Boron-Promoted Umpolung Reaction of Sulfonyl Chlorides for the Stereospecific Synthesis of Thioglycosides via Reductive Deoxygenation Coupling Reactions

Siyu Li,^{1,#} Yujuan Wang,^{1,#} Lei Zhong,^{1,#} Siyu Wang,¹ Zhengli Liu,¹ Yuanwei Dai,¹* Yun He,¹* and Zhang Feng^{1,2}*

¹Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China

²Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China [#]These authors contributed equally.

List of Contents

General Information and Materials	S2
Optimization of the Reaction for the Synthesis of Thioglycosides	S3
Control Experiments	S6
Mechanistic Studies	S7
Gram-Scale Experiment	S9
General Procedures for the Synthesis of 1-Bromoglycosides, Experimental I	Procedures
and Characterization Data	S9
General Procedures for the Synthesis of Thioglycosides, Experimental Proce	edures and
Characterization Data	S17
References	S37
Spectra of 1-Bromoglycosides and Thioglycosides	S39

General information: ¹H NMR and ¹³C NMR spectra were recorded on Agilent 400MR DD2 (400 MHz) or 600MR DD2 (600 MHz) spectrometer at ambient temperature. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, sept = septet. NMR yield was determined by ¹H NMR using mesitylene as an internal standard before working up the reaction. High resolution mass spectra (HRMS) were acquired on a 7 Tesla SolariX FT-ICR MS (Bruker Daltonics, Bremen, Germany) with an ESI source or GCT Premier (waters, United States) with an EI source. All deuterated solvents were purchased from Cambridge Isotope Laboratories. All air and moisture-sensitive manipulations were performed using oven-dried glassware, including standard Schlenk and glovebox techniques under an atmosphere of nitrogen.

Materials: All reagents from commercial sources were used as received, unless otherwise specified. B_2pin_2 was purchased from Adamas. 2,3,4,6-Tetra-*O*-acetyl- α -D-glucopyranosyl bromide was purchased from Bide Pharmatech. Tosyl chloride was purchased from Energy Chem. All solvents were refluxed with sodium/benzophenone or calcium hydride and distilled before use.

Optimization of the Reaction for the Synthesis of Thioglycosides (Table S1-S6):

Table S1. Screening of Base	es.a
-----------------------------	------

••••••••••••••••••••••••••••••••••••••	AcO AcO AcO AcO Br	PPh ₃ (3.0 equiv) B ₂ pin ₂ (2.0 equiv) [Base] (5.0 equiv) DME (1.0 mL), r.t	AcO OAc AcO STol OAc
Entry	Solvent	[Base]	Yield ^b
1	DME	КОН	52%
2	DME	NaOH	50%
3	DME	LiOH	17%

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa** (1.5 equiv), PPh₃ (3.0 equiv), B₂pin₂ (2.0 equiv), base (5.0 equiv), DME (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

1a (1.0 eq	S CI + AcO AcO Br	PPh ₃ (3.0 equiv) B ₂ pin ₂ (x equiv) KOH (5.0 equiv) DME (1.0 mL), r.t	AcO OAc AcO OAc OAc
Entry	Solvent	Х	Yield ^b
1	DME	1.5	28%
2	DME	2.0	52%
3	DME	2.5	61%

n 2. <i>a</i>

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa** (1.5 equiv), PPh₃ (3.0 equiv), B₂pin₂, KOH (5.0 equiv), DME (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

	1a (1.0 equiv)	+ AcO AcO Br 1aa	PPh₃ (3.0 equiv) B₂pin₂ (2.5 equiv) KOH (5.0 equiv) [Solvent] (1.0 mL), r.t	AcO AcO OAc OAc 1
I	Entry	Solvent	[Base]	Yield ^b
	1	DME	КОН	61%
	2	MTBE	КОН	12%
	3	Diethyl ether	КОН	4%
	4	CPME	КОН	25%
	5	Isopropyl ether	КОН	51%
	6	DMSO	КОН	13%
	7	1,2-Diethoxyethane	КОН	56%
	8	THF	КОН	trace
	9	PhCF ₃	КОН	trace
	10	NMP	КОН	trace
	11	DMF	КОН	trace

Table S3. Screening of Solvent.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa** (1.5 equiv), PPh₃ (3.0 equiv), B₂pin₂ (2.5 equiv), KOH (5.0 equiv), solvent (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

Table S4. Screening the loading of 2,3,4,6-Tetra-O-acetyl- α -D-glucopyranosyl bromide (1aa).^{*a*}

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa**, PPh₃ (3.0 equiv), B_2pin_2 (2.5 equiv), KOH (5.0 equiv), solvent (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

1a (1.0	$\int_{CI}^{O} CI + AcO AcO$	OAc PPh ₃ (3.0 equiv) B ₂ pin ₂ (2.5 equiv) KOH (x equiv) DME (1.0 mL), r.t aa	ACO COAC ACO OAC OAC
Entry	Solvent	KOH (x equiv)	Yield ^b
1	DME	3.0	47%
2	DME	3.5	87%
3	DME	4.0	95% (90%)
4	DME	4.5	81%
5	DME	5.0	84%

Table S5. Screening the loading of KOH.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa** (1.2 equiv), PPh₃ (3.0 equiv), B₂pin₂ (2.5 equiv), KOH, DME (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

1a (1.0 e	$\frac{1}{S} = \frac{1}{C_{I}} + \frac{1}{A_{CO}} = \frac{1}{A_{CO}} = \frac{1}{A_{CO}} = \frac{1}{A_{CO}} = \frac{1}{B_{r}}$	PPh ₃ (3.0 equiv) B ₂ pin ₂ (2.5 equiv) Base (4.0 equiv) DME (1.0 mL), r.t	AcO OAc ACO STOI OAc 1
Entry	Solvent	Base	Yield ^b
1	DME	K_2CO_3	13%
2	DME	Na ₂ CO ₃	15%
3	DME	Cs_2CO_3	77%
4	DME	NaOAc	NR
5	DME	Na ₃ PO ₄	NR
6	DME	K_3PO_4	33%

Table S6. Screening other bases.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa** (1.2 equiv), PPh₃ (3.0 equiv), B₂pin₂ (2.5 equiv), Base (4.0 equiv), DME (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

Control Experiments

1a (1.0 ec	$S_{CI} + A_{CO} + A$	PPh ₃ (3.0 equiv) B ₂ pin ₂ (x equiv) KOH (4.0 equiv) Br DME (1.0 mL), r.t	ACO OAc ACO OAc OAc
Entry	Solvent	B ₂ pin ₂ (x equiv)	Yield ^b
1	DME	2.5	95% (90%)
2	DME	1.0	36%
3	DME	0.5	10%
4	DME	0	7%

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa** (1.2 equiv), PPh₃ (3.0 equiv), B₂pin₂, KOH (4.0 equiv), DME (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

Entry	PPh ₃ (x equiv)	Yield ^b
1	3.0	95% (90%)
2	2.0	14%
3	1.0	7%
4	0.5	1%
5	0	0%

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa** (1.2 equiv), PPh₃, B₂pin₂(2.5 equiv), KOH (4.0 equiv), DME (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

^aReaction conditions (unless otherwise specified): Benzylsulfonyl chloride (0.2 mmol, 1.0 equiv),

1aa (1.2 equiv), PPh₃ (3.0 equiv), B₂pin₂ (2.5 equiv), KOH (4.0 equiv), DME (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa** (1.2 equiv), PPh₃, B₂pin₂, KOH, DME (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

Mechanistic Studies

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **1aa**, PPh₃(3.0 equiv), B₂pin₂(2.5 equiv), KOH (4.0 equiv), DME (1.0 mL), room temperature, 15 h, under nitrogen atmosphere. ^{*b*}Determined by ¹H NMR using mesitylene as an internal standard.

Conclusion: The possible intermediates, *p*-tolyl disulfide **38** and *p*-thiocresol **39** were found in this transformation.

(2R,3R,4S,5R,6R)-2-(acetoxymethyl)-6-(p-tolylthio)tetrahydro-2H-pyran-3,4,5triyl triacetate (41).

Known compound.^[1] The product (15.5 mg, 17% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹**H NMR** (600 MHz, CDCl₃) δ 7.31 (d, *J*= 8.4 Hz, 2 H), 7.09 (d, *J*= 7.8 Hz, 2 H), 5.81 (d, *J*= 6.0 Hz, 1 H), 5.41 (d, *J*= 10.2 Hz, 1 H), 5.08-5.03 (m, 2 H), 4.58-4.55 (m, 1 H), 4.25 (dd, *J*= 5.4, 12.6 Hz, 1 H), 4.01 (dd, *J*= 2.4, 12.6 Hz, 1 H), 2.30 (s, 3 H), 2.09(s, 3 H), 2.06(s, 3 H), 2.03(s, 3 H), 2.00(s, 3 H).

Conclusion: *p*-Tolyl disulfide **38** could not undergo this transformation, while *p*-thiocresol **39** could react well in this borane-promoted system, which suggested that *p*-thiocresol **39** may be the intermediate. Complete stereoinversion of the glycosyl donors

suggests that an S_N2 substitution process might be involved in this transformation.

Gram-scale Experimental Procedures.

To a 100 mL of round bottom flask equipped with a magnetic stir bar, PPh₃ (1.57 g, 6.0 mmol), B₂pin₂ (1.27 g, 5 mmol), **1a** (0.381 g, 2 mmol), **1aa** (0.986 g, 2.4 mmol) were added in a round bottom flask, followed by KOH (0.448 g, 8 mmol), then fresh distilled DME (10 mL) was added. The reaction mixture was stirred at room temperature for 30 h. The reaction solution was quenched with water, extracted with ethyl acetate (20 mL×3), and the organic layer was separated. The organic phase was dried over Na₂SO₄ and concentrated in vacuum. The concentrate was separated and purified by silica gel flash chromatography (PE/EA = $5/1\sim3/1$) to obtain the corresponding product 1 (1.13 g, 78%).

General Procedure (for the synthesis of 1-bromoglycosides):

$$(PGO)_{n} \xrightarrow{O} OAc \xrightarrow{HBr} (33\% \text{ in AcOH}) \xrightarrow{(PGO)_{n}} \xrightarrow{O} OAc \xrightarrow{HBr} (H_{2}Cl_{2}, 0 \circ C-rt, 3 h) \xrightarrow{PGO} OAc \xrightarrow{O} OAc \xrightarrow{HBr} O$$

To a solution of the C-1 acetyl protected sugar (1.0 equiv) in anhydrous DCM (0.5 M) was added HBr (33% Wt in AcOH, 2.0 equiv) at 0 °C. After addition, the reaction mixture was warmed to room temperature and stirred for 3 h, then the reaction mixture was poured onto an ice/water mixture. The organic phase was collected, and the aqueous phase was extracted with DCM twice. The combined organic layers were washed with satd. NaHCO₃, brine, dried over Na₂SO₄, and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography on silica gel to afford the desired compound.

