1	Online Supplement Data
2	
3	Exposure to the heated tobacco product IQOS generates apoptosis-mediated pulmonary
4	emphysema in murine lungs
5	
6	Naoko Arano Nitta, Tadashi Sato, Moegi Komura, Hitomi Yoshikawa, Yohei Suzuki, Aki
7	Mitsui, Eriko Kuwasaki, Fumiyuki Takahashi, Yuzo Kodama, Kuniaki Seyama, Kazuhisa
8	Takahashi
9	

10 Supplemental methods

11 Microarray analysis

12 Total RNA from the right lungs was extracted using miRNeasy mini kits (Qiagen, 13 Hilden, Germany). RNA samples were labeled using the Low Input Quick Amp Labeling Kit 14 (Agilent Technologies, Waldbronn, Germany). Labeled RNA was hybridized to an 15 oligonucleotide microarray (SurePrint G3 Mouse GE microarray 8x60K Ver. 2.0, Agilent 16 Technologies) at 60 °C, 10 rpm for 17 h. After washing with the Gene Expression Wash Pack 17 (Agilent Technologies) and drying, the slides were scanned with DNA Microarray Scanner 18 and analyzed with the Feature Extraction software version 10.7.1.1 (Agilent Technologies). 19 Normalization was performed using global normalization methods. Each raw data was 20 flagged as 'Detected,' 'Compromised,' or 'Not detected.' When any one of the probes was 21 judged 'Compromised,' GeneSpring flags of 'Compromised' were attached, and the same is 22 true for 'Not detected.' When there were no flags 'Compromised' and 'Not detected,' the 23 'Detected' flag was attached to the data.

24 Significance tests (Welch's t-test) between two groups (IQOS vs. air, CS vs. air) were 25 performed using normalized signal value, and P-values were calculated. We selected probes 26 that meet any of the following three conditions; 1) both groups showed the 'Detected' flag, the expression ratio to air was more than 1.5 times or less than 0.67 times and P < 0.05, 2) 27 both groups showed the 'Detected' flag, the expression ratio to air was greater than 1 time and 28 29 less than 1.5 times or less than 1 time and more than 0.67 times and P < 0.01, 3) Switch ON: 30 at least one sample of air were 'Not detected' or 'Compromised,' and all of IQOS/CS were 31 'Detected,' the expression ratio to air was greater than 4 times and P < 0.01; Switch OFF: at 32 least one sample of IQOS/CS were 'Not detected' or 'Compromised,' and all of the air were 33 'Detected,' the expression ratio to air was less than 0.25 times and P < 0.01.

- 35 Specific primers $(5' \rightarrow 3')$ for RT-qPCR
- 36 *COX-2*
- 37 Fw: CTGGCGCTCAGCCATACAG
- 38 Rv: CCGGGTACAATCGCACTTATACT
- 39 *IL-6*
- 40 Fw: ACAAAGCCAGAGTCCTTCAGAGAGATAC
- 41 Rv: TGAATTGGATGGTCTTGGTCCTTAGCCA
- 42 *nfn2l2*
- 43 Fw: GGTTGCCCACATTCCCAAAC
- 44 Rv: TGATGAGGGGGCAGTGAAGAC
- 45 *hmox-1*
- 46 Fw: CACTCTGGAGATGACACCTGAG
- 47 Rv: GTGTTCCTCTGTCAGCATCACC
- 48 *Ccl2*
- 49 Fw: GCTACAAGAGGATCACCAGCAG
- 50 Rv: GTCTGGACCCATTCCTTGG
- 51 Apaf1
- 52 Fw: CACGAGTTCGTGGCATATAGGC
- 53 Rv: GGAAATGGCTGTCGTCCAAGGA
- 54 *GAPDH*
- 55 Fw: AACTTTGGCATTGTGGAAGG
- 56 Rv: GGATGCAGGGATGATGTTCT
- 57
- 58
- 20
- 59

