999] <- N4

#calculate dB difference and iselate krill swarms
apg$dBdiff <- ag¥Sv_mean - agfSv038
swarms <- subset(as.matrix(ag), agfdBdiff > 1.02 & ag®dBdiff < 14.75)

#i1f no swarms are found, move to the next transect, otherwise run a cluster analysis
if (nrow(swarms) == () {

message ("No swarms within difference window of 1.02 - 14.75dB found")
} else {

#select swarm metrics for PCA - there are loads more we could chose, these are just ¢
swarms <- awarms[, c("Sv_mean","Sv_max","Sv_min", "Corrected_length", "Height_mean",
"Depth_mean", "Corrected_thickness", "Corrected_perimeter"”,
"Corrected_area”, "Image_compactness"”,
"Corrected_mean_amplitude", "Coefficient_of_variation”,
"Horizontal _roughness_coefficient",
"Vertical_roughness_coefficient"}]

swarms <- apply(swarms, 2, as.numeric)

#zcale the data
scaleSwarm <- scale(swarms)

#determine number of clusters in scaled krill swarm data using the gap-stat. see:
#Tibshirani, R., Walther, G., Hastie, T. (2001), Estimating the number of clusters ir

#the code that follows is lifted from the
#index.Gap function in clusterSim:

# nc - number_of_clusters

min_nc < 1
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max_nc <= 10

if (nrow(swarms) < 10) {
max_nc <= arow{swarms) - 2

F

min <= 0

clept <- NULL

res <- array(0, c(max_nc - min_nc + 1, 2})
res{, 1] < min_nc:max_nc
found <- FALSE

for (nc in min_nc:max_nc){
¢ll <- pam{scaleSwarm, nc, diss = FALSE)
cl2 <- pam(scaleSwarm, nc + 1, diss = FALSE)
clall <- cbhind{cll¥clustering, cl2¥clustering)
gap <- index.Gap(scaleSwarm, clall, B = 20, method = "pan")
res{ne - min_nc + 1, 2] <- diffu <- gap$diffu
if ((resine-min_nc + 1, 2] »= 0} &2 (!found)){
nel <= ne
min <- diffu
clopt <= clifcluster
found <= TRUE
}
}
if (found}{
print (paste("Minimal pumber of clusters where diffu >= 0 is", ncl, "for diffu "
Felsed
print (paste("Transect”, i, "I have not found clustering with diffu>=0", quote = FAI
}
ploti(res, type = "p", pch = 0, xlab = "Number of clusters", ylab = "diffu", xaxt =
abline(h = 0, untf = FALSE)
axis(1, c(min_nc:max_nc))
title(paste("Clustering for transect”, i, ""))

"I

swarms <- as.data.frame{swarms}
swarmsftype <- c(pam{scaleSwarm, ncl, diss = FALSE)$clustering)

#print a summary table of the number of swarms assigned to each type

t <= tabla(swarmsftype) #krill swarm types determined by PAM)

print(t}

#the fellowing code can print example results summary for depth, height, length by t3
#lapply(split(swarms[, c("Depth_mean" ,'Height_mean', 'Corrected_length'l)], swarms$tyr

message (paste("Finished classifying aggregations for transect”, 1))
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+ }

[1] Minimal number of clusters where diffu »= 0 iz 9 for diffu

0.02896

1 2 3 4 5 6 7T 8 8
g 4 7 111 1 3 1 1
[1] Minimal number of clusters where diffu »= 0 iz 6 for diffu = 0.0154

1 2 3 4 & 6
iT46 23 8 8 3
[1] Minimal number of clusters where diffu »>= 0 is 3 for diffu = 0.003

1 2 3
28 8927
[1] "Transect 5 I have not found clustering with diffu>=0 FALSE"

123

521

[1] Minimal number of clustera where diffu >= 0 is 6 for diffu = 0.0214
1234586

124214

This vignette has demonstrated an antomated method for performing schools

detection in texxtEchoview and then using texxtR to run classification and
cluster analysis on the detected aggregations.
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Supplementary Tables for Model Selection and
Validation