Experimental Procedures and Characterization Data.

2,3,6,2',3',4',6'-Hepta-O-acetyl-α-D-lactosyl bromide (30aa).

The reaction used peracetylated lactose (1.0 g, 1.47 mmol) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel (PE/EA = 2.5/1) to afford the title compound (906 mg, 88%) as a colorless syrup. ¹H NMR (600 MHz, CDCl₃) δ 6.52 (d, *J* = 4.1 Hz, 1 H, H-1), 5.54 (t, *J* = 9.6 Hz, 1 H), 5.35 (d, *J* = 3.4 Hz, 1 H), 5.12 (dd, *J* = 10.4, 7.9 Hz, 1 H), 4.95 (dd, *J* = 10.4, 3.5 Hz, 1 H), 4.75 (dd, *J* = 10.0, 4.0 Hz, 1 H), 4.50 (t, *J* = 9.0 Hz, 2 H), 4.23 – 4.12 (m, 3 H), 4.07 (dd, *J* = 11.2, 7.2 Hz, 1 H), 3.91 – 3.80 (m, 2 H), 2.15 (s, 3 H), 2.12 (s, 3 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.05 (s, 3 H), 1.96 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.3, 170.1, 170.1, 170.0 169.9, 169.2, 168.9, 100.8, 86.4, 74.9, 73.0, 71.0, 70.8, 70.8, 69.6, 69.0, 66.6, 61.0, 60.9, 20.8, 20.8, 20.6, 20.6, 20.5. The NMR spectroscopic data is identical to those in the previous report. ^[2]

2,3,6,2',3',4',6'-Hepta-O-acetyl-α-D-cellobiosyl bromide (31aa).

The reaction used peracetylated cellobiose (1.5 g, 2.21 mmol) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel (PE/EA = 3/1) to afford the title compound (1.31 g, 85%) as a colorless syrup. ¹H **NMR** (600 MHz, CDCl₃) δ 6.48 (d, J = 4.0 Hz, 1 H, H-1), 5.47 (t, J = 9.7 Hz, 1 H), 5.10 (t, J = 9.4 Hz, 1 H), 5.02 (t, J = 9.7 Hz, 1 H), 4.88 (t, J = 8.6 Hz, 1 H), 4.71 (dd, J = 10.0, 4.1 Hz, 1 H), 4.50 (d, J = 7.9 Hz, 1 H), 4.47 (d, J = 11.6 Hz, 1 H), 4.31 (dd, J = 12.5, 4.5 Hz, 1 H), 4.18 – 4.09 (m, 2 H), 4.00 (dd, J = 12.4, 2.3 Hz, 1 H), 3.80 (t, J = 9.6 Hz, 1 H), 3.63 (ddd, J = 10.1, 4.5, 2.3 Hz, 1 H), 2.08 (s, 3 H), 2.03 (s, 6 H), 1.99 (d, J = 2.7 Hz, 6 H), 1.96 (s, 3 H), 1.93 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.3,

170.1, 169.9, 169.8, 169.2, 169.1, 168.8, 100.4, 86.4, 75.1, 72.9, 72.8, 71.9, 71.4, 70.6, 69.3, 67.6, 61.5, 60.8, 20.6, 20.5, 20.5, 20.4, 20.4. The NMR spectroscopic data is identical to those in the previous report. ^[3]

2,3,4,6-Tetra-O-acetyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- α -D-Glucopyranosyl Bromide (33aa).

The reaction used peracetylated maltotriose (1.0 g, 1.03 mmol) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel (PE/EA = 2/1) to afford the title compound (940 mg, 92%) as a colorless syrup. ¹**H NMR** (600 MHz, CDCl₃) δ 6.48 (d, *J* = 4.0 Hz, 1 H, H-1), 5.58 (t, *J* = 9.4 Hz, 1 H), 5.41 – 5.36 (m, 2H), 5.33 (t, *J* = 10.0 Hz, 1 H), 5.26 (d, *J* = 4.1 Hz, 1 H), 5.05 (t, *J* = 9.9 Hz, 1 H), 4.83 (dd, *J* = 10.5, 4.0 Hz, 1 H), 4.72 (dd, *J* = 10.4, 4.1 Hz, 1 H), 4.69 (dd, *J* = 9.8, 4.0 Hz, 1 H), 4.54 – 4.45 (m, 2 H), 4.33 – 4.20 (m, 3 H), 4.14 (dd, *J* = 12.3, 2.4 Hz, 1 H), 4.06 – 3.99 (m, 2 H), 3.95 – 3.86 (m, 3 H), 2.16 (s, 3 H), 2.13 (s, 3 H), 2.07 (s, 3 H), 2.04 (s, 6 H), 2.03 (s, 3 H), 2.01 (s, 3 H), 2.00 (s, 3 H), 1.99 (s, 3 H), 1.97 (s, 3 H).¹³C NMR (150 MHz, CDCl₃) δ 170.7, 170.6, 170.5, 170.3, 169.8, 169.8, 169.6, 169.4, 95.9, 95.5, 85.9, 72.5, 72.2, 72.2, 71.6, 71.0, 70.4, 70.0, 69.3, 69.1, 68.4, 67.9, 62.8, 61.9, 61.3, 20.8, 20.7, 20.6, 20.5, 20.5. The NMR spectroscopic data is identical to those in the previous report.^[4]

2,3,4-Tri-O-acetyl-6-O-[2-(4-isobutylphenyl) propanoyl]-α-D-glucopyranosyl bromide (34aa).

To a solution of compound **S1**^[5] (294 mg, 0.80 mmol) in dry DCM (6 mL) were added ibuprofen (198 mg, 0.96 mmol), DMAP (19.5 mg, 0.16 mmol), EDC·HCl (276 mg, 1.44 mmol) and DIPEA (0.25 mL, 1.44 mmol). After stirring at room temperature for 12 h, the reaction mixture was diluted with DCM and washed with sat. NaHCO₃ and brine, respectively. The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 3/1), to give **S2** (378 mg, 88% yield) as a colorless oil (mixture of α and β anomers).

34aa was synthesized using **S2** (300 mg, 0.558 mmol) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel (PE/EA = 3/1) to afford the title compound (233 mg, 75%) as a colorless syrup (dr = 1:1). ¹**H NMR** (600 MHz, CDCl₃) δ 7.20 (dd, *J* = 8.0, 4.1 Hz, 4 H), 7.10 (dd, *J* = 8.1, 2.5 Hz, 4 H), 6.55 (d, *J* = 4.0 Hz, 1 H, H-1), 6.52 (d, *J* = 4.0 Hz, 1 H, H-1), 5.50 (td, *J* = 9.7, 2.7 Hz, 2 H), 5.06 – 4.97 (m, 2 H), 4.71 (dd, *J* = 10.1, 4.0 Hz, 1 H), 4.67 (dd, *J* = 10.0, 4.0 Hz, 1 H), 4.28 – 4.16 (m, 6 H), 3.73 (qd, *J* = 7.2, 2.0 Hz, 2 H), 2.44 (d, *J* = 7.2 Hz, 4 H), 2.09 (s, 3 H), 2.08 (s, 3 H), 2.03 (s, 3 H), 2.02 (s, 6 H), 1.99 (s, 3 H), 1.84 (hept, *J* = 6.7 Hz, 2 H), 1.51 (d, *J* = 7.2 Hz, 3 H), 1.49 (d, *J* = 7.1 Hz, 3 H), 0.89 (d, *J* = 6.6 Hz, 12 H). ¹³**C NMR** (150 MHz, CDCl₃) δ 174.1, 174.1, 169.8, 169.8, 169.7, 169.7, 169.3, 169.2, 140.6, 140.6, 137.2, 137.0, 129.3, 129.3, 127.3, 127.2, 86.5, 86.4, 72.3, 72.2, 70.5, 70.1, 70.1, 67.4, 67.1, 61.2, 60.8, 45.0, 44.8, 30.1, 30.1, 22.4, 20.6, 20.6, 20.5, 20.4, 18.3, 18.1. The NMR spectroscopic data is identical to those in the previous report.^[5]

2,3,4-Tri-O-acetyl-6-O-[(R)-2-(6-methoxynaphthalen-2-yl) propanoyl]-α-D-

glucopyranosyl bromide (35aa).

To a solution of compound **S1** (294 mg, 0.80 mmol) in dry DCM (6 mL) were added ibuprofen (221 mg, 0.96 mmol), DMAP (19.5 mg, 0.16 mmol), EDC·HCl (276 mg, 1.44 mmol) and DIPEA (0.25 mL, 1.44 mmol). After stirring at room temperature for 12 h, the reaction mixture was diluted with DCM and washed with sat. NaHCO₃ and brine, respectively. The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 3/1), to give **S5** (430 mg, 96% yield) as a colorless oil (mixture of α and β anomers).

35aa was synthesized using **S5** (420 mg, 0.61 mmol) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel (PE/EA = 4/1) to afford the title compound (266 mg, 75%) as a colorless syrup. ¹H NMR (600 MHz, CDCl₃) δ 7.79 – 7.64 (m, 3 H), 7.41 (dd, *J* = 8.5, 1.9 Hz, 1 H), 7.18 – 7.07 (m, 2 H), 6.52 (d, *J* = 4.0 Hz, 1 H, H-1), 5.46 (t, *J* = 9.7 Hz, 1 H), 4.94 (t, *J* = 9.7 Hz, 1 H), 4.59 (dd, *J* = 10.0, 4.1 Hz, 1 H), 4.31 – 4.15 (m, 3 H), 3.91 (d, *J* = 7.2 Hz, 1 H), 3.89 (s, 3 H), 2.07 (s, 3 H), 1.99 (s, 3 H), 1.96 (s, 3 H), 1.61 (d, *J* = 7.2 Hz, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 173.9, 169.8, 169.6, 169.2, 157.5, 134.9, 133.7, 129.3, 128.8, 127.1, 126.4, 126.0, 118.8, 105.5, 86.4, 72.2, 70.5, 70.0, 67.3, 61.1, 55.2, 45.2, 20.5, 20.4, 17.9. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₆H₂₉BrO₁₀Na 603.0842; Found 603.0835.

2,3,4-Tri-O-acetyl-6-O-[(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-

yl)carbonyl]-α-D-glucopyranosyl bromide (36aa).