Figure S1 61

66 Figure S3

Color range

CS

2 1 0 1 2

72 Figure S5

74	Supplemental Figure Legends
75	Figure S1. The system for connecting the IQOS cartridge and the cigarette smoke exposure
76	system (Model SIS-CS). IQOS aerosol is aspirated under computer control and sent to SIS-CS
77	in the direction of the arrow.
78	
79	Figure S2. The representative full scan images of the hematoxylin–eosin-stained lung
80	exposed to air, IQOS, and CS. Scale bars: 2 mm.
81	
82	Figure S3. (A) Heatmap displaying the top 50 up- and down-regulated genes in the IQOS
83	group compared to the air group and expression of those genes in the CS group. (B) Heatmap
84	displaying the top 50 up- and down-regulated genes in the CS group compared to the air
85	group and expression of those genes in the IQOS group. $CS = cigarette smoke$. $n = 3$ for each
86	group.
87	
88	Figure S4. The western blot images of apoptosis-associated proteins in all samples.
89	
90	Figure S5. Full blot images of apoptosis-associated proteins in Figure 7A.
91	
92	

Month after starting exposure 1 month		Mean difference (g)	95% CI (g)	<i>P</i> -value	
	IQOS group	-0.605	0.8851 to -2.095	0.56	
	CS group	-1.935	-0.4452 to -3.425	0.084	
2 months					
	IQOS group	-1.084	0.4064 to -2.574	0.18	
	CS group	-2.543	-1.053 to -4.033	< 0.001	
3 months	<u> </u>				
	IQOS group	-1.87	-0.3802 to -3.361	0.011	
	CS group	-2.141	-0.6506 to -3.631	0.0033	
4 months	<u> </u>				
	IQOS group	-2.417	-0.9805 to -3.961	< 0.001	
	CS group	-3.463	-1.895 to -5.032	< 0.001	
5 months	<u> </u>				
	IQOS group	-3.263	-1.773 to -4.753	< 0.001	
	CS group	-4.664	-3.096 to -6.232	< 0.001	
6 months					
	IQOS group	-4.93	-3.44 to -6.42	< 0.001	
	CS group	-5.504	-3.936 to -7.072	< 0.001	

93 Table S1. Weight gain suppression compared to the air group

95 Table S2. Functional analysis of upregulated genes in IQOS and CS groups compared to

96 the air group.

IQOS					
Category					
Name	<i>P</i> -value range	# Molecules			
Disease and Disorders					
Organismal Injury and Abnormalities	2.88E-02 - 1.90E-04	445			
Skeletal and Muscular Disorder	2.88E-02 - 1.90E-04	20			
Infectious Disease	2.73E-02 - 4.32E-04	39			
Renal and Urological Disease	2.73E-02 - 5.21E-04	73			
Cancer	2.88E-02 - 8.25E-04	443			
Molecular and Cellular Function					
Cellular Function and Maintenance	2.88E-02 - 2.65E-05	119			
Cell Death and Survival	2.88E-02 - 1.90E-04	59			
Gene Expression	2.83E-02 - 6.93E-04	113			
Cellular Growth and Proliferation	2.88E-02 - 7.43E-04	57			
Carbohydrate Metabolism	2.88E-02 - 8.25E-04	22			
Physiological System Development and Function					
Hematological System Development and Function	2.88E-02 - 2.65E-05	68			
Behavior	2.60E-02 - 4.43E-04	39			
Connective Tissue Development and Function 2.06E-02 – 6.36E-04					
Skeletal and Muscular System Development and Function2.88E-02 - 5.21E-0423					
Hair and Skin Development and Function2.88E-02 - 7.59E-046					

97

CS* Category Name *P*-value range # Molecules **Disease and Disorders Inflammatory Response** 2.78E-07 - 1.80E-34 414 Organismal Injury and Abnormalities 3.88E-07 - 5.66E-32 506 **Immunological Disease** 2.18E-07 - 2.01E-22 277 **Inflammatory Disease** 2.28E-07 - 9.36E-22 296 **Respiratory Disease** 7.59E-08 - 9.36E-22 129 **Molecular and Cellular Function Cellular Movement** 3.14E-07 - 9.01E-39 352 **Cellular Compromise** 2.76E-08-6.86E-31 130 **Cellular Function and Maintenance** 3.14E-07 - 7.78E-28 287 **Cell-To-Cell Signaling and Infection** 3.13E-07 - 4.26E-24 261 4.05E-07 - 1.35E-21 Cell Death and Survival 410 Physiological System Development and Function **Immune Cell Trafficking** 2.95E-07 - 2.82E-38 229 Hematological System Development and Function 3.32E-07 - 6.44E-31 326 1.54E-07 - 6.87E-23 **Tissue Morphology** 302 Lymphoid Tissue Structure and Development 3.32E-07 - 3.60E-19 217 **Tissue Development** 3.32E-07 - 7.50E-19 173

98 *CS = cigarette smoke.