Traditional hurdle models were designed for zero-inflated count data (Poisson, Negative
Binomial and Geometric distributions) however our data are continuous (krill densities)
so these models are not appropriate. Additionally, our data includes observations over
multiple sites (CTD stations) which necessitates the use of a random effect to account for
extraneous differences between observations at different stations. There is currently no
function in R that can incorporate both problems because hurdle mixed models for
continuous data are still under development. To extend the traditional hurdle models to
accommodate our data we modelled the two stages separately using a logistic mixed
model (presence/absence) and a linear mixed model (conditional density). As we are
interested in conditional inference rather than marginal inference there was no need to

calculate a marginal likelihood.

Presence/Absence

The best model was logit(presence) = depth + temperature + salinity + re(stn), with the
Akaike Information Criterion (AIC) and Area Under Curve (AUC) of the Receiver

Operator Characteristic for candidate models shown in Table S1.

Table S1 Model selection results — Presence/absence logistic mixed model showing
Akaike Information Criterion (AIC) and Area Under Curve (AUC) for Receiver Operator

Characteristic. The re(stn) term denotes a station random effect

Model AIC AUC
i/ezstcrile)tpth + temperature + salinity + oxygen + phytoplankton + 915 062
y ~ depth + temperature + salinity + phytoplankton + re(stn) 819.6 0.62
y ~ depth + temperature + salinity + oxygen + re(stn) 821.1 0.70
y ~ depth + temperature + salinity + re(stn) 819.5 0.71
y ~ depth + re(stn) 832.0 0.69
y ~ salinity + temperature + re(stn) 849.7 0.60
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ROC curve
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Figure S1 Receiver Operator Characteristic (ROC) curve for the best presence/absence

logistic model
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Figure S2 Scaled quantile residuals for logistic mixed model for presence/absence.
Normal QQplot (left) shows good model fit and Standardised residual plot (vight) shows
linear quantile lines nearly horizontal at 0.25, 0.5 and 0.75. Plots produced using R
package DHARMa (Hartig, F (2017), DHARMa: Residual Diagnostics for Hierarchical
(Multilevel/Mixed) Regression Models, https://CRAN.R-
project.org/package=DHARMa)

Density given presence

The best model was loge(density) ~ oxygen * loge(phytoplankton) + re(stn), where *
indicates an interaction between oxygen and phytoplankton and re() denotes a random

effect. AIC results for candidate models are shown in Table S2.

Table S2 Model selection results — Linear mixed model for krill density showing Akaike
Information Criterion (AIC) for candidate models. The re(stn) term denotes a station

random effect. Cross-validation Root Mean Square Error (RMSE) is shown as a measure

of goodness of fit

Model AIC RMSE
loge(density) ~ oxygen * loge(phytoplankton) + re(stn) 879.0 13.00
loge(density) ~ oxygen + loge(phytoplankton) + re(stn) 882.1 13.07
loge(density) ~ depth + temperature + salinity + oxygen * 0813 13.13

loge(phytoplankton) + re(stn)

loge(density) ~ depth + temperature + oxygen * loge(phytoplankton) + 831 2 13.04
re(stn) '
loge(density) ~ depth + oxygen * loge(phytoplankton) + re(stn) 882.5 13.06

Table S3 Model summary for best model of log.(krill density) ~ log.(phytoplankton) *

oxygen + re(stn)

Coefficient Estimate Standard P- Variance
Error value Inflation Factor
Intercept -0.51 0.16 0.002
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Log(phytoplankton) 0.66 0.08 <0.001 5.39
Oxygen -0.11 0.09 0.19 4.51
Interaction 0.21 0.05 <0.001 1.78
Random Effects

Coefficient Variance

Station 0.78

Residual 0.45

The residuals (Figure S3) do not have any obvious problems and Figure S4 shows a plot

of phytoplankton vs oxygen to show the coverage of the data.
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Figure S4 Plot of phytoplankton and oxygen to show coverage of data