To a solution of compound **S1** (294 mg, 0.80 mmol) in dry DCM (6 mL) were added indomethacin (286 mg, 0.96 mmol), DMAP (19.5 mg, 0.16 mmol), EDC·HCl (276 mg, 1.44 mmol) and DIPEA (0.25 mL, 1.44 mmol). After stirring at room temperature for 12 h, the reaction mixture was diluted with DCM and washed with sat. NaHCO₃ and brine, respectively. The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 3/1), to give **S4** (517 mg, 94% yield) as a colorless oil (mixture of α and β anomers).

36aa was synthesized using **S4** (500 mg, 0.727 mmol) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel (PE/EA = 3/1) to afford the title compound (267 mg, 52%) as a colorless syrup. ¹**H NMR** (600 MHz, CDCl₃) δ 7.68 (dd, J = 8.4, 1.3 Hz, 2 H), 7.51 – 7.41 (m, 2 H), 6.99 (d, J = 2.6 Hz, 1 H), 6.89 (d, J = 9.0 Hz, 1 H), 6.67 (dt, J = 8.9, 1.6 Hz, 1 H), 6.54 (d, J = 4.0 Hz, 1 H, H-1), 5.49 (t, J = 9.7 Hz, 1 H), 5.02 (t, J = 9.8 Hz, 1 H), 4.60 (ddd, J = 10.0, 4.1, 1.2 Hz, 1 H), 4.32 (dd, J = 12.6, 4.2 Hz, 1 H), 4.25 (dd, J = 10.5, 4.1 Hz, 1 H), 4.19 (dd, J = 12.6, 1.8 Hz, 1 H), 3.85 (d, J = 1.2 Hz, 3 H), 3.71 (s, 2 H), 2.37 (s, 3 H), 2.09 (s, 3 H), 2.02 (s, 6 H). ¹³**C NMR** (150 MHz, CDCl₃) δ 170.3, 169.8, 169.6, 169.3, 168.3, 156.0, 139.2, 136.2, 134.0, 131.2, 130.8, 130.5, 129.1, 115.0, 112.0, 111.6, 101.4, 86.5,

72.1, 70.6, 70.1, 67.0, 61.2, 55.7, 30.0, 25.0, 24.8, 20.6, 20.6, 20.5, 13.3. The NMR spectroscopic data is identical to those in the previous report.^[5]

2,3,4-Tri-O-acetyl-6-O-[(4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-acetoxy-10,13dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl]-α-Dglucopyranosyl bromide (37aa).

To a solution of compound **S1** (294 mg, 0.80 mmol) in dry DCM (6 mL) were added 3-O-acetyl lithocholic acid (402 mg, 0.96 mmol), DMAP (19.5 mg, 0.16 mmol), EDC·HCl (276 mg, 1.44 mmol) and DIPEA (0.25 mL, 1.44 mmol). After stirring at room temperature for 12 h, the reaction mixture was diluted with DCM and washed with sat. NaHCO₃ and brine, respectively. The organic phase was dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography (PE/EA = 3/1), to give **S2** (551 mg, 92% yield) as a colorless oil (mixture of α and β anomers).

37aa was synthesized using **S3** (500 mg, 0.667 mmol) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel (PE/EA = 4/1) to afford the title compound (275 mg, 67%) as a colorless syrup. ¹H NMR (600 MHz, CDCl₃) δ 6.60 (d, *J* = 4.0 Hz, 1 H, H-1), 5.55 (t, *J* = 9.7 Hz, 1 H), 5.14 (t, *J* = 9.5 Hz, 1 H), 4.83 (dd, *J* = 10.0, 4.1 Hz, 1 H), 4.71 (ddt, *J* = 16.2, 11.1, 4.7 Hz, 1 H), 4.33 – 4.26 (m, 2 H), 4.17 – 4.12 (m, 1 H), 2.38 (ddd, *J* = 15.7, 10.3, 5.3 Hz, 1 H), 2.26 (ddd, *J* = 16.0, 9.8, 6.5 Hz, 1 H), 2.10 (s, 3 H), 2.04 (s, 3 H), 2.03 (s, 3 H), 2.02 (s, 3 H), 1.98

-1.94 (m, 1 H), 1.89 - 1.74 (m, 6 H), 1.70 - 1.50 (m, 6 H), 1.47 - 1.35 (m, 9 H), 1.34 - 1.26 (m, 3 H), 1.17 - 1.00 (m, 7 H). ¹³**C NMR** (150 MHz, CDCl₃) δ 173.8, 170.7, 169.8, 169.4, 86.6, 83.5, 74.4, 72.2, 70.6, 70.2, 67.2, 60.8, 56.5, 55.9, 42.7, 41.9, 40.4, 40.1, 35.8, 35.3, 35.0, 34.6, 32.2, 30.9, 30.7, 28.1, 27.0, 26.6, 26.3, 24.2, 23.3, 21.5, 20.8, 20.6, 20.6, 20.5, 18.2, 12.0. **HRMS** (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C_{38H57}BrO₁₁Na 791.2982; Found 791.2975.

2-N-phthalimido-2-deoxy-3,4,6-tri-O-acetyl-β-D-glucopyranosyl bromide (40aa)

The reaction used 2-N-phthalimido-2-deoxy-3,4,6-tri-O-acetyl- β -D-glucopyranosyl acetate (500 mg, 1.05 mmol) as the substrate. After work up, the reaction mixture was purified by flash column chromatography on silica gel (PE/EA = 2/1) to afford the title compound (471 mg, 90%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, *J* = 5.4, 3.1 Hz, 2 H), 7.77 (dd, *J* = 5.4, 3.0 Hz, 2 H), 6.41 (d, *J* = 9.6 Hz, 1 H, H-1), 5.76 (t, *J* = 9.3 Hz, 1 H), 5.26 (t, *J* = 9.3 Hz, 1 H), 4.63 (t, *J* = 9.7 Hz, 1 H), 4.32 (dd, *J* = 12.6, 4.6 Hz, 1 H), 4.19 (dd, *J* = 12.5, 1.7 Hz, 1 H), 4.04 – 3.85 (m, 1 H), 2.13 (s, 3 H), 2.04 (s, 3 H), 1.87 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 169.9, 169.3, 134.6, 131.2, 123.89, 77.3, 76.9, 70.6, 68.1, 61.7, 58.1, 20.7, 20.6, 20.4. The NMR spectroscopic data is identical to those in the previous report.^[6]

General Procedure (for the synthesis of thioglycosides):

To a 25 mL of Schlenk tube charged with a magnetic stir bar, were added PPh₃ (157 mg, 0.6 mmol), B₂pin₂ (127 mg, 0.5 mmol) and sulfonyl chloride (0.2 mmol), glycosyl bromide (0.24 mmol) were added in, followed by the addition of KOH (44.8

mg, 0.8 mmol), then fresh distilled DME (1.0 mL) was added. The reaction mixture was stirred at room temperature for 15 h. The reaction solution was quenched with water, extracted with ethyl acetate (10 mL \times 3). The combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (PE/EtOAc) to provide the corresponding product.

Experimental Procedures and Characterization Data.

4-Methylphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (1).

Known compound.^[7] The product (81.8 mg, 90% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2 H), 7.12 (d, *J* = 7.6 Hz, 2 H), 5.20 (t, *J* = 9.6 Hz, 1 H), 5.02 (t, *J* = 10.0 Hz, 1 H), 4.93 (t, *J* = 10.0 Hz, 1 H), 4.63 (d, *J* = 10.0 Hz, 1 H, H-1), 4.23-4.15 (m, 2 H), 3.72-3.67 (m, 1 H), 2.35 (s, 3 H), 2.09 (s, 3 H), 2.08 (s, 3 H), 2.01 (s, 3 H), 1.98 (s, 3 H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.3, 138.8, 133.8, 129.7, 127.5, 85.8, 75.7, 74.0, 69.9, 68.1, 62.1, 24.8, 21.2, 20.8, 20.7, 20.6.

4-Acetylphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (2).

Known compound.^[8] The product (52.1 mg, 54% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 2 H), 7.50 (d, *J* = 8.4 Hz, 2 H), 5.23 (t, *J* = 9.2 Hz, 1 H), 5.07-4.98 (m,

2 H), 4.81 (d, J = 10.4 Hz, 1 H, H-1), 4.25-4.14 (m, 2 H), 3.80-3.75 (m, 1 H), 2.57 (s, 3 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.00 (s, 3 H), 1.97 (s, 3 H). ¹³**C NMR** (100 MHz, CDCl₃) δ 197.2, 170.5, 170.1, 169.4, 169.2, 138.8, 136.1, 132.0, 131.0, 128.7, 128.4, 84.7, 75.9, 73.7, 69.7, 68.1, 62.1, 26.6, 20.7, 20.7, 20.5.

4-(Methoxycarbonyl)phenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (3). Known compound.^[7] The product (53.4 mg, 54% yield) as a white solid was purified with silica gel chromatography (PE/EA = 5/1~3/1). ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 2 H), 7.48 (d, *J* = 8.0 Hz, 2 H), 5.24 (t, *J* = 9.6 Hz, 1 H), 5.07-4.99 (m, 2 H), 4.81 (d, *J* = 10.0 Hz, 1 H, H-1), 4.24-4.14 (m, 2 H), 3.89 (s, 3 H), 3.80-3.75 (m, 1 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.01 (s, 3 H), 1.97 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.1, 169.3, 169.2, 166.4, 138.6, 130.8, 130.0, 129.3, 84.9, 75.9, 73.7, 69.7, 68.1, 62.1, 52.2, 20.7, 20.7, 20.5.

4-(Methylsulfonyl)phenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (4).

The product (69.5 mg, 67% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2 H), 7.48 (d, J = 8.0 Hz, 2 H), 5.25 (t, J = 9.2 Hz, 1 H), 5.08-4.99 (m, 2 H), 4.83 (d, J = 10.4 Hz, 1 H, H-1), 4.26-4.16 (m, 2 H), 3.82-3.78 (m, 1 H), 3.05 (s, 3 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.02 (s, 3 H), 1.99 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4,

170.0, 169.4, 169.2, 140.2, 139.6, 131.5, 127.8, 84.5, 76.0, 73.6, 69.6, 68.0, 62.0, 44.5, 20.8, 20.7, 20.5, 14.2. **HRMS** (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₁H₂₆NaO₁₁S₂ 541.0809; Found 541.0806.

4-Cyanophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (5).