100 Table S3. Functional analysis of down-regulated genes in IQOS and CS groups

compared to the air group.

IQOS					
Category					
Name	<i>P</i> -value range	# Molecules			
Disease and Disorders					
Cancer	1.34E-02 - 6.35E-08	521			
Organismal Injury and Abnormalities	1.34E-02 - 6.35E-08	527			
Hematological Disease	1.34E-02 - 1.21E-06	171			
Immunological Disease	1.34E-02 - 1.21E-06	158			
Reproductive System Disease	1.34E-02 - 1.49E-05	326			
Molecular and Cellular Function					
Post-Translational Modification	1.08E-02 - 1.47E-05	48			
Cell Morphology	1.34E-02 - 1.72E-05	80			
Cellular Compromise	1.34E-02 - 1.72E-05	25			
RNA Post-Transcriptional Modification	1.02E-02 - 6.79E-05	38			
Cellular Development	1.34E-02 - 9.30E-05	150			
Physiological System Development and Function					
Nervous System Development and Function	1.34E-02 - 3.49E-04	80			
Organismal Development	1.34E-02 - 3.49E-04	101			
Tissue Development	1.34E-02 - 3.49E-04	90			
Cardiovascular System Development and Function	1.34E-02 - 3.78E-04	24			
Embryonic Development	1.34E-02 - 3.78E-04	80			

-		
C	C	*

Category					
Name	<i>P</i>-value range	# Molecules			
Disease and Disorders	~				
Cancer	1.58E-02 - 1.63E-14	957			
Endocrine System Disorders	1.36E-02 - 1.63E-14	822			
Organismal Injury and Abnormalities	1.61E-02 – 1.63E-14	965			
Gastrointestinal Disease	1.18E-02 - 2.41E-09	842			
Reproductive System Disease	1.47E-02 - 1.09E-06	574			
Molecular and Cellular Function					
Cellular Development	1.18E-02 - 1.08E-05	41			
Cellular Growth and Proliferation	1.18E-02 - 1.08E-05	45			
Cell Morphology	9.98E-03 - 7.74E-05	25			
Cellular Assembly and Organization	1.54E-02 - 1.70E-04	87			
Cellular Function and Maintenance	1.54E-02 - 1.70E-04	69			
Physiological System Development and Function	Physiological System Development and Function				
Embryonic Development	1.61E-02 - 1.08E-05	53			
Hematological System Development and Function	1.34E-02 - 1.08E-05	75			
Hematopoiesis	1.34E-02 - 1.08E-05	66			
Humoral Immune Response	1.24E-02 - 1.08E-05	52			
Lymphoid Tissue Structure and Development	1.18E-02 - 1.08E-05	52			

*CS = cigarette smoke.

Table S4. Canonical pathway analysis of upregulated genes in IQOS and CS groups

compared to the air group.

IQOS				
Ingenuity Canonical Pathways	-log(P-value)	Molecules		
Mitotic Roles of Polo-Like Kinase	2.10	FZR1, PLK5, PPP2R2A, ANAPC5, PKMYT1, CDC23		
cAMP-mediated Signaling	1.97	ENPP6, CAMK4, PDE4C, GABBR1, CREB5, AKAP7, CNGA1, CNGA3, OPRL1, BRAF, AKAP13, CNR2, PKIB		
Nur77 Signaling in T Lymphocytes	1.92	CD247, CASP9, CAMK4, HLA-A, EP300		
The Visual Cycle	1.79	RDH12, RBP3, RDH13		
Calcium-induced T Lymphocyte Apoptosis	1.69	CD247, CAMK4, HLA-A, CD4, EP300		
Histamine Biosynthesis	1.54	HDC		
Cytotoxic T Lymphocyte- mediated Apoptosis of Target Cells	1.51	CD247, CASP9, HLA-A		
Role of Lipids/Lipid Rafts in the Pathogenesis of Influenza	1.50	IFNA4, IFNARI		
iNOS Signaling	1.43	TLR4, CAMK4, MYD88, IRAK2		
Th2 Pathway	1.42	CD247, SOCS3, STAT5A, NOTCH4, HLA-A, CD4, ICOS, BMPR2		