Note on Random Effects in Cross Validation

There is no estimated random effect for the dropped station, however ignoring random

effects when predicting the dropped station causes skewing during back-transformation,

hence we simulated the random effect for the new station using the estimated standard

deviation.
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Appendix D

AERIAL SURVEY FINAL REPORT: A TECHNICAL REPORT FOR THE

DEPARTMENT OF PRIMARY INDUSTRIES

This pdf report was prepared at the conclusion of the aerial survey fieldwork conducted
with the Department of Primary Industries during the candidature of this thesis. It was
intended that this data would be used to assess drivers of marine megafauna distribution
off coastal New South Wales, Australia, however due to time constrains this data was

not used in this thesis.

Authors:

Lisa-Marie K. Harrison!

Affiliations:

"Marine Predator Research Group, Department of Biological Sciences, Faculty of
Science and Engineering, Macquarie University, North Ryde, New South Wales,

Australia
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AERIAL SURVEY FINAL REPORT

December 2013 - October 2015

Lisa-Marie Harrison
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Executive Summary

Between December 2013 and October 2015 aerial surveys were conducted between Wollongong
and Newcastle for bather protection. There were a total of 53 aerial survey days, including 19 inter-
observer discrepancy trials. Total marine wildlife sightings were dominated by baitfish schools (n =
1708) and bottlenose dolphin pods (n = 471), while shark sightings rates were low. There were 34
White, 1 Bull, 2 Whaler, 144 Hammerhead and 7 unidentified shark sightings. The highest number of
sightings per survey occurred in spring for baitfish and bottlenose dolphins, and summer for all
sharks. Sea state and Turbidity had little effect on sighting rates except for bottlenose dolphins, for
which sighting rates declined with increasing sea state. Most shark sightings occurred in the bay
between Swansea Heads and Redhead beach, while baitfish and bottlenose dolphins were seen
throughout the entire transect,

Using distance sampling methods, an estimate of 150 baitfish schools (CV = 0.109) and 202
bottlenose dolphins (CV = 0.195) are present within 1km of the coast and between Wollongong and
MNewcastle, There were too few shark sightings to calculate abundance. For southbound transects
where the observer is looking offshore, the average probability of detection was 12.7% for baitfish,
25.4% for bottlenose dolphins and 11.8% for non-hammerhead sharks.

236



Appendix D

EMBCUTIVE SUITITIIY oooeieicriior e ene s ot esses s s e e rmre s ss s e em o e sas e oot se b a1 e smg st re s p e s mg s ee e e rmgnans ot s rnn 1
VI IIOES . ..ottt et ch e ettt b 44 4R b e b et 3
L= L PP 3
Survey methods and eqUIPMIENT. ... o e e e seies s s e sssnies s s s s s sramsnanass ne sass bns s s nr su s e 4

I =D DS BT EUITVBYE o ou s cuistnsis e S fimsios e i e 456 4 50 o e VES G54 B e B 2048 1 5
IR XA o chiivianmnsnndes uhms v sy A3 P it SR SRS PR FE AR i 3 i B B A AT T i e 5
R s R e L o P S R e T R S e e 2 6
A e Wl e O o W OMIS . cartaiasrms srsa e sasasmsir e b ba e be b e 1403 0B HR SRR H 4R 50 AR £ R B4 58 R R SR B4 0301 B4 b0 6
T T T D s R B S B et e e S s R S i [
Group Size. ... R SRR R R R S 7

DS B NI o o B T T S S R s B G Bsisen 8

e T o oI e R e ey B e s e s s aiars 9
Seasonal and environmental differences ... —————— 10
D S A SIS (2 s i oo 6 1 o o P v SR o 1Y P8 BB RS M PR PSR EAEAA o B 1 SRS AR AR B0 P 12
L Ty T T T o =TS 13
COMEIUSION Lot et e bR bbb st 14
BUBPEIIEIIN ... et e e s e e e g g g R R e 15