Known compound.^[7] The product (63.3 mg, 68% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.52 (m, 4 H), 5.25 (t, *J* = 9.2 Hz, 1 H), 5.08-4.98 (m, 2 H), 4.81 (d, *J* = 10.4 Hz, 1 H, H-1), 4.25-4.15 (m, 2 H), 3.81-3.76 (m, 1 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.03 (s, 3 H), 1.99 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.1, 169.3, 169.2, 139.2, 132.3, 131.5, 118.3, 111.4, 84.5, 76.0, 73.6, 69.6, 68.0, 62.0, 20.7, 20.7, 20.5.

2-Methyl-5-nitrophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (6).

The product (69.9 mg, 70% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 2.4 Hz, 1 H), 8.02 (dd, J = 2.4, 8.4 Hz, 1 H), 7.34 (d, J = 8.4 Hz, 1 H), 5.26 (t, J = 9.2 Hz, 1 H), 5.10-5.05 (m, 2 H), 4.83 (d, J = 10.0 Hz, 1 H, H-1), 4.25-4.15 (m, 2 H), 3.85-3.80 (m, 1 H), 2.42 (s, 3 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.01 (s, 3 H), 1.98 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.0, 169.3, 169.2, 146.6, 146.6, 134.6, 130.8, 125.4, 122.4, 85.0, 76.1, 73.7, 69.7, 67.9, 62.1, 21.0, 20.6, 20.6, 20.5. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₁H₂₅NNaO₁₁S 522.1041; Found 522.1036.

4-Fluorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (7).

Known compound.^[9] The product **1** (50.4 mg, 55% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.46 (m, 2 H), 7.00 (t, J = 8.8 Hz, 2 H), 5.19 (t, J = 9.2 Hz, 1 H), 4.98 (t, J = 10.0 Hz, 1 H), 4.88 (t, J = 9.6 Hz, 1 H), 4.58 (d, J = 10.0 Hz, 1 H, H-1), 4.18-4.17 (m, 2 H), 3.70-3.66 (m, 1 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.00 (s, 3 H), 1.97 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.2, 169.4, 169.2, 163.3 (d, J = 248.2 Hz), 136.5 (d, J = 8.4 Hz), 125.7 (d, J = 3.4 Hz), 116.0 (d, J = 21.7 Hz), 85.3, 75.8, 73.9, 69.8, 68.0, 62.0, 60.9, 20.7, 20.6.

4-(Trifluoromethyl)phenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (8). Known compound.^[8] The product (70.2 mg, 71% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.53 (m, 4 H), 5.23 (t, *J* = 9.2 Hz, 1 H), 5.06-4.96 (m, 2 H), 4.76 (d, *J* = 10.0 Hz, 1 H, H-1), 4.24-4.15 (m, 2 H), 3.77-3.73 (m, 1 H), 2.07 (s, 3 H), 2.06 (s, 3 H), 2.01 (s, 3 H), 1.98 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.1, 169.3, 169.2, 136.8, 132.2, 130.1 (d, *J* = 32.6 Hz), 125.7 (q, *J* = 3.1 Hz), 123.9 (d, *J* = 270.6 Hz), 84.9, 75.9, 73.7, 69.7, 68.0, 62.0, 20.7, 20.5.

4-Difluoromethoxyphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (9).

The product (57.7 mg, 74% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.8 Hz, 2 H), 7.05 (d, *J* = 8.8 Hz, 2 H), 6.52 (t, *J* = 73.2 Hz, 1 H), 5.19 (t, *J* = 9.6 Hz, 1 H), 4.98 (t, *J* = 9.6 Hz, 1 H), 4.89 (t, *J* = 9.6 Hz, 1 H), 4.61 (d, *J* = 10.0 Hz, 1 H, H-1), 4.18-4.16 (m, 2 H), 3.71-3.67 (m, 1 H), 2.07 (s, 3 H), 2.04 (s, 3 H), 1.99 (s, 3 H), 1.96 (s, 3 H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.5, 170.1, 169.4, 169.2, 151.6, 135.8, 127.4, 119.7, 115.6 (t, *J* = 259.0 Hz), 85.2, 85.2, 75.8, 73.6, 69.8, 68.0, 62.0, 20.7, 20.5. **HRMS** (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₁H₂₄F₂NaO₁₀S 529.0951; Found 529.0943.

4-Trifluoromethoxyphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (10).

The product (80.8 mg, 77% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.4 Hz, 2 H), 7.15 (d, *J* = 8.4 Hz, 2 H), 5.21 (t, *J* = 9.6 Hz, 1 H), 5.00 (t, *J* = 9.6 Hz, 1 H), 4.94 (t, *J* = 10.0 Hz, 1 H), 4.65 (d, *J* = 10.0 Hz, 1 H, H-1), 4.19-4.18 (m, 2 H), 3.73-3.69 (m, 1 H), 2.08 (s, 3 H), 2.05 (s, 3 H), 2.00 (s, 3 H), 1.98 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.1, 169.4, 169.2, 149.5 (d, *J* = 2.0 Hz), 135.2, 129.6, 121.6, 120.3 (q, *J* = 256.6 Hz), 85.1, 75.9, 73.8, 69.8, 68.1, 62.0, 20.7, 20.6, 20.5. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₁H₂₃F₃NaO₁₀S 547.0856; Found 547.0851.

2,4-Difluorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (11).

The product **1** (74.3 mg, 78% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹**H** NMR (400 MHz, CDCl₃) δ 7.38-7.30 (m, 1 H), 6.96-6.92 (m, 2 H), 5.17 (t, *J* = 9.2 Hz, 1 H), 5.03 (t, *J* = 9.6 Hz, 1 H), 4.96 (t, *J* = 9.6 Hz, 1 H), 4.67 (d, *J* = 10.0 Hz, 1 H, H-1), 4.17 (dd, *J* = 5.2, 12.4 Hz, 1 H), 4.05 (dd, *J* = 2.4, 12 Hz, 1 H), 3.64-3.59 (m, 1 H), 2.07 (s, 3 H), 2.00 (s, 3 H), 1.98 (s, 3 H), 1.97 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.3, 163.5 (dd, *J* = 4.1, 249.0 Hz), 131.7 (t, *J* = 10.2 Hz), 111.9, 111.8 (d, *J* = 25.3 Hz), 107.2 (t, *J* = 22.1 Hz), 85.4, 75.8, 73.8, 70.6, 68.0, 61.9, 20.6, 20.6. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₀H₂₂F₂NaO₉S 499.0845; Found 499.0844.

2,6-Dichlorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (12).

^{##}#[‡]#‡[#]#[¶][#]#[‡]#[‡]#[¶][¶][#]. The product (84.6 mg, 83% yield) as a white solid was purified with silica gel chromatography (PE/EA = 5/1~3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 2 H), 7.23 (dd, *J* = 7.6 Hz, 7.6 Hz, 1 H), 5.23-5.06 (m, 3 H), 4.72 (d, *J* = 9.6 Hz, 1 H, H-1), 4.19 (dd, *J* = 5.6, 12.4 Hz, 1 H), 4.02 (d, *J* = 12.0 Hz, 1 H), 3.60-3.55 (m, 1 H), 2.08 (s, 3 H), 2.01 (s, 3 H), 2.00 (s, 3 H), 1.99 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.5, 169.4, 141.6, 130.8, 130.2, 128.8, 86.7, 75.8, 73.8, 70.8, 68.3, 62.1, 20.8, 20.6. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₀H₂₂Cl₂NaO₉S 531.0254; Found 531.0251.

2,4-Difluoro-5-chlorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (13). The product (76.6 mg, 75% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.69 (t, *J* = 7.6 Hz, 1 H), 6.96 (t, *J* = 8.4 Hz, 1 H), 5.20 (t, *J* = 9.2 Hz, 1 H), 5.02 (t, *J* = 10.0 Hz, 1 H), 4.86 (t, *J* = 9.6 Hz, 1 H), 4.63 (d, *J* = 10.0 Hz, 1 H, H-1), 4.23-4.12 (m, 2 H), 3.73-3.68 (m, 1 H), 2.08 (s, 3 H), 2.07 (s, 3 H), 2.00 (s, 3 H), 1.97 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.1, 169.3, 161.1 (dd, *J* = 249 Hz, 4 Hz), 158.8 (dd, *J* = 253 Hz, 4.8 Hz), 137.1, 115.8 (dd, *J* = 246 Hz, 4 Hz), 115.6 (dd, *J* = 229 Hz, 4 Hz), 105.6 (dd, *J* = 28 Hz, 2 Hz), 84.6, 76.0, 73.7, 69.5, 67.8, 61.7, 20.7, 20.5. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₀H₂₁ClF₂NaO₉S 533.0455; Found 533.0458.

4-Iodophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (14).

The product (71.4 mg, 63% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 2 H), 7.21 (d, J = 8.4 Hz, 2 H), 5.20 (t, J = 9.6 Hz, 1 H), 5.01 (t, J = 10.0 Hz, 1 H), 4.93 (t, J = 10.0 Hz, 1 H), 4.65 (d, J = 10.0 Hz, 1 H, H-1), 4.22-4.14 (m, 2 H), 3.72-3.68 (m, 1 H), 2.07 (s, 6 H), 2.01 (s, 3 H), 1.98 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.1, 169.4, 169.2, 138.0, 135.1, 131.1, 94.6, 85.1, 75.9, 73.8, 69.8, 68.1, 62.0, 20.7, 20.6. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₀H₂₃INaO₉S 589.0000; Found 588.9996.

4-Chlorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (15).

Known compound.^{[7]#₩!*#39]用#.} The product (69.3 mg, 73% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.40 (m, 2 H), 7.29-7.25 (m, 2 H),5.22-5.17 (m, 1 H), 5.02-4.97 (m, 1 H), 4.94-4.88 (m, 1 H), 4.63 (dd, J = 2.4, 10.0 Hz, 1 H, H-1), 4.22-4.14 (m, 2 H), 3.72-3.68 (m, 1 H), 2.07 (s, 6 H), 2.00 (m, 3 H), 1.97 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.1, 169.4, 169.2, 135.0, 129.4, 129.1, 85.2, 75.8, 73.8, 69.8, 68.0, 62.0, 20.7, 20.6.

3-Chloro-4-fluorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (16).