		CS*
Ingenuity Canonical Pathways	-log(P-value)	Molecules
Neuroinflammation Signaling Pathway	6.54	TRAF3, KLK3, PSENEN, PYCARD, HLA-A, MAPK15, PIK3R5, TLR8, IL6, MAPK13, TGFB1, PPP3R1, TLR7, IRS2, NFE2L2, BIRC3, NAIP, IFNG, PIK3C2A, TYROBP, CD200R1, CREB3, TLR2, RIPK1, PLA2G2D, CD80, TREM2, APH1A, NCF2, GLUL, CD86, IL1B, TIr13, PTGS2, TNF, MMP9, WNT1, P2RX7
IL-10 Signaling	6.47	SOCS3, MAP3K14, IL4R, FCGR2A, ARG2, IL6, STAT3, MAPK13, IL33, IL1R2, NFKBID, IL1RN, CD14, IL1B, MAP2K3, TNF
Communication between Innate and Adaptive Immune Cells	6.47	IFNG, HLA-A, TLR8, IL6, IL33, TLR2, CCL4, CD80, IL1RN, TLR7, FCER1G, Tlr13, IL1B, CD86, TNF, HLA-E
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis	6.13	MAP3K14, IFNG, TRAF3, HLA-A, TLR8, IL6, IL33, TLR2, CD80, IL1RN, TGFB1, TLR7, FCER1G, IL1B, Tlr13, CD86, TNF
Graft-versus-Host Disease Signaling	5.84	IL33, IFNG, CD80, HLA-A, IL1RN, FCER1G, IL1B, CD86, IL6, TNF, HLA-E
Granulocyte Adhesion and Diapedesis	5.53	CCL17, SDC4, CLDN7, ITGAL, Cxcl9, SELPLG, IL33, IL1R2, CXCL3, ITGB2, CCL4, IL1RN, Ccl2, CCL28, EZR, IL1B, CXCL17, TNFRSF1B, CXCL2, Ccl6, TNF, MMP9, MSN, MMP19
Xenobiotic Metabolism Signaling	5.05	CYP3A7, GSTM5, UGT1A6, PIK3R5, GCLC, KRAS, IL6, MAPK13, ALDH2, Ces1g, Gstm3, SUMO1, IRS2, NFE2L2, ALDH3A1, GSTA3, MAP3K9, MAP3K14, MGST1, CYP1A1, MAP3K6, PIK3C2A, NQO1, CYP1B1, AHRR, FTL, SMOX, IL1B, MAP3K8, MAP2K3, TNF, UGT1A7 (includes others), GSTP1
TREM1 Signaling	4.78	TLR2, CXCL3, TREM1, TYROBP, TLR7, TLR8, Tlr13, IL1B, CD86, STAT3, IL6, STAT5B, TNF, ITGAX
Crosstalk between Dendritic Cells and Natural Killer Cells	4.78	IFNG, TYROBP, HLA-A, IL6, ITGAL, CSF2RB, CD80, TREM2, TLR7, CD86, TNFRSF1B, TNF, ACTG1, HLA-E
LXR/RXR Activation	4.71	ABCG8, ARG2, ABCG1, IL6, IL33, IL1R2, PON1, IL1RN, SAA1, CD14, IL1B, S100A8, PTGS2, TNFRSF1B, HMGCR, TNF, MMP9, PON3

108 *CS = cigarette smoke.