List of Tables and Figures

Tabl e L Sy TS i viin s oo autnmiesss o oo o e o o v iAo o e A 3 o4 Ve mi e i o L i s e i o 5
Table 2 Marine wildlife Sightings By SEA5S0M. ... e s e s e 6
Table 3 Probability of detection (p) of baitfish, dolphins and sharks.........cciiiin 14
Table 4 Density and AbBUNdance estiMates.. (. s s b s e s s e 14
Table 5 Total sightings By SUNVEY Qahe. ... vee i irresinis s varernrmsises e sarassres e vanssassss resasessamare s vardsmsuasses rass 15
Table 6 Inter-observer SUrvey ObSErVaTIONS. .o s e e e s 18
Figure 1 Flight path map 3

Figure 2 Bottlenose dolphin Eroup size RiStOBram. ..o esvrrsrs s s rsrsssrsre e s srssssssesmreserossessesserans 7
Figure 3 Baitfish distance from transSect By S1Z8 . i e sssassvess e resmens s ss e 7
Figure 4 Distance offshore (m) by species

Figure 5 GPS sighting locations of baitfish, bottlenose dolphins and sharks ... 9
Figure 6 Sightings Per SUNVEY DY SBASOMN ......cvcivrvrceveere i rermssrcess s serassrosssessssasasssass sessssssssans sssrssesssmsss sens 10
Figure 7 Proportion of flight time at environmental factor levels by Season.....emeens 11
Figure 8 Number of sightings/hr at by Sea State and Turbidity ..o . 11
Figure 9 Missed sightings during 18 inter-observer SUMVEYS ... s 12
Figure 10 Detection fURMCEIING . i i st s bessres o roes b bobad s o b360 6053 14 B4 5404 £ 806908 £4 04 FETE9E 000 64 13
2

237



Appendix D

Methods

Flight path

Between December 2013 and October 2015 there were a total of 53 aerial survey days, including 19
inter-observer discrepancy trials, The same flight path was flown during each survey, with a
northbound and southbound transect each day. The northbound transect ran between South
Waollongong and the Sygna Wreck at Newcastle, and the southbound transect ran in the opposite
direction, from the Sygna Wreck to South Wallongong. The northbound transect commenced at 8am
{AEST) on each survey date. Between the transects, the helicopter lands at Newcastle Regional
Heliport to refuel and an hour break is taken. This allows the observer to rest and the marine wildlife
to move in and out of the survey area to decrease the chance of recounting. Each transect takes
approximately two hours from take-off to landing, however this varies slightly with wind conditions
and the number of sightings requiring the helicopter to circle. A map of the survey track is shown in
Error! Reference source not found..

Wollongong

Figure 1 Flight poth fyellow) over google earth map
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Survey methods and equipment

Each survey used the same method to standardise the results as much as possible. The aircraft was a
Robinson 44 with the pilot seated on the front right, the observer on the front left, and the
photographer an the back left. Both left hand doors are removed (note: the front left hand door was
left on during two surveys as a trial, howewver it was determined that the door should be taken off).
The northbound transect was flown approximately 300m from the back surf line with the observers
looking onshore. The southbound transect was flown over the surf line, with the observers looking
offshore,

The observer used a voice recorder to record all information to minimise the time spent looking
away from the transect. The observer used a handheld Garmin 76 GPS to record a waypoint at each
event code and an inclinometer to measure the angle to each sighting. The following events were
recorded:

= Start and end of transect

* Leaving and returning to transect (i.e.: due to circle backs for photographs)

«  Marine wildlife sightings (Sharks, cetaceans, pinnipeds, turtles, rays and baitfish)
* Changes in environmental conditions

As these surveys were collecting distance sampling data, it was crucially important that the observer
be the only person calling sightings. The pilot and photographer were only allowed to notify the
observer of a sighting once it was past 90 degrees to the observer, and hence deemed a “missed”
sighting.