The product (72.9 mg, 74% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 2.0, 6.8 Hz, 1 H), 7.38-7.35 (m, 1 H), 7.09 (t, J = 8.8 Hz, 1 H), 5.21 (t, J = 9.2 Hz, 1 H), 5.00 (t, J = 10.0 Hz, 1 H), 4.89 (t, J = 9.6 Hz, 1 H), 4.61 (d, J = 10.0 Hz, 1 H, H-1), 4.23-4.15 (m, 2 H), 3.74-3.70 (m, 1 H), 2.09 (s, 6 H), 2.01 (s, 3 H), 1.98 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.1, 169.3, 169.2, 158.6 (d, J = 250.5 Hz), 136.1, 134.2 (d, J = 7.4 Hz), 127.1 (d, J = 4.0 Hz), 121.4 (d, J = 18.2 Hz), 116.9 (d, J = 21.4 Hz), 85.1, 75.9, 73.8, 69.7, 67.9, 62.0, 20.7, 20.5. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₀H₂₂ClFNaO₉S 515.0549; Found 515.0547.

2,4,6-Trimethylphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (17).

The product (55.0 mg, 57% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 6.93 (s, 2 H), 5.18-5.02 (m, 3 H), 4.37 (d, *J* = 10.0 Hz, 1 H, H-1), 4.14 (dd, *J* = 6.0, 12.4 Hz, 1 H), 4.03 (dd, *J* = 2.8, 12.4 Hz, 1 H), 3.51-3.47 (m, 1 H), 2.47 (s, 6 H), 2.26 (s, 3 H), 2.11 (s, 3 H), 2.02 (s, 3 H), 2.00 (s, 3 H), 1.99 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.3, 169.4, 143.9, 139.5, 129.2, 127.5, 88.7, 75.3, 74.0, 70.6, 68.4, 62.3, 22.2, 21.0, 20.7, 20.6. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₃H₃₀NaO₉S 505.1503; Found 505.1500.

4-(Phenyl)phenyl 2,3,4,6-Tetra-O-acetyl- β -D-thioglucopyranoside (18).^{错误!未找到引用源.}

The product (87.8 mg, 85% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹**H** NMR (400 MHz, CDCl₃) δ 7.57-7.51 (m, 5 H), 7.44 (t, *J* = 7.2 Hz, 2 H), 7.35 (t, *J* = 7.6 Hz, 1 H), 5.23 (t, *J* = 9.2 Hz, 1 H), 5.08-4.98 (m, 2 H), 4.72 (d, *J* = 10.0 Hz, 1 H, H-1), 4.26-4.17 (m, 2 H), 3.76-3.72 (m, 1 H), 2.10 (s, 3 H), 2.07 (s, 3 H), 2.01 (s, 3 H), 1.99 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169. 3, 141.4, 140.1, 133.6, 130.4, 128.9, 127.7, 127.6, 127.0, 85.7, 75.8, 73.9, 69.9, 68.2, 62.1, 20.8, 20.6, 20.6. **HRMS** (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₆H₂₈NaO₉S 539.1346; Found 539.1372.

2-Naphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (19).

Known compound.^[10] The product (41.2 mg, 42% yield) as a white solid was purified with silica gel chromatography (PE/EA = 5/1~3/1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1 H), 7.83-7.76 (m, 3 H), 7.56-7.47 (m, 3 H), 5.23 (t, *J* = 9.6 Hz, 1 H), 5.02 (dd, *J* = 9.6, 19.2 Hz, 2 H), 4.78 (d, *J* = 10.0 Hz, 1 H, H-1), 4.25-4.16 (m, 2 H), 3.75-3.70 (m, 1 H), 2.10 (s, 3 H), 2.02 (s, 3 H), 2.01 (s, 3 H), 1.97 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.3, 133.4, 132.9, 132.7, 130.2, 128.7, 128.5, 127.7, 126.8, 126.7, 85.8, 75.8, 73.9, 70.0, 68.2, 62.1, 20.8, 20.7, 20.6.

5-(Dimethylamino)-1-naphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (20).

The product (57.0 mg, 55% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, *J* = 8.8 Hz, 1 H), 8.13 (d, *J* = 8.8 Hz, 1 H), 7.79 (d, *J* = 7.2 Hz, 1 H), 7.47-7.38 (m, 1 H), 7.11 (d, *J* = 7.6 Hz, 1 H), 5.18 (t, *J* = 9.2 Hz, 1 H), 5.10-5.04 (m, 2 H), 4.69 (d, *J* = 10.0 Hz, 1 H, H-1), 4.19 (dd, *J* = 5.6 Hz, 12.4Hz, 1 H), 4.08 (dd, *J* = 2.0, 12.0Hz, 1 H), 3.62-3.58 (m, 1 H), 2.87 (s, 6 H), 2.11 (s, 3 H), 2.02 (s, 3 H), 1.98 (s, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 151.5, 135.5, 133.3, 129.6, 129.5, 126.6, 126.0, 124.6, 120.4, 114.6, 86.8, 75.7, 74.0, 70.4, 68.2, 62.2, 45.4, 20.8, 20.7, 20.6, 20.6. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₆H₃₁NNaO₉S 556.1612; Found 556.1606.

2-Thiophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (21).

Known compound.^{[8]##,*‡‡‡]¶##.} The product (51.8 mg, 58% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 5.2 Hz, 1 H), 7.20 (d, J = 2.8 Hz, 1 H), 7.01 (t, J = 4.4 Hz, 1 H), 5.19 (t, J = 9.2 Hz, 1 H), 4.99 (t, J = 10.0 Hz, 1 H), 4.91 (t, J = 9.6 Hz, 1 H), 4.49 (d, J = 10.0 Hz, 1 H, H-1), 4.23-4.15 (m, 2 H), 3.71-3.67 (m, 1 H), 2.10 (s, 3 H), 2.07 (s, 3 H), 2.00 (s, 3 H), 1.97 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.2, 169.4, 169.2, 136.6, 131.6, 127.5, 127.1, 85.4, 75.9, 73.9, 69.6, 68.0, 62.0, 20.7, 20.5.

4-Methylphenyl 2,3,4,6-tetra-O-benzoyl-β-D-thioglucopyranoside (22).

Known compound.^[11] The product (119.4 mg, 85% yield) as a white solid was purified with silica gel chromatography (PE/EA = $6/1 \sim 4/1$). ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 8.3, 1.4 Hz, 2 H), 8.01-7.94 (m, 2 H), 7.94-7.86 (m, 2 H), 7.84-7.77 (m, 2 H), 7.61-7.35 (m, 10 H), 7.32 (t, J = 7.7 Hz, 2 H), 7.24 (t, J = 7.7 Hz, 2 H), 6.93 (d, J = 7.9 Hz, 2 H), 5.93 (t, J = 9.5 Hz, 1 H), 5.62 (t, J = 9.8 Hz, 1 H), 5.48 (t, J = 9.7 Hz, 1 H), 5.01 (d, J = 10.0 Hz, 1 H, H-1), 4.70 (dd, J = 12.2, 2.7 Hz, 1 H), 4.49 (dd, J = 12.2, 5.6 Hz, 1 H), 4.20 (ddd, J = 10.0, 5.7, 2.8 Hz, 1 H), 2.26 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 165.7, 165.1, 165.0, 138.6, 133.8, 133.4, 133.3, 133.2, 133.1, 130.1, 129.8, 129.7, 129.6, 129.1, 128.7, 128.6, 128.3, 128.2, 127.4, 86.1, 76.2, 74.2, 70.4, 69.3, 63.0, 21.1. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₄₁H₃₄O₉SNa 725.1821; Found 725.1827.

4-Methylphenyl 2,3,4,6-tetra-O-pivaloyl-β-D-thioglucopyranoside (23).

The product (73.5 mg, 59% yield) as a white solid was purified with silica gel chromatography (PE/EA = $8/1 \sim 5/1$). ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, J = 7.8 Hz, 2 H), 7.09 (d, J = 7.8 Hz, 2 H), 5.32 (t, J = 9.4 Hz, 1 H), 5.06 (t, J = 9.8 Hz, 1 H), 4.99 (t, J = 9.7 Hz, 1 H), 4.65 (d, J = 10.1 Hz, 1 H, H-1), 4.23 (dd, J = 12.3, 1.8 Hz, 1 H), 4.04 (dd, J = 12.3, 5.8 Hz, 1 H), 3.73 (ddd, J = 10.1, 5.8, 1.8 Hz, 1 H), 2.33 (s, 3 H), 1.20 (s, 18 H), 1.13 (s, 9 H), 1.09 (s, 9 H). ¹³C NMR (150 MHz, CDCl₃) δ 178.0, 177.1, 176.4, 176.3, 138.5, 133.3, 129.7, 128.3, 86.6, 76.3, 73.3, 69.5, 67.6, 62.2, 38.8, 38.7, 38.7, 27.1, 27.1, 27.0, 21.2. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₃₃H₅₀O₉SNa 645.3073; Found 645.3068.

4-Methylphenyl2,3,4-tri-O-acetyl-6-*tert*-butyldiphenylsilylβ-D-thioglucopyranoside (24).

Known compound.^[12] The product (98.9 mg, 76% yield) as a white solid was purified with silica gel chromatography (PE/EA = $6/1 \sim 4/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 17.1, 8.4 Hz, 4 H), 7.54 – 7.31 (m, 8 H), 7.06 (d, J = 7.7 Hz, 2 H), 5.26 – 5.07 (m, 2 H), 4.97 (t, J = 9.5 Hz, 1 H), 4.66 (d, J = 10.0 Hz, 1 H, H-1), 3.85 – 3.67 (m, 2 H), 3.58 (dq, J = 7.2, 2.4 Hz, 1 H), 2.32 (s, 3H), 2.10 (s, 3 H), 1.99 (s, 3 H), 1.88 (s, 3 H), 1.07 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 169.2, 169.1, 138.4, 135.6, 135.6, 133.5, 132.9, 129.7, 127.8, 127.7, 85.7, 78.7, 74.5, 69.9, 68.1, 62.4, 26.6, 21.1, 20.7, 20.6, 20.4, 19.1. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₃₅H₄₂O₈SSiNa 673.2267; Found 673.2262.

4-Methylphenyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranoside (25).

Known compound.^[13] The product (71.8 mg, 79% yield) as a white solid was purified with silica gel chromatography (PE/EA = 4/1~3/1). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (d, *J* = 7.9 Hz, 2 H), 7.10 (d, *J* = 7.8 Hz, 2 H), 5.38 (d, *J* = 3.3 Hz, 1 H), 5.19 (t, *J* = 10.0 Hz, 1 H), 5.02 (dd, *J* = 9.9, 3.3 Hz, 1 H), 4.63 (d, *J* = 10.0 Hz, 1 H, H-1), 4.20 – 4.04 (m, 2 H), 3.89 (t, *J* = 6.6 Hz, 1 H), 2.32 (s, 3 H), 2.09 (s, 3 H), 2.08 (s, 3 H), 2.02 (s, 3 H), 1.95 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.3, 170.1, 170.0, 169.3, 138.4, 133.1, 129.5, 128.5, 86.8, 74.3, 71.9, 67.2, 67.1, 61.5, 21.1, 20.8, 20.6, 20.5, 20.5. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₁H₂₆O₉SNa 477.1195; Found 477.1198.