110 Table S5. Canonical pathway analysis result of downregulated genes compared to the air

group

	IQOS			
Ingenuity Canonical Pathways	-log(P-value)	Molecules		
Protein Ubiquitination Pathway	4.74	PSMB4, ANAPC2, PSMA6, USP14, HLA-A, DNAJC1, PSMD3, HSPA5, DNAJB14, UBE3A, DNAJC21, DNAJC24 PSMC6, DNAJC8, PSMA4, PSMA3, PSMD14, PSMD1, UBA1, PSMD4, PSMA2, UBE2E1		
Melanoma Signaling	3.86	BRAF, TP53, RAP2A, AKT2, MAP2K2, GAB1, MITF, FGFR1, RALB		
NRF2-mediated Oxidative Stress Response	3.51	MAP2K4, RAP2A, USP14, FGFR1, RALB, DNAJC1, DNAJB14, TXNRD1, DNAJC21, MAPK14, MAP2K2, GAB DNAJC8, ABCC1, KEAP1, GSK3B		
Integrin Signaling	3.44	MAP2K4, RAP2A, AKT2, ARHGEF7, FGFR1, RALB, PLCG1, MYLK, BRAF, Ppp1r12b, SHC1, PPP1R12A, GAE MAP2K2, CAV1, GSK3B, CTTN		
ErbB Signaling	3.44	MAP2K4, SHC1, RAP2A, MAPK14, NRG2, MAP2K2, GAE FGFR1. RALB. PLCG1. GSK3B		
Thyroid Cancer Signaling	3.35	TP53, BRAF, SHC1, RAP2A, MAP2K2, RALB, TCF3		
Cancer Drug Resistance by Drug Efflux	3.29	BRAF, TP53, RAP2A, AKT2, MAP2K2, ABCC1, RALB		
ErbB2-ErbB3 Signaling	3.24	SHC1, RAP2A, NRG2, MAP2K2, Nrg1, GAB1, FGFR1, RALB, GSK3B		
Myc Mediated Apoptosis Signaling	3.2	MAP2K4, TP53, SHC1, RAP2A, AKT2, GAB1, YWHAB, FGFR1, RALB		
Role of NANOG in Mammalian Embryonic Stem Cell Pluripotency	3.18	TP53, SHC1, RAP2A, AKT2, RIF1, MAP2K2, GAB1, SMAD9_FGFR1_WNT7B_RALB_GSK3B		

CS*				
Ingenuity Canonical Pathways	-log(P-value)	Molecules		
Cellular Effects of Sildenafil (Viagra)	5.27	CACNA1D, MPRIP, GUCY1A1, MYH14, ADCY6, PLCG1, MYLK, MYH7, ITPR1, MYH11, MYL1, CACNA1A, Ppp1r12b, ADCY9, KCNN1, CACNA1E, PDE5A, PLCB3, PLCL1, ADCY8, GUCY1B1		
B Cell Development	4.47	CD19, CD79B, CD40, HLA-A, HLA-DOB, IGHM, DNTT, CD79A		
Apelin Liver Signaling Pathway	3.33	COL1A2, COL1A1, COL5A3, APLNR, COL2A1, PDGFRB, COL3A1		
Hepatic Fibrosis / Hepatic Stellate Cell Activation	3.29	COL6A2, PDGFA, MYH14, COL2A1, MYH7, MYH11, MYL1, PDGFB, COL5A1, COL1A2, COL1A1, COL5A3, COL6A3, CD40, TGFB3, IGFBP3, EDNRA, COL4A4, PDGFRB, COL3A1, TIMP2, TNFRSF11B		
ATM Signaling	2.7	MDM4, CBX1, SMC2, TOPBP1, PPP2R2B, TLK1, PPP2R5E, ZEB1, TDP1, CBX5, CBX3, RAD50, SMC1A		
Dopamine-DARPP32 Feedback in cAMP Signaling	2.46	KCNJ12, PPP1R14C, CACNAID, GUCY1A1, ADCY6, PLCG1, ITPR1, PRKCZ, CACNA1A, ADCY9, CACNA1E, CDK5, PPP2R2B, PLCB3, PPP2R5E, PLCL1, ADCY8, GUCY1B1		
Phospholipase C Signaling	2.15	BLNK, MPRIP, ARHGEF12, CD79B, ADCY6, PLCG1, CD79A, ARHGEF17, ITPR1, PRKCZ, MYL1, Ppp1r12b, GNB4, ARHGEF19, ADCY9, GNG11, PLCB3, MEF2C, ARHGEF2, ARHGEF18, ADCY8, ARHGEF10		
Cardiac β-adrenergic Signaling	2.14	GNB4, ADCY9, AKAP5, PPP1R14C, GNG11, CACNA1E, CACNA1D, PKIB, PPP2R2B, ADCY6, PDE5A, PPP2R5E, ADCY8, CACNA1A, PDE6D		
GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells	2.06	CACNA1I, CACNA1D, ADCY6, PLCG1, ITPR1, CACNA1A, PRKCZ, ADCY9, GNG11, CACNA1E, PLCB3, ADCY8, PLCL1		
Biotin-carboxyl Carrier Protein Assembly	2.03	ACACB, HLCS		

*CS = cigarette smoke.