In addition to notifying the observer of missed sightings, the photographer was responsible for
photographing marine wildlife during both transects. They also captures images of each netted
beach during the northbound transect for beach usage counts, From the Spring 2014 season
onwards, the photographer also photographed all rock fishermen seen during the northbound
transect. The netted beaches to be photographed on the northbound trip are:

South Wollongong  Manly Umina Merewether
MNorth Wollongong  MNorth Steyne Kilcare Dixon Park
Thirroul Cueenscliff MchMasters Bar
Austinmer Freshwater Copacabana Mewcastle
Coledale Curl Curl Avoca Nobby's
Garie Dee Why MNorth Avoca Stockton
Wattamolla MNarabeen Terrigal

Cronulla Morth Marabeen  Shelly

North Cronulla Warriewood The Entrance

Elouera Mona Vale Soldiers

Wanda Newport Lakes

Maroubra Bilgola Catherine Hill Bay

Coogee Avalon Caves

Bronte Whale Swansea-Blacksmiths

Bondi Palm Redhead
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Inter-observer surveys

During the 2014-2015 survey season, there were 18 inter-observer discrepancy surveys. These were
conducted with Lisa-Marie Harrison as the first observer, seated on the front left of the helicopter,
and Vic Peddemors as the second observer, seated on the back left, As only three people (including
the pilot) could take part in the surveys, the second observer also acted as the photographer. Only
the southbound surveys were flown as inter-observer surveys, because the second observer was
required to take beach usage images during the northbound transect which would have changed
their sighting effort, hence making it an unfair inter-observer trial. If an image was required during
the southbound inter-observer survey, the transect was stopped, the helicopter circled to allow the
second observer to capture photographs, and only restarted once the photographs have been taken.

To get independent results, the two observers must be completely isolated and unable to alert each

other to a sighting by either sight or voice. A chipboard screen was made and fastened to the

helicopter with cable ties to prevent the observers from seeing each other, The helicopter COM
system was set up so that the observers could record sightings into their voice recorders without the
information being heard by the other members of the survey team.

Survey Dates

A total of 53 survey dates were flown between summer 2013 and October 2015. Lisa-Marie Harrison
was the first observer for all surveys except those marked by * in Table 1, where Vic Peddemors was
primary observer.

Table 1 Aerfal survey dates by Season. *VWic Peddemors was observer

Summer Autumn Spring 2014 | Summer Autumn Spring
2013 2014 2014 2015 2015
21/12/2013 | 9/4/2014 | 13/09/2014* | 20/12/2014 | 1/04/2015 | 9/09/2015
24/12/2013 | 21/4/2014 | 21/09/2014 | 25/12/2014* | 6/04/2015 | 12/09/2015
25/12/2013 | 23/4/2014 | 24/09/2014 | 27/12/2014* | 11/04/2015 | 16/09/2015
28/12/2013 | 1/5/2014 | 2/10/2014* | 31/12/2014 | 14/04/2015 | 19/09/2015
31/12/2013 | 14/5/2014 | 5/10/2014 1/01/2015 29/04/2015 | 30/09/2015
1/1/2014 17/5/2014 | 9/10/2014 3/01/2015 18/05/2015 | 4/10/2015
4/1/2014 16/10/2014 | 7/01/2015 19/05/2015 | 5/10/2015
8/1/2014 14/01/2015 | 20/05/2015 | 14/10/2015
11/1/2014 17/01/2015
15/1/2014* 21/01/2015
18/1/2014* 25/01/2015
27/1/2014* 26/01/2015
Number of | 12 6 7 12 8 8 TOTAL
Surveys =53
5
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Results

Marine Wildlife observations

Sighting numbers

Sighting numbers per season are shown in Table 2. Full sighting numbers for each survey are

provided in the appendix. Baitfish and bottlenose dolphins were the most commaonly seen species,
with very few sharks seen. Except in the inter-observer section of the results, all tables and figures
do not include secondary sightings by observer 2 during inter-observer surveys for consistency

because most surveys were not inter-observer.

Table 2 Marine wildlife sightings by season. Note: Group numbers are shown [e.g.: Dolphin pods), not individuals. n =

number af surveys in eoch season. Secondary sightings from inter-observer surveys are not included.