4-Methylphenyl 2,3,4-tri-O-acetyl-β-D-xylopyranoside (26).

Known compound.^[14] The product (61.9 mg, 81% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹**H NMR** (600 MHz, CDCl₃) δ 7.38 – 7.31 (m, 2 H), 7.10 (d, *J* = 7.9 Hz, 2 H), 5.15 (t, *J* = 8.3 Hz, 1 H), 4.88 (tt, *J* = 8.8, 2.9 Hz, 2 H), 4.69 (d, *J* = 8.5 Hz, 1 H, H-1), 4.22 (dd, *J* = 11.8, 5.0 Hz, 1 H), 3.37 (dd, *J* = 11.7, 8.9 Hz, 1 H), 2.31 (s, 3 H), 2.07 (s, 3 H), 2.01 (d, *J* = 2.5 Hz, 6 H). ¹³C NMR (150 MHz, CDCl₃) δ 172.5, 172.4, 171.9, 141.2, 136.1, 132.4, 130.7, 89.0, 74.9, 72.5, 71.1, 68.0, 23.8, 23.4, 23.3. **HRMS** (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₁₈H₂₂O₇SNa 405.0984; Found 405.0993.

4-Methylphenyl 2,3,4,6-tetra-O-acetyl-β-D-mannopyranoside (27).

Known compound.^[15] The product (62.7 mg, 69% yield) as a white solid was purified

with silica gel chromatography (PE/EA = 4/1~3/1). ¹**H** NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 6.6 Hz, 2 H), 7.10 (d, *J* = 7.8 Hz, 2 H), 5.64 (d, *J* = 3.5 Hz, 1 H), 5.26 (t, *J* = 10.1 Hz, 1 H), 5.03 (dd, *J* = 10.1, 3.6 Hz, 1 H), 4.83 (s, 1 H, H-1), 4.27 (dd, *J* = 12.2, 6.5 Hz, 1 H), 4.14 (dt, *J* = 12.0, 2.1 Hz, 1 H), 3.65 (ddd, *J* = 9.3, 6.4, 2.4 Hz, 1 H), 2.32 (s, 3 H), 2.19 (s, 3 H), 2.08 (s, 3 H), 2.02 (s, 3 H), 1.97 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.5, 170.1, 170.0, 169.6, 138.4, 132.6, 129.8, 129.4, 86.0, 76.4, 71.8, 70.6, 65.8, 62.8, 21.1, 20.7, 20.6, 20.5, 20.5. **HRMS** (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₁H₂₆O₉SNa 477.1195; Found 477.1191.

4-Methylphenyl 2,3,4-tri-O-acetyl-β-L-rhamnopyranoside (28).

Known compound.^[16] The product (57.1 mg, 72% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, *J* = 7.9 Hz, 2 H), 7.08 (d, *J* = 7.8 Hz, 2 H), 5.66 – 5.54 (m, 1 H), 5.07 (t, *J* = 9.8 Hz, 1 H), 4.96 (dd, *J* = 10.2, 3.5 Hz, 1 H), 4.80 (d, *J* = 1.3 Hz, 1 H, H-1), 3.48 (dq, *J* = 9.4, 6.1 Hz, 1 H), 2.29 (s, 3 H), 2.16 (s, 3 H), 2.00 (s, 3 H), 1.94 (s, 3 H), 1.26 (d, *J* = 6.3 Hz, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.1, 169.9, 169.6, 138.2, 132.5, 129.7, 129.4, 85.5, 74.7, 71.7 70.8, 70.1, 20.9, 20.6, 20.4, 20.4, 17.5. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₁₉H₂₄O₇SNa 419.1140; Found 419.1141.

4-Methylphenyl 2,3,4-tri-O-acetyl-β-L-fucopyranoside (29).

Known compound.^[16] The product (60.3 mg, 76% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (d, *J* = 8.0 Hz, 2 H), 7.10 (d, *J* = 7.9 Hz, 2 H), 5.22 (d, *J* = 3.4 Hz, 1 H), 5.17 (t, *J* = 9.9 Hz, 1 H), 5.02 (dd, *J* = 9.9, 3.3 Hz, 1 H), 4.62 (d, *J* = 9.9 Hz, 1 H, H-1), 3.78 (q, *J* = 6.4 Hz, 1 H), 2.31 (s, 3 H), 2.11 (s, 3 H), 2.06 (s, 3 H), 1.94 (s, 3 H), 1.20 (d, *J* = 6.4 Hz, 3

H). ¹³C NMR (150 MHz, CDCl₃) δ 170.5, 170.0, 169.4, 138.1, 132.8, 129.5, 128.9, 86.7, 73.0, 72.4, 70.3, 67.3, 21.0, 20.8, 20.5, 20.5, 16.3. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₁₉H₂₄O₇SNa 419.1140; Found 419.1138.

4-Methylphenyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- β -D-glucopyranoside (30).

Known compound.^[13] The product (105.4 mg, 71% yield) as a white solid was purified with silica gel chromatography (PE/EA = $3/1 \sim 1/1$). ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, *J* = 7.8 Hz, 2 H), 7.07 (d, *J* = 7.8 Hz, 2 H), 5.30 (d, *J* = 3.5 Hz, 1 H), 5.16 (t, *J* = 9.2 Hz, 1 H), 5.05 (dd, *J* = 10.4, 7.9 Hz, 1 H), 4.92 (dd, *J* = 10.4, 3.5 Hz, 1 H), 4.82 (t, *J* = 9.7 Hz, 1 H), 4.57 (d, *J* = 10.0 Hz, 1 H, H-1), 4.49 (dd, *J* = 12.0, 2.1 Hz, 1 H), 4.44 (d, *J* = 7.9 Hz, 1 H, H-1), 4.11 – 4.00 (m, 3 H), 3.83 (t, *J* = 6.8 Hz, 1 H), 3.70 (t, *J* = 9.5 Hz, 1 H), 3.58 (ddd, *J* = 10.1, 5.6, 2.1 Hz, 1 H), 2.30 (s, 3 H), 2.11 (s, 3 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.02 – 1.96 (m, 9 H), 1.92 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.2, 170.1, 170.0, 169.9, 169.6, 169.4, 168.9, 138.5, 133.6, 129.5, 127.6, 100.9, 85.5, 76.5, 76.0, 73.8, 70.8, 70.5, 70.1, 69.0, 66.5, 62.0, 60.7, 21.0, 20.7, 20.7, 20.6, 20.5, 20.5, 20.4. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₃₃H₄₂O₁₇SNa 765.2040; Found 765.2025.

4-Methylphenyl 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- β -D-glucopyranoside (31).

The product (99.6 mg, 67% yield) as a white solid was purified with silica gel chromatography (PE/EA = $3/1 \sim 1/1$). ¹**H NMR** (600 MHz, CDCl₃) δ 7.35 (d, *J* = 8.1 Hz, 2 H), 7.09 (d, *J* = 7.7 Hz, 2 H), 5.20 - 5.08 (m, 2 H), 5.04 (t, *J* = 9.7 Hz, 1 H), 4.93 -

4.81 (m, 2 H), 4.60 – 4.51 (m, 2 H), 4.47 (d, J = 8.0 Hz, 1 H, H-1), 4.35 (dd, J = 12.4, 4.3 Hz, 1 H), 4.07 (dd, J = 12.1, 5.6 Hz, 1 H), 4.01 (dd, J = 12.4, 2.3 Hz, 1 H), 3.69 (t, J = 9.6 Hz, 1 H), 3.66 – 3.55 (m, 2 H), 2.32 (s, 3 H), 2.10 (s, 3 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.00 (s, 3 H), 1.99 (d, J = 1.7 Hz, 6 H), 1.96 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.4, 170.2, 169.7, 169.5, 169.2, 169.0, 138.6, 133.7, 129.6, 127.7, 100.7, 85.6, 76.7, 76.3, 73.6, 72.9, 71.9, 71.5, 70.1, 67.7, 61.9, 61.5, 21.1, 20.8, 20.7, 20.6, 20.5. **HRMS** (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₃₃H₄₂O₁₇SNa 765.2040; Found 765.2029.

4-Methylphenyl 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl- $(1 \rightarrow 4)$ -2,3,6-tri-O-acetyl- β -D-glucopyranoside (32).

The product (93.7 mg, 63% yield) as a white solid was purified with silica gel chromatography (PE/EA = $3/1 \sim 1/1$). ¹**H NMR** (600 MHz, CDCl₃) δ 7.29 (d, *J* = 7.7 Hz, 2 H), 7.04 (d, *J* = 7.8 Hz, 2 H), 5.31 (d, *J* = 4.1 Hz, 1 H), 5.27 (t, *J* = 10.1 Hz, 1 H), 5.20 (t, *J* = 9.0 Hz, 1 H), 4.97 (t, *J* = 9.9 Hz, 1 H), 4.77 (dd, *J* = 10.6, 4.0 Hz, 1 H), 4.68 (t, *J* = 9.6 Hz, 1 H), 4.59 (d, *J* = 10.0 Hz, 1 H, H-1), 4.47 (dd, *J* = 12.1, 2.6 Hz, 1 H), 4.15 (ddd, *J* = 17.2, 12.2, 4.3 Hz, 2 H), 3.98 (dd, *J* = 12.5, 2.3 Hz, 1 H), 3.90 – 3.80 (m, 2 H), 3.62 (ddd, *J* = 9.7, 4.7, 2.6 Hz, 1 H), 2.27 (s, 3 H), 2.05 (s, 3 H), 2.02 (s, 3 H), 1.99 (s, 3 H), 1.96 (s, 3 H), 1.95 (s, 3 H), 1.92 (s, 3 H), 1.91 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.5, 170.3, 170.1, 169.8, 169.5, 169.3, 138.7, 134.0, 129.6, 127.1, 95.5, 85.0, 76.5, 76.0, 72.3, 70.6, 69.9, 69.2, 68.4, 68.0, 62.7, 61.4, 21.1, 20.8, 20.7, 20.7, 20.6, 20.5, 20.5. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₃₃H₄₂O₁₇SNa 765.2040; Found 765.2031.

4-Methylphenyl 2,3,4,6-tetra-O-acetyl- α -D-glucopyranosyl-(1 \rightarrow 4)-2,3,6-tri-O-acetyl- α -D-glucopyranosyl-2,3,6-tri-O-acetyl- β -D-glucopyranoside (33).