Summer Autumn Spring Summer

Autumn  Spring

2013 2014 2014 2014 2015 2015
(n=12) (n=6) (n=7) (n=12}) (n=8) (n=8)
Baitfish 192 175 335 303 226 477 1708
Fish Sunfish 43 43
Large Fish 3 2 1 q 1 2 13
Bottlenose Dolphin 83 39 95 119 34 101 471
s Commaon Dalphin 1 1
Humpback Whale 1 7 3 11
Seal . 5 4 9 8 4 32
White Shark 27 2 5 34
Bull Shark 1 1
Sharks Whaler Shark 2 2
Hammerhead Shark 44 10 8 104 20 2 188
Unidentified Shark 2 1 1 2 1 7
Other Turtle 1 14 5 4 16 12 52
Ray 5 17 28 26 22 19 117
359 263 486 621 330 621 2680
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Group size

Bottlenose dolphin group size {Figure 2) varied considerably, from 1 to 120 individuals (mean = 16).
Mo relationship was seen with bottlenose dolphin group size and distance from transect.

Fraquency
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Figure 2 Estimoted bottlenose dolphin group size

Baitfish schools were classified as “small”, “medium” or “large”. An very small opposite relationship
is seen in the north and south survey directions, with larger schools been seen offshore and smaller
schools onshore in both directions (Figure 3). This may be because small baitfish schools are most
visible in very shallow water and are likely to be missed further offshare.
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242



Appendix D

Distance Offshore

During southbound transects the helicopter is positioned at the edge of the water with the observer
looking out to sea. As the transect roughly follows the shoreling, the distance of a sighting from
transect is approximately equal to distance offshore, Cetaceans and baitfish schools were seen the
furthest from shore, while seals, rays sharks and turtles were never seen more than 500m from
shore (Figure 4), It was not possible to look at distance offshore by time of day because the
helicopter always travelled south at the same time of day.
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Figure 4 Distance offshore (m) by species. All non-hommerhead shark sightings have been combined into Shark'
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Sighting locations

Sighting locations are only discussed for baitfish, bottlenose dolphins and sharks. Baitfish and
dolphins were seen all along the length of the transect, while a non-hammerhead shark was only
seen once south of The Entrance (Figure 5). In particular, the bay between Swansea Heads and
Redhead beach was where most shark sightings occurred.

Baitfish Bottlenose Dolphins

ampraillmen S

Flgure 5 GPS sighting lecations of baitfish, bottlenose dolphins ond sharks during the 53 surveys
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Seasonal and environmental differences

The number of sightings per survey differed between seasons and within each season there was a
large amount of variation in number of sightings (Figure 6). Shark species were seen more often in
summer while baitfish and dolphins were seen most in spring.
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Figure & Sightings per survey by season. Note: Sharks' includes oll non-hammerhead species

To assess whether these differences may be due to environmental factors limiting sightability in
some seasons, proportion of survey time at each level of Sea State, Turbidity and Cloud Cover is
plotted (Figure 7). Sea state and turbidity were fairly consistent among seasans, while Cloud Cover
was lower in spring than in the other seasons.
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turbid; Cloud Cover 0 = no clouds to 8 = full cover

The number of sightings per hour was calculated using the effort at each environmental variable
level (Figure 8). For baitfish, there was no difference in sighting rate at different Sea State or
Turbidity levels. Sighting rates for dolphins were the same with Turbidity, but decreased with every
increase in Sea State. This could be because splashing and foam from dolphins’ fins are a major
visual cue for observers, but are more difficult to see when there are breaking wave crests with
Beaufort Sea States 3 and higher. With the low sighting rates for sharks, it is more difficult to see any
patterns that may be present with sighting rate and environmental conditions.
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Inter-observer surveys

The total number of missed sightings by each observer during the 19 surveys is shown in Figure 9.
These results show the importance of conducting inter-abserver surveys if surveys conducted with
different observers are to be compared. See Table & in the Appendix for the full inter-observer
sighting data by survey,

=
-~ B Lisa
= = Vic
ﬂ_
s
o
c o
£ 21
m'!_
7
L
]
g ® 7
1]
E
B 2 -
I_ED
7]
L
E o
4

=

m—

|
—
-

Figure 9 Missed sightings during 18 inter-observer surveys
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Distance Sampling

A distance sampling analysis was used to calculate the probability of detection of each species and
estimate abundance within the survey region. For this analysis, only southbound flights were used
because the strip width of the northbound flights is limited to 200m because the observers are
looking onshare, Distance sampling revolves around the notion that sighting rates will decrease with
distance from transect because animals further away are smaller and harder to see. The probability
of an available animal being detected will hence decrease with increasing distance from transect. For
Bottlenose dolphins, baitfish schools and non-hammerhead sharks, the probability of detection
curves are shown in Figure 10. A gamma detection function fit best for baitfish and bottlenose
dolphins while a hazard-rate function was best for shark species.
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Flgure 10 Detection funchions with distonce from transect {m)

Inter-observer data between Lisa-Marie Harrison and Vic Peddemors was used to calculate the
probability of detection on the transect line, p{0). This value does not take into account missed
sightings due to distance, Average p is the average probability of detection across all distances. To
get the corrected probability of detection (for distance and inter-observer) these two values are
multiplied together. From Table 3, the probability of detection for baitfish is 12.7%, for bottlenose
dalphins is 25.4% and for sharks is 11.8%.
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Table 3 Probability of detection [p) for Lisa-Marie Harrison

Probability of detection (p)
Average p p(0) Corrected Average p

(corrects for
distance)

(corrects using
interohserver)

{Average p*p(0))

Baitfish

0.187 (CV: 0.020)

0.678 (CV: 0.038)

0.127 (CV: 0.043)

Bottlenose Dolphin

0.322 (CV-0.054)

0.788 (CV: 0.067)

0.254 (CV: 0.086)

Sharks

0.235 (CV: 0.181)

0.500 (CV: 0.500)

0.118 (CV: 0.532)

Density and abundance estimates, shown in Table 4, are calculated using the formula:
- N
d 2=
wlpg

Where d = density, N = mean animals seen per survey, w = strip width, L = transect length and p, =
corrected average probability of detection from Table 3. The abundance estimates are for the 265km
* 1km survey area. The estimates for sharks are very low because there were too few sightings to
get a good approximation of the detection function.

Table 4 Density ond Abundonce estimates corrected for perception bigs, Sharks” includes all nen-hammerhead shark
sightings, including white, whaler, bull and unidentifled shorks,

Density (Nfkm?) | Abundance (N) Coefficient of Variation (CV)
Baitfish 0.57 150 0.109
Bottlenose Dolphin Pods | 0.05 13 0.158
Individuals 0.76 202 0.195
Sharks 0.01 3 0.627

Conclusion

Baitfish and bottlenose dolphins made up most marine wildlife sightings between Wollongong and
Newcastle from 2013 - 2015. Density estimates from distance sampling indicate that there are 0.57
baitfish/km* and 0.76 bottlenose dolphin s/km®. There were not enough shark sightings to get an
accurate abundance or density estimate. Of sharks, the only species with =35 sightings in total over
the six seasons was hammerhead sharks.

There were large seasonal differences seen, with spring having the highest number of baitfish and
bottlenose dolphin sightings and summer having the most shark sightings. Environmental condition
levels did not greatly effect sighting rate in general, except for a decrease in bottlenose dolphin
sightings at higher sea states. The practice of recording environmental variables whenever they
change, rather than at each sighting, is vital because otherwise the time in minutes spent at each
environmental level cannot be accurately calculated. Recording via the headset and a voice recorder
is also important during distance sampling surveys from aircraft because it allows the observer to
always have their eyes on transect, reducing missed sightings. The inter-observer surveys were
highly valuable for estimating the probability of detection on the transect line (distance = 0) for the
primary observer.
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