The product (107.2 mg, 52% yield) as a white solid was purified with silica gel chromatography (PE/EA = $3/1 \sim 1/1$). ¹**H NMR** (600 MHz, CDCl₃) δ 7.31 (d, *J* = 7.8 Hz, 2 H), 7.07 (d, *J* = 7.8 Hz, 2 H), 5.37 – 5.27 (m, 3 H), 5.22 (t, *J* = 9.0 Hz, 1 H), 5.19 (d, *J* = 4.1 Hz, 1 H), 5.01 (t, *J* = 9.8 Hz, 1 H), 4.80 (dd, *J* = 10.6, 4.0 Hz, 1 H), 4.72 – 4.64 (m, 2 H), 4.60 (d, *J* = 10.0 Hz, 1 H, H-1), 4.49 (dd, *J* = 12.2, 2.8 Hz, 1 H), 4.41 (dd, *J* = 12.3, 2.3 Hz, 1 H), 4.26 – 4.17 (m, 2 H), 4.12 (dd, *J* = 12.3, 3.4 Hz, 1 H), 4.00 (dd, *J* = 12.5, 2.4 Hz, 1 H), 3.93 – 3.80 (m, 4 H), 3.67 (dt, *J* = 9.7, 3.5 Hz, 1 H), 2.30 (s, 3 H), 2.10 (s, 3 H), 2.10 (s, 3 H), 2.04 (s, 3 H), 2.01 (s, 3 H), 2.00 (s, 3 H), 1.98 (s, 3 H), 1.95 (d, *J* = 4.9 Hz, 9 H), 1.91 (s, 3 H). ¹³**C NMR** (150 MHz, CDCl₃) δ 170.4, 170.4, 170.4, 170.4, 170.2, 169.9, 169.7, 169.5, 169.4, 169.3, 138.7, 134.1, 129.5, 126.9, 95.6, 95.5, 84.7, 76.3, 75.9, 73.3, 72.4, 71.6, 70.5, 70.3, 69.9, 69.2, 68.8, 68.4, 67.8, 62.8, 62.2, 61.3, 21.0, 20.7, 20.7, 20.6, 20.6, 20.5, 20.4, 20.4. **HRMS** (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₄₅H₅₈O₂₅SNa 1053.2886; Found 1053.2880.

4-Methylphenyl 2,3,4-tri-O-acetyl-6-O-[2-(4-isobutylphenyl) propanoyl]-β-Dthioglucopyranoside (34).

The product (78.1 mg, 65% yield) as a white solid (dr = 1: 0.8) was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). **Major isomer:** ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2 H), 7.20 (d, *J* = 7.8 Hz, 2 H), 7.15 – 7.05 (m, 4 H), 5.17 (t, *J* =

9.4 Hz, 1 H), 4.94 (t, J = 9.8 Hz, 1 H), 4.88 (t, J = 9.7 Hz, 1 H), 4.59 (d, J = 10.0 Hz, 1 H, H-1), 4.32 – 4.03 (m, 2 H), 3.72 (q, J = 7.2 Hz, 1 H), 3.67-3.62 (m, 1H), 2.44 (d, J = 7.2 Hz, 2 H), 2.35 (s, 3 H), 2.08 (s, 3 H), 1.97 (s, 6 H), 1.84 (m, 1 H), 1.50 (d, J = 6.8 Hz, 3 H), 0.89 (d, J = 6.8 Hz, 6 H). ¹³C NMR (150 MHz, CDCl₃) δ 174.2, 170.1, 169.2, 169.1, 140.6, 138.7, 137.3, 133.9, 129.6, 129.3, 127.3, 127.2, 85.6, 75.9, 74.0, 69.8, 68.1, 62.2, 45.0, 30.1, 22.3, 21.1, 20.7, 20.5, 20.5, 18.4. Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.0 Hz, 2 H), 7.20 (d, J = 7.8 Hz, 2 H), 7.12 – 7.05 (m, 4H), 5.18 (t, J = 9.5 Hz, 1 H), 4.94 (t, J = 9.8 Hz, 1 H), 4.89 (t, J = 9.6 Hz, 1 H), 4.60 (d, J = 10.0 Hz, 1 H, H-1), 4.32 – 4.03 (m, 2 H), 3.72 (q, J = 7.2 Hz, 1 H), 3.67-3.62 (m, 1 H), 2.43 (d, J = 7.2 Hz, 2 H), 2.34 (s, 3 H), 2.09 (s, 3 H), 1.97 (s, 6 H), 1.84 (m, 1 H), 1.51 (d, J = 6.6 Hz, 3 H), 0.88 (d, J = 6.8 Hz, 6 H). ¹³C NMR (150 MHz, CDCl₃) δ 174.1, 170.1, 169.2, 169.1, 140.6, 138.8, 137.1, 134.0, 129.6, 129.3, 127.3, 127.1, 85.6, 75.8, 74.0, 69.8, 68.4, 62.6, 44.9, 30.1, 22.3, 21.1, 20.7, 20.5, 20.4, 18.2. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₃₂H₄₀O₉SNa 623.2291; Found 623.2289.

4-Methylphenyl 2,3,4-tri-O-acetyl-6-O-[(R)-2-(6-methoxynaphthalen-2-yl) propanoyl]-β-D-thioglucopyranoside (35).

The product (87.4 mg, 70% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹H NMR (600 MHz, CDCl₃) δ 7.74 – 7.65 (m, 3H), 7.44 – 7.33 (m, 3 H), 7.16 – 7.05 (m, 4 H), 5.17 (t, *J* = 9.3 Hz, 1 H), 4.90 (dt, *J* = 16.6, 9.8 Hz, 2 H), 4.60 (d, *J* = 10.1 Hz, 1 H, H-1), 4.29 (dd, *J* = 12.3, 2.3 Hz, 1 H), 4.11 (dd, *J* = 12.2, 5.5 Hz, 1 H), 3.90 (s, 3 H), 3.88 (d, *J* = 7.2 Hz, 1 H), 3.68 (ddd, *J* = 10.2, 5.5, 2.3 Hz, 1 H), 2.33 (s, 3 H), 2.09 (s, 3 H), 1.96 (s, 3 H), 1.92 (s, 3 H), 1.60 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 174.1, 170.1, 169.2, 169.1, 157.6, 138.8, 135.1, 133.9, 133.7, 129.6, 129.3, 128.9, 127.3, 127.1, 126.2, 126.0, 118.9, 105.5,

85.7, 75.8, 74.0, 69.8, 68.3, 62.6, 55.2, 45.3, 21.1, 20.7, 20.5, 20.4, 18.2. **HRMS** (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₃₃H₃₆O₁₀SNa 647.1927; Found 647.1925.

4-Methylphenyl 2,3,4-tri-O-acetyl-6-O-[(2-(1-(4-chlorobenzoyl)-5-methoxy-2methyl-1H-indol-3-yl)carbonyl]- β-D-thioglucopyranoside (36).

The product (93.3 mg, 62% yield) as a white solid was purified with silica gel chromatography (PE/EA = $5/1 \sim 3/1$). ¹**H NMR** (600 MHz, CDCl₃) δ 7.71 – 7.63 (m, 2 H), 7.49 – 7.42 (m, 2 H), 7.38 (d, *J* = 7.9 Hz, 2 H), 7.12 (d, *J* = 7.9 Hz, 2 H), 6.98 (d, *J* = 2.5 Hz, 1 H), 6.90 (d, *J* = 9.0 Hz, 1 H), 6.68 (dd, *J* = 9.0, 2.5 Hz, 1 H), 5.20 (t, *J* = 9.4 Hz, 1 H), 5.01 (t, *J* = 9.8 Hz, 1 H), 4.88 (t, *J* = 9.6 Hz, 1 H), 4.63 (d, *J* = 10.0 Hz, 1 H, H-1), 4.32 – 4.16 (m, 2 H), 3.83 (s, 3 H), 3.71 (s, 2 H), 3.70 – 3.67 (m, 1 H), 2.37 (s, 3 H), 2.33 (s, 3 H), 2.09 (s, 3 H), 1.98 (d, *J* = 4.1 Hz, 6 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.4, 170.1, 169.3, 169.2, 168.3, 156.1, 139.2, 138.8, 136.1, 134.0, 133.7, 131.2, 130.8, 130.6, 129.7, 129.1, 127.6, 115.0, 112.1, 111.7, 101.3, 86.0, 75.8, 74.0, 70.0, 68.0, 62.4, 55.7, 29.9, 21.2, 20.7, 20.6, 20.5, 13.3. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₃₈H₃₈ClNO₁₁SNa 774.1752; Found 774.1769.

4-Methylphenyl 2,3,4-tri-O-acetyl-6-O-[(4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-

acetoxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-

yl)pentanoyl]-β-D-thioglucopyranoside (37).

The product (87.8 mg, 54% yield) as a white solid was purified with silica gel chromatography (PE/EA = 8/1~5/1). ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.1 Hz, 2 H), 7.11 (d, *J* = 8.2 Hz, 2 H), 5.19 (t, *J* = 9.4 Hz, 1 H), 5.01 (t, *J* = 9.8 Hz, 1 H), 4.92 (t, *J* = 9.6 Hz, 1 H), 4.71 (dt, *J* = 11.4, 6.4 Hz, 1 H), 4.62 (d, *J* = 10.0 Hz, 1 H), 4.18 (d, *J* = 3.7 Hz, 2 H), 3.69 (dt, *J* = 10.4, 3.7 Hz, 1 H), 2.43 – 2.36 (m, 1 H), 2.34 (s, 3 H), 2.28 – 2.19 (m, 1 H), 2.08 (s, 3 H), 2.02 (s, 3 H), 2.00 (s, 3 H), 1.97 (s, 3 H), 1.89 – 1.75 (m, 7 H), 1.67 (d, *J* = 10.7 Hz, 2 H), 1.61 – 1.49 (m, 3 H), 1.47 – 1.21 (m, 18 H), 1.19 – 0.99 (m, 8 H), 0.91 (s, 6 H), 0.64 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 173.8, 170.6, 170.2, 169.3, 169.2, 138.7, 133.7, 129.6, 127.6, 85.8, 75.8, 74.4, 74.0, 69.9, 68.2, 62.0, 56.5, 55.9, 42.7, 41.8, 40.4, 40.1, 35.7, 35.3, 35.0, 34.5, 32.2, 30.9, 30.7, 28.1, 27.0, 26.6, 26.3, 24.1, 23.3, 21.4, 21.2, 20.8, 20.7, 20.5, 20.5, 18.2, 12.0. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₄₅H₆₄O₁₁SNa 835.4067; Found 835.4071.

p-Tolyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido-1-thio-α-D-glucopyranoside (40)

The product (74.7 mg, 69% yield) as a white solid was purified with silica gel chromatography (PE/EA = $4/1 \sim 2/1$). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 5.5, 3.0 Hz, 2 H), 7.76 (dd, J = 5.6, 3.0 Hz, 2 H), 7.25 (d, J = 7.9 Hz, 2 H), 7.05 (d, J = 7.9 Hz, 2 H), 6.53 (dd, J = 11.9, 8.9 Hz, 1 H), 5.67 (d, J = 5.6 Hz, 1 H, H-1), 5.13 – 5.02 (m, 1 H), 4.87 (dd, J = 11.9, 5.5 Hz, 1 H), 4.76 (ddd, J = 10.3, 4.7, 2.0 Hz, 1 H), 4.40 (dd, J = 12.3, 4.8 Hz, 1 H), 4.09 (dd, J = 12.4, 2.1 Hz, 1 H), 2.28 (s, 3 H), 2.08 (s, 3 H), 2.08 (s, 3 H), 1.88 (s, 3 H). ¹³C NMR (150 MHz, CDCl₃) δ 170.6, 170.1, 169.3, 138.0, 134.4, 132.0, 129.8, 129.4, 123.8, 87.1, 70.3, 68.4, 67.6, 62.1, 53.8, 21.0, 20.7, 20.7. HRMS (ESI/FT-ICR) m/z: [M+Na]⁺ calcd for C₂₇H₂₇NO₉SNa 564.1304; Found: 564.1306.
References

[1] Patil Ramrao, P.; Kartha, K. P. R., Solvent-free synthesis of thioglycosides by ball milling. *Green Chem.* **2009**, *11*, 953-956.

[2] Tang, Y.; Zhang, S.; Chang, Y.; Fan, D.; Agostini, A. D.; Zhang, L.; Jiang, T., Aglycone Ebselen and β-D-Xyloside Primed Glycosaminoglycans Co-contribute to Ebselen β-d-Xyloside-Induced Cytotoxicity. *J. Med. Chem.* **2018**, *61*, 2937-2948.

[3] Ishido, Y.; Kanbayashi, N.; Fujii, N.; Okamura, T.-A.; Haino, T.; Onitsuka, K., Folding control of a non-natural glycopeptide using saccharide-coded structural information for polypeptides. *Chem. Commun.* **2020**, *56*, 2767-2770.

[4] Gamblin, D. P.; Garnier, P.; van Kasteren, S.; Oldham, N. J.; Fairbanks, A. J.; Davis, B. G., Glyco-SeS: Selenenylsulfide-Mediated Protein Glycoconjugation-A New Strategy in Post-Translational Modification. *Angew. Chem. Int. Ed.* 2004, *43*, 828-833.
[5] Zhao, G.; Yao, W.; Mauro, J. N.; Ngai, M.-Y., Excited-State Palladium-Catalyzed 1,2-Spin-Center Shift Enables Selective C-2 Reduction, Deuteration, and Iodination of Carbohydrates. *J. Am. Chem. Soc.* 2021, *143*, 1728-1734.

[6] Bianchi, A.; Bernardi, A. Traceless Staudinger Ligation of Glycosyl Azides with Triaryl Phosphines: Stereoselective Synthesis of Glycosyl Amides. *J. Org. Chem.* **2006**, *71*, 4565–4577.

[7] Zhu, M.; Dagousset, G.; Alami, M.; Magnier, E.; Messaoudi, S., Ni/Photoredox-Dual-Catalyzed Functionalization of 1-Thiosugars. *Org. Lett.* **2019**, *21*, 5132-5137.

[8] Brachet, E.; Brion, J.-D.; Messaoudi, S.; Alami, M., Palladium-Catalyzed Cross-Coupling Reaction of Thioglycosides with (Hetero)aryl Halides. *Adv. Synth. Catal.* **2013**, *355*, 477-490.

[9] Tota, A.; Carlucci, C.; Pisano, L.; Cutolo, G.; Clarkson, G. J.; Romanazzi, G.; Degennaro, L.; Bull, J. A.; Rollin, P.; Luisi, R., Synthesis of glycosyl sulfoximines by a highly chemo- and stereoselective NH- and O-transfer to thioglycosides. *Org. Biomol. Chem.* **2020**, *18*, 3893-3897.

[10] Zhu, M.; Alami, M.; Messaoudi, S., Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides. *Chem.*

Commun. 2020, 56, 4464-4467.

[11]Bruneau, A.; Roche, M.; Hamze, A.; Brion, J.-D.; Alami, M.; Messaoudi, S., Stereoretentive Palladium-Catalyzed Arylation, Alkenylation, and Alkynylation of 1-Thiosugars and Thiols Using Aminobiphenyl Palladacycle Precatalyst at Room Temperature. *Chem. Eur. J.* **2015**, *21*, 8375-8379.

[12]Mandal, S.; Mukhopadhyay, B., Concise synthesis of two trisaccharides related to the saponin isolated from Centratherum anthelminticum. *Tetrahedron* **2007**, *63*, 11363-11370.

[13]Chao, C.-S.; Chen, M.-C.; Lin, S.-C.; Mong, K.-K. T., Versatile acetylation of carbohydrate substrates with bench-top sulfonic acids and application to one-pot syntheses of peracetylated thioglycosides. *Carbohydr. Res.* **2008**, *343*, 957-964.

[14] Das, R.; Mukhopadhyay, B., Chemical Synthesis of the Pentasaccharide Related to the Repeating Unit of the O-Antigen from Salmonella enterica O4. *J. Carbohydr. Chem.* **2015**, *34*, 247-262.

[15]Yu, H. N.; Furukawa, J.-I.; Ikeda, T.; Wong, C.-H., Novel Efficient Routes to Heparin Monosaccharides and Disaccharides Achieved via Regio- and Stereoselective Glycosidation. *Org. Lett.* **2004**, *6*, 723-726.

[16]Tai, C.-A.; Kulkarni, S. S.; Hung, S.-C., Facile Cu(OTf)₂-Catalyzed Preparation of Per-O-acetylated Hexopyranoses with Stoichiometric Acetic Anhydride and Sequential One-Pot Anomeric Substitution to Thioglycosides under Solvent-Free Conditions. *J. Org. Chem.* **2003**, *68*, 8719-8722.

Spectra of Glycosyl bromides and Thioglycosides

2,3,6,2',3',4',6'-Hepta-O-acetyl-α-D-lactosyl bromide (30aa).

2,3,6,2',3',4',6'-Hepta-O-acetyl-α-D-cellobiosyl bromide (31aa).

2,3,4,6-Tetra-O-acetyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- α -D-glucopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- α -D-Glucopyranosyl Bromide (33aa).

2,3,4-Tri-O-acetyl-6-O-[2-(4-isobutylphenyl) propanoyl]-α-D-glucopyranosyl bromide (34aa).

2,3,4-Tri-O-acetyl-6-O-[(R)-2-(6-methoxynaphthalen-2-yl) propanoyl]-α-D-

glucopyranosyl bromide (35aa).

2,3,4-Tri-O-acetyl-6-O-[(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3yl)carbonyl]-α-D-glucopyranosyl bromide (36aa).

2,3,4-Tri-O-acetyl-6-O-[(4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3-acetoxy-10,13dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoyl]-α-Dglucopyranosyl bromide (37aa).

f1 (ppm) $\frac{1}{70}$

2-*N*-phthalimido-2-deoxy-3,4,6-tri-*O*-acetyl-β-D-glucopyranosyl bromide (40aa)

4-Methylphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (1).

4-Acetylphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (2).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

4-(Methoxycarbonyl)phenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (3).

4-(Methylsulfonyl)phenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (4).

4-Cyanophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (5).

51

2-Methyl-5-nitrophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (6).

¹H NMR (400 MHz, CDCl₃)

4-Fluorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (7).

4-(Trifluoromethyl)phenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (8).

54

4-Difluoromethoxyphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (9).

4-Trifluoromethoxyphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (10).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

2,4-Difluorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (11).

57

2,6-Dichlorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (12).

2,4-Difluoro-5-chlorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (13).

4-Iodophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (14).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

4-Chlorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (15).

3-Chloro-4-fluorophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (16).

62

2,4,6-Trimethylphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (17).

4-(Phenyl)phenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (18).

" to Pointy

5-(Dimethylamino)-1-naphenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (20).^{错误!未找到引用源.}

2-Thiophenyl 2,3,4,6-Tetra-O-acetyl-β-D-thioglucopyranoside (21).

4-Methylphenyl 2,3,4,6-tetra-O-benzoyl-β-D-thioglucopyranoside (22).

4-Methylphenyl 2,3,4,6-tetra-O-pivaloyl-β-D-thioglucopyranoside (23).

4-Methylphenyl

thioglucopyranoside (24).

4-Methylphenyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranoside (25).

110 100 f1 (ppm) $\frac{1}{70}$

4-Methylphenyl 2,3,4-tri-O-acetyl-β-D-xylopyranoside (26).

¹H NMR (600 MHz, CDCl₃)

4-Methylphenyl 2,3,4,6-tetra-O-acetyl-β-D-mannopyranoside (27).

4-Methylphenyl 2,3,4-tri-O-acetyl-β-L-fucopyranoside (29).

4-Methylphenyl 2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- β -D-glucopyranoside (30).

 $\begin{array}{lll} \mbox{4-Methylphenyl} & 2,3,4,6\mbox{-tetra-O-acetyl-α-D-glucopyranosyl-$(1$-4)-$2,3,6\mbox{-tri-O-acetyl-α-D-glucopyranoside (33).} \end{array}$

 $\label{eq:2.3.4} 4-Methylphenyl 2,3,4-tri-O-acetyl-6-O-[2-(4-isobutylphenyl) propanoyl]-\beta-D-thioglucopyranoside (34).$

4-Methylphenyl 2,3,4-tri-O-acetyl-6-O-[(R)-2-(6-methoxynaphthalen-2-yl)

propanoyl]-β-D-thioglucopyranoside (35).

4-Methylphenyl 2,3,4-tri-O-acetyl-6-O-[(4R)-4-((3R,8R,9S,10S,13R,14S,17R)-3acetoxy-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17yl)pentanoyl]-β-D-thioglucopyranoside (37).

p-Tolyl 3,4,6-tri-*O*-acetyl-2-deoxy-2-phthalimido-1-thio-α-D-glucopyranoside (